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ABSTRACT

The HFB equations are solved for the N=Z even-even nuclei in the s—d
shella The possibility of generalized pairing correlations (e.g. both T =0
and T = 1 pairing) is studied in detail.- It is found that the two kinds of
pairing are mutually exclusive and that the loweét HFB gsolution for the
even-even N =VZ nuclei is of T = 0 independent pairs. The validity and the
extent of these correlations is further examined by projecting onto eigen-
states of the total number operator. These T = 0 pairing correlation build-up
.for £he axially symmetric prolate M'ggh oblate 832 and prolate Ar36 HFB

solution. Studying the relevance of these HFB solutions to the experimental
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spectra it is found the HFB field gives a more consistent description of the
structure of N = Z even-even nuclei and it can resolve the discrepancies and

also the failure of the HF field in the upper half of the s-d shell.

4]
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I. INTRODUCTION

Due to the vast amount of experimental data for the s-d shell nucleil
this shéll has become a testing aréa for various nucléar structure models.
One of the most studied models in this shéll is rélated to thé idea of
"intrinsic" state. The "intrinsic" staté is not the actual state of the
nucleus but rather, provides a basis from which physical states can bé
extracted. The intrinsic staté model was first employéd using a harmonic
oscillator potential to calculate deforméd single-particle orbitals.l’
Recently the connection between the intrinsic structure of nuclei and the
basic two-body interaction has been investigatéd by utilizing the Hartree-
Fock (HF) approximation.3 A large number of works have already béen accumu-
lated régarding the self-consistent fields in the s-d shéll nuclei. Originally
the HF calculationsu’6 were performed by using an effective central two-body
interaction and by confining the'singlé—particle space‘to a single major
shell and thus weré quite restricted. More recently complete HF calcﬁlations
with renormalized realistic interaction and ektended shell model space have

7,8

been performed. Thé majority of these works involve the N = Z even-even
nuclei, |

The N = 7 even—evén nuclei are singled out for the theoretical study
because of the fbllowing features. The ground state equilibrium shape of
Nego,ngEh, 8128, and 832 all seem to be déformed. This suggests that these
nuclei may definitely be described in terms of deformed intrinsic states. If
the Coulomb force is neglected the exchange of protons and neutrons t&gether
with time-reversal become symmetries of the self-consistent fiéld and thus

bring a considerable simplification to the calculations and the interpretation

of the resulting structure.
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The major new insight gained by the HF calculations has been the
existence of large energy gap betwéen'the'occupiéd'and unoccupied single~
particle levels.9 This single—particlé'gap is thé'main factor in determining
the extent to which the HF sinélé~detérminant approximation is valid. Its
presence lead to a fairly good description of the ground state rotational
spectrum by employing projéction or cranking techniques. It should be howéver
observed that 1) the HF equétions give a large numbér of solutions for each
nucleus most of which do not havé large gap, 2) thé HF solutions underestimaté
the spacing betwéén thé ground and thé eiéited rotational bands in the first
half of the s-d shell, 3) récent analysis of experimental data in Mg25
suggests that the intrinsic structure ofM’g2h should be axially symmetriclo
while the preferred HF staté is triaxial, and u4) the simple HF picturé is
cdmpletely unable to explain thé structure of the upper half of the s-d
éhell. The presence of HF solutions with small gaps suggests that these
solutions are unstable with respect fo higher corrélations and that dynamically
¢orrelated intrinsiq statés may in fact be nécéssary to explain experiment.

A natural generalization of the HF self-consistent fiéld method can
.'be made by taking into account generalized pairing correlations. This is
known as the Haftree-Fock—Bogoliubov (HFB) method. It has been known for some
time that J = 0 pairing among like nucleons is important for describing heavy
nuclei but almost all calculations have gssumed that the underlying self-

‘consistent field is not affected by the correlations. This same approxima-~ )
tion has been assuméd for s-d shell nuclei but since neutrons and protons are
filling the same orbitals it has been nécésSary to consider thé possibility

o

o proton neutron pairing.
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Several groups have studied T =1 J = Q charge independent pairing in
light nuclei. Also T =0 pairing has been studied and shown to lead
to a coherent pair field and hence to a considerable energy gap for single
quasi-particle spectrum.11 Recently calculations have been reported which
consider the possibility of combined T =0 and T = 1 pairing correlations

12,13 However, these calculations were incomplete in the

among the nucleons.
sense that the pairing part was separated inconsistently from the underlying
intrinsic field. This backward effect is expected to be particularly
important when there is a significant dispersion of occupation across fhe
Fermi surface due to pair correlations.v To study this effect the HFB method
suggests itself as a method which takes the HF and the pairing fields on
equal basis.

1k

The first group to perform HFB calculations were Dietrich et al.

2k

They studied the structure of deformed rare earth nuclei and also of Mg
assuming only J = 0 pairing between like nucleons. Recéntly Faessler et ai.26
have performed similar calculations for the lp and 2s1d shells. The result
of these calculations for N = Z nuclei is that this kind of pairing is not an
Aimportant factor in the structure of these nuclei. |

In this paper we examine the effect generalized pairing (including
T = 0 independent pairing) on the HFB self-consistent field. In Sect. II
we give details of the formalism and discuss an ansatz which allows the
séparation of the single-particle and the pairing equations. Section III
contains a discussion of the nature of the HFB solutions, and thé effects

of particle number nonconservation. Finally a summary and conclusion are

given in Sect. IV.
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II. HF AND HFB METHODS

We start with the Hamiltonian -

| t ' 1Z . tog t
= + c., €, 'C, C_. 1)
B -Zeiuciu Ciy * T 2uG0 IV, ko 20 € 7 Cy T, € | (
where CiuT’ Ciu are creation and annihilation in the n, £, j, m, U repre-
sentation (u denotes z component of isospin), ei denotes the single particle
sheli model energy, and V is the two nucleon interaction.

v}

The commutator of Ciu* with H 1is given by

¥ o | . TS
[H,Ciu} = e 0y *3 Z(kp 20|Va|lu i Ceo Cio Cyy (2)_

The equation of motion method consists in linearizing this equation by using

Wick's theorem and neglecting the normal ordered term:

_ RO + +
Cp Cao Cyv = MG, Cgg Cy) + (e, Cj\)ckp
t T to f |
- <Ckp ij>clo * (Ckp Cko >ij (3)

The normal product term is neglected in both HF and HFB methods. An a postiori
Justification can be given if there is a large energy gap in the single
(quasi)particle spectrum in the HFB or HF representation.

The HF factorization consists in writing
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ot t

T T T
Ckp Clo ij = <C2¢ cjv>ckp - <Ckp ij> Cko (4)

This corresponds to the minimization of the Hamiltonian in a single detrimental

wave function.
The HFB factorization consists in including the extra term
T T : o, o R
<Ckp Clo )ij from Eq. (3). The major consequences of this is the noncon
servation of the particle number and isospin, It is equivalent to minimiza-
tion of the Hamiltonian in a BCS type wave function which is a particular

combination of determinants.

IT.2. The HF Basis

With HF factorization the equation of motion becomes

[H,ciu ] }; 1 1k (5)
n | - te Y
where JViu = €% +§::<ku 2v|Va|1u JV><C2v ij> (6)

which for N = Z nuclei is independent of the isospin index yu.
The HF representation is obtained by observing that when one assumes the HF

factorization an eigen mode of the system can be written

T o t
Cou = Z_’ a iciu . : . (7)

The coefficients in the transformation are obtained by solving the eigenvalue

equation



—6- ' UCRL-18363
_ f%lau) = salau> . (8)

€ defines the HF single particle energies. The HF total energy is given by /
o ,

EHF=(H>HF$%2 {@ltld +¢ ] (9)

where
: - : " (10
<1u|t|,j\> e, Gij,du\) (10)
Some general properties of the solutions of the HF equations for even-
even N = Z nuclei in the s~d shell which we assume are i) symmetry under the
exchange of neutron and proton and 2) the time reversal invariance, We

define here the time reversed single particle state as

j,—m, ' '
o) = Z .aai(—l)Jl 1|ji—-mi> o | (11)
The ground HF solution corresponds to the.lowest minimum. This solu-
tion has always been found to posséss a large gap between occupied and unoccupied
states, This gap doés nof allow the building up.of the pair:field.in the "BCS
sense. |
Besides the ground state solution, other sclutions of thé HF equations
are found which.sometimes differ little in (H). Most of theSé highéf sdlu—
fions have a less conspicuous single particle gap and thérefore are more
susceptible to thé inclusion of the pairing correla%ions. We shall consider

& self-consistent treatment of pairing based on these HF solutions.. The
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pairing correlations are expected to establish the required gap in the single

quasiparticle spectrum: and thus bring stability to the new self-consistent

- field.
IT.3. Treatment of the Pair Field and the HFB Factorization
We have
0, " =§:14 c “+-+§: A, C (12)
>Tiy iy ku ku i kv'kv
where
A, =& Getalv_|iuks) {0 o, ™ (13)
iy kv 2 a jo %o
Similarly we can write down the analogous equation of motion for Ci . The

HFB method consists in the self-consistent diagonalization of H in the
extended single particle basis of C.‘T, C.
iy iy

AN

A
V]
AT H

to obtain the éigen modes of thé system.

We shall solve the HFB éQuations'undér thé following constraints:
The different Hf bases obtainéd Whén A‘is sét equal to zero are assumed

to make A diagonal in thé space spin part of each of thé single particle

ofbitals. Also thé pairing matrix is assumed to connect a single particle

WL

operator Ca' to its time reversal conjugant Ga (this follows from the assumed
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time reversal invariance of the resulting ground state). With this assumption
the HFB matrix is reduced to submatrices, each submatrix of dimension 4 x 4
belonging to one single particle orbital,

The HFB submatrix belonging to an HF orbital ® can.be written as

Eﬂ A
- (15)
A ~€
- 0,
where A (o) A (a)
1YY pn
4, = (16)
Apn(a) Ann(a)
e 0
o
€ =
e 10 €
o

By 'a proper choice of phases we choose A" = A. Also We'can assure Anp(a) =
T=1( ., T=0 . .

Anp o) + 1An (a) as pointed out in Ref. (12). This identification of the
real and imaginary parts of Anp allows us to separate the role of the T =1
and T = O forces in a simple manner. The success of.the HFB method depends
crucially on whether there is an energy gap in the quasi particle spectrum.
There exist the following possibilities for having such a gap.

1) If Anp = 0, the eigenvalue for matrix (15) equations are reduced

to independent BCS equations. for the protons and neutrons where the quasiparti-

cle energies are

E =/ + A2 (a) . » (17)
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with an energy gap of Ad. Note that Ea is measured relative to the chemical
potential A. This is the case for heavy nuclei with large neutron excess.

2) TrA =4 =t

= 0 then the matrix (15) is again reduced to
P nn np :

2 x 2 matrices with the energy eigenvalue

_ 2 :
Eu = ffe t Ala) 2 (18)
np
T=0 11
with an energy gap A(a). This is the case of isospin pairing.
np

3) AA' = constant x I, I being the unit matrix. Since At = A,

A

3% = |Det A|I : (19)

In this case the energy eigenvalue is given by

2 ' .
E, = \/ea + |Det §ﬂ| (20)

with an enérgy gap of |Det é&|. Since the ground staté of most N = Z nuclei
has T = 0, one would like the T = 0 state to be contained in the intrinsic
state without confining thé soiutions to be eigenStatés of TE. In analbgy to
HF where 6ne constrains <i> to be zéro we impose the condition (2) =0,
that is all components of thé isospin vanish in the ground staté on the
average. We thus guaranteé moré dééreés of fréedom in the isotopic spin
coordinates allowing the possibility for intrinsic states having lowér energy,
The condition (19) then foliows. Note that the case 2 is & special case of

ihis meore general solution. The gap and number equation in the general case
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are given as

21 (y)
= - = a =1 Y T=1 kP
opl ) A (a) EE: (o T = 1]v_|v¥ ) )
2 a) = j{: 06 T = 1|V [yF T =1) B (21)
np a EY
0(y)
AT—'O( ) _z (a(xT—-O]V IYYT=O> _.El.ap_.—__.
np E
y
€ - A
N=72 = Z (1 - OLE ) s = A = chemical potential (22)

The generalized Bogoliubov transformation corresponding to this simplified

HFB problem is given as

T ) ] +
aal ua 0 - Va -V Ca .
a ' 0 u -V'¥% v ¢’
o2 _ o o o o p (23)
a~ v V! u 0 C—
ol o o o ap
a— V'¥y 0 u C—
a2 a o a an

where u, and Va are real and v& is complex. The occupation probability

of the level o 1is
V2 o= v 4 |vr]? (2k)
o ‘o o

Dietrich et al.lh have shown that to a gocd approximation the principal effect

of pairing on the HF degrees of freedom is accounted for in the dispersion of
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the occupation acrOSS'thé Férmi:surface.f This suggests the following ansatz
for solving.the HFB équations.' First solvé thé HF problem with occupation
number of 1 or O for a particular orbital; then solve thé BCS problem separately
to extract improvéd occupation numbérs; solvé thé'HF équations again with

these new. occupations, and répéat fhé’lést two steps until convergéncé is

obtained. The Hartree-Fock equations become;’

A (V) |ay = ¢_|a) (25)
with.'
a,. 2
|y = Z;aii(v ) |i) (26)
and _ |
i ku(V2) =e. 8, * z: <;aa|vauu9 vi - (27)

The ground state energy in the HFB approximation can be written as a sum of

an 'analogous' HF energy and the pairing energy.

pair

3T [T
HF ~ 2 WA ] €
) 1

(d) = Bgp + | . (?8)

=
|

T=0
np

T=l(

=2 A - :
(a) uv, t Anp u, Im Ve (30)

E . C !
pair A a) uaRe Vet A

Note that we have used the same notation for the energy and wavefunctions of

the HF Hamiltonian even when occupation other than zero and one have been used.
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ITII. NATURE OF THE SOLUTIONS OF THE HFB EQUATIONS
In this section we studj the'géneral nature of the solutions of the
HFB equations for s-d shéll N=2 nucléi. Qur contention is that for deriving
the major féaturés of the HFB fiéld wé can usé a simple céntral two-body

interaction which is chésen to be the Rosenfeld force with a Yukawa radial

shape
Y/ : '
Vo=V, - - (0.3 + 0.7 gi'ge) | - (31)
a =1.35f; v, = 50 MeV

0

This force has been used extensively in earlier HF studies. We confine our-
selves to the s~d shell with an oscillator parameter of 1,65 fermi. The

' single particle part of the Hamiltonian has been chosen to be of the form

_ - . . -
e, T ety <1|g-s|1> + aze <;I£ B (32)
In particular we will refer to the two following cases. o 5 = 0 Mev,
B 2 .
LT =-2.8 MeV, and € = =L.2 MeV used in Ref. (6) and a22 =0.2, a,,  =-2.0
and EO = =3.3 MeV corresponding to the experimental single particle energy

spectrum of ot,

ITII.1. Tendency to Higher Symmetry
One major feature- of pairing cggrelations is the tendency toward

higher symmetry of the intrinsic wave function. For example, it is well



o

-13- UCRL-18363

known that the J = 0 pairing correlations are responsible for the sphericity

15

of a large number of open shell nuclei. For deformed nuclei in the rare

)

earth region, pairing correlations lead to axial symmetry.

In the s-d shell, HF calculations have shown that the ground HF solu-
. : | . . - 32
tion corresponds to axially asymmetric shapes for the nuclel Mg and 57 .
The HF equations usually possess several solutions for each nucleus which
often differ very little 'in the HF énergy, i.e. <H>. The criterion usually
adopted in picking the HF ground state viz lowest value of <H> is not very

meaningful since neglected correlations, for example pairing, would.lower the

energy of the other solutions considerably. Moreover, the reliability of the

minimum <H> criterion is further affected by 1) second order HF energy,

2) rotational energy, and 3) zero point fluctuation energy. In particular,

the first effect is found to be large, about 17% of the first order HF

*
potential energy.8 For Mggh and 832 there exists axially symmetric solutions

which differ in <H> from the axially asymmetric solutions by about 3 MeV.

The Single particle HF gaps for these axially symmetric solutions are 3.0 MeV
.2k . :

for Mg and 5.3 MeV for 832. The gaps for the triaxial solutions however are

7.4 MeV and 6.6 MeV respectively. (These values are for Ao = -2.8 MeV.)

The single particle gap for the triaxial solutions turns out to be large

32

* : ‘
The axially symmetric HF solution for 8 and Ar36 which favors pairing
correlations are different from the ones given in Ref. (6). This HF solution

is given in Table III.
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enough to exclude pairing in the BCS sense. This does not mean tﬁat pairing
correlaﬁions do not exist in these cases. The BCS equations are well known to
have a cutoff in the build-up of the pairing correlations. The fact that the
pairing correlations are small in the axially asymmetric state is basically
due to the fact that axial asymmetry has already taken care of a major part

of the dispersion of the occupation above the fermi level relative to the

17

axially symmetric solution. The axiallybasymmetric solution could also be
used as a basis for the inclusion of pairing correlations but at the éxpense
of using more elaborate techniques, namely number cpnserving representation.
The defect of such an approach is the nonexistence of simple modes of excita-
tion. The HFB solutions corresponding to the axially symmetric shapes are
shown in Table I. After‘the energy gain by pairing correlations is taken
into account along with the rotational energy, the <H> for the aiially
~symmetric state becomes comparable to that of the friaxial solution. It will
be shown in Sect. III.3 that the paired solution is likely to be closer to
the physical intrinsic state on the basis of comparison with experiment. In
this sense only pairing restores - axial symmetry to Mggh and 832.

Another interesting example of this tendency toward higher symmetry
caused by the pairing correlation occurs for the triaxial HF basis of Nego.
The HFB solution is éiven in Table II. Notice that the dispersion of the
occupatibn due to the pairing correlation is such that all the m states of
the d5/2 orbital are almost equally occupied, i.e., the intrinsic state has
become spherical. The smail deviation from sphericity is due to the fact
that this solution corresponds to co@bined T =0 and T = 1 pairing and that
T = Q0 pairing inherently implies deformation. It is not clear if this

solution corresponds to any physical excited state of Nego.
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I11.2. Prolate Versus Oblate Shapes

Another feature of the lowest axially symmetric HF solution for the
s-d shell is that one gets prolate shapes for the lower half of the shell and
oblate shapes for Si28 and the upper half. For all s-d shell nuclei there are
other HF symmetric solutions of opposite shape.

However, in analogy to the competition between axially symmetric and
asymmetric shapes, these axial solutions may differ little in <H>, but one, by
virtue of a small gap, may allow extensive pairing correlations. This is the
case for Ar36 where the prolate and oblate solutions differ in <H> by only
3 MeV. The single particle gap for the prolate solution is 2.4 MeV compared
to 7.4 MeV for the oblate solution. Consequently, the energy gain due to
pairing for the prolate state makes the <H> closer fof the two states. Table I
displays the HFB solution corresponding to the prolate state. The physical

relevance of the paired solution will be discussed in Sect. III.6.

II1.3. Fffect of Self-Consistency on the HF and Paired Field

In this section we shall study the effects of the pair field on the HF
field and vice versa. Table IIT shows the HF wave function for the cases of
832 and Ar36 with zero pairing and for the final self-consistent HFB solution
(2+s force strength is -2.8 MeV). The change in the HF field due to pairing
dépends very much on the amount of dispersion of the occupation across the
fermi surface which in its turn depends on the single particle gap. In Mg2h
and 832 where the dispersion was rather small the change in the HF field, due

to the pair correlations is small. Significant change, however, occurs in the

totael HF energy of the system which decreases due to the dispersion of the
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occupation to the unoccupied single particle states of lower binding energy.
This loss is more than compensated by the large gain in pairing energy. More-

over, there is an extra gain in the rotation energy due to a decrease in the mo-

36

where the dispersion is particularly

6
large the resulting changes in the HF and HFB fields will single out Ar3

ment of inertia (see Sect. III.6). In Ar

from other N = Z even-even nuclei as will be discussed in Sect. III.6.

In order to study the effect of the HF field on pairing in a mean-
.ingful way, we vary the single-particle &-+s force strength. As expeéted, the
decrease of the HF single-particle gap brings an increase in the dispersion
.acrOSs the fermi surface due to pairing and hence an increase in the pairing
energy. Table IV shows the variation of various quantities of the self-
consistent fields as a function of #+-s force strength. In general the HFB
- quantities show a relafive stability compared to those of the relevant HF
fields. In partiéular the quasiparticle gap (the unperturbed energy of the
K = 2+ state) is significantly stable compared to the abrupt changes of the HF
single-particle gap.

It is interesting to nofice here that the main effect of using the
realistic forces and the extension of the shell model space to include all
loWer shells is the reduction of the single particle HF gap.7 This is
particularly prominent for the axial symmetric HF solutions of Mggh and 832
considered in this paper. For'example, in Mggh the gap reduces to 0.5 MeV
compared to 3.1 MeV used in this.paper.l8 With the help of Table IV it is
easy to extrapolate the expected changes in the pairing correlations due to
the realistic forces. The most significant change except the obvious
inoresse in pairing due to the lower HF gap may well occur in the reduction of

HF energy loss due to pairing which should be much less than we have found here.
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IITI.4. T = 0 Versus T = 1 Pairing

One consistent feature of the generalized pairing solutions for the
N = Z even-~even nuclei is the mutual exclusion of T = 0 and T = 1 pairing;
i.e., no physical cases show simultaneous T = 0 and T = 1 pairing. This
result does not mean that the T = 1 (T = 0) pair correlation is identicaliy
0 for T =0 (T = 1) pairing, but being small they cannot be accounted for in
BCS. It is well known that BCS solutions go to the trivial (A = 0) solution
in the small A limit.

For the even-even nuclei due to the large separation of the T = 0 and
T = 1 states, as seen in the experimental spectrum, isospin conservation should
be important and therefore the T = 0 pairing solutions are to be accepted as
the physical solutions. The T =1 bairing solution gives an isospin intrinsic
state out of which one can project the various T states. However, it is

unlikely that states separated by 9 MeV could be contained in the same

I

intrinsic state.lg For this reason, we disregard the T = 1 pairing solution.

1l states are to be

In the T = 0 pairing picture of the ground state, the T

generated as two quasiparticle pairs coupled to T = 1.

. ITT.S. Projections onto Eigenstates of the Number Operatof

As mentioned in II.2 the HFB vacuum is not an eigenstate»of the number
operator. The effects of this approximation have been extensively studied in
heavy nuclei where only TZ = 1 pairing occurs}h.However such studies have not
been performed for T = 0 pairing and for realistic systems with small numbers

of nucleons.
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The canonical HFB approximation has the conceptual advantage of con-
sidering the variational problem in two parts, firét solving the Euler-Lagrange
equations for the Hartree-Fock degrees of freedom; and then solving the pairing
part for the best set occupation parameters for the Hartree-Fock orbitals.

When the solutions to the HFB_equations>give pure T = 0 or TZ = 1 solutions,

then the pairing equations result from a variation with the trial wavefunctions

_ 1/2-1 | + F
[ =0 = I:I (ua + (-1) ivy CaT C&—T)|O> (33)
T
_ T T + +
lp‘I‘Z=l - [:1 (ua * Vo Ca% C&%) [:1 <ua * Va Ca-% Ca_ﬁ)lo> (34)

In these restricted cases the u's and v's may be taken to be real numbers.
Since all physically interesting soiutions for even-even nuclei are T = 0, we
shall present the relevapt equations for the T = 0 case only.

Having written a trail wavefunction for the number nonconserving part
of the variational problem, we can correct the defect by projecting out that
part of ¢ which contains the proper number of nucleon pairs. We may express

this formally as

| - -ng-1 1/2-1 | t Lt
Ypog = CHAEE I:E (u, + &(-1) ivoc ¢ )0 (35)
t

where C 1is the normalization constant and is given by

|c|2 = - 1/hn2Rg : . (36)

Ny is the number of neutron proton pairs, and the
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(no—n)—l

R

= L -
,V.) = 5T fdzz (37)

120 oV

2 2 2 2
v#v[j[.vN (uv * Zvv)(uv + Zvv)

and are called residuum integrals. Taking the expectation value of (1) in (33),

we find the energy is given by

™

R (v, )/RD (38)

- T

Y]

2
\% v\)
1 11

* EZ:- H v2 vi R2(v v )/R0

V.,V v 212 0
vlv2 12
2 0
+ j{: P uw v. u v RI(v.v.)/R
S Vg vlv2 vl vl v2 v2 ; 12 0
where
v - .
e, = h<§|tl§> + <§v|VaIVG>T=O - (39)

Ho o= 300,V Ivv oy + oy, lV v S0 1+
8 '

V.V
V2, - -
[<“1V2|Va|“1“2>T=o (=1 7 <v1“2|va|“1“2>T=o]

and

Pvlv2 = 2<§1v1|va|V2V2>T=o (1 - levg) (41)

Variation of the energy with respect to the v's gives the set of equations
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(e FA)uv +2a (-9 =0 (k2)
o o o o 2 a
e, = Eu Ri(u)/Rg (43)
r =ZH v R(v.a)/R (Lk)
o oV v 21 0
v 1 1
1
- L
Aa Pav u, v R (vlu)/Ro (Lk5)
1 12
1
1 5 [Rl(v,a) - Rl(v,a)]
A = —-Z olav.) & v
a L 1 v v 0
v 101 R
1 o 3 3,
1 o o [B3(vyvpe) = By(vvoa)]
In O(avva) Hv v vv vv 0
12 1 Y2 R,
V1Vo
N [Rg(vlvza) - Rf<vlv2a)]
= olov.v,) P . v.oou v
b 127 Tvgvy Vv vy Yy Rg
\)l\)2
1 1
1 Rl(a) - Ro(a)
= E
2 RO
0]
b o # {vl...vN}
olav ...vN) = 2. o= vy vi{vl .vN}
0 a=v = vJ vy vj{vl vN}

Like the BCS equations the potentials in (L42) depend on the solutions and so

they must be solved by an iterative self consistent procedure. We intend to

examine the solutions to these equations in more detail in a future publica-

Y

=N
DN

here we will give only the one numerical example.
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Previous investigations suggest the certain features to be expected
from such an approach:v

1. If we ch;ose as the initial guess the solution to (15), then for
the first iteration, Eq. (42) describesvthe BCS solution with the correct
particle number projected out (PBCS). The solutions to (ﬁé) alvays give a
lower energybthan this soiution (FBCS).

2. No matter how large the HF gap or how weak the pairing interaction,
there are non-trivial solutions to (L42).

3. In the limit, where BCS predicts uniform occupation (strong
" pairing), FBCS gives smaller dispersion while the limit where BCS gives the
gives the trivial solution (weak pairing), the FBCS will always give finite
dispersion. '

In order to illustrate the effects of number conservation we will
“examine Mth, using the protate HF solution (see Table I) for the single
particlé basis in (15), and T = d pairing solution as the initial guess for
Eqs. (42). The HF energy is =7L.605 MeV which is to be compared to -77.3%0
MeV for BCS, —76.&30 MeV for PBCS, and -76.952 MeV for FBCS. In Fig. 1 we
show the effect on the occupation of the six four-fold degenerate orbitals.

Referring to this FBCS solution as a typical example for N = Z even
even nuclei, we observe that ﬁhe considerable gain in ground state energy due
to T = 0 independent pairs is preserved in the good N scheme. This demonstrates
that the HFB results are not made spurious due to the mixing of the neighboring
nuclei. Ouf results also reflect the above mentioned features. In particular
it should be noted, the dispersion is substantially reduced due to number

vredection.  However the number projection does not bring new dynamical

it
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correlations hence the HFB solution is a good intrinsic state and reproduces
ground state properties. For expectation values of operators sensitive to
the occupation numbers (e.g., stripping spectroscopic factors) this result

implies projection is crucial.

I1I.6. Moment of Inertia

In this section we shall discuss the effect of pairing correlations on
the cranking value of moment of inertia. The results of HF calculations (with
L+s force strength of -2.8 MeV) give fair agreement to the experimental value

: 20 24 . .
for Ne and also for Mg when axial asymmetry is allowed for.
It has been mentioned before that with the two body force used in

28

this paper, pairing correlations do not build up for Ne20 and Si . We_shall,

therefore, confine our discussion to Mggh, 532, and Ar36. With the HFB wave

function, the only moment of inertia is given by

E 1ald, o) |? )
<j - 2_ ' Ea + Ea' (ua|va,l—ua,|Vé!)

a'>0
all o

HFB correlations on the axially symmetric HF basis already given in
Sects. I and II for all three nuclei tend to decrease the moment of inertia
significantly. Table iV shows the effect of pairing on the moment of inertia
parameter A = h2/23) for the axially symmetric state of MgEh for
different values of the &'i strength. It is to be noticed that the HF and
~the HPFB moment of inertia parameters show opposite trends with regard to
2l For ®os which corresponds to O17 fes splitting the ratio between the

HFB and the HF values is more than 2 and as expected this ratio should drop
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to 1 when the increased %'% strength reproduces an HF gap which brings the
cutoff in the pairing correlations. A comparison between the moments of
iﬁertia parameters of the unpaired axially asymmetric HF solutions and. the
corresponding axially symmetric HFB solution for Mg2l+ and 832 for the two
choices of shell model single particle energies usedvin the present study is
giVéﬁ in Table V. A comparison of these values with those presented in Fig. 1

for g = -2.8 MeV reflects more stability for the HFB moments of inertia

over the HF asymmetric values.

The HFB results (including the limiting cases of zero pairing for

28

Si and Neeo) for the moment of inertia parameter are shown in Fig. 1 along

21 2
O, mg

with the experimental values. The experimental values of Ne , and

a6 v
Ar3 have been chosen as average values calculated from O+ - 2+ and 2+ - L+

spacing. The values of'Si28 and 832 are extracted from the LU+ - 2+ spacing

only. The O+ states of these two.nuclei are lowered to their observed

positions by their interaction with the first:excited O+ states which cor- .

respond to spherical shapes observed at 4.97 and 3.78 MeV respectively in these
' *¥ i . B .

“two nucl_ei.20 The theoretical HFB values for the moment of inertia parameter

¥ 32 . .

. The reference to S as being deformed in the ground state may not be so

apparent from the energy spectrum alone. However the large similarity of the

. - . . 21, 32 . .28
angular correlations pattern of pp' reaction in S and in Si whose ground
state deformation is apparent already from the clear rotational nature of its

32

low lying spectrum suggests that S can also be looked upon as being deformed.

It is however true that there is a particularly big component of the spherical

32

state in the 8 ground state and the adopted point of view might Jjust be a

question of taste.
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are always overestimated which is particularly desirable due to the expected
reduction of the cranking estimate due to the Peirls' correction22 not.included
here.

The preference of the HFB axially symmetric solution over the unpaired
HF axially asyﬁmetric solution for Mgzu suggested in the present study is
supported by experimental data on stripping spectroscopic factorse3 and also

25. These experimental data of Mg25 favors an

Y branching ratio2h of Mg
axially symmetric shape for theAMg2h e&en-even core. Also the HF asymmetric
rotation of Mgzu underestimates the spacing between the ground state X = 0
rotational band and the first K = 2 excited band at least by 1 MeV. The HFB
unperturbed K = 2 band head being related to the lowest K = 2 two quasiparticile
state over estimates this spacing in about 1 MeV (see Table IV) by this is
favorable due to expected lowering by the residual interaction between the
quasiparticles of the K = 2 subspace.

Of special interest is the case of Ar36'where the cranking value of
the moment of inertia parameter is found to be 2.84 MeV for the paired
prolate state. Such a high value implies that the excitation energy of the
rotational states is much bigger than that of the vibrational states of the
almost spherical Ar36. Experimentally Ar36 spectrum resembles a pure vibra-
tional spectrum. However a close check of experimental BE2 ratios reflect a
large amount of unharmonicity characteristic to a transitional nucleus.“

Apart from the pairing energy gain already mentioned, the significant
increase of the HFB moment of inertia parameter brings another considerable

energy gain due to large rotational energy. The energy of the J = 0 band

need is given as E(J = 0) = <H> - A<§2) (the value of <J%> does not change
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appreciably). Thus the rotational energy gainﬂv(AHFB - AHF) <J2> with proper
choice of %+s strength could be considerable and thus bring closer the axially

symmetric paired solution and the unpaired axially asymmetric solution.
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IV. SUMMARY AND CONCLUSIONS

We have considered the effect of generalized pairing correlations in
the N = Z even-~even nuclei of the s-d shell by solving the HFB equations. It
is well known that the HF equations given several solutions. The usual criterion
of choosing among these solutions viz. the lowest value of <H> is not meaning-
ful because they differ often only slightly (about 1% of the first order
potential energy), whereas the second order HF potential energy is Vv17% of the
first order potential energy. Moreover, the energy fluctuation <H2> - <H>2 on
the lowest HF solution as well as.the higher one is large except for Nezo
axially symmetric state.25 This shows that even the lowest HF sclutions are
nct good approximations to the actual ground state of the system. In view of
this, we assert that the HF solutions should be regarded only as basis for
further calculations, for example pairing correlations. Only when the higher
correlations have been taken. into account and the energy calculated to all
significant orders can one make a meaningful choice of the proper solution.
Alternatively one can try to make such a selection on the basis of experimental
data.

“In this paper we attempt to étudy the broad features of the HFB field
.with the usual choice of the truncated s-d shell space and phenomenological
effective two body interaction. The HFB solutions thus derived have been
compared with the HF solutions and also with the experimental data. More
definitive considerations are under investigation and will be presented in a
future publication. |

The solutions of the HFB equations are obtained by constraining the

pairing matrix A& to be diagonal in the HF BEQES (only in the space spin
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variables)f We have restricted ourselves to N = Z even-even nuclei where

the further constrain (2) = 0 has been imposed;  Further for the N.='Z even-
even nuclei only T = 0 pairing solutions are:discuésed“from physical grounds.
The major results of the work are as follows: 1) Pairing favors axially
symmetric solutions in Mg2h (prolate) and 532 (oblate). The inclusion of
pairing correlations restore the energy gap for the axially symmetric solution
which is essential for the stability of any single particle basis. Further
the pairing energy along with the gain in the rotational energy due to the

decrease of the moment of inertia make the ground state energies ( ) of

EJ=0
the axially symmetric state comparable to that of the axially asymmetric
state even in the first order. 1In view of the somewhat smaller energy gap
the axially symmetric solution may also be expected to gain more second order
potential energy. 2) With the inclusion of pairing for Mg2u and 832 the
overall picture fdr the cranking moment of inertia seems to be in a better
agreement with experiment. The overestimaﬁe of the moment of inertia param-
eter (A =iﬁ2/2%) found in all the cases is encouraging in view of Peierls'
correction to cranking. ‘3) For Ar36 we have shown that the pairing cor-
relation favors the prolate state. Moreover, deformation of the pfolate
state is decreased considerably by the pairing correlations. Thus the moment
of inertia decreases to the'exteht that the energy of the 2+ rotational state
becomes higher than the expected energy of the 2+ vibrational state. Ar36
therefore seems to belong to the group of transitional nuclei. Experimentally
Ar36 shows a_vibrational spectrum with large anharmonicity characteristic of

a transitional nucleus. The oblate state which corresponds to a A = 0 solution

of the HFB equation does not agree with experimental data as already point out.
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Many questions, however, remain open. The role of the realistic forces
and an extended b;sis has to be examined. In particular,vit is well known that
the tensor forces play an important role in determining the strength of the
effective T = 0 central force which is important for the isospin pairing field.
In this extended scheme one should calculate the binding energy to at least
the second order for a choice between the various HFB solutions.

A detailed study of the one and two quasiparticle spectra including
the rotation particle coupling will be important. Also it will be interesting
to see how the T = 1 and higher T excited states are to be described, i.e., are
they two or more quasiparticle states or does one have to generate them by
constraining the isospin to take on prescribed values when solving the HFB
equation. Some of these questions are expected to be answered in the near

future.
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TABLE CAPTIONS
Table I. HFB solution corresponding to the axially symmetric prolate shape of
Mggh, axially symmetric oblate shape of 832, and the axially symmetric
prolate shape of Ar36. For each nucleus the italicized number at the top
represenfs the HF single particle energy in the final state of the HFB

convergence. This is followed by the component of the single particle

. . . . 5/2 1/2 1/2
. . d
wave functions in the jm representation (in the or@er d5/2, d5/2, 3/2
1/2 —3/2 "3/2 . . . 1
510 d5/2 . d3/2 ). This is followed by the BCS amplitudes u, and Im(va)

corresponding to T = O pairing. The order parameter Aa is given next.
The quasiparticle energy for the level o is shown last in the column also
in italics. The expectation value of the Hamiltonian is shown split into

two parts, E The chemical potential A and the expectation

HF and Epairing'
values of the quadrupole ng and QhO are also given (the QQO and QhO
17

are given in arbitrary units).. O single particle energies are used.
Table II. The spherical solution for Nego displaying combined T = 0 and T =1
pairing. The axially asymmetric HF solution went to this solution when

the pairing correlations were selfconsistently included. The single

particle energies are those used in Ref. (6). Each column represents a

jm state. The first number in each column is the HF energy by vp(u),
T=1 T=0

Re v. (a), Im v__(a), the total occupation vg(a), A (a), Ala), A(a),
np np : np np

the gap parameter A(a), and the quasiparticle energy Ea' A1l quantities

have been defined in Sect. III.
Table III. Change of the HF wave function and energy due to the HFB correla-
tions for the axially symmetric oblate state of 832 and prolate state of
36

Ar™". The first column gives the pure HF single particle basis. The

second column gives the HF single particle basis in the final HFB solution.
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i.e., with HFB occupation numbers. In each column the HF single particle
energy is shown first in italics followed by the wave function in the
representation of Table I. O17 single particle shell model energies are
used.

Table IV. Variation of properties of the selfconsistent field with the single

particle 2+s force strength a for Mggh. The dispersion is defined as

Les

S V§° AEHF is the reduction of the HF energy due to the dispersion

a
€q7A ‘ o
. . . . v o .
and A is the inertial parameter defined as A = t /23, ~The unit of
energy is the MeV.
Table V. Cranking moment of inertia parameters (Ai = 1/2 %i in MeV) of the
axially asymmetfic HF solutions and the HFB axially symmetric solutions
' 2k 32 .
for Mg and 87 . In each case the first values presented correspond to

1 . . . ' . .
0 7 single particle energies and the second to the single particle energies

of Ref. (6).
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Table TI.
Mgeu S32 Ar36

-17.882 -20.281 -23.012

0 0 0
.678 .119 - .616
- .289 .001 .080
- 676 .993 .783

0 0

0 0 0
J111 .128 ~.001
- .99k .992 .999
1.473 1.512 .008
- 6.659 5.950 6.979
-12.2hk2 -19.840 -21.659

0 0 0

0 0 0

0 0 0

0 0 0
.965 .982 .989
.262 .191 .150
.581 .1k2 .001
.81k -.990 .999
2.49L 1.554 .235
2.636 5.536 5.4L49

«

(continued)
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Table I. Continued.

Mgeu g32 230

-10.369 | -18.025 -21.4145

0 0 0
.659 810 .T87
.6L46 .578 091
.385 - .098 .610

0 0

0 0 0
.819 .182 .030
.573 - .983 .999
2.793 1.343 .31L
2.973 3.7h47 5.239
- 7.000 -16.790 -19.451

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
.99k .393 .280
- .110 - .919 .960
.987 2.371 2.065
4499 3.278 3.838

(continued)
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Table I. Continued.

Mgzu 532 1236
- 5.419 -12.872 -17.159
o 0 0
- .326 0 - .022
.T07 0 .993
- .628 0 - .119
0 - .101 0
0 .982 0
.998 891 56
- .056 453 .890
.673 ' 2.272 1.311
6.007 : 2.810 1.616
0 o 0
0 - .5TL 0
0 .816 0
0 .068 0
- 262 0 - .150
.965 o | 1,989
.997 .991 .84
- .081 137 .536
1.440 | | 1.398 1.685
8.907 _ 5.15k 1.861
(H)yp  -T1.508 ~173.600 | -232.929
(i)p, ;. - 5-832 - 5.231 - 3.729
<H> -T77.340 ‘ -178.831 -236.658
X -11.389 - -14.526 -16.215
(o,  15.311 ~19.533 k. 0k6

<Qu0> - 5.377 ~ -39.001 - 3.432
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Table II.

G s Y S 55
-10.654 -10.584 -10.519 - 6.235 - 4.065 - 3.916
.373 .272 .196 .058 .069 .057
.373 272 .196 .058 .069 .057
.1k2 Lt .528 .000 .005 .018
. 300 .321 .355 .007 .010 .007
.783 .723 .693 .570 .995 821
.783 .723 .693 .570 .995 .827
.302 1.128 1.891 .000 .073 .266
1.1k48 1.523 2.130 . 806 1.409 1.199
1.255 1.628 2.22k k.991 T.234 7.343

<H>HF = -34.618 Epgip = 72-119 Eiotar = 739737

A = -11.160
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Table III.
832 Ar36
HF HF (with HFB HF HF (with HFB
occupation) occupation)
16 - 20.280 - 23.677 - 23.012
0 0 0
.071 ©.118 .739 616
.002 .000 - .103 - .080
-997 .993 - .666 - .783
0
0 0
.001 - 19.791 - 22.060 - 21.659
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
.978 .981 .980 .989
.209 .193 .198 .150
.269 - 17.991 - 21.575 - 21.4k5
0 0 0
.805 .809 .673 .787
.591 .581 . .150 .091
.058 - .096 .72k .610
0 .0
0 0

{continued)
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Table III. Continued.

S32 Ar36
L HF HF (with HFB HF HF (with HFB
occupation) occupation)
_ ' - 16.257 - 16.738 ~ 18.41k - 19.451
1. 1. 1. 1.
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
- 12.8L8 | : - 12.866 - 17.528 - 17.159
0 0 0
0 0 - .026 - .022
0 0 .983 .993
0 0 - .180 - .119
- .209 , - .193 0 0
.978 .981 0 0
- 9.116 - 9.533 - 14.897 - 15.k25
0 0 | 0 0
- .589 _ - STT 0 0
.807 .81k 0 0
.0ko .068 0 0
0 0 - .198 - .150
v . 0 0 .980 .989

(i), = -177.293 ~172.926 | ~235.966 ~232.933

W




Table IV.

a HF gap Dispersion
-1, 0.550 0.408
-1. 1.111 0.367
-2. 1.712 0.321
-2. 2.360 0.268
-2. 3.065 0.208

Quasiparticle

AE

-

HF
-gap
6.1k 2.957
5.988 3.317
5.801 3.472
5.595 3,415
5.378 3.066

Pair Ayr
-7.426  0.098 0.318
-6.812 0.111 0.305
-6.031 0.123 0.286
-5.108 0.134 0.265
| -4.007 0.146 0.24k2

W%

£9EQT-TYON
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Table V.
Mgzh ' S32
Nonax. Ax Nonax. Ax
.338 .236 281 2hp .387 211 .223 .259
.182 .208 .281 .22 . 509 .249 .223 .259

-389 .5)41 I~ © .L|,"(l ‘ _)405 © © .
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FIGURE CAPTIONS
Fig. 1. Occupation of the foﬁr—fold degenerate.single—particle states of Mg2h
for the HF, HFB (BCS) soiutions and for the projected eigen-state of the
total number operator. 4
Fig. 2. Moment of inertié'parameter;ﬁzjﬁﬁ'as function of the mass parameter
for present HFB calculations. For comparisbn the HF results of Ref. (6)
32

including the corresponding axially symmetric solutions of Mg2h and S

and the average experimental values are shown.
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