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ABSTRACT 

UCRL-1835 

The mathematical problem of calculating the yield of an isotope 

produced in a chain of first order transformation processes is discussed. 

Several new approximation formulas are derived, as well as the 

well-known general exact solution. 

A sample calculation of the pile yield of isotopes in a chain 

of radiative neutron capture processes is carried out, illustrating 

a method of tabulation designed to minimize numerical errors. 
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INTRODUCTION 
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The mathematical problem of the variation with time of quantities 

involved in chains of first order transformations (as radioactive growth 

and decay and nuclear transformations-effected by bombardment of matter 

by neutrons, charged particles, or gamma rays) has been treated by 

several authors.1- 5 

In connection with some of the experimental work at the University 

of California Radiation Laboratory it has been necessary to make ex-

tensive use of this type of calculation. Some ne~ series expansions 

have been developed for use in certain cases. It was felt that it 

would be worth while to set down our general methods of setting up 

such problems, to list labor-saving formulas and to illustrate a method 

of tabulation, designed to minimize_ the possibility of error. 

Since the first order differential equations in any complex chain 

constitute a set of linear equations, we can. immediately divide any 
. ' . 

complex chain with any distribution of initial quantities into sums of 

unbranched chains with only the parent initially present. The cal

culations can·be carr~ed th~ough indiVidually and the summation numeri

cally pe-rformed as 'the last step. 
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PROBLEM OF THE SINGLE CHAIN WITH ONLY THE 
PARENT INITIALLY PRESENT . 

' ' 

Consider a chain of first order' transformations.·( as a series of 

* n,Y reactions at constant neutron flux or a radioactive decay chain): 

where ai is the constant coefficient governing the rate of 

production· of isot,ope A{ from its parent Ai-l• If 

this production is by radioactive decay, -'l 

a1 = A.i = 0.693/half-life 

of Ai-l in seconds; and if the producti~n.is a bombard

ment particle-induced reaction, then ai = Icri' where 

"I is the flux of bombarding particles in particles per 

square centimeter per'second, and cri is the capture 

cross section of A:i.-l in square centimeters·. · 

bi is the constant coefficient governing the rate of 

destruction of isotope Ai by all processes. It is then 
~ . . - . 

the sum of all i A.j for radioactive decay of 'Ai by all 

modes j plus the sum of all ~(icrk) for all particle

induced reactions k destroying Ai wbere cri is the 

* .. If no radioactive decay processes are s~gnificant in the chain, the 
condition of constant neutron flux need not be imposed. The total inte
grated flux (nvt) is all that need be known. But if radioactive decay 
processes are signi-ficant, the flux variations give to the. .. set of dif
ferential equations cons_tants variable with time. If the variations can 
be treated as stepwise constant, the problem l'DBY' be broken up and treated 
in separate segments. A suitable pelynomial in time t might be fitted 
to, the flux variation and the resultin1g differential ·equ~tions in turn 
treated by the ·Laplace transform tion method. We shall not, however, 

,· be concerned· with any but the constant flux case here. 
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cross section of Ai in square centimeters for process k. 

That is; 

The dimensions of the ai and bi are reciprocal time. 

The differential equations relating the amounts yi of species Ai 

* present are: 

dyl/dt = -blyl 

. dy2/dt = a2yl - b2y 2 

The following text will describe the derivations of the various 

equations used in the subject problem, beginning with the above rela

tionships. .The reader interested mainly in the practical application 

of the equations for solving a specific problem may turn di"rectly to 

the.illustrative example at the end of the paper • 

. With the initial conditions at t = 0, 

yi = 0, 
for i :f 1 

the first equation above is readily integrated to give the familiar 

exponential decay 

···: ·'. . ....... ' *. ' 
·.The quantity y. :may be number of atoms, number of moles, or other 

convenieilt,·meas'lire or number of atoms. 
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This expression can be substituted into the second. equation and 

another integration performed to give the growth- and decay-type yield: 

This process could be done repeatedly to solve any such system, but 

it soon becomes cumbersome. It is thus much more convenient to apply 

the methods of operational calculus to ·such a system of differential 

equations. See Appendix I for the derivation. 

For convenience and accuracy in the numerical calculations it 

seemed best to introduce dimensionless parameters of magnitudes near 

unity to replace the time 1 cross section$ and flux variables. We let 

qi = tai and ci = tbi. 

If tNk is the number of atoms of the kth chain member at time t 

and QN1 is the number of atoms of the first member at time zero, we 

may write 

where [c1 -»c2$ o•o $en] is a quantity designated as the "C-bracket." 

A few formulas for evaluating C-brackets are listed below. The 

derivations in the appendices to this paper should suggest other means 

of dealing with special cases that m~ be encountered. 

A sample of actual neutron pile transformation calculations is 

given to illustrate our method of tabulation. The results of this 

sample calculation are plotted on a log-log plot of yield versus 

integrated neutron fluxo 
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USEFUL FORMULAS FOR THE CALCULATION OF C-BRACKETs· 

A. Exact Formulas 

1. General, no repeated ci: 

2. General, r...,fold Cm: 

n 

-C· e ~ 

TI (Cj-Ci) 
j=l 
j+i 

n e-Ci C r ¢(r-k) (-C ) L -....:---'--- + e~ m L . m 

Ti
n k--l ( r-k) ! ( k-1)! 

i=l (c .-c ) 
i...1.m , J i .,.. J=l . 

j:li 

where ¢(r-k) (-Cm) is the (r-k)th derivative with respect to a of the function 

¢(a) = ---=1 __ 
n 

TI 

evaluated at a = =Cm. For example, take the case of 2-fold Cm in a 3-C'd 

bracket ~1 ,cl'c3 J. The first term becomes 

The seco.nd term is: 

= -
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so the entire second term becomes 

thence 

3. r-fold em, no other factors: 

r 

and the special case r~J 1 Lo,o, .. ,o =( )' 
r-1 . 

B. Approximation Formulas 

When some or all of the Ci's are very nearly the same (as in a 

very short bombardment), the numerical calculation by equation~-U, 

in the preceding section, becomes liable to error, there being a very 

·. * small difference of large terms. A few infinite series expansions 

found useful by us in such cases are set down below. Their derivations 

are to be found in Appendix II. 

*rt is usually necessary in a numerical calculation of the C-bracket 
by equation~-l)to carry out the operations to several decimal places. 
Even though the individual C's themselves may be very approximate, in 
order to obtain a significant answer it is often necessary to use five
place (or more) exponentials from tables and to carry out multiplication 
and division with a calculating machine, retaining many decimal places. 
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n 

I ci 
i=l + 

n! l 
or more rapidly converging by application of(A-4)with B = Caverage = Ci/n. 

where I 
.· 2 

= I 
ij 
i;tj 

+ 2 

( I~ ) .· ·] .. + + - (n+5)! • 0 0 0 0 0 0 0 

· In\ 
(2n-l) !} 

FiFj, the sum of the products of all combinations 
of F' s, taken tw0 at a time; 

FiFjFk, the sum of products of all combinations 
of F1 s, three at a time, etc.,. 

and where we define Fi = Ci - Caverage· (See Appendix II for derivation 

and gen~ral terms.) 

3. When some of the Ci's are very large, it is often convenient 

to simplify the calculation of the brackets by the following series: 
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* 

where we define the mth derivative of a C-bracket [ cl'c2, ••• ,en J by 

the inverse transform: 

[
Cl,C2,C3' • • • ,Cn] (m) = -~1:...-. '-f-1 __ ....;S:.,.m __ _ 

tn-m-1 c;(_ ( c ) TI S_"!: ...1 
l~i~n : t 

in the case of non-repeated Ci's, this is easily found as: 

c.m 
-c. 

r J'm) [dm n -C1~ ] ( -l)m 
n e J. 

I ]. 

c11c2,c3, .•• ,en =-I e . = 
d~m i-1 n n 

- TI Cerci) 
i=l I1 (Cj-Ci) 

j=l ~=1 j=l 
j;d j;'i 

If Cn>>l, we often, as a first approximation, neglect all bu~ the 

first term in the series. 

*see Appendix III. An interesting corollary to the differentiation 
process for C-brackets is the following: 

or any number of zeros are removable, one for each differentiation. 
This relation follows from the second of the series formulas developed 
in A:ppendix III . 
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As an example, consider the bombardment of a sample of Mo95 in 

a pile and evaluate yields of Mo96, Mo97, and Mo98 in terms of ratio 

of each to the .amount of parent Mo95 initially present for the total 

neutron fluxes chosen; make a log-log plot of yield ratio of each vs. 

total flux. That is, letting Mo~~) represent the number of atoms of 

parent Mo95 initially preserit, calculate 

. , N 
where Mo(t) represents the number of atoms of Mo of atomic weight N 

at a specified time t, or, in this case.~> at the total neutron fluxes 

specified. 

Calculations will be made at total fluxes of 4 x 1021 , 4 x 1022, 

and 4 x 1023 neutrons/cm2• 

As described early in the text, the quantities or constants with 

which we are concerned to give the desired yields or successive products 

were the ai's and b1
1 s where 

(1) the ai's control the creation of any isotope Ai from its 

. parent, Ai =1, and, in this case, 

where I = flux-rate in neutrons/cm2 sec 

and ai = capture cross section in em2 for Ai-1, 

and (2) the bi's control the destruction of isotope Ai and, in this case, 

* bi = Iai, where I is the same as above and 

ai =total capture cross section in cm2 for Ai. 

*In the above example radioactive decqy does not enter into the 
picture; in cases where it is present, see text for including Aii into 
the ai's and bi's. 
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Then the a's and b' s for the parent and successive isotopes in the 

problem are as follows: 

Isotope (barns) a (x 1024) b (x 1024) 

Al = Mo95 13.4 --- bl = 13.4 I 

A2 = Mo96 1.0 a2 = 13.4. I b2 = 1~0 I 

A3 = Mo97 .2.3 a3 = .1.0 I b3 = .2.3 I 

A4 = Mo98 0.4 a4 = 2.3 I b4 = 0.4 I 

To put these constants into the form to use in the general solution~ 

namely~ 

Ai( t)(A1 ( o) = IJ qi [ epe2,e3 , •.. ~en] 
2~i~n 

where qi 

n e-ei 
[el'e2 ~ ••• ~en J = L _n ___ _ 

i::l [1 (ej-ei) 
j=l 
j;i 

we must make a table of ait's and bit's. But, as stated above, we 

are not concerned with t in this particular problem but only with I x t,. 

or total neutron flux (nvt). Therefore~ we could have immediately 

written down the table of qv s and e 1 s~ which are simply 

qi = a i x nvt and 

ei = ai X nvt. 
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Hehce,iprepare the follOwing table: 

·-

Total 4 x 1021 n/ cm2 4 x 1022 n/cm2 /_,_ xlo23 n/cm2 
Flux. c e-G c e-C c . e-G 

cl 13.4 X 10=24 X 4 X 1021 = 0.0536 0.94781 0.536 0.58508 5.36 0.0047 

c2 1.0 X 10=24 X 4 X 1021 = 0.0040 0.99601 0.04 0.96079 0.4 0.67032 

c3 2.3 X l(r'24 X 4 X 1021 .. 0.0092 0.99084 0.092 0.91211 0.92 0.39852 

c4 '0.4 X 10=24 X 4 X 1021 = 0.0016 0.99840 0.016 0.98413 0.16 0.85214 .. 

q q -
q2 13.4.x lo-24 x 4 x 1021 = 0.0536 0.536 5.36 

q3 1.0 X 10=24 X 4 X 1021 = 0.004 0.04 0.4 

q4 2.3 X 10=24 X 4 X 1021 = o.oo92 0.092 0.92 

.-
We are now ready to calculate the desired yields from the above general 

solution at the three nvt's chosen; namely, calculate 

Th~ remainder of the example is ·for the purpose of illustrating 

the ev:aluating of the C-brackets 1 both by the general solution and by 

alternate equations when indicated._ Arithmetic steps have been included 

for the purpose of illustrating the method's- of handling which we have 

found most practical. 
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Evaluation .of C-brackets at nvt = 4 x 1621 n/cm2 

[cl'c2 J: The evaluation of a 2-C'd bracket is obviously simply the 

difference of the expone.ntials divided by the difference of the C' s, so 

0.94781 0.99601 0.99084 --~J._.:;z; __ "-=:.--- + --~,;.,;_ ___ + --.--_..;.."-'--.......:.--
-0~0496 X =0.0444 +0~0496 X +0.0052 +0.0444 X -0.0052 

= +0.94781 X 0.0052 + 0.99601 X 0.0444 - 0.99084 X 0.0496 
0.0496 X 0.0444 X 0.0052 

= . 0.0000057 = 0.495 
0.0496 X 0.0444 X 0.0052 

Note that this solution involved differences between very similar 

numbers, due to c2 and c3 being very close together. A check on 

the C-bracket by Approximation Formula~-l)might be indicated: 

= 0.5 - 0.0111 = 0.4889, showing good agreement. · 

[cl'c2,Q3,c4 J: · Inspection_ shows that c3 and c4 are even closer 

together than the similar C's in the previous bracket, so the rapidly 
r . 

converging form of the infinite series, equation~-2),will be used. 

c1. = o.0§36 

c2 = 0.0040 

c3 = 0.0092 

c4 = o.oo16 

Cavg = Oe0684 = 0.0171 
4 

F1 = +0.0365 

F2 = -0.0131 

F3 = =0.0079 

F4 = -0.0155 
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First term:~ e-O.Ol71/3t = 0.993/6 = 0.164 

Second term~ establish L 's with. aid. of the table below: 

+0.0365 

-0 .. 0131 

-0.0079 

-0.0155 

+0.0365 

2:2 = "':'0.000904 

-0.0131 

-0.000479 

-0.0079 

-0.000289 

+0.0001035 

-0.0155 

-0.000566 

+0.000203 

+0.0001225 

L3 = (-0.0131 X -0.000289) + (-0.0131 X -0.000566) 
+(-0.0079 X -0.000566) + (-0.0155 X +0.0001035) 

= +0.00000377 + 0.00000742 +.0~00000447- 0.00000161 

= 1.4 x lo-5 

The L terms are obviously negligible (and were evaluated only 

to show the method), thus 

Then, at nvt = 4 x 1021 n/cm2, 

Mo95)Mo95) = e-c1 = 0.948 
(o 

Mo96/Mo~~) = o.0536x 0.972 = 5.21 x ~o-~ 

Mo97 /Mo~~) = 0.053.6 x.0.004 x 0.495 = 1.06 x lo-4 

Mo98/Mo~~) ':' 0.0536 X 0.004 X 0.0092 X 0.164 = 3.23 X 10-7 
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Evaluation of C-brackets at remain'ing nvt•s 

I·n the same manner as illustrated above, the C..;.brackets for nvt of 

4 x 1022 and 4 x 102 3 n/cm2 would be calcul~ted. For purposes of illus

tration, th~ cal~l~tion of the [cpc2 ,c
3
,c

4 
J bracket; at 4 x 1023 is 

shown below by two methods, a choice of which is indicated inasmuch as 

c4 is becoming large. 

(1) [cl'c2 ,c
3

,c4 J at 4 x 1023 n/cm2 by the general solut~on A~l 

(see table of C and e-C values at beginning of problem): 

.0047 .67032 .39852 .85214 __ __;;..;;..;;.~--- + ____ ;;.__ ___ + ------- + -------
-4.96 X-4.44 X-5.2 +4.96 X +.52 X -.24 +4.44 X .52 X -.76 +5.2 X .24 X +.76 

= _-...;...0_0...:..47.:..x...;...;...2,;_4:...:x.:....:.::.5~2;;.;;x.:...;.;.7..;,.6_-...;..·6.;....:7;...;.0..::;.3...;..2_x.....:4..;...44.:..;.._x...;..5::..:.·-2_x.....;.~7;_6_+.....;•;.:::.39~8:;..::;5;.:.2.;;;.:x~4;.;...:;•96..;;..;;.;;.x..::..;5• 
·4~96 X 4,44 X 5.2 X .24 X .52 X .76 

= .0427 

(2) [c1,c2,c
3
,c

4
J at 4 x 1023 n/cm2 by use of equation B-3, to be 

used when some of the C's are large: 

First bracket: 

0.67032 + 0.39852 + 0.85214 . = 0.308 
+0.52 X -0.24. -0.52 X -0.76 +0.24 X +0.76 

Second bracket~ illustrating use of the derivative of a bracket, 

first term only: 

' [ 0.4e-0.4 0.92e-0.92 0.16e-O.l6 ] 
[o.4, 0.92, 0.16] = -1 + + ------

+0.52 X -0.24 -0.52 X -0,76 +0.24 X +0,76 

= -1 [ -
0

•
0444 ]= +0.474 

0.52 X 0.24 X 0.76 

.. 
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Thus 

which gives good agreement with the first method. 

Below is a table of values which were· c,alculated for each isotope 

at each total flux, following which is a log-log plot of same in Fig. 1. 

Table of Ratios of Isotopes to Parent Mo95 Initially Present 

Total flux or nvt (n/cm2) 

Isotope .4 X 10.21 4. X 1o2.2 4 .X 102) 

Mo95 0.948 0.585 4.7 x lo-3 

Mo96 5 • .21 x 1o-.2 0.4 0.7.2 

Mo97 1.06 x lo-4 8.56 x lo-3 0.19 

Mo98 7. 
3 . .23 X 10-. .2.78 x lo-4 8.35 X 10-.2 
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RAnes OF ISOlllPES OF _jo1o 
to PARENT MoBO INITIALLY 
PRESENT 

TOTAL NEUTRON FLUX (fl!f) 

(n/c.,e) 

Fig. 1. Yield of molybdenum isotopes in a. 
thermal neutron irradia.tion of Mo95. 
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APPENDIX I 

GENERAL SOLUTION OF THE EQUATION BY THE LAPLACE TRANSFORM ME'Il!OD_ 

The Laplace transform of a function y( t) is defined as 

Y( s) = J'" .-sty(t) dt. 

0 . 

We multiply both sides of the differential equations o,f pag~ 5.;by e-:-Y~~':and inte-

grate from zero to infinity. This step reduces the set of simultaneous 

first order linear differential equations into a set of simultaneous 

first order linear algebraic equations for the transforms. These can 

be solved by alge?raic methods for each transform as a function of the 

variable s. With the aid of a table of Laplace transforms we can ob-

tain the desired solutions Yi(t). 

With the initial conditions at t = 0, as stated above, 

weapply the Laplace transformation to these equations to reduce them 

to a series of n linear simultaneous equations in n unknowns. 

= a Y 1 - b Y n n= n n 
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Rearranging, 

( s+b1 )Y1 = A 

(s+b2)Y2 = a2Y1 

Solving for Yn' we have. 

A z:;Q~n ai 

f1 ( s+bi) 
l~i~n 

The solution is obtained by taking the inverse transformation, 

(2) Yn(t) TI ;t-1 1 
= A ai ·n ~i~n ( S+bi) 

l~i~n 

For convenience in calculation we separate the three factors 

A; tn-l f1 ai; and -L
1

_ --f -l ---=1=----
~ i t n- c:i__ f1 ( ) .::~ ~n s+bi 

l~i~n 

UCRL-1835 

multiplying the second and dividing the third factor by tn-1 in order 

to make them dimensionless. For convenience in calculation the 

substitutions 

are made to introduce the dimensionless parameters qi and Ci~ 

The three factors are now 

A, the initial amount of isotope A1 at the head of the chain; 

fJ qi' the product of the n-1 production parameters; 
2~i~n 

and a quantity designated as the "C-bracket," a function of 



,, 
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The main problem in the calculation lies in the evaluation of the 

inverse transform or C~bracket factor. 

The inverse Laplace transform can always be expressed in an exact 

manner. by the method of splitting up 

l 

into a sum of n-1 partial fractions and taking the inverse transform 

for each fraction. Howeverj this general solution as a sum of simple 

exponential functions may not be practical for numerical calculation 

in some actual cases to be encountered in the experimental work. Good 

series approximations may often be used to avoid unne'ces'sary ~ompli

cation in.numerical calculation of the C-bracket. 

The inverse Laplace transform of 

l 

is more readily determined by contour integration in the complex plane 

than by partial fractions. 6 The general contour integral7 for the 

inverse transform is as follows}(with a a positive real number): 

* Note that the value of the C-bracket isindependent of the order 
of the c1v s. This rearrangemen~ property may be useful in simplifying 
•calcb!tat+ofis 0 .~ r' ':.' .. 
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;t -1 __ ..;:;1;._ __ = _1_ 

[] (s+bi) 2ni 
l<i<n 

UCRL-1835 

The integrand has poles at s = -bi. The integration may be carried out 

over a closed contour as shown in Fig. 2, if R tends to infinity. 

Fig. 2. Contour for integration of the 
inverse Laplace transform integral. 

The cqntour surrounds all the poles of the integrand, and assuming all 
. " 

poles are simple, the theory of residues gives the value of the integral 

as 

j a.+iro IJ 
est ~ _ _..;... ___ ds = 2ni L 
(s+bi) k 

a.-iro i 

and the general solution for the inverse 

-bkt 
e ( s+bk) 

IJ ( s+bi) 
i 

If the poles are not simple, the appropriate formulas for evaluating 

residues of higher order poles must be applied. 
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APPENDIX II 

DERIVATION OF INFI~ITE SERIES EXPANSIONS USEFUL FOR SMALL Ci'S 

It can be readily seen that an expansion of a Laplace transform as 

a power series in (1/s) will become on application of the inverse merely 

a power series in t. 

j ' 

Thus we take the transform of the type encountered here 

f( s) 1 1 
= = n 

( S+bi) sn n bi 
fi [I (1+6) 
i=l i=l 

1 n b. -1 
= :- I1 (1 +.2:) 

sn i=l s . 

Let Q( s) 

then f(s) = ~ (1 = Q + Q2- Q3 + ••• ). 
sn 

) 

Introduce the notation· for the llnlltiple summations taking all 

combinations. of b' s: 
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~k means the sum of all the products of all possible combinations 

of bi's taken kat a time. This is a sum of 

n~ 

k!(n-k)! 

products. 

Applying the inverse transform to ~(s) we have 

~-l tn-1 tn tn+l t2n-l 

c::J..- f(s) = (n-1)~- Il n! - I2 (n+l)!- ···- In (2n-l)! 

"'2 tn+l 
+ ~ 1 + 

(n+l)! 

I2 tn+3 + I 2
3 

tn+5 
2 (n+3)! (n+5)! 

etc. 

In our definition of the C-bracket the powers of t will all be 

replaced by unity -and the bi f s by dimensionless Ci' s as 

( cl' ... ,c~) 1 I1 I2 
= (n~l)! ----

n! (n+l)! 

+ I~ + I~ + 
(n+l)! · (n+3)! 

• 0 0 , 

where we understand the I k now as formed from the Ci rather than the bi. 
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It is apparent, of course:, that the convergence of the series can 

be hastened by the simple application of transforrnation(A-4),selecting 

.some sort of average C value for the B ~ · · 

The general expression of the series can .best be given as 

. . . ·Il I2 In 
where Q(s) =----. + --r + ooo + -n. 

s . s s 

Note that each term in the general expression will have in its 

denominator ( n-l+i)! where i is the ~um of the :lndices of the L k 

in the product. 

If we introduce the notation, 

we can write 

J(i,j,k) 

n 

- L J(JO + 2: · J(.,e,m) 
.( =1 . . ~,m=l 

inclqding 
. .R.=m 

- 2: 2: 2: J(k,i,m) + ••• 
k i=l m 
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APPENDIX III 

DERIVATION OF INFINITE SERIES EXPANSIONS 
RAPIDLY CONVERGENT FOR LARGE Ci'S 

Taking the transform of the general type for the C-bracket: 

Now we write: 

Then 

f( s) = -n--=1 __ 

II (s+bi) 
i=l 

1 = --~n~-~1_,_..,._ __ 

( s+bn) II ( s+bi) 
i=l 

f(s) = JL ¢(s) - _!_ s¢(s) + _!_ s2¢(s) -
bn . b 2 b 3 n n 

UCRL-1835 

+ 0 0 0 0 

Now the inverse of a transform ¢(s) .multiplied by sk is just the 

kth derivative of the inverse of ¢( s) . ¢( s) is just the transform 

corresponding to the bracket with Cn not present. ,. 

Applying the inverse transform to the above equation and dividing 

by tn-l, we get the following: 
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where the kth derivative is given by 
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