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ABSTRACT 

By use of Reggeology and the Cottingham formula, the divergences 

of electromagnetic mass differences are isolated in Minkowski space. 

Sum rules are derived which are necessary and sufficient to cancel them; 

they also turn out to be the necessary and sufficient conditions for 

the Wick rotation to Euclidean space via qo ~ iQO' Bjorken' s argument 

for logarithmic divergences due to current algebra is extended to the 

case where subtractions are needed in the dispersion relations. The 

connection between the divergence, the commutator [[j/O,X),HJ, jfl(O)] , 

and the fixed pole at J=O is clarified. The asymptotic value of the 

fixed-pole residue is found in terms of this commutator . 
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I. INTRODUCTION 

In Cottingham's formulation electromagnetic mass differences 

are calculated in Euclidean space, i. e. via the substitution qo ~ iqO 

in the integral over the photon 4-momentum q. This trick, the so-called 

Wick rotation, has the advantage of putting the entire integrand into 

the physical region. However, since several authorsl ,2 have obtained di-

vergent results by this method, the validity of this shift of the integra-

tion contour ought to be investigated. We shall therefore leave every-

thing in Minkowski space, use Reggeology to isolate the divergences, and 

establish sum rules which are necessary and sufficient for their cancella-

tion; the. latter will also turn out to be equivalent to Wick rotatability. 

1 Next we shall show that Bjorken's argument for logarithmic diver-

gences due to the nonvanishihg of the commutator [[j~(O'X),HJ, j~(O)] 

holds even in the ffi=l case where a subtraction is needed in the 

dispersion relation. The connection between the logarithmic divergence, 

the quantity C = Jd3
X (pI [(j~(O'X),H], j~(O)] Ip), and the fixed3 

pole at J o is clarified. In particular we shall show that the 

fixed-pole residue BO(q2) ~ Cjq2 at infinity. It is this property of 

the fixed pole which causes the logarithmic divergence, both in Minkowski 

and in Euclidean space. While it is probable that the Regge divergences 

will be cancelled by our sum rules, there does not seem to be any way 

out of Bjorken's logarithmic divergence except by demanding that C = O . 

Finally we shall point out why the divergence claimed by Cottingham 

and Gibb
2 

is spurious (they make the wrong subtraction in their dispersion 

relation) . 
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II. COMPTON SCATTERING AND ELECTROMAGNETIC MASS SHIFTS 

In perturbation theory the electromagnetic self mass of a hadron 

0; == e2/"4." 4 to first order in )C is given by 

iff:: Lln== 
i 

T(iJ" qO), (2.1) 
(2rt:)2 22. q +lE 

where jJ. 
T == T , and E"*ll TjJ.A (.Q" qO) EA is the forward Compton scattering 

jJ. 

amplitude for virtual photons of mass 2 2 2 and polarizations q == q -~ 

° 
E and E (Fig. 1). The usual assumptions of Lorentz invariance and 

jJ. A 

current conservation allow us to write 

(2.2) 

Since an average over the hadron spin is understood, there are only 

two invariant amplitudes; they are functions of the Lorentz scalars 

and v == p·q/m. We shall work in the rest frame of the hadron, where 

p == 0, PO == m, and 

2 
q 

The t. and hence T are crossing-symmetric in v == (s-u)/4m: 
l 

2 2 
t.(q , v) == t.(q ,-v). 

l l 

With spherical and crossing symmetry, Eq.(2.1) integrates to 

2 
00 v 

i J '2;"" dv 

° 
J 2 

q + iE 
-00 

The invariant amplitudes t. , 
l 

2 2 .1 2 (v - q)2 T(q ,v). 

their relation to the helicity 

amplitudes, their analyticity properties, and their high energy 

(v ~oo) limits have been discussed in detail by, for example, Pagels 

.. 

If 

I 
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and Gross. S Here we shall just summarize the results that we are going 

to use. The t. are· real analytic functions in the cut v plane. The 
1 

cut starts at the inelastic threshold v
t 

= m +(m 2 - q2)/2m and runs 
n n 

along the real axis to +00. The ti contain a Born term 

4mq2f. (q2) 
]. 

where the 

422. 2 
q -4m v +lEq 

f. are bilinear combinations of form factors. 
1 

(2.4) 

For the v ~oo limit we follow Harari's t · 6 d sugges lon an use 

Regge theory. The cosine of the t-cbannel scattering angle at t = 0 

is 

s - u 
4 m q = q 

, (2.5) v 

The Regge limit is extracted from a Sommerfeld-Watson transform when 

Zt ~OO, that is in our case v
2 » Iq21. Pure Reggebehavior would 

imply 

where a = a(I)(t = 0) is the t = 0 intercept of the leading Regge 

trajectory with the quantum numbers of the t-channel, in particular 

(I = 1) a = aA2 ~ 0.4 > 0 for the ~ = 1 mass differences 

men) - m(p), m(~-) - m(~+), m(2-) - m(2o ), and m(Ko ) - m(K+). 

For the ~ = 2 mass differences m(n+) - m(no ) and m(~+) + m(~-) -

one assumes in the absence of any known low-

lying I = 2 mesons. This is Harari's familiar argument about the 

necessity of subtractions in the dispersion relations for the t .. 
1 
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Since we are dealing with a nonstrong amplitude, we have to 

admit the possibility of fixed pOles. 3 Our amplitudes are crossing even 

and can have fixed poles at J = 0, -2, -4 Therefore we must write 

the v ~oo limit in the form 

tl(q2,V)~ ~ Bli(q2) v
ai 

i 

and 
2 \ 2 a.-2 

t 2 (q ,v)~ ~ B2i (q )v l , 

i (2.6) 

where the sum goes over all Regge and fixed poles that contribute to the 

limit. The residue functions B(q2) for the Regge pole or poles 

contain the signature factor 

2 ~e -ina + 1) 2 
B(q ) = . a f3(q). 

Sln n 

We shall omit the I-spin label; our results will apply to both cases. 

In the following we shall work only with the complete amplitude 

T 2 
3q tl 

2 2 
+ (q + 2v )t2 

Its high energy limit is 

2 ~ 2 a. 
T(q ,v) ) B. (q ) l 

V , 
l 

i 

with 222 
B.(q ) = 3q Bl.(q ) 

2 
+ B2i (q ). Because 

l l 

2 q = 0, Eq.(2.9) should remain valid when 2 
q 

(2.8) 

2 
T(q ,v) is analytic at 

approaches zero, even 

though Zt = v/q becomes singular. If a pole term does not contribute 

at some value of 2 
q , e.g. at 2 

q 

to the vanishing of its residue. 

0, then this would simply correspond 

• 

t 
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III. DIVERGENCES IN MINKOWSKI SPACE 

AND CONDITIONS FOR CANCELLATIONS 

A. Isolation of the Divergences 

To compute' 6m in Eq.(2.3), cottingham4 performs a Wick ro-

tation from Minkowski to Euclidean space, i.e., he rotates the integra-

tion contour from qo to. iqo in order to obtain an integral over 

spacelike photons only for which 2 
T(q ,v) can be measured in electron 

scattering experiments. 

~uclid 
1 

- 2 rr 

o 

J 
-00 

In his formula, 

~ 
d 2 J 2 i dv (-v 
q 0 

the values of T at imaginary energies iv 

2)-1- T( 2 . ) -q ~ q, 1. V , 

are obtained from 2 
T(q ,v) 

via a dispersion relation. Cottingham justifies the Wick rotation by show-

ing that no singularities in the qo plane are crossed. However, he 

did not investigate whether the quarter circle at Iqol = 00 contributes 

anything. As we shall see, this is not satisfied unless certain sum 

rules provide cancellations. 

In Minkowski space 6m, Eq.(2.3), has contributions from the 

2 2 region v -700 at finite q (see Fig. 2), where we can substitute the 

Regge expansion, Eq.(2.9). Obviously these terms diverge like A2
+a 

for a > -2 or like log A for a = -2; 

A 

J J 
2 

d dq 
v 2 . 

q +iE 

2 2.1 2 a (v _q)2 B(q)v 2 B(q ), 

where A is a high-energy cutoff. If 6m is to be finite these 

divergences must cancel when summed over all 

expect the sum rule 

2 
q , which leads us to 



00 

J 
-00 

dq2 2 
---"....::.-- B (q ) = 0 

2 . 
q +lE 

-6-

for each Regge or fixed-pole residue. 

Such a sum rule is quite reasonable, because 2 T(q ,v) 

it each B(q2) should be analytic in the cut 
2 plane. The q 

2 2 (2m )2 extends from q = (2m) to +00 along the real axis, 
n: n: 

lowest threshold for pair ~roduction by the photon. If B(q2) 

and with 

cut 

being the 

falls 

off fast enough at then the contour in Eq. (3.3a) can be closed 

in the upper half plane, and the integral vanishes because there are no 

singularities inside the contour. In judging the behavior of 
2 

B(q ) 

at the Phragmen-Lindeloff theorem7 is of great help. It 

tells us that the function B(z) will reach the same limit 

C and 5 are some constants, for all I z I -700, provided it 

in the cut z plane, is ofexp[lzl(~ E) ]J for E > 0 at 

5 Cz , where 

is analytic 

infinity, 

and approaches Cz5 when z approaches 00 along the real axis. 

Actually we have been a bit cavalier about taking the limit 

v -700 outside the dq2 integral; this is all right if 
2 

v 
dq2 J (v 2 2 1. 2 

(3.4) 2 
_ q )2 T(q ,v) 

q + iE 
-00 

converges uniformly for all v. On the spacelike side, this is easily 

established for the real part of 6m: 

00 2 

2
l

n: J f dq2 2 2 1. 2 Re 6m dv 2"" 
(v _ q )2 1m T(q ,v) 

0 
q 

-00 

00 

I J 2 O,v) (3·5) + 2 dv v Re T(q 

0 

I: 

", 

• 
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(we shall assume 1m 6m = 0). 2 
The absorptive part of T(q ,v) equals 

2 
1m T(q ,v) 

v = m + 
t rr 

2 2 
m - q 

:n: 
2m 

2 
(2m) , 

rr 
and the threshold 

Hence at 
2 q -? -00 the integrand vanishes outside the Regge region, and 

we have no problem taking v to infinity. 

For the timelike side we quote Bjorken'sl limit [his Eqs.(2.S) 

through (2.7)]: 

with 

which follows from a fixed q dispersion relation in the absence of 

Schwinger terms in [jl-L(O,~), jl-L(O)]. In general, an integral converges 

uniformly if the integrand has a convergent upper bound. In our case, 

if we have 

2 2 Y ex 
IT(q ,v)1 < const.(q) v 

with y<O at large 2 
q 

have uniform convergence. 
J
oo d 2 2 

and v, then . (q~ )q Y 

Since the bound Eq.(3.8) is 

exists, and we 

quite generous 

in view of Bjorken's limit, we shall henceforth assume uniform convergence . 

A closer examination of the integral (3.4) reveals that the sum 

rule, Eq.(3.3a), is not strong enough if ex ~ O. Expanding the square root 

in powers of 2 2 
v /q , we obtain 
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00 
1 

dq2 2 "2 

lim J v [1 - q2] B(q2) ex 
-2-. v 

V-7 00 q +1.E V 
-00 

00 

dq2 
00 

B(q2) + ... J. [vl+ex J 2 1 -1 +ex J dq2 = lim 2 . B(q ) - '2v 
V-7 00 q +1.E 

-00 -00 

Of course, this expansion has to be broken off at the nth term if 

Joo dq2 B(q2) q2(n+l) 2 +ex diverges. The first term produces a A 
-00 

or a log A divergence in 6m for all ex ~ -2, while the second 

term will diverge like A
ex or log A if ex ~O. Since all ex are 

~ 1, the rest will converge. We see that the pole terms with ex ~O 

require the additional sum rule 

00 J dq 
2 

B ( q 
2

) = 0, 

-00 

which is satisfied by our analyticity assumptions provided q2 B(q2) 

Iq21 approaches zero when approaches infinity. 

Now let us examine the possibility of other divergences. There 

can be none as 2 
q approaches zero because 2 

T(q ,v) is well-behaved 

2 242 2 here. Divergences in the region 0 ~ v ~ vt ~ q 14m and q -7-00 

have been ruled out by the vanishing of ImT(q2,v). Finally, divergen-

ces from 
2 2 

v ,.., q -7 +00 are not allowed by Eq. (3.7) . Therefore we 

conclude that the sum rule(s) Eq.(3.3) are necessary and sufficient 

to make 6m finite. 

If for some reason the bound in Eq.(3.8) should fail, and this 

does happen with the Born term for point nucleons, then we can still 

prove that the sum rules 

" 

• 
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00 2 

J dq 
. 2. q +lE 

-00 

2 
T(q ,v) :::: 0 (3·10a) 

• 00 J dq2 T(q2,v) :::: 0 (3.10b) 

-00 

for all finite v are sufficient to eliminate the divergences at 
. A 00 2 2 

v ~OO. This can be seen by subtracting 21rr.[ dv v _[[dq /(q +iE)] 

x T(q2,v) :::: 0 from Eq. (2.3) with cutoff A, 

A 

i J Lm:::: 2 rr dv v 

1 

q2) [1 _ (q2 /v2) r~ 
o 

and expanding the square root as before. Eqs.(3.3) are simply the high-

energy limit of Eqs. (3.10), if it exists. 

B. The Born Term 

The Born term 

2 2 2 2 
2 2 4mq f 1 (q ) 2 2 ~mq f 2 (q ) 

TB(q ,v) :::: 3q 4 2 2. 2 + (q +2v) 4 2 2. 2 
q -4m v +lEq q -4m v +lEq 

with its v ~oo limit 

contributes to the fixed poles at J:::: 0, -2, For spin one-half 

particles the f. are 
1 

2 G 2 _ G 2 2 2 2 2 
, )2 q GM + 4m G

E 
fl ::::~2en ) M E and f2 =( 2e

n 2 2 222 q + 4m q (q + 4m ) 
(3.13) 
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Since the electric and magnetic form factors G
E 

and G
M 

seem to 

decrease
8 

at least like 1/q4 when q2 -'" _00 we have 

and 

/ 
10 

f. == 0(1 q ), 
1 

2 2 [ q BO(Bar-n)"" q -

[- 3 
4 

...s... f 
m 1 , 

which is several powers better than we need for the sum rules Eq. (3.3). 

Therefore the Born contribution to 6m converges. 

For spinless hadrons there is only one form factor, the Born term 

is proportional to 

42222 -3q + 4m q + 8m v 
422 . 2 

q - 4m v + l€q 

and the sum rules require that 

1 

2 2" 2 
(q) F(q) -'" 0 

at infinity. 

2 2 
IF(q)1 , 

(3.14) 

For' an illustration of CW' sum rules, consider point particles for 

which 6m is calculated according to Feynman's rules. For the point 

nucleon, 

2 
has poles at q 

222 
T ==(~\ 4m q + 2v 
B(point nucleon) 2 rr) q 4 _ )-Im2 l + i€q2 

,) 

::: 2mv - i€, is analytic in the upper half qL plane, 

• 
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decreases like as goes to infinity. Therefore we have 

00 

J dq2 
2 0 q + J.€ 

_00 . 

2 
TB(point nucleon)(q ,v) := 0, 

cancelling the quadratic divergences in the spacelike, lightlike, and 
00 

timelike contributions to 6m. 
2 

However, J d2T (2 ) 
q B(point nucleon) q ,v 

_00 

= -in4m(2 en) is not equal to zero and the well-known logarithmic 

divergence survives. Note that Eq.(3.15) does not converge uniformly, 

so we cannot take v ~ 00 and write it in the form of Eq.(3.3). For 

point pions the Born term is proportional to 

3 4 4m2 2 + 8m2v2 - q + q 

q4 _ 4m2v2 o. 2 + J.€q 

Here the quadratic divergence will not be cancelled because T 

Iq21 approaches a constant as goes to 00 and 

f
OO 2 

dq T 
2 0 B(point 

q + J.€ _00 
pion) " ° 

c. Wick Rotation 

B(point pion) 

For the Wick rotation we have to continue T from real v to 
0Q 

v := IvleJ., ° ~ Q ~ n/2. Assuming the high-energy limit Eq.(2.9) at 

all complex v ~ 00, we obtain for the quarter circle at infinity 

~ JOOO dv 
2n 

00 

1 

2 2"2 2 
(v - q) T(q ,v) 

I 
21 2iQ 

v e 2 

J 2dq 
q + i€ 



This vanishes if and 
2iQ 

only if, for 

co e 2 

J --:2:::-d-=q----- B ( q 2 ) = 0 
q + i€ 

and for 0; > 0 

2iQ 
co e J dq2 B(q2) o , 

-12-

0;<0 

, 

These conditions are satisfied automatically if they hold at Q = 0 

(see Fig. 3). At Q = ~/2 they become trivial, which explains why 

none of these divergences appeared in the usual calculations of 6m: 

they were carried out in Euclidean space. 

To sum up, we have used Reggeology, as well as reasonable 

assumptions for the 
2 

q ~ co behavior, to derive necessary and sufficient 

conditions for a finite 6m. Furthermore, finiteness of 6m has turned 

out to be equivalent to Wick rotatability. In the case of a logarithmic 

divergence, for example the Born term with point nucleons, the Wick 

rotation only adds an imaginary constant to 6m, while the divergent 

real part remains the same. 

.. 
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IV. BJORKEN' S METHOD .AJ.\ID THE FIXED POLE 

A. Inclusion of Subtractions 

Bjorken calculated 6m 
1 in Euclidean space) assumed unsub-

tracted dispersion relations) and discovered a logarithmic divergence 

due to the nonvanishing of [[jJl(O)XLHJ, jJl(O)] • Since a logarithmic

ally divergent integral does not change on Wick rotation) apart from a 

finite imaginary constant) we should expect to find the same divergence 

in Minkowski space. This means that one of the sum rules for the J = 0 

or J = -2 fixed-pole residues must fail. We shall indeed show that 

for the J = 0 pole 

(4.1 ) 

with 

and therefore 

00 

J 
which just reproduces Bjorken's result 

C 
6mdiv = - ~ logA (4.2) 

First let us review Bjorken's argument. He assumed an unsub

tracted dispersion relation (USDR)9 

00 

+ -
1 ~ 

2 2 
dv' ImT(9.,v') 

,2 2 
v - v 

(4.3 ) 

v
t 

the threshold becomes and noted that for 
2 2 

2 (-9.) v ..... --
t 2m 

2 2 
~ 
4m2 

»9.2 . In Euclidean space one needs T(9.2)v) only at values 



O:s I} I :::; _q2. In this range 

b d d . 2/' ,2 e exran e In pow-ers of v v : 

2_ 
T(q ,v) == 

On the other hand, we have 

1 

T(q2, (q2)2)_> 

These conditions imply, for 

-14:.. 

2 
.:::; -q , 

and cause the logarithmic divergence. 

and the denomins.tor can 

(4.4) 

NOIy we generalize this argmllcnt to the .61 == 1 mass differences 

where one subtraction is necessary (and sufficient, since all ex ~ 1). 

The subtracted dispersion relation (SD1~), 

2 
'T(q,v) ( 2 ) v

2 
- If T q ,N + --
rr 

(4.6) 

holds for all subtraction points N, even for N --> co. If 'vc take' 

2 2 -
o ~ I v l-:s Cl \'Te can expand the :i.ntegral jn 

m( 2 0) .!. (1 , 

V.-
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Since this is the same as in Eq. (4.4), we see that Eq. (4.5) and 

the logarithmic divergence emerge in this case as well.
10 

B. The Fixed-Pole Residue 

For the 61 = 2 case we can obtain the asymptotic value of 

the residue directly from the USDR (4.3) by taking 
2 2 v = q ..... _00 

d 1 t · v2 « v,2: an neg ec ~ng 

~ 2 C 1 
BO(q ) "2 n: q 

vt 

00 

dv,2 2 
+ o(~) 1m T{q lV' l 

,2 v q 
(4.8 ) 

The integral must be O(l/l) in order for the neglected terms in 

Eqs. ( 4. 4) and (4.5) to be O(l/q 4) as required by Bjorken's framework. 

We might wonder if the integral could go like 1/q2 asymptotically 

and maybe cancel the leading term in BO' But then Bjorken's divergence 

would not be the same in Minkowski space, thus violating Wick rotata-

bility. Therefore we suspect that the latter requires 

--~> O. 

As a matter of fact, this is precisely what we had assumed in the 

derivation of our sum rule Eq. (3.3). 

To gain some more information we try the following approxima-

tion 

2 
1m T(q ,v') 

i i 

since we integrate only over the high-energy region v,2 ~Vt2 »q2 

2 
Obviously this cannot be quite correct because 1m T(q ,v') vanishes 

\' 2 a. 
for v' < v

t
' whereas ~ Bi(q )v' ~ has a cut all the way from 

i 
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v' = 0 to 00 Eventually, however, as 
2 2 

V
t 

«v' ~ 00 Eq. (4.9) 

should be good, if Regge theory is to have any validity in Compton 

scattering. If the Regge limit (4.9) sets in at say v,2 ~ D vt
2 

D »1 fixed, and if the behavior of 1m T near threshold is not too 

pathological, then this approximation should reproduce at least the 

correct power behavior of the integral in (4.8); it becomes 

1 
1L 

22 
dv' 1m T(q , v') 

v 
,2 

cc 

If BO is sufficiently regular at infinity, Le., if 

/
2 4 2 20: 4 

BO ~(C q ) + O(l/q), then~ (q )( -q) = O(l/q) and the sum rule 

(3.3a) is satisfied for 
220: 

-2 < 0: < O. [If we only knew ~(q )(-q ) 

2 
O(l/q), then it could be broken for 0: < -1.1 

For the 6.1 = 1 case we take the real part (the imaginary part 

would just give o = 0) of the SDR (4.6) with 
2 q2» 4m2 and N~ v = 

On the mrs all pole terms with 0:< 0 disappear, only tle J = 0 

pole and the leading Regge pole with 0: = A = 0:A2 survive. This yields 

2 C r 
(~A) ~A (q2)~ BO(q ) 2- lim l cot 

q N~ 00 

00 

] rF ~ 
2 2 

+ - dv' 1m T(g, zV'} 
1! . ,2( ,2 N2) :v v -vt 

(4.11 ) 

The leading Regge term cancels exactly the leading term from the inte-

gral, so we end up with just Eq. (4.8) but with the proviso that the 

2 A 
~A(q )v' term be removed from 1m T. We can see this explicitly by 

snbstituting approximation (4.9) into Eq. (4.11) and looking up the 

integral in a table of Hilbert transforms: 

00. 
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(a) for o;==A>O 

___ . __ . ~> _ cot (~A) ~ 
N-+-oo N 

(b) for 0;<0 
00 

0; 
1 

1 ~ 
dV,2(v,2~2 -

if (v,2 _ ~) N~oo 
vt 

----:~ - cot(rrg)~ + 

The Regge terms will cancel exactly, while the -~ I 
0;.<0 

l. 

v 0; 
t 

part from (b) will contribute to the fixed-pole residue. This is the 

same as we had found in E~s. (4.8) and (4.10) for 6I == 2; so we 

conclude that here, too, 

2 C 
Bo(~ ) -.--;::> 2 

~ 



V. CONCLUDING REMARKS 

We have seen that the divergence of the 6I 1 mass differences 

is no worse than for the 6I == 2 case (provided that the sum rule (3.3b) 

is satisfied for the a
A2 

Regge term). So what about the claim by 

Cottingham and Gibb2 that ~ should diverge if computed via dispersion 

relations? Harari
6 

makes a q2-dependent subtraction at v == 0 and 

gets a convergent SDR of the farm 

00 

2 2 
T(q ,v) == T(q ,0) + 

222 
dv' 1m T(q ,v' ) 

,2( ,2 2) 
(5.1 ) 

v v - v 

This yields a finite ~ (apart from Bjorken's divergence). On the 

other hand, Cottingham and Gibb work with the Jost-Lehmann represen-

tation and make a 
2 2 2 

q independent subtraction at q == € and 

2 2 
v == -€ ..... O. Jost-Lehmann representation or not, such a subtraction 

leads to the dispersion relation 

2 
T(q ,v) 1m T ( €2, v ' ) 1 

2 2 (v' + € ) 

(5.2 ) 

Since Cottingham and Gibb do use dispersion relations to calculate ~, 

and since they assume Regge behavior, they should realize that both 

2) (2 a Im.T(€ ,v' ..... 1m B € )v' and there-

fore Eq. (5.2) still diverges for a > O. The subtraction at 2 
q 

2 
€ -.. 0 

is useless, and consequently the expression for ~ diverges as if no 

Gubtraction had been made at all. 
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SUMMARY 

The high-energy limit of the spin-averaged Compton amplitude 

2 \:' 2 cx. 2 2 
T = T ~ is T(q ,v)~ ~B.(q )V 1 when q «v ~ 00; the 

~ i 1 

sum goes over all Reg~e and fixed poles. If 1 

• 00 v 2 2 2 22 2 
lIn = 2\: f dv J [dq j(q +iE)](V - q) T(q ,v) is evaluated in 

o -00 

Minkowski space, the exponent cx will produce a divergence A2
+o: 

The sum rule f reduces this leading term 

to 
-00 

reduces it to 
-2+0: A . 

Table 1 summarizes the restrictions on the residue functions 
2 

B. (q ) 
1 

that are necessary and sufficient to make lIn finite and to allow the 

Wick rotation. 

Exponent 
of v 

Sum rule 
necess. + suffic. 
for finite lIn and 
for Wick rotation 

Bounds at Iq21~ 00 

necessary and sufficient 
to satisfy the sum rules 



,'" 

-21-

FOOTNOTES AND REFERENCES 

* This work was supported in part by the .United States Atomic 

Energy Commission. 

1. J. D. Bjorken, Phys. Rev. 148, 1467 (1966). 

2. W. N. Cottingham and J. Gibb, Phys. Rev. Letters 18, 883 (1967)~ 

3. J. B. Bronzan, I. S. Gerstein, B. W. Lee, and F. E. Low, Phys. Rev. 

Letters ~ 32 (1967) and Phys. Rev. 157,.1448 (1967); 

V. Singh, Phys. Rev. Letters 18, 36 (1967). 

4. w. N. Cottingham, Ann. of Phys. S2" 424 (1963). 

5. H. Bagels and D. J. Gross, Phys. Rev. (to be published). 

6. H. Harari, Phys. Rev. Letters 17, 1303 (1966 ). 

7. Titchmarsh, The Theory of Functions, 2nd edition (Oxford University 

Press, London, 1939). 

8.. D. H. Coward et al., Phys. Rev. Letters 20, 292 (1968). 

9. The USDR has to contain the fixed-pole term separately. 

Although this was not included by Bjorken, it does not affect his 

conclusions. 

10. We assume with Bjorken that E~. (3.7) and the absence of Schwinger 

terms hold even if a subtraction is necessary. 



-22-

FIGURE LEGENDS 

2 
Fig. l. The forward Compton amplitude T~ (q ,v). v 

Fig. 2. The region of integration for 6m in (a) Minkowski space and 

(b) Euclidean space. 

Fig. 3. Integration contour for the sum rules. 
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