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ABSTRACT 

We construct Galilean invariant theories (with Schrodinger 

equations) at. infinite momentum that describe interacting relativistic 

systems. Classes of both first and second-quantized th.eories are pre-

sen ted . 'I'hc formalism p:'0vidE:i> a general a11proach to the saturation of 

curl'€:!lt algebra.; posi tl.v.i. ty of the ma[;s-spectrulU :i e €;uara.nteed, and 

as :nuch in€la~<;tl·:;i t~{ as nece,;;;ary may ·b~ introcblced.. More generally, 

howevp.r, such theo:r:'<.es offer the hope of poteLtial-tbeoretic intuition 

for r'21ati v:Lst:i..c })hys:ic::;. 
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I. INTRODUCTION 
, , 

The infinite momentum limit first found use in the derivation 

1 of covariant sum rules from current algebra. It was stressed from 

the beginning that,.the applicability of the limit was tantamount to 

there being no subtractions in the covariant dispersion relations of the 

invariant amplitudes involved. Although the covariant and infinite mo-

mentum approaches to sum rules are equivalent under this assumption, 

the infinite momentum technique carried with it certain notational 

intrigues - the dependence of matrix elements on longitudinal momenta 

is washed out in the limit, leaving structures reminiscent of a two

dimensional non-relativistic quantum mechanics (in the transverse variables). 

Indeed, this intuit~on played a central role in the original Dashen-Gell

Mann scheme2 for the saturation of current algebra. 

Somewhat later, Weinberg3 showed that the "old-fashioned" 

perturbation expansions of some simple field theories have an infinite 

momentum limit, the topological structure of which is non-relativistic 

(e.g., non-relativistic propagators, simplified vacuum structure etc.) 

Susskind4 pushed the analogy further, using the infinj.te momentum frame 

to focus attention on the (two-dimensional) Galilean subgroup of the 

Poincare group. 

These suggestions led ~s to inquire just how far the non-

relativistic analogy can be pushed. In particular, can one write 

Schrodinger (Galilean invariant) theories at infinite momentum that 

completely describe interacting relativistic systems? '..,de advantages 

of such theories would be numerous: (a) They would be free of sub-

tractions, thus perhaps softening the divergence problems of ordinary 
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theories. (b), If represen:J;ations of curr~nt algebra .could be 
I .,.-:-". 

constructed, the su~ruies wouldautomatically·be satisfied. This is 

true only in a few ordinary theories. (c) Because of the.!r Schrodinger 
,. , 

formulation,. and, in particular, because of their simplified vacuum \I 

structure, such theories could offer potential-theoretic intuition 

for relatlvistic physics. 

Before sketching our re'sults 1 \'1e should state what l'le mean by 

a theory (at infintte moment~).' We shall demand Poincare invariance, 

unitarity and positivity of the mass-spectrlUll, but we shall be more re

laxed about localitr (crossing symmetr~ spin-statistics, etc.) We shall 
! 

feed in some locality through the requirement of local current algebra 

and/or Lorentz invariant S-matrix, and in our second-quantized represen-

tations we will work with (Schrodinger) fields local in the transverse 

plane. As a result, we shall find that anti-particles and/or spin-

statistics are not required, although they may be included if desired. 

It may be that the universe is no more local 'than this; but we have no 

real objection to the reader viewing any of these theories as approximate • 

Indeed, perhaps our primary objective in writing such theories is to lay 

the foundations for some approximate (potential-theoretic) models. 

The plan of the paper is as fo110",s. In Section II, we review 

the infinite momentum limit, and emphasize that it can always be 

vie\-Jed either as an integration over the light cone, or a change of 

variables to a set natural to the infinite momentlUll frame, or both. 

'l'he (free particle) results of Susskind for the infinite momentum 

limit of the Galilean subgroup of the Poincar-e group are taken, in this 

sense, as a starting point. Then we complete the PoincarG algebra in 

terms of the Galilean variableS for n free particles. ~'he HamH tonia 

... ".' 
'1"'" 



• 

\ .. J 

for such systems have the usual non-relatlvistic form. The details 

of the change of varia'ble (necessary to obtain these representations 

from the usual ones) are given in the Appendix. Another way of stating 
, 

the results of Section II is that the Poincare group can always be re-

presented in the space of solutions of a free (two-dimensional) 

Schrodinger equation. 

In Section III, we give a construction for introducing 

potentials into the Hamiltonian (interactions between the particles), . 

while keeping the non-relativistic analogy. Among other constraints, 

it turns out that the potential must be Galilean-invariant in just the 

usual way. In group-theoretic terms, the construction finds large 

classes of interacting (two-dimensional) Schrodinger equations whose 

solutions provide representation spaces for the Poincar~ group. At 

the end of Section III, we discuss positivity of the mass-spectrum. 

The necessary and sufficient condition for this is that the Hamiltonian 

be a positive self-adjoint operator, just the condition that the potential 

theory itself be well-defined. 

Section IV is devoted to second-quantized representations. A 

free representation in terms of Schrodinger second-quantized fields is 

given, along with. an action principle at. infinite momentum to determine 

the interactions. From the action principle,we recover the usual theories 

(Le. the modified Feynman graphs of Weinberg) plus some others. These 

others are non-local in the usual sense, in that they need not have cross-

ing, antiparticles, or the correct connection between spin and statistics o 

In Section V, we consider the construction of currents and the 

saturation of current algebra. By Neother's theorem, it turns out that 

a form for the "good current" is always the probability density of the 
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to tr.en,sform lil:w four-vectors at 1.nfinit.e momentum, 1. e. J to sa;tisf:\r 

the "angule.:t comU ti.on". 2 . In thi,s 8,pproach, since the ma.ss-spect:rl'l..'n must 

be positive B.nd the (:;t;.r:rent~ do ~atisf".f the algebra, then th~ angula.r 

By solving the Ga,lilean part 

relatively si~le opere.tor .ConditJon. Free solutions and so.l:\ltions 

f(l't' the ordin~ry fielc'J. theories a,re given, but nq e,tte~t i.s ma..de in . . . 

intere£ting cases. It; may- be t.h.at the f'..ngu.1.a.r condition is not satisfied. 

for any of these (NeAther) cu.r:r.ents 1 :in Y~hich case one mig~.t want to 

11,e5io thinl::ing e.bout. nen-local currents: ·Solve the artgular condition Hnd 

take whatever (in genera.l non -local) currents tha,t re suI t. 

In Zecticm -'lI '!!ore di.scuss. our re~:;ul ts and collGct some Jr.is-

cell[meous comr:;;,~'nt.s" p,?,rticularly about the int:r.'oducticn of ferrrd.on:iCi 
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II. INFINIT.E MOMENTUM AND FREE PARTICLES 

'. ~ We begin by stating our convention for the Poincare algebra: 

.[p, P ] = 0 , [M , P ] = i{g P g p) 
'~ v ~v p vp ~ ~p v (ILl) 

[M , M ] = i[g M + g . M - g M - g M ] 
~v pK vp ~K ~K vp VK ~p' ~p VK 

where g = - gi' = 1 (i = 1,2,3). The rotations and boosts are 00 ]. 

(IL2) 

For historical reasons, we introduce infinite momentum with . 

currents, Let Va{x) be a local spin-one current (~ == 0,1,2,3), with 
. ~ 

internal symmetry index a, Its commutation relations with the P01ncar~ 

group are 

[Mf,lV' V a(x)] = -i(x d - x d ) Va + i( va va) 
p f.l y v f.l P . gyp f,l - gf.lp v 

(IL3) 

Hp, V a) == 0 va 
Il p f.l P 

where we take xll = (t, Z), The objects of particular interest in 

current algebra are the time components of the current a V (x). o To 

obtain these components at infinite momentum, we construct 

lim 
;"-+ 00 

e 3 dz V a(x, 0) e 3 
i;..K J -11-.K 

o ,., (IL4 ) 

where x.J. is just the transverse part of.,3' Bardakci and Segr~ '5 
('oj 

showed that the limit can be taken explicitly,6 yielding 

P (XI) 
CXrV' J ( ex ' ex 

= dztVo (~l' z, z) +V3 (':.1' z, 

= J dz dt bet - z) ~ vg(x) -I- V3(x)~ 

i , 
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These are the so-called "good currents" at infinite momentum, usually taken 

to satisfy,a two-dimensional algebra of the form 

(II.6) 

A lesson to bear in mind is that the infinite momentum limit can be 

achieved simply 1:lY doing this integral over the ll.ght cone. As con-

structed, the good, currents commute with the "light-like" subgroup of 

the Poincar~ group 

These are the generators that leave the direction of the light~like vector 

TjIJ. :::: (1, 0, 0, 1) invariant, so they are in this sense singled out at 

infinite mornentuDl~ Because the light~l:l.ke group commutes with the good 

currents, the simplest representation of the current matrix elements 

involves boosting the states with J1 + K2, 
, 5 

and K3' 

We shall have use for this klnd of boost in Section III, and w'ill return 

to the subject of currents in Section V. 

What about the infinite momentum limit of the generators of 

the Poj,ncar~ group themselves? The limit is defined as in Eq. (II.4), 

but this in general leads to infinities in the limit. Susskind4 showed 

for 'free ~article representations, and in particular for the generators 

of the (two-dimensional) Galilean sub-group of the Poincar~ group, namely 

that these infinities can be scaled and/or subtracted out consistently, 

For the case of one free particle of mass m, that is, 



.. 

M = x P - x P ,[x, P ] = -ig , 
~v ~ v v ~ ~ v ~v 

Susskind's results are in the limit, 

P + P
3 

= 1'\, o . H = P - P = o· 3 

. 2 
PJ. 

="-
. 'fl 

2 
+~ 

1'\ 

Pi = -1 0i (i = 1,2), J l + K2 = 'fl x2, K1 - J 2 = n ~ 

i a 
~ = 2" [1'\::'. dTi] + 

(IL9) 

(ILIO) 

where and all coordinates .and derivatives 

refer to x. In Susskind's derivation, .1'\ has a definite meaning ,.., 
(being essentially Weinberg's 0:), but we shall take this representation 

a.s a starting point, considering it as an evident change of variables. 

from the usual set to those which are natural in the infinite momentum .: 

frame. The details of the change of variable (to obtain this representa

tion from the usual one) are glven in the Appendix. 7 The representation· 

emphasizes the fact that (up to factors of two which can be fixed if 

desired) Po + P
3 

is (analogous to) the non-relativistic mass, H = 

Po - P
3 

is the Hanrl.ltonian, 8 PoL:=: (Pl , P2) are the (transverse) 

translation operators, Jl + K2 · and Kl -J2 are the non-relativistic 

(transverse) boosts, J, generates rotations in the transverse plane, 

and ~ is the mass scaling operator. 

,. If we are to fully describe the scalar particle, we must 

complete the representation of the Poincar~ group in terms of these 

non-relativistic variables. This is accomplished by 

0 O2 
1 

P,\ J l :=: - dri + 2{x2, 

(ILll) 

J 2 
0 0

1 - ~[xl' P3 J+ ::::: dTi 
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whereP3 (and Po) is already known from (I1.10) 

P
3 

= ~ (~ _~+~2), 1 ( ·..,if,t:-m2 
p = - 1) + --) o 2 1) 

(II.12) . 

. 
For the case of . n tree particles, we need only add the single . \;. 

particle representation n times. ot special interest in whattollows 

is the representation for two tree particles, and, in particular, its 

form in "center of mass" variables. We define these variables in 
.... ,." 

accord with our Schrodinger analogy 

, . . 

(IL13) 

.. 

where' Z, P, ~, ro are 2-dimensiona1 (i = 1,2) vectors with the. 
AJ A.I "'-.I "" 

properties 

(ro., ~j) =i O. j 
l. . l. 

(IL14) 

(z, ro' = (p, ro) = (Z, ~) = (p, 1I) =,0 
IV;:;:; IV,..., 1\1 AI tv IV " . 

The result for the Poincar~ group is, after some aIgebraj 
-\1 2 'V 2 2 

Z ro m 
P +P =M H=P -P =---+-

o 3 ' 0 3M ~ ~ 
i d 1 d' 

Jl + K2 = M Z2' IS. - J2 = M Z1' K3 = 2[M:ti§M]+ + 2[~'dj:L]+. 

(IL15) 
~, 
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The next question is how to put an interaction into the 

system. We set ourselves the task of doing this while keeping the 

non-relativistic analogy, namely Po + P
3

, PJ.'· J l + K2, ~ - J 2, 

J
3

, K3 should keep the above forms, while HJ the Hamiltonian, 

changes to 

2 
+.!L 

~L 
+ V (11.16) 

The problem then is to find the restrictions .on V and the forms of 

J
l

, J
2 

such that we still have the Poincar~ group. Instead of trying 

to guess these things, we introduce in Section III a fairly general, 

method of construction that does everything automatically. 
2 

m Notice that we do not explicitly include the term 

the potential, as we expect to find the mass spectrum directly by 

in 

diagonalizing the Hamiltonian. The four-momentum squared has the form 

so the eigenvalues of M Hint give the,mass-spectrum and it need not 

resemble the "bare" spectrum. We shall leave th~ discussion of' positivity 

of the ~ss-spectrum(p2 > 0) until the end of Section III. 

I 
" , 

. ! 
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I , 



III. CONSTRUCTION OF INTERACTING SYSTEMS 

By commuting H (including V) with the generators of the 

Galilean sub-group (and demanding the Poincar~ group), one learns 

immediately that9 

[.II + K2, V] ;; [Kl ~ .I2, V] ;; [Po + P
3

, V]·= [.I
3

, V] = 0 
( 

[Ky V] ;; -iV (IILl) 

Thus the potential must be Galile~ invariant (just as in two-dimensional 

quantum mechanics), and have scale~l with respect to K3. To get the 

rest of the conditions on ··V, and the form of .Il and J2, we introduce 

a.construction due to WignerlO which reduces the' problem to internal 

variables. Although the construction works w~th states, it will yield 

operator representations in the end. 

Consider the states of the· syste~ ~t rest, say I~}, where 

(1I1.2) 

We can boost these states to states with finite Pi (i= 1,2,3) in the 

following way, 5 

I~') ;; u(£;) 1£,), 

U(~ ) ;; exp f iCtl (IS. .. . .I2 ) t i~(Jl + K2 ) f ctQ3K3l (III.3) 

P' P2 r + P'j CtJ,. 
1 

Ct2 
·Ct - .en . 0 13 ;; 

P' + pI , = P' ~. pI 
o 3 o 3 ' 3- (P2)2 

where the primed quantities denote (C-number) eigenvalues, and 

p2= (p~)2 _ Pi Pi is the invariant four momentum squared. NoW consider 

the action of .I on the boosted state 
~ 

", ',' 
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J/P') :: U(p') ~IO) "'''J IV NN 

. (IILLt.): 

.~ :: ut(pr) J U(P' ) 
N· "...J.tV N· 

A 
One can easily cal.culate ~ from the commutation relations of the Poin-

... 
care group. For example 

i\ 
In Eq. (III.~· L jl operates directly on 12) . VIe denote the anglJ.lar 

momentum operators as they operate on sti,ltes at rest by j, i. e. 
IV 

j is the "internal ll angular momentum. Of course, \<fe shall in general 

take 

while jl and j2 are as yet tmkno\m. 

9Ul' tasl\: basically is now to guess fOl"'lllS for ~ and boost 

appropriately. Wigner gual'anteesll us that the follo'wing procedure 

leads to a J \ .... hich satisfies the Poincar~ algeora: (1) Construct the 

rest of j such that it is Galilean invariant and satisfies the 
IV 

algebra of SU(2) 
12 on states at rest 

(III.S) 
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(2) Construct 2 
P = M Hint out of the rotational scalars of this 

(IIL9) . 

Physically, this'requires that a rotation does. not change the energy 

1\ 
of a state at rest. (3) Invert the above machinery - i.e., from J, 

now as a f'unction of J, calculate 

(IIIdO) 

Put all the factors pI in this expression to the right, and replace 
N 

them by operator~. The resulting ~ will satisfy the Poincar~ 

algebra. 

Thus our problem is mechanical. We need only construct various 

sets of ~, and run the. machinery backward. Not surprisingly, ;., 

may be constructed either a) o'Ut of . 1£, (.\) alone or b) 
. IV '" 

out of 

If,' j8J N, '112 - TIl' The first case realizes garden-variety two

dimensional Schrodinger equations, while the second yields two-

dimensional Schrodinger equations with much. more general "mass-dependent" 

potentials •. We begin with case a). 

Two-Dimensional Potentials 

Construct a Galilean invariant j as 
AI 

1 . 2 2 1 
1£2] 1£1 

1 
, jl = 4"(ll1.' 1£1 -1£2 ] + + 2'[(J.)2' + - ll1. 

+ 2 

l[ 2 2- 1 1 
, 

j2 = - 4" ~,1£l -1£2 .1+ + 2'[UJ.' TClJ+ 1(2 + ~ (.\)2 

(IlL 11) 

.... 
.I 

... 
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Doing the inverse machinery, we find 

The first three terms in each of these e~ressions are of course 

independent of our choice of jl' What about The 

only invariant in this two-dimensional . representation of l isj2 

itself. Thus p2 may be an arbitrary function of j2. The most 

general internal Hamiltonian is then 

Note that the conditj_ons (111.1) are automatic~_ly satisfied. With 

this form for· p2, the rea.der is invited to check the Poincar~ algebra. 

The restricted form of the Hami.ltonian in this· representation means 

that the spectrum is always discrete (although arbitrary). It is 

not likelyl~. that such representations "l-vill be of help in the 

saturati.on of current algebra. 

Unitary equivalents of the representation (IILll) may 

easily be constructed, but there is at least one inequivalent repre-

sentation using only n and ill. We take 
~ ,..., 

(II1.14) 



-1~-. ' 
This is the SU(~) part of the representation of the Lorentz group 

genertaed by the two-dimensional harmonic oscillator., That it is 

not equivalent to (111.11) is evident in the factor' ~ in j 15 
3' 

This angular momentum has half-integral eigenvalues - thus being an 

illustration of our contention in "Sect'ioh(, II'::' .'- that the bosonic 

substratumof.the representation need not be observable. The, only in-

variant of this representation is the familiar form 

2 2 
n + ill = 2j + 1 (111.15) 

2 
P2 M(:ri so :;:;-

J.l 
+ V) must be some function of this - aga.in an 

arbitrary discrete spectrum. The special case that looks most like 

a tvTO-dimensional harmonic oscillator 

2 
ill 

1.1 
(IIL16) 

illustrates a general property of all these twq-dimensional representa

tions ~ The potential cannot be turned off (because ./ alone is not 

a rotational scalar). In the more general three dimensional representa-

tiona, ,we shall have a choice in this matter, 

Three.;.dimensional Potentials 

First consider the Galilean invariant structures 

i 
--] 

(C)2 

where C is an arbitra.ry constant. These have the properties 

(i, j range from 1 to 3) 

"" 
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(IIL18) 

We have written W, ~ as three-dimensional vectors, and. indeed they 
,.., N 

will be .if we construct 

After a little algebra, we can write i, explicitly as . 

1 • [~~ _a] 1 . j = (C)2 _ ~ 1 2 iN + - I:~[1('(J) 1l2] . 
1 ~ (C)2 TJ2 -TJ1 

, 
M + 2(cf AI ~ + 

1 1(1 ~."?J 1 
j2 = _(C)2a:t + ---1. [~1~2 1 iN -7 + 

- --.;.. 1 [!'~. 1(1]+ 
(C)2 TJ2-TJ1 2(C)2 

(IIL19)"- . 

The inverse maChinery16 yields exactly the form Eg. (III.12). p2 = M H. t 
2 . .l.n 

must be· constructed out of the invariants and ~2:=!L +.£ 
~l ~ , 

2 or, more precisely, to get the scale right, out of M ~ , vf/M, and 11!'W. /'oJ"" 
Thus the most general Hamiltonian is lA 

(V = - V) 
M 

p2 ~2 C 1 A 2_2 
H 1. + -" + - + - V (Mj , _W- "f .W) =M ~ ~ M M '_N (IIL20) 

We learn that C 2 is the analogue of m in the free particle representa-
1\ 

tiona, although, even in the limit V = 0, J does not go over into 
N . 

the free two-particle J of Eq. (11,14). Notice finally that this 
N 

representation is not restricted to discrete spectra; indeed the class 

of potentials is strikingly large. 

It would be nice to have a representation which reduces· to the 

two-free particle case when the potential is turned off. Such can be 

constructed in the following way, We take the Galilean invariant ..J as 
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(III.2l) . 

j, = ~ :r£2 - (,1)2 rtl 

where Nt = N + 1 p,O) as introduced above. These jls are Hermitean 
2 MAl N' 

because ..2!..- ,commutes with the (curly) bracketed structures in jl 
1)11)2 

and j2' The inverse machinery yields 

2 -k 
(LL + V) 

p. 

(III.22) . 

etc •. We need the invariants of j to construct the Hamiltonian. These . i 
N 

we find again by exhibiting 3-vectors under j: 

~ =f rr, 
1)1-1)2 ~~~~)~J - ~ 2 

!=h - i 
rr l 

[( 1)2 111 ) NI
] 

rr
2r.l-

11111 2, , + , 

f" 2 
_2 2 rr * The invariants W-, foW and i = ~ are Galilean 1nvar1ant,now 

~,v r 

with zero scale, so we can use them directly to form p2. The most 

general Hamiltonian is 
p2 

H = l. 
M 

then 

(III.24) 

10. 



Notice tha:t with ~:::: 0, all the .square roots cancel and. the representa

tion reduces to the free ti'lo-particle representatlon (11.14). To see 

this eArpllci tly, one needs to use the identity 

(III.25) 

etc. Of course ''Ie atta.in the 
2 . 

m :::: 0 (free) case, but., .if 

desired, thi.s can be trlvally fixed. by writing 1l2~ 11
2 + m2 .in. 

(III. 21), As a final comment on this representation, \<1e note that H is 

unitarily equivalent to (III.l9), betng an evident change of variable. 

There is another unitarily equivalent representation of interest 

because it is simpler than the previous tvlO. He take 

(III.26) 

The inverse machinery yields (IIL12) again, and the most general 

Hamil tonian is 

H = 

2 
PJ. 

M 

IlTr ,2 1 -v 2 2 
+ ~ + M V (vi, ~ J i:JO (III. 27) 

Before passing on to a discussion of positivity of the mass-spectrum, 

it is helpful to relate these representations to the literature. These 

representations appear to accomplish for the infinite momentum frame 

what Foldyl7 accomplished for the center of mass frame. bilong the 

differences between our representations and Foldy's, one is particularly 

notable. While Foldy was not actually able to find representations 

which reduced (for zero potential and arbitrary frame) to the represeI!-ta-

tion of two free particles (separable representations), we have had no 

I 
! 
I 
, 

I 
I 
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,particular dif'ficul ty with this •. fJ.1hus the' infil~ite momentum frame, , 

carries with it a .rather more thorough going non-relativistic analogy. 

Positiv:ttl ~f .t}le Mass-spectrum 

For the case of one tree p~ticle of mass m, we have' 

r!- = m2 > O. For two free particles of mass m, vThere 

2 ( 2 2), 
P=M~+~ (III.28) 

2 2 .' 
one can easily show by the usUA,l a.r~ent., that P ~ 4m. What about .. ' 

. 2 . 
m . , 

our interacting representations, ~rllere --~ V? , 
J.I. 

'In the first place, positivity of the mass-spectrum is always 

trivial if one is asking only for a representation of the Poincar~ 
2 ' 

.group itself. These operators do not connect different values of P" 

. 60 it is easy to stay in the space p2> O. This is of course not the' 

whole story. ,In general, one would like the individual oper,!'I.tors in 
\ 

the representation, say ~(l),. ~, etc., to be observables, and hence " 
2 

not to link time-like M.d space-lUte states. There are two reasons why 

" , 

.one might like .the ,individual operators to have this property: (1) , , 

If the potential fell off rapidly for large distances, one would like 
'" 

the individual particles, sufficiently separated, to be separately 

' ..... " 

oQservable. Of course, this does not apply to any of the harmonic

oscillat,or-like potentials for which there is no hope of observing the 

input particles. (2) One has in mind constructing (observable) currents 

out of (all) the operators in the representation. Thus we must in gen~ 

er~ have p2 > 0 as an operatorcond1tion. 

2 Of course it is easy to. quarantee P > 0 formally simply by 

constructing it as a posi ti ve defin+ te func,tion of the invariants of ), 

. '.~ 

, .: .! . 

. '.' 

... 
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2 ")' (as does Foldy), but t.hen the breakupHi~t ::; M (~'.+ V .. is somewhat 
. . p2 1f~ . . 

formal (Le., V~"Jf -~),. and we would have trouble with 

separabili ty. Since we .have· a representation which goes to tyTO free. 

particles when V = 0, it is instructive to discuss the conditions 

directly on V itself. 

Working in the space discussed in the AppendIx, with 111', 112 
. '. . 2 . 

and hence M positive, we see from (rr.16) that P > 0 is guaranteed 
. 2 

if H
j

" t = 1L -I- V is a positive (essentially) self-adjoint operator • 
. n I.l. 

Strikingly, this is .just the condi tion that the potential theory 

itself be well-defined. IEhe problem is then. essentially the same as' 

in non-relativistic quantum mechanics: . to find those potentials 
2 

,. '.' 

which, if they. analytically. dominate :." then they do so in a.positive 

manner - 1. e.; singularities of the potentiai need be j.n general posi t1ve. 

In the general case, our potentials are more complicated than those.of 

two-dimensional qua.ntum mechanics, in that·they involve the "masses" 

and their derivatives, but this does not appear to'hinder one's ability 

to tell acceptable potentia.ls on inspection. (One need remember that 

operators like m2 _ M2 (N,)2 etc. are formally positive). Such points 

however can be subtle, and a rigorous description of the allowed potentials 
. 18 2 

(With attention to overlap of the d.omains of 1L and V etc.), al
J-l 

though beyond. the goals of this paper, is worth investigating 
, 
A comment about currents is in order here. If the mass-spectrum 

is construc1ied positive definite, then the currents, constructed out of 

the operators in the representation cannot connect space-like with time-

like states. 'rhat is, either we can f:t.nd currents in our scheme or not, 

but if we can, they will not be d.iseased. Put another way, one can 



'", ."' 

.~', ' 

"> ~.; 

,', "." :'-~ 
, ..... 

show (Section V) that. M commutes with the currents at infinite. 

momentum, so if the currents required space-like states, then, again from 

.(II.16), Hint would not be positive self-adjoint, and hence the 

potential theory would not have been well-defined in the first place. 

. . , 

; ~" 

, . 

..... 



-21-

IV. SECOND QUANTIZED REPRESENTATIONS 

To allow eventuaJ.ly for creation and annihilation, we will. need 

second-quantized representations. To construct these we introduce the 

second-quantized (Schrodinger) :fields 

(IV.l) 

where, as usual, x and x' are the (trw1sverse) two-dimensional posi-
.IV AI 

tion vectors. Later we will append isospin indices etc. to these fields. 

The fields have the usual non-relativistic expansion in terms of creation 

and annihilation operators 

(IV.2a) 

(IV.2b) 

(IV.2c) 

"There :b;b' are two-dJmensional momentum vectors. In terms of these 

fields, it is easy to construct a second quantized representation for 

free particles. Simply sandwich QUI' first-qufu'1tized representation 

(ILIO,ll) for one free particle bet,,,een ~t and ~, and integrate 

over ~ and 1) • Thus 

Po +, P3 = Jd
2

X dT) itCh T) T) ~~ T) 

Po - p 3 ~ H ~ J d2 
x d~ if< \)b, ~ ) ~ - ~ + ~21li ~ ~) 

Pi ~ J d2
x d~ ~t(.'i? ~) f-i /xi? 2(.'i?~) 

J l + K2 = J d2
x dT) ft(~, 1)f11 X2]}E(,v 11) 



.~,' . 

\ ~. 

·r .. : 

... 

. ... . ' . 

, .. , . 

IS = Jd2X d!) !It(:;. ~) f ~ [~. ~l+? Y(,lS> ~) 
J1 - fd

2
X d~ jt(,lS> ~)~ ~ 02 + ~ ["2' ~ + if~m\1 i<b~) (IV.,) 

and so on. 

Schrodinger and Heisenbet:g Pictures 

The reader is aware ·that both in our first and second quantized 

representations" we have been working in a .~rSchrodingerll picture - in 

·that the variable conjugate to the Hamiltonian has not appeared. . In 

tact" the introductIon of a "time" variable g conjugate to Hallows 

some geometric intuition about tbe Lorentz transformations and will help 

us introduce potentials~9 ,";. 

We introduce s in the "Schrodinger" picture via an equation 

for the state vector . 

(rv.4) .' 

where H 1s given in . (IV~ 3). In the 'Heisenberg" picture 

In terms of creation and annihilation operators, the free time dependence 

and similarly for it. 

Of course ~ 1s not the "real" time because 

(IV.6) 

H is not p. 
o 

... 

'10 ..• 



vlriting 

P x - P3 x~ = !2'(P + P3) (x - x~)+ ~(p ~ P3) (x + x
3
') 

00 j 0 0:> , .. 0.0 

with all indices covariant, we learn tha.t ~:=: ~(t-z). Later we shall 

have some use for the variable 

Action Principle 

Toward finding interacting representatlons, it will be helpful. 

to introduce an action principle. Among other things.1 this llill allow 

us to give a more familiar geometric interpretation for our generators 

of the Poincare group. 

We begin with the action for a free system: 

(Iv.8) 

where p2;:: (po - P3)(Po + P3) - r :: i, 11 ~s + i!- is the invariant 

four-momentum squa,red of the first quantized representation. At first, 

we consider the system as a classical. field theory' and derive the Poincar6 

tram:formations in the usual i-Jay via C-number invar:l.ances of the action. 

I is invariant under any of the transformations. 

fW~)li + i ex o. ~, 
1 

iit ~ ~t+ i a 211 ~t3 (P,L) 

t~~~ - 1 Ct 11 Y!' , i 1--? iJ! t + :t a 11 'Ii} (po + P3) 

f~-?;- jli 
':> 2 

wt~ ~t -,,'a (_if~m2) wtj ~-~+m ) (po - P3 ;:: H) - a -"11 ~ , 

t i-iP i' - a: 11 x2 'W , it~ 'Wt + a 1) X2 Wt } (31 + K2 ) 

~ ~,--:p i - a 11 Xl ~ , ft'---?- ![:t + a 11 Xl it (K1 - J2) 



. (IV .9), " 

'where a 1s some constant, different in general of course for each·· 

transformation. In this way, one identifies the 'Poincare group. In 

addition to the introduction of S dependence, there are two sira;ple 

differences betw'een this representation and our previous (IV .3). In 

the first place, ,wherever H appeared, it has now been replaced by 

, i &-. This is closer to the usual field theoretic '!,ray of approaching 

the Poincar~ group, and, not suprisingly, ~,11ows geometric inter-preta,tion 

(which is particularly needed for our J l 2). For example in the case 
, , 

of J1 , going over to Laplace transform space ( i(~ 1 
- 2T)~ t 

o 
~~ -i di)' the rotation due to J l 

20 takes a more familiar form, 

namely i(x 0t - to) where t ~ !(g + t). The second difference 
. 2 2 2 

is that, wherever i ~ appeared before, we now have i(~ - ~~). This 

is the natural (hermitean) derivative in a space where the ~ metric 

is ~ - as is dictated by the action. In the corresponding hermitean 
~ 

secondDquantized representation, say for J, 

.,. 
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(rv.lO) 

1 the extra terms:tn -2 - ct), being ant ih erini tean, cancel out. For conven!-·, '.' 
, .. 1} .::.. 

ence ioTe will continue our d.iscussion I, in this Seetion via .the C-number 

trans i'orraat ions • 

NOvl we want to add an interaction. term to the action. In 

general such a term must be Poincare" invariant, but we .would like also to. 

preserve the Schrodinger analogy.. To keep ~t conjugate to ~ I we 

must demand that the i.nteraction is local in s. Thus ,before imposing 
I 

Poincare invariance, the most general mUllber-conserving interaction is 

of the form 

+00 

J 
-00 

(IV.ll) 

vtnere"lri8 the. "potential ll
• Because the interaction is local in ~, 

it is ;d_nw1e to show from Poincar~ invariance that it must also ,be 

loca.l in x and t (the Laplace-transform-conjugate of Tl); in fact, 
J'V 

we are allowed. only one number-conserving interaction 

_co o 

where -A is a coupling consta,nt. 

o 

5 (Tll +;2-~-1)4) 1 

(111 1)2 n3 1)4)"2' 
(IV.12) 
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.It is instructive to-reduce this-to a Schrodinger equation in the two 

particle subspace. In our first-quantized notation, one obtains in the -

usual way 

Potentials non-local in 'Il were not explicitly discussed in Section III 

but the reader will verify that this potential meets all the requirements 

set forth there. This Schrodinger equation is algebraic in the position 

varables and is almost trivial, corresponding, as we shall note below, to 

an S-wave "chain graph" approximation in the theory. 

More complicated potentials can be constructed if creation and 

annihilation is allowed. The general prescription for constructing a 

scalar interaction is simply to take any local product of 1/1' s and -

+ -~ 1/1 's with a factor 'Il for each, and the 'Il-conserving 5-function. 

Of particular interest is the interaction 

- - ---.-~~ - -



"I 

+~ t (~, fI, ~) i (h fI t, ~) W. t (~ 1)", s) B (Tl - 1)" + 11") 

+ i 1-(~ fI, ~) j t (h 1l!!J ~) I (;s, 1) rl ,5 ) 0 (11 + 'fll - 'r\.j») 
Consj,sting of every- combina.tion of three fields, but omitting termS 

, (IV.14) 

which are purely creation o:r pu.rely annihilation. As we shall note 

belo.w, this turns out to be exactly the A¢3 theory. The analogous 

quartic intera.ction (14 terms, being all possible quartics, omitting 

purely creation or annihU.a.tion terms) similarly turns out to be the 

:>-.¢ 4 
theory. 

S-matrix 

Just as fen' o.rdinary theories, each picture has its character-

istic form for the S-matrix. Suppose ·Ilfe wanted to caJ ~ulate in the 

Schrodinger ptcture. 

from the aetion 

I ,- I + free 

I -}-
free 

The potential V (H :::: H + V) o 

+<>0 

J v(~) ds 
-00 

J~ dE iH~ V -iHE. 
I., e e-

-0:; 

can be read off 

,(IV.15) 
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Thus, for example'. in ,the, case of th,e ,number-conserving, interaction 

(.rv.12) 

00 

dn •• I dn '11 ' 'Il~' 

o 

~('1l + '12 - ~, -'14), 
I 

('11 '12 '1, ri4) 2' 

and, so on::. From V; the ,T-:-matrix may be constructed in the usual way ,'/'" 

via the Lippmann-Schwinger equation 

, ",! 

1 " ' .. 
E-H +i€ o 

taken between states constructed by creation operators on 'the vacuum •. E 
, , ,~ -

is: of course the eigenvalue of the Harn,l1 tonian. In an infinite. momentum .... 

interaction picture, constructed in the usual 1my, the' S-matrix is given" ;. 

by' 

(IV .18) , . 

-00 

'where A denotes time ordering with respect to . ~ , and the fields in 

V '~e free fields. 

These structures. will in general guarari:tee uni tari ty, but Lorentz 

invariance is more difficult. Evidently, f V(s) ds must be a four-
-.- ~~. _. .-00 

scalar, but this is probably not·sufficient. 'In the higher order terms 

of (IV.18), locality may plaY'a role in making the s-ordering covariant. 

It is an interesting problem to find the necessary and sufficient conditions 

on V such that S and T are scalars, but, except for the following 

paragraph, this is beyond the scope of the present paper. 

,. ,: 

, " 
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Using the 'l'-raatr:tJt formulation in the Schrodingerpicture, 

we have examined the perturbati.on expansion for the potentials given 

a.bo.ve:i TfrUh thes e results: The potential (ITI .14) yields exactly the 

graphr. fOUJI;i~l by Weinberg3 for the infinite moment·'.llil 1imi t of the ",43 

theory. To make direct contact with Weinberg" one calculates T between 

states wi thP 0 + P3 "" L, There is no loss of generality here because 

4· the S-matrix explicitly commutes ,vi th this genel'ator. Similarly, the 

'\ th!~ l4-term quartic potential mentioned above gives W'einberg I s ''''I' graphs. 

The interaction (IV.12) yJ.elds a set of chain graphs in Weinberg's notation, 

that is, the S-we.ve, number-conserving part of the ",44 
theory. This 

21 is then a Zacharias on model at infinite momentum. 

In this section v,e want to show directly by boosting that the 

theories exhlbited above correspond to·theA.~3 and A,¢4 theories. We 

shall content ourselves with boosting the potentials themselves, leaving the 

rest as an exercise similar to that of the Append:l.x. lie begin with the 

interaction Hamiltonian for the ",$3 theol'.'Y at zero time: ",fd3x ¢3(~ 0). 

Boosting this as in Section II, and doing an. obvious resealing, we reach 

(IV.19) 

lye will eVB.1uate this integral wi th ~ a free field, namely 

~(x) 

(IV.20) 

where k·x is the invariant; four-product; tbat is, one :i.magines i'lOrking 



either in the (ordinary) interaction:<picture, or to lowest order in 

perturbation theory. There are eight different terms (with different 

cubics in b, bt ) over which to integrate. Consider. one of them, say_the term 

in bbbt. Using a(t - z), one can do the. dz dt 

another a-function a[(k +k-) - (k'+k') - (kl/+kfl)] 
o 3 0 3 0 3 

as above) "'hich one l'ewri tes as . 

I o 

integrations, obtaining 

(all indices covariant, 

(k"+k"») 
o 3 

These a - functions can be used to do the dl~3 . integrations . - Then . make 

the identification, 

2 2 
2) 1 

2 2 t ·2) 
1 

T})::b(k.l.' 
l~ +m .. 

T} (~)2 (k + m 2 
• J. 

. T) 

a(k..l ' 2T} 2T} 
IV 

= (IV.22) 

and similarly for .bt . These new quantities satisfy the. commutation 

relations (IV.2c), and are in fact the creation and annihilation opera

tors at infinite momentum. 22 With this identification,' and the relation 

between a, at and i, It, we find finally for this term 

The other terms may be treated similarly. Tel~ ,mich are purely creation 

. operators or purely annihilation operators (pai~-production terms) integrate 

to zero. They involve B[(k +k3) + (kl+k3' ) + (kl+k3")] whose argument 
. 000 

is always positive. ~us out of the eight terms, six survive and these 

are exactly (the Schrodinger picture form of) Eq. (IV.14). An entirely 

"'. 

.~. 

i 

.j 
I 
I 

I 
1-

I 
I 

I 
\ 
I 



similar calculation can be done for the A~4 theory, leading to the 

14-terrn quartic potential descr:i.bed above. 

·The number conserving potential (IV .12) is just the boosted 

interaction, that is, in. terms 

of the positive and negative frequency components of . '¢' it .is 

X Jd3
X ~+¢+~-4-· At 1"inite momentum ,'Ie do not· really know how to formulate 

a theory with such anon-local interaction. At infinite momentum, on the 

other hand, such an .interaction generates, qu:i,te straight fo:nvardly,a 

covariant unitary (not crossing symmetric) So·matrix. It. will be interesting .' 

to study this case more fully, especially wtth reference to the g-ordering 

(Eq(IV.18» and locality. 

To re-emphasize that our boosting is essentially a change of 

variable, we note finally that the (free) 'field ¢ can be written 

directly in terms of'~ and ft. From Eqs. (rV.20) and (IV.22), 

~(x) 
/~(t;z~ 

(IV.24) 

A formal comment is in order here. We have noticed that our 

limit procedure yields the infinite momentum results in the "Schrodinger fl 

picture. 
1 . 

This happens of course because of. the f.actor o(t - z) = 2 o(~) 

that appears in the limit. We can get some feeling for the different 

pictures via the following argument. We have sh01rID that if Sex) is the 

scalar interaction of an. ordinary fleld. theory, then 

V ::: J~2x dz dt o(t - z) Sex) (IV.25) 

is the potential in the Schrodinger picture at infinite momentum. There is 

,I 

I 
l 

I 
l 

l 
r 
I 

I 



a simple relation between Jd4XS(X) arid the interaction in the 
. +eo. 

"interact ion II picture J V(g) d;. In fact, theyareequa1: Changing 
-00 . 

variables, using translational invariance.. and ignoring factors of two, 

(IV.26) 

-QO 

-QO 

This is then another way of seeing that this structure must be a four-

scalar. 
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V. CURRENTS 

One of the IJI,ain motivations for introducing dynamics at 

infinite momentum is the problem of finding relativiStic currents that 

satisf'y current al"gebra 

(V.l) 

Our formalism provides a fairly general approach to the problem: (a) 

Because: we have Schrodingflr equations, simple currents that satisfy (V.I) 

are always provided. In general, e.g., the "good" current is the probability 

denis1;y wt"j{!. (b) An discussed in Section III, any reasonable Hamiltonian 

will guaI'ante~ a positive mass-spectrum. (c)" We can allow as much inelas-

ticity as necessary :i.n the saturation. 'l.1flat solutions to the scheme exist, 

given enough inelasticity" is obvious ,: The Q3 and 44 theories (with 

"isospin, rewritten at infinite momentum) solve the problem mathematically. 

The task is to find more interesting solutions, preferably in smaller 

spaces, so they enn be hand..led non-perturbatively. 

In our formalism then, the difficult part of the current algebra 

problem is to insure that the current trasforms like a four-vector at infinite 

momentum. In what follows, we examine this requirement. 

The currents a.t infinite momentum are given by 

(V.2) 

where vet (x) ic a loeal four-vector current. 'llle "good" current [that " 

combination which appears in current algebra, Eq. (V.l)] is 

o 3 ( ) Po: == Pa - Po:"' From the :integral representation V. 2 , one deduces the 

following light-like (or Galilean) transformation properties of the currents 

! 

t 

'I 
I 
I 

I 
1 

\ 

t 
r 

I 
! 

f 
I 

I 
I 
'\ 
I 



[K,' pO] ::: [K
3

, p3] ::: i(pO + p') 

[K
3

, J] ::: _ip.l, [Po +P3JP~l] ::: ° 
[J1 + K2" pO] [J1 + K2, p3] 2 

= = .. ip -. t '~ 

[J1 + K2, pI] 0, [JI 
2 ip = + K2, p ,] = 

pO] p3] 1 . 
[IS. J2, = [~ - J2, = -ip ,', 

< "., 

", 

[K1 - J2, pI] = -ip, , [K1 - J2, p2] ::: ° (V.,) 

lqhere theinternal,symmetry label a has.been suppressed, and 

1 - (1 2) p :.p, p • As mentioned in Section II, the good current then commutes 

with the light-like group 

.(v. 4) 

," 23 
In .. the first quantized notation, one can verify that the general solution 

to this algebra is 

pi. = 

p = pO_ p3 ::: f 

where f" ~ = (gl' g2) and K are as yet Ut'ldetermined ftmctions that 

commute with and In the two particle 

case, these functions must then involve only Z, 1r; {l} and scale in-
N AT "-' 

variant combinations 'Of N', T}l and T}2. By further commutil'lg the 

currents with one learns that f and must transform as 

scalars under this rotation, while g is a t1-l0-vector. 
rv 

'.P 

:~ 
" 
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There is one final condition that must be met to insul"e 
, \ 

correct Lorentz transformation p:r.operttes for the current. 

(v.6) 

This S!Dcalar angular condition II ,follows immediately from the !4e.f~p.itton, 

f 
p, 

,0, p and the commutation relations of Val.1.(x) with X, an4. ;e .. ·.ln~ 
fact? t.he scalar angular condition has a very simple ,physical .intel--preta-

t:i.on: l':he f"..>urfu, component' of the current carries no spin, its angular 

l'Tlc!;:,entUl1l ·~e:i.ng entirely orbit.al. Thus, on 
o 

p , wernust have 

( ., 1 Q ~) 
J. '" ,c"", , :which is the content of (V.6).' Eqs. (V.,) and (v.6) 

are neceS1;:llry and ,sufflcient for the correct Lorentz transformatiOll.proper

,ties of the infin1 te momentum current. 24 
. 

In general t~c scalar angular condition is a set of coupled 

linear differential aqua,tions for f, ,eandK:. The easiest way to 

project out these equations is by commuting (v.6) "lith the generators of 

the light-like group. AS'an example, we give the results for the C'ase 

'of two free (first quantL~;ed) partlcles. 

== 0 (V.7) 

.' ~'. 

, , 
. ' 

, "I,', 

l 
'II. 
, ' 

l 
: ~. 

:[ 
~ 

t 
,\ 
j 
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, '. . . 
' . .' 

" . . "~ " . ,> .l I.,; - . 

• '"~ :" .. i. .- '"\ '. 

'where , I· 

. ~. 

(1 summed from l.tO·3) 

" . 

:(v.8) 

These equations. commute' with the light-like group arid 

hence have no hanging derivatives. In fact, they.are relatively 'simple 

equations. For any function, say' A,' which has scale-I, 

This applies to each of the equations in (V.?). .We shall not. attempt ,.'. 

.,' 

. 
{ .. 

,. 

.... 

to find the general solution to this system, although a particular • ' •. j 

'. 

solution will be noted below. One remark is instructive however:, ,', .; 

If f is known, then (from these equations) if; and. K. are known up 

to constants. This feature is independent of the free case, and " in fact, 

perfectly general. 

One can also write a "vector" angular condition on the good 

current p. Either by combining (V.5) and (V.6), or directly one can 

verify that 

(V.lO) , 

This relation is essentially, but not quite equivalent to the scalar 

angular condition: Eviden tly it does not determine g and K, al though ~, 
AI 

these can always be determined from equations like (V.?), once p = f is 

known. This "vector" angular condition is equivalent to the "angular· 

condition" popular in the literature, the usual form being derived for 
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. 
certain matrix elements of the currents, thereby involving the masses 

of'the states in a complicate.d way. We believe that the operator 

formalism, and in particular the scalar angular condition, is simpler and 

more transparent . 

It is also useful to know the statement of current conservation, 

at infinHe momentum. Again from the integral representation (V.2), .it can 

be shown that 0 V!l(x) = 0 impIies4 
Il ex 

(i summed over 1,2) (V.ll) 

This i-s in fact just the ,statement of 'probability conservation for a two-

dimensional Schrodinger eqution (p being 'the probability, density and' 

i p being the tv[o-dimensional probability flux). In terms of the functions 

introduced above, current conservation becomes 

(V.12)' 

Although we shall not attempt to solve the current algebra 

problem in this paper, \ve can at least give soluti,ons for the free cases, 

'\. rt,3 and " A. 4 and for the "'I.J' ",'I' theories at i.nfinite momentum (with internal 

symmetry) . 

For the case of two free (first-quantized) particles, a 

solution is 

where ~ = (aI' a2) is the position label of the current, and "'ex is a 



, . 

representation of SU(2),: SU(3), etc'. In fact~ each term ofPa 
0 

satisfies the ,angular condition separately (similarly for Pa)' It 'is 

gratifying to note that, at least in the free'case, the non-relativistic 

analogy is preserved.: Pa is precisely the probability density for 

two Schrodinger particles in a two-dimensional world. 'Si,milarly, Pa, 

is the (transverse) probability flux. Moreover, of course, this current 

satisfies the t~lO-dimensiorial continuity equation (V .11). It is not, likely 

that this is the most general solutlon ,to (V.?), but it may be that it 

is the only solution that satisfl.es a local current algebra. 

The situation for the second quantized theories is quite 

,\;t3 ,1..4 analogous. For the free case or the /l.ljI and """interactions dis-

cussed in Section IV, we have directly from Noether's theorem and the 

action principle 
ao 

Pa(:J) == C
a

[31 J d''fI Wt:/(~J 11) .Y!1(~' 11) 
o 

00 

paJ.(x) == o§ Caf3r f ~ 
o 

(v.14) 

where we have trivally addended internal symmetry to the basic fields 

From this, one might guess 

Pa"<:;') = ~ COflr J d~~ 
o 

(V.15) 

(v.16) 

where P is just the usual first quantized form in (1I.10). This form 
j.l 

is entirely analogous to (V.l3) and indeed solves the angular condition. 

This form may also be derived directly by boosting the analogous field 

..... 1: 

r 



theories; that 1s ,:.take 'va: = cC1f3Y ~j3 d ~Y and evaluate the integral 
\.I. \.I. 

representation for Pa:\.I. (in the fashion of Section IV). 

Before passing on, we can make a .few comments about the 

general case. A form for P and pl is always given (by Noether's 

theorem) that satisfies ·the local current algebra (V.l} Because of the 

Schrodinger formalism, this P always has the characteristic form dis-

played above, while. the form of i 
P will chan~e in the presence of 

derivative coupling. One approach then is to check directly whether 

P satisfies the triple (vector) angular condition. Alternately, one 

can try to use the (simpler) scalar angular condition to calculate 

o p. For the free case and the simple field theorles discussed, the angular 

. condition is satisfied, but it is doubtful that this is true for very 

many of the first-quantized potentials. If it turned out that none of the 

(non-trivial) Noether currents transformed correctly, one might be tempted 

to solve the angular condition anYVlay and take vlhatever (in general 

non-local) currents resulted. 

',' 
.1.··., 

: ·~:' 
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VI. " DISCUSSION . 
'.~' " 

;'J,'here .are .a.number. of loose ends 'that. we ifouldlike, to'.' , ,. , 

discuss in thi.s Section.' The first is . half ... inte~ralspin.· 
" ,.-. 

In the first place, it is easy to construct half-integral:" 

spin representations (at infinite momentum) vlhile keeping the non-rela,-

tivistic analogy. For example, we take the one-free-particle ,forms of 

P + P
3

, o ' p -P 
"0 3' Pol' andrs, ,plus 

. P 
(} ~ l[ P] +!, . 1 m .. 

J l = - 'dtl °2 + 2' x2 ' 3 + 2 0"3 Tl + .2 T} GJ"1 

'-'" 

, . " ~; 

, .' ,~' , :: 

.'<... 

'.' .', 

,. . 

P . 
l[ p] + 1 1 + m 

". ~ 1; 

. (VI .• l) 2'~, :3 + 2' 0'3 Tl 2 T} 0'2 , ~\~:I. 

--.:: 

where a is the· set of Pauli matrices ~. ,This ,is a representation for 

1 
a'particle of spin 2' positive energy and.mass m.' The representation 

can be constructed via the method of Section III, taking'ji = ~i' or 

.~ .' 

alternately by boosting the usual representation. Having this representa- .... 

tion, the paper could be repeated'; for it. Here we' only want to make 

some comments about second-quantization, and spin-statistics: A free 

second-quantized representation may be constructed, as in Section IV,· 

either with commuting or anti-commuting ~'s. Thus, although the correct 

connection between spin and statistics can be maintained, it is not 

required. ~though it was not explicitly mentioned in Section IV, the 

spin zero particles can also be second-quantized with anti-commuting i's.) 

Similarly, anti-fermions may be included but are not required. 

On the other hand, it may be possible to include half-in:tegral 

spin without such direct methods. That the bosonic substructure of the 

,f,', '. 

','~ . 
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previous representations need not be observable was already evident in 

the representation (111.14), which contains half-integral ~pin. 

More generally, however, it is well known that the two dimensional 

Schrodinger equation for two free,particles admits half-integral solu

tions,25 in the space of which all operators are self-adjoint and 8.1.1 

observables single-valued. At infinite momenttun, we are dealing with 

exactly this s~tuation, and there may be both integral and half integral 

solutions to many of the first-quantized theories of Section III. Whether 

this is in fact true depends on whether the rest of the Poincare generators 

are self-adjoint in the space of the half-integral solutions. This is 

. presently under investigation. 

A second comment concerns our second-quantized theories. 

Evidently, our unfortunately brief list of theories follows from our 

strict adherence to the usual second-quantization scheme - which guarantees 

that all particles are on an equal footing. In Section III, we obtained 

much larger classes of theories by manipulating the intel'nal variables 

freely. On the other hand, the interactions of the second-quantized 

theories do not disturb the current algebra, while most of the potentials 

of Section III probably do not admit (relativistic) current algebra. This 

gives rise to two possible lines of thought: (a) Can one write other 

kinds of creation - annihilation theories, say that are not derivable 

from an action? Such a question is of course relevant to ordinary 

theories and is probably too much to ask at the present time. (b): More 

practically, can one find first-quantized representations that more closely 

resemble the field-theoretic representations? nlese are likely to satisfy 

the angular condition, etc., but are difficult to find. This is also 

under investigation. 
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APPFJIDIX. INFINITE MOMENTUM J~IMIT AS VARIABLE CW\NGE 

Our purpose here is to spell. out the ctianL_' of' variable 

necessary to achieve theinfini te momentum lim! t representation,s of 

, -, . ,." . 

: ,-.':' 

• !;w' 

.Susskind, and our completion of' the Poincar~ group. In this Way, we can . :\,/, 

. also learn the appropriate inner product and suitable dense sets Qf' test· . 

:functions. We confine our discuss.ion here to the caseoi' one free particle 

of mass m. 

We begin w:l,th t~e Poincar~ group 

1 1 

J = -iPX VIp , 
IV AI 

. K ;:: i(P )2 'VpCP )2 
,- 0 . 0 

(A,l) 

, 1 

where Po:; (P1
2 

+ P2
2 + P

3
2 + m

2
)2 The inner product appropriate f'or 

this representation is 

(A.2) 

where the integration is over all momentum space and t9 is some operator. 

A suitable dense set of test functions for obtaining relations between un-

bounded operators is, for example, the usual set of' Gaussian-smeared func-

tions 

Now we want to make a change of' variable from the set 

(PI' P2, P3) to (PI' P2' 1} ;t:. Po + P3)' The metric of' the new inner 

product differs by the Jacobian of the transformation. 

00 

(9[f, g] = (900[f'IXIJ ~] ="'j d2? J dll(P~) f'oo*~oo goo 

o 

1 (2 2 2) 
Po = 2 II 1J + PJ. + ill ' 

(A.4) 



, '''' 

where feo' g and 
ClO 

~ 00 are the same functions and (ope.rator as before, 

now in terms of the new variables. To complete the change of variable, 

we list 

1 (r? 2 2)" 
P3 = 2 1'1 - P - m ..1. 

(A.5) 
d _ d PJ. d 
d1~ dPJ. 

+,.- ....-
P dTJ 

0 

0 .!L d 
...--~ ..--dP , P dT} 3 0 

With this in hand, He can rewrite the generators themselves. 

For example, in the case of Jl , we find 

~) (A.6) 

With a little algebra and the fact that (po' J1 ) :::: 0, we can express this 

as 

In fact, one learns that 8.11 the generators can be put in the form 

M 
IJ.V 

_1- 1 

= (P~) 2 M T (PO)2 
" I..LV 1'1 

where M T are (the transverse momentum spaceicounterparts of) ·the 
~v 

generators given in the text. If new test functions 
.1 

~oo _. (~o)Z f.~ 

(A·7) 

are defined, tbe generators can thus be taken as M 
IJ.V ' 

T with the simple 
') 

metric dLp d11. Note finall,Y the typical behavior of the test functions 



" 

'J 

for la.rge and small 1) (P
3 

going to plUf;l and. minus infinity respectively) 

. 2 . i 2 1 2' 2 2 2~ 
exp (-Ip/ ) = exp -PI' - 2 (1) - PI - m ) (A.lO) " 
. .... 41) .. 

This is certa.inly adequate to drop boundary terms." 
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