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ABSTRACT 

The HFB equations are solved for the N=Z even-even nuclei in .the s-d 

shell. The possibility of generalized pairing correlations (e.g. both T = 0 

andT = 1 pairing) is studied in detail.· It is found that the two kinds of 

pairing are mutually exclusive and that the lowest HFB solution for the 

even-even N = Z nuclei is of T = 0 independent pairs. The validity and the 

extent of these correlations is further examined by projecting onto eigen-

states of the total number operator. These T = 0 pairing correlation build-up 

for the axially symmetric prolate Mg24 oblate S32 and prolate Ar 36 HFB 

S('111t i l'll. Studying the relevance of these HFB solutions to the experimental 
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spectra it is found the HFB field gives a more consistent description of the 

structure of N = Z even-even nuclei and it can resolve the discrepancies and 

also the failure of the HF field in the upper half of the s-d shell. • 
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I. INTRODUCTION 

Due to the vast amount of experimental data for the s-d shell nuclei 

this shell has become a testing area for various nuclear structure models. 
I 

One of the most studied models in this shell is related to the idea of 

"intrinsic" state. The "intrinsic" state is not the actual state of the 

nucleus but rather, provides a basis from which physical states can be 

extracted. The intrinsic state model was first employed using a harmonic 

I 2 
oscillator potential to calculate deformed single-particle orbitals. ' 

Recently the connection between the intrinsic structure of nuclei and the 

basic two-body interaction has been investigated by utilizing the Hartree­

Fock (HF) approximation. 3 A large number of works have already been accumu-

lated regarding the self-consistent fields in the s-d shell nuclei. Originally 

the HF calculations 4 ,6 were performed by using an effective central two-body 

interaction and by confining the single-particle space to a single major 

shell and thus were quite restricted. More recently complete HF calculations 

with renormalized realistic interaction and extended shell model space have 

been performed. 7 ,8 The majerity of these works involve the N = Z even-even 

nuclei. 

The N = Z even-even nuclei are singled out for the theoretical study 

because of the following features. The ground state equilibrium shape of 

20 24 .28 32 
Ne ,Mg ,Sl , and S all seem to be deformed. This suggests that these 

nuclei may definitely be described in terms of deformed intrinsic states. If 

~- the Coulomb force is neglected the exchange of protons and neutrons together 

with time-reversal become symmetries of the self-consistent field and thus 

bring a considerable simplification to the calculations and the interpretation 

of the resulting structure. 
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The major new insight gained by the HF calculations has been the 

existence of large energy gap between the occupied and unoccupied single­

particle levels. 9 This single-particle gap is the main factor in determining 

the extent to which the HF single-determinant approximation is valid. Its 

presence lead to a fairly good description of the ground state rotational 

spectrum by employing projection or cranking techniques. It should be however 

observed that 1) the HF equations give a large number of solutions for each 

nucleus most of which do not have large gap, 2) the HF solutions underestimate 

the spacing between the ground and the excited rotational bands in the first 

half of the s-d shell, 3) recent analysis of experimental data in Mg25 

suggests that the intrinsic structure of Mg24 should be axially symmetric
lO 

while thepreferred HF state is triaxial, and 4) the simple HF picture is 

completely unable to explain the structure of the upper half of the s-d 

shell. The presence of HF solutions with small gaps suggests that these 

solutions are unstable with respect to higher correlations and that dynamically 

correlated intrinsic states may in fact be necessary to explain experiment. 

A natural generalization of the HF self-consistent field method can 

be made by taking into account generalized pairing correlations. This is 

known as the Hartree-Fock-Bogoliubov (HFB) method. It has been known for some 

time that J = 0 pairing among like nucleons is important for describing heavy 

nuclei but almost all calculations have assumed that the underlying self-

consistent field is not affected by the correlations. This same approxima-

tion has been assumed for s-d shell nuclei but since neutrons and protons are 

filling the same orbitals it has been necessary to consider the possibility 

of pr('toll neutron pairing. 

• 

., 
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Several groups have studied T = 1 J = 0 charge independent pairing in 

light nuclei. Also T = 0 pairing has been studied and shown to lead 

to a coherent pair field and hence to a considerable energy gap for single 

quasi-particle spectrum. ll Recently calculations have been reported which 

consider the possibility of combined T = 0 and T = 1 pairing correlations 

12 13 among the nucleons.' However, these calculations were incomplete in the 

sense that the pairing part was separated inconsistently from the underlying 

intrinsic field. This backward effect is expected to be particularly 

important when there is a significant dispersion of occupation across the 

Fermi surface due to pair correlations. To study this effect the HFB method 

suggests itself as a method which takes the HF and the pairing fields on 

equal basis. 

The first group to perform HFB calculations were Dietrich et 

They studied the structure of deformed rare earth nuclei and also of 

assuming only J = 0 pairing between like nucleons. 
26 

Recently Faessler et al. 

have performed similar calculations for the lp and 2sld shells. The result 

of these calculations for N = Z nuclei is that this kind of pairing is not an 

important factor in the structure of these nuclei. 

In this paper we examine the effect generalized pairing (including 

T = 0 independent pairing) on the HFB self-consistent field. In Sect. II 

we give details of the formalism and discuss an ansatz which allows the 

separation of the single-particle and the pairing equations. Section III 

contains a discussion of the nature of the HFB solutions, and the effects 

of particle number nonconservation. Finally a summary and conclusion are 

given in Sect. IV. 
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II. HF AND HFB METHODS 

ILL Equation of Motion ;HF and HFB Factorizations 

We start with the Hamiltonian 

~ t . II: . t 
H = e. C. C .. " + T" (i J.l j v I V I kp R,a >. C . 

. ~J.l ~J.l ~,... ~ a ~J.l 
(1) 

where 
i" 

C. ,C. are creation and annihilation in the n, R" j, m, J.l repre-
~J.l ~J.l 

sentation (J.l denotes z component of isospin), e. denotes the single particle 
~ 

shell model energy, and V is the two nucleon interaction. 

The commutator of 
,t 

C. 
~J.l 

with H is given by 

e . C. t + 1.2 \ (kp R,a I Va I i J.l j v) ~J.l ~J.l L 

The equation of motion method consists in linearizing this equation by using 

Wick's theorem and neglecting the normal ordered term: 

The normal product term is neglected i~ both HF and HFB methods. An a postiori 

justification can be given if there is a large energy gap in the single 

(quasi)particle spectrum in the HFB or HF representation. 

The HF factorization consists in writing 

i 
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t t 
C

k 
Cn C. 

P ",0 JV 
= (C n t C. )C

k 
t - (Ck t C. > cnot 

",0 JV P P JV '" 
(4) 

This corresponds to the minimization of the Hamiltonian in a single detrimental 

wave function. 

The HFB factorization consists in including the extra term 

(C
k 

TC n t)c. from Eq. (3). The major consequences of this is the noncon-
P ",0 JV 

servation of the particle number and isospin. It is equivalent to minimiza-

tion of the Hamiltonian in a BCS type wave function which is a particular 

combination of determinants. 

11.2. The HF Basis 

With HF factorization the equation of motion becomes 

C 
k]1 k]1 

which for N = Z nuclei is independent of the isospin index ]1. 

( 6.) 

The HF representation is obtained by observing that when one assumes the HF 

factorization an eigen mode of the system can be written 

C t= L 
ex]1 i 

ex -r 
a .C. 

l l]1 

The coefficients in the transformation are obtained by solving the eigenvalue 

equation 
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(8 ) 

E defines the HF single particle energies. The HF total energy is given by 
ct. 

~F (H)HF 
1 L { (ct.1 t 10/ + = = E 
2 ct. ct. 

where 

(hI I t I j v) = e. 6 .. 6 
l. l.J. llV 

(10) 

Some general properties of the solutions of the HF equations for even-

even N = Z nuclei in the s-d shell which we assume are 1) symmetry under the 

exchange of neutron and proton and 2) the time reversal invariance. We 

define here the time reversed single particle state as 

The ground HF solution corresponds to the lowest minimum, This solu-

tion has always been found to possess a large gap between occupied and unoccupied 

states. This gap does not allow the building up of the pair field in theBCS 

sense. 

Besides the ground state solution, other solutions of the HF equations 

are found which sometimes differ little in (H). Most of these higher solu­

tions have a less conspicuous single particle gap and therefore are more 

susceptible to the inclusion of the pairing correlations. We shall consider 

R self-consistent treatment of pairing based on these HF solutions. The 

,'" 
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pairing correlations are expected to establish the required gap in the single 

quasiparticle spectrum, and thus bring stability to the new self-consistent 

field. 

11.3. Treatment of theP&ir Field and the HFB Factorization 

We have 

(12) 

where 

(13) 

Similarly we can write down the analogous equation of motion for C. • The 
llJ 

HFB method consists in the self-consistent diagonalization of H in the 

t extended single particle basis of C. ,C. 
llJ llJ 

(14) 

to obtain the eigen modes of the system. 

We shall solve the HFB equations under the following constraints: 

The different HF bases obtained when ~ is set equal to zero are assumed 

to make ~ diagonal in the space spin part of each of the single particle 

orbitals. Also the pairing matrix is assumed to connect a single particle 

operator C 
a 

.L 
l 

to its time reversal conjugant C- (this follows from the assumed 
a 
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time reversal invariance of the resulting ground state). With this assumption 

the HFB matrix is reduced to submatrices, each submatrix of dimension 4 x 4 

belonging to one single particle orbital. 

The HFB submatrix belonging to an HF orbital a can_be written as 

where (" (al , (al) pp pn 
I::, = 
--a 

I::, (a) I::, (a) 
pn nn 

E = (:a :,l --a 

+ 
By a proper choice of phases we choose 1::,' = 1::,. 

(16) 

Also we can assure I::, (a) = np 
, T=l(N) + lo,T=O(N) ( ) 
il ~ 0 ~ as pointed out in Ref. 12. This identification of the np np 

real and imaginary parts of I::, 
np 

allows us to separate the role of the T = 1 

and T = ° forces in a simple manner. The success of the HFB metbod depends 

crucially on whether there is an energy gap in the quasi particle spectrum. 

There exist the following possibilities for having such a gap. 

1) If I::, = 0, the eigenvalue for matrix (15) equations are reduced 
np 

to independent BCS equations for the protons and neutrons where the quasiparti-

cle energies are 

E = 1s2 + 1::,2 (a) 
a 0: pp 
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with an energy gap of ~. Note that E is measured relative to the chemical 
a. a. 

potential A. This is the case for heavy nuclei with large neutron excess . 

2) If ~ 
pp = ~ nn 

= ~T=l = ° 
np 

then the matrix (15) is again reduced to 

2 x 2 matrices with the energy eigenvalue 

T=O 
with an energy gap ~(a.). 

np 

. .. 11 
This is the case of isospln palrlng. 

3) ~~t = constant x I, I being the unit matrix. 
t Since ~ =~, 

In this case the energy eigenvalue is given by 

E a. 

(18) 

(20) 

with an energy gap of IDet ~ I. Since the ground state of most N = Z nuclei 
~ 

has T = 0, one would like the T = ° state to be contained in the intrinsic 

state without confining the solutions to be eigenstates of T2. In analogy to 

HF where one constrains ~) to be zero we impose the condition (,!) = 0, 

that is all components of the isospin vanish in the ground state on the 

average. We thus guarantee more degrees of freedom in the isotopic spin 

coordinates allowing the possibility for intrinsic states having lower energy. 

The condition (19) then follows. Note that the case 2 is a special case of 

:'his :ncre general solution. The gap and number eQuation in the general case 
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are given as 

llT=l( } 

II (a) -ll ( a) = L (aa T = llva!yy T = 1) 12J2
Y 

= E pp nn 
Y 

T=l( ) 
llT=l(a) =L 1) 

II . y 

(aa T = llv !yy T = nJ2 
np a E 

y 

( 21) 

L 
llT=O() 

llT=O(a) = (aa T = olv !yy T = 0) nJ2 Y 
np a E 

Y 

N = Z = A = chemical potential (22) 

The generalized Bogoliubov transformation corresponding to this simplified 

HFB problem is given as 

.J.. 

° - V - V' 
I 

U a a 0'. 

0 U - V'* V 
0'. a a (23) = 

V V' u 0 
a a a 

V'*-V 0 u 
0'. a 0'. 

where u and V are real and v' is complex. The occupation probability 
0'. 0'. a 

of the level a is 

(24) 

Dietrich et al. 14 have shown that to a good approximation the principal effect 

of pairing on the HF degrees of freedom is accounted for in the dispersion of 
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the occupation across the Fermi surface ... This suggests the following ansatz 

for solving the HFB equations.· First solve the HF problem with occupation 

number of 1 or 0 for a particular orbital; then solve the BCS problem separately 

to extract improved occupation numbers, solve the HF equations again with 

these new occupations, and repeat the last two steps until convergence is 

obtained. The Hartree-Fock equations become; 

1/ (V2 ) I a) = E: I ci) . a (25) 

with 

I a) = 2: a~(v2) I i) (26) 
1 

and 

N. k~/~) = e.o· k + L (iaalva 1ka) 
y2 (27) 

1\1 1 1 a 

The ground state energy in the HFB approximation can be written as a sum of 

an 'analogous' HF energy and the pairing energy. 

(H) = EHF + E pair (28) 

EHF 
1 L ( L a2 

+ E:a) 
y2 =. e.a. 2 1 1 a a i 

E = 2 L 11 (a) u v + I1T=l(a) u Re v' + I1T=O u 1m v' pair a>O pp a a np a a np a a 
(30 ) 

Note that we have used the same notation for the energy and wave functions of 

the HF Hamiltonian even when occupation other than zero and one have been used. 
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Ill. NATURE OF THE SOLUTIONS OF THE HFB EQUATIONS 

In this section we study the general nature of the solutions of the 

HFB equations for s-d shell N = Z nuclei. Our contention is that for deriving 

the major features of the HFB field we can use a simple central two-body 

interaction which is chosen to be the Rosenfeld force with a Yukawa radial 

shape 

V = Vo 
-y/a 

e 
y 

a = 1.35f; vo = 50 MeV 

This force has been used extensively in earlier HF studies. We confine our-

selves to the s-d shell with an oscillator parameter of 1,65 fermi. The 

single particle part of the Hamiltonian has been chosen to be of the form 

In particular we will refer to the two following cases. a 2 
£. 

= 0 Mev, 

(32) 

a£.os =-2.8 MeV, and EO = -4.2 MeV used in Ref. (6) and a£.2 = 0.2, an ",·s 
= -2.0 

and EO = -3.3 MeV corresponding to the experimental single particle energy 

spectrum of 017 . 

111.1. Tendency to Higher Symmetry 

One major feature' of pairing correlations is the tendency toward 
.. ", 

higher symmetry of the intrinsic wave function. For example, it is well 
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known that the J = 0 pairing correlations are responsible for the sphericity 

of a large number of open shell nuclei. 15 For deformed nuclei in the rare 

'~arth region, pairing correlations lead to axial symmetry .16 

In the s-d shell, HF calculations have shown that the ground HF solu-

. 24 32 
tion corresponds to axially asymmetric shapes for the nuclei Mg and S . 

The HF equations usually possess several solutions for each nucleus which 

often differ very little 'in the HF energy, i.e. (H). The criterion usually 

adopted in picking the HF ground state viz lowest value of (H) is not very 

meaningful since neglected correlations, for example pairing, would lower the 

energy of the other solutions considerably. Moreover, the reliability of the 

minimum (H) criterion is further affected by 1) second order HF energy, 

2) rotational energy, and 3) zero point fluctuation energy. In particular, 

the first effect is found to be large, about 17% of the first order HF 

8 24 32 * potential energy. For Mg and S there exists axially symmetric solutions 

which differ in (H) from the axially asymmetric solutions by about 3 MeV. 

The single particle HF gaps for these axially symmetric solutions are 3.0 MeV 

24 32 for Mg and 5.3 MeV for S . The gaps for the triaxial solutions however are 

7.4 MeV and 6.6 MeV respectively. (These values are for a = -2.8 MeV.) 
R,os 

The single particle gap for the triaxial solutions turns out to be large 

*The axially symmetric HF solution for 832 and Ar36 which favors pairing 

correlations are different from the ones given in Ref. (6). This HF solution 

is given in Table III. 
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enough to exclude pairing in the BCS sense. This does not mean that pairing 

correlations do not exist in these cases. The BCS equations are well known to 

have a cutoff in the build-up of the pairing correlations. The fact that the 

pairing correlations are small in the axially asymmetric state is basically 

due to the fact that axial asymmetry has already taken care of a major part 

of the dispersion of the occupation above the fermi level relative to the 

axially symmetric solution. 17 The axially asymmetric solution could also be 

used as a basis for the inclusion of pairing correlations but at the expense 

of using more elaborate techniques, namely number conserving representation. 

The defect of such an approach is the nonexistence of simple modes of excita-

tion. The HFB solutions corresponding to the axially symmetric shapes are 

shown in Table I. After the energy gain by pairing correlations is taken 

into account along with the rotational energy, the (H) for the axially 

symmetric state becomes comparable to that of the triaxial solution. It will 

be shown in Sect. 111.3 that the paired solution is likely to be closer to 

the physical intrinsic state on the basis of comparison with experiment. In 

. 24 32 this sense only pairing restores aXlal symmetry to ~~ and S . 

Another interesting example of this tendency toward higher symmetry 

caused by the pairing correlation occurs for the triaxial HF basis of Ne 20 . 

The HFB solution is given in Table II. Notice that the dispersion of the 

occupation due to the pairing correlation is such that all the m states of 

the d5/ 2 orbital are almost equally occupied, i.e., the intrinsic state has 

become spherical. The small deviation from sphericity is due to the fact 

that this solution corresponds to combined T = 0 and T = I pairing and that 

T = 0 pairing inherently implies deformation. It is not clear if this 

solution corresponds to any physical excited state of Ne 20 . 
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III.2. Prolate Versus Oblate Shapes 

Another feature of the lowest axially symmetric HF solution for the 

s-d shell is that one gets prolate shapes for the lower half of the shell and 

oblate shapes for Si28 and the upper half. For all s-d shell nuclei there are 

other HF symmetric solutions of opposite shape. 

However, in analogy to the competition between axially symmetric and 

asymmetric shapes, these axial solutions may differ little in (H), but one, by 

virtue of a small gap, may allow extensive pairing correlations. This is the 

case for Ar36 where the prolate and oblate solutions differ in (H) by only 

3 MeV. The single particle gap for the prolate solution is 2.4 MeV compared 

to 7.4 MeV for the oblate solution. Consequently, the energy gain due to 

pairing for the prolate state makes the (H) closer for the two states. Table I 

displays the HFB solution corresponding to the prolate state. The physical 

relevance of the paired solution will be discussed in Sect. III.6. 

III.3. Effect of Self-Consistency on the HF and Paired Field 

In this section we shall study the effects of the pair field on the HF 

field and vice versa. Table III shows the HF wave function for the cases of 

32 36. 
Sand Ar wlth zero pairing and for the final self-consistent HFB solution. 

(£·s force strength is -2.8 MeV). The change in the HF field due to pairing 

depends very much on the amount of dispersion of the occupation across the 

fermi surface which in its turn depends on the single particle gap. In Mg24 

32 
and S where the dispersion was rather small the change in the HF field, due 

to the pair correlations is small. Significant change, however, occurs in the 

tot~l HF energy of the system which decreases due to the dispersion of the 
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occupation to the unoccupied single particle states of lower binding energy. 

This loss is more than compensated by the large gain in pairing energy. More-

over, there is an extra gain in the rotation energy due to a decrease in the mo­

ment of inertia (see Sect. 111.6). In Ar36 where the dispersion is particularly 

large the resulting changes in the HF and HFB fields will single out Ar
36 

from other N = Z even-even nuclei as will be discussed in Sect. 111.6. 

In order to study the effect of the HF field on pairing in a mean-

ingful way, we vary the single-particle £·s force strength. As expected, the 

decrease of the HF single-particle gap brings an increase in the dispersion 

across the fermi surface due to pairing and hence an increase in the pairing 

energy. Table IV shows the variation of various quantities of the self-

consistent fields as a function of £·s force strength. In general the HFB 

quantities show a relative stability compared to those of the relevant HF 

fields. In particular the quasiparticle gap (the unperturbed energy of the 

K = 2+ state) is significantly stable compared to the abrupt changes of the HF 

single-particle gap. 

It is interesting to notice here that the main effect of using the 

realistic forces and the extension of the shell model space to include all 

lower shells is the reduction of the single particle HF gap.7 This is 

particularly prominent for the axial symmetric HF solutions of Mg24 and S32 

considered in this paper. For example, in Mg24 the gap reduces to 0.5 MeV 

compared to 3.1 MeV used in this paper. 18 With the help of Table IV it is 

easy to extrapolate the expected changes in the pairing correlations due to 

the realistic forces. The most significant change except the obvious 

in,~l'e"sein pairing due to the lower HF gap may well occur in the reduction of 

HF energy 10ss due to pairing which should be much less than we have found here. 



-17- UCRL-18363 

111.4. T = 0 Versus T = 1 Pairing 

One consistent feature of the generalized pairing solutions for the 

N = Z even-even nuclei is the mutual exclusion of T = 0 and T = 1 pairing; 

i. e., no physical cases show simultaneous T = 0 and T = 1 pairing. This 

result does not mean that the T = 1 (T = 0) pair correlation is identically 

o for T = 0 (T = 1) pairing, but being small they cannot be accounted for in 

BCS. It is well known that BCS solutions go to the trivial (~ = 0) solution 

in the small 6 limit. 

For the even--even nuclei due to the large separation of the T = 0 and 

T = 1 states, as seen in the experimental spectrum, isospin conservation should 

be important and therefore the T = 0 pairing solutions are to be accepted as 

the physical solutions. The T = 1 pairing solution gives an isospin intrinsic 

state out of which one can project the various T states. However, it is 

unlikely that states separated by ~9 MeV could be contained in the same 

intrinsic state. 19 For this reason, we disregard the T = 1 pairing solution. 

In the T = 0 pairing picture of the ground state, the T = 1 states are to be 

generated as two quasiparticle pairs coupled to T = 1. 

111.5. Projections onto Eigenstates of the Number Operator 

As mentioned in 11.2 the HFB vacuum is not an eigenstate of the number 

operator. The effects of this approximation have been extensively studied in 

heavy nuclei where only TZ = 1 pairing occurs~4However such studies have not 

been performed for T = 0 pairing and for realistic systems with small numbers 

of nucleons. 
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The canonical HFB approximation has the conceptual advantage of con-

sidering the variational problem in two parts, first solving the Euler-Lagrange 

equations for the Hartree-Fock degrees of freedom, and then solving the pairing 

part for the best set occupation parameters for the Hartree-Fock orbitals. 
'. 

When the solutions to the HFB equations give pure T = 0 or TZ = 1 solutions, 

then the pairing equations result fromft variation with the trial wavefunctions 

1jJT=O = n (u + (_I)I/2-T iv C
t 

C! ) 10) 
0.>0 a a aT a-T 

(33 ) 

T 

n (u + C
t 

C!d n (u + t -r ) 
1jJTZ=l = v v Ca_~ Ca_~) 10 

0.>0 a a 0.1 0.2 0.>0 a a 
(34 ) 

In these restricted cases the u's and v's may be taken to be real numbers. 

Since all physically interesting solutions for even-even nuclei are T = 0, we 

shall present the relevant equations for the T = 0 case only. 

Having written a trail wavefunction for the number nonconserving part 

of the variational problem, we can correct the defect by projecting out that 

part of 1jJ which contains the proper number of nucleon pairs. We may express 

this formally as 

1jJT=O = Cdidss-no - l n (u + s(_I)I/2-T iv Ct 
<-T) 1

0) (35 ) 
\1>0 

\I \I \IT 

t 

where C is the normalization constant and is given by 

(36) 

llO is the munber of neutron proton pairs, and the 
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and are called residuum integrals. Taking the expectation value of (1) in (33), 

we find the energy is given by 

where 

and 

+ [" 2 2 2 0 
H v v R

2
(V

1
V

2
)/R

O v
l

v
2 

v v 
v

l
v

2 

L 2 0 
+ p u v u v R1 (v

1
V2 )/R

O 
vl v 2 , 

v
1

v
2 

v
1 

v
1 

v
2 

v
2 

H
V1V2 

= 3[(V1V2Ivalvlv2)T=1 + (VIV2Ivalv1V2)T=1] 

<5 

+ 

v1 V2( _ _ 
[(VIV2IvalvlV2)T=O + (-1) . V1V2IvalvlV2)T=O] 

(38) 

(41) 

Variation of the energy with respect to the v's gives the set of equations 
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+ A ) 
1 2 v2 ) (€ + r u v +-6 (u - = 0 

a a a a a 2 a a a 
(42) 

where 

1 'V 1 0 
E = - E Rl(a)/RO a 2 a 

(43) 

2 2 0 r -LH v R
2

(v
l
a)/R

O a v
l 

aVl 
v

l 
(44) 

2 0 
6 = LP u v Rl(vla)/Ro a v

l 
aVl vl vl 

. 2 2 

t L o(avl ) Ev 
2 [Rl(v,a) - Rl(v,a)] 

A = v 
a 

v,l 1 
v

l R
O 
0 

3 
- R~(Vl v2a)] 

+ t L 0(0"1"2) H 
2 2 [R

3
(v

l
v2a) 

v v 
RO v

l
v2 

v
l 

v2 0 
v

l
v2 

+ t L 0(0"1"2] 

3 3 

P 
[R

2
(v

l
v2a) - R

l
(v l v2a)] 

u v u v 
R

O vl v2 
v

l 
v

l 
v

2 
v

2 0 
v

l
v

2 
1 1 

-!E 
Rl(a) - Ro(a) 

2 R
O 
0 

4 a 1 {V
l
', ,v

N
} 

o( av
l

" ,v
N

) = 2 a = v
l vi{vl"·vN} 

0 a = v. = v. vi' Vj{Vl '· ,vN} 
l J 

Like the BCS equations the potentials in (42) depend on the solutions and so 

they must be solved by an iterative self consistent procedure. We intend to 

examine the solutions to these equations in more detail in a future publica-

::.:-:: s:,'i so here w-e will give only the one numerical example. 
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Previous investigations suggest the certain features to be expected 

from such an approach: 

1. If we choose as the initial guess the solution to (15), then for 

the first iteration, Eq. (42) describes the BCS solution with the correct 

particle number projected out (PBCS). The solutions to (42) always give a 

lower energy than this solution (FECS). 

2. No matter how large the HF gap or how weak the pairing interaction, 

there are non-trivial solutions to (42). 

3. In the limit, where BCS predicts uniform occupation (strong 

pairing), FBCS gives smaller dispersion while the limit where Bes gives the 

gives the trivial solution (weak pairing), the FBCS will always give finite 

dispersion. 

In order to illustrate the effects of number conservation we will 

examine M 24 ° th t t HF 1 to ( T bl I) f th ° 1 g ,uslng e pro a e so u lon see a e ore slng e 

particle basis in (15), and T = 0 pairing solution as the initial guess for 

Eqs. (42). The HF energy is ":74.605 MeV which is to be compared to -77.340 

MeV for BCS, -76.430 MeV for PBCS, and -76.952 MeV for FBCS. In Fig. 1 we 

show the effect on the occupation of the six four-fold degenerate orbitals. 

Referring to this FBCS solution as a typical example for N = Z even 

even nuclei, we observe that the considerable gain in ground state energy due 

to T = 0 independent pairs is preserved in the good N scheme. This demonstrates 

that the HFB results are not made spurious due to the mixing of the neighboring 

nuclei. Our results also reflect the above mentioned features. In particular 

it should be noted, the dispersion is substantially reduced due to number 

l'l'O,C e,-~-t ion. However the number projection does not bring new dynamical 
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correlations hence the HFB solution is a good intrinsic state and reproduces 

ground state properties. For expectation values of operators sensitive to 

the occupation numbers (e.g., stripping spectroscopic factors) this result 

implies projection is crucial. 

111.6. Moment of Inertia 

In this section we shall discuss the effect of pairing correlations on 

the cranking value of moment of inertia. 'l'he results of HF calculations (with 

~os force strength of -2.8 MeV) give fair agreement to the experimental value 

20 24 
for Ne and also for Mg when axial asymmetry is allowed for. 

It has been mentioned before that with the two body force used in 

this paper, pairing correlations do not build up for Ne 20 and Si 28 . We shall, 

24 32 Ar36. therefore, confine our discussion to Mg ,S ,and With the HFB wave 

function, the only moment of inertia is given by 

L I(alj)a'> 12 . 2 
{J = 2 . E + E (ua 1 va' I-ua , 1 va 1 ) 

. a a' 
a' >0 
all a 

HFB correlations on the axially symmetric HF basis already given in 

Sects. I and II for all three nuclei tend to decrease the moment of inertia 

significantly. Table IV shows the effect of pairing on the moment of inertia 

parameter 24 
for the axially symmetric state of Mg for 

different values of the ~o~ strength. It is to be noticed that the HF and 

the HFE moment of inertia parameters show opposite trends with regard to 

~Los For a£os which corresponds to 017 £os splitting the ratio between the 

HFE and the HF values is more than 2 and as expected this ratio should drop 
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to 1 when the increased ~.~ strength reproduces an HF gap which brings the 

cutoff in the pairing correlations. A comparison between the moments of 

inertia parameters of the unpaired axially asymmetric HF solutions and the 

corresponding axially symmetric HFB solution for Mg24 and 8 32 for the two 

choices of shell model single particle energies used in the present study is 

given in Table V. A comparison of these values with those presented in Fig. 1 

for an = -2.8 MeV reflects more stability for the HFB moments of inertia 
",·s 

over the HF asymmetric values. 

The HFB results (including the limiting cases of zero pairing for 

8i28 and Ne2O ) for the moment of inertia parameter are shown in Fig. 1 along 

with the experimental values. The experimental values f N 20 o e , Mg24, and 

Ar36 have been chosen as average values calculated from 0+ - 2+ and 2+ - 4+ 

spacing. The values of 8i28 and 832 are extracted from the 4+ - 2+ spacing 

only. The 0+ states of these two nuclei are lowered to their observed 

positions by their interaction with the first excited 0+ states which cor-

respond to spherical shapes observed at 4.97 and 3.78 MeV respectively in these 

20* two nuclei. The theoretical HFB values for the ~oment of inertia parameter 

*The reference to 832 as being deformed in the ground state may not be so 

apparent from the energy spectrum alone. However the large similarity of the 

1 1 t " tt f' t' 21. 832 . 8. 28 h d angu ar corre a lons pa ern 0 pp reac lon ln and ln l w ose groun 

state deformation is apparent already from the clear rotational nature of its 

32 low lying spectrum suggests that 8 can also be looked upon as being deformed. 

It is however true that there is a particularly big component of the spherical 

32 state in the 8 ground state and the adopted point of view might just be a 

question of taste. 
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are always overestimated which is particularly desirable due to the expected 

22 
reduction of the cranking estimate due to the Peirls' correction not included 

here. 

The preference of the HFB axially symmetric solution over the unpaired 

HFaxially asymmetric solution for Mg24 suggested in the present study is 

supported by experimental data on stripping spectroscopic factors 23 and also 

y 
24 25 

branching ratio of Mg . These experimental data of Mg25 favors an 

axially symmetric shape for the Mg24 even-even core. Also the HF asymmetric 

rotation of Mg24 underestimates the spacing between the ground state K = 0 

rotational band and the first K = 2 excited band at least by 1 MeV. The HFB 

unperturbed K = 2 band head being related to the lowest K = 2 two quasiparticle 

state over estimates this spacing in about 1 MeV (see Table IV) by this is 

favorable due to expected lowering by the residual interaction between the 

quasiparticles of the K = 2 subspace. 

Of special interest is the case of Ar 36 where the cranking value of 

the moment of inertia parameter is found to be 2. 8L~ MeV for the paired 

prolate state. Such a high value implies that the excitation energy of the 

rotational states is much bigger than that of the vibrational states of the 

, 36 
almost spherical Ar . Experimentally Ar36 spectrum resembles a pure vibra-

tional spectrum. However a close check of experimental ~E2 ratios reflect a 

large amount of unharmonicity characteristic to a transitional nucleus. 

Apart from the pairing energy gain already mentioned, the significant 

increase of the HFB moment of inertia parameter brings another considerable 

energy gain due to large rotational energy. The energy of the J = 0 band 

ne2.d is given as E(J = 0) = (H) - A(J
2
) (the value of (J~ does not change 

.. ' 
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appreciably). Thus the rotational energy gain-(~FB - ~F) (J2
) with proper 

choice of £·s strength could be considerable and thus bring closer the axially 

symmetric paired solution and the unpaired axially asymmetric solution. 
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IV. SUMMARY AND CONCLUSIONS 

We have considered the effect of generalized pairing correlations in 

the N = Z even-even nuclei of the s-d shell by solving the HFB equations. It 

is well known that the HF equations given several solutions. The usual criterion 

of choosing among these solutions viz. the lowest value of (H) is not meaning­

ful because they differ often only slightly (about 1% of the first order 

potential energy), whereas the second order HF potential energy is ~17% of the 

first order potential energy. Moreover, the energy fluctuation (H2) - (H)2 on 

the lowest HF solution as well as the higher one is large except for Ne
20 

axially symmetric state.
25 

This shows that even the lowest HF solutions are 

not good approximations to the actual ground state of the system. In view of 

this, we assert that the HF solutions should be regarded only as basis for 

further calculations, for example pairing correlations. Only when the higher 

correlations have been taken. into account and the energy calculated to all 

significant orders can one make a meaningful choice of the proper solution. 

Alternatively one can try to make such a selection on the basis of experimental 

data. 

In this paper we attempt to study the broad features of the HFB field 

with the usual choice of the truncated s-d shell space and phenomenological 

effective two body interaction. The HFB solutions thus derived have been 

compared with the HF solutions and also with the experimental data. More 

definitive considerations are under investigation and will be presented in a 

future publication. 

The solutions of the HFB equations are obtained by constraining the 

pairing matrix 6 to be diagonal in the HF ~~$is (only in the space spin 
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variables). We have restricted ourselves to N = Z even-even nuclei where 

the further constrain (!) = a has been imposed. Further for the N = Z even-

even nuclei only T = a pairing solutions are discussed from physical grounds. 

The major results of the work are as follows: 1) Pairing favors axially 

symmetric solutions in Mg24 (prolate) and 8
32 (oblate). The inclusion of 

pairing correlations restore the energy gap for the axially symmetric solution 

which is essential for the stability of any single particle basis. Further 

the pairing energy along with the gain in the rotational energy due to the 

decrease of the moment of inertia make the ground state energies (EJ=O) of 

the axially symmetric state comparable to that of the axially asymmetric 

state even in the first order. In view of the somewhat smaller energy gap 

the axially symmetric solution may also be expected to gain more second order 

potential energy. 2) With the inclusion of pairing for Mg24 and 832 the 

overall picture for the cranking moment of inertia seems to be in a better 

agreement with experiment. The overestimate of the moment of inertia param­

eter (A =n2/2~) found in all the cases is encouraging in view of Peierls' 

36 correction to cranking. 3) For Ar we have shown that the pairing cor-

relation favors the prolate state. Moreover, deformation of the prolate 

state is decreased considerably by the pairing correlations. Thus the moment 

of inertia decreases to the extent that the energy of the 2+ rotational state 

becomes higher than the expected energy of the 2+ vibrational state. Ar 36 

therefore seems to belong to the group of transitional nuclei. Experimentally 

Ar
36 shows a vibrational spectrum with large anharmonicity characteristic of 

a transitional nucleus. The oblate state which corresponds to a 6 = a solution 

of the HFB equation does not agree with experimental data as already point out. 
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Many questions, however, remain open. The role of the realistic forces 

and an extended basis has to be examined. In particular, it is well known that 

the tensor forces play an important role in determining the strength of the 

effective T = 0 central force which is important for the isospin p~iring field. 

In this extended scheme one should calculate the binding energy to at least 

the second order for a choice between the various HFB solutions. 

A detailed study of the one and two quasiparticle spectra including 

the rotation particle coupling will be important. Also it will be interesting 

to see how the T = 1 and higher T excited states are to be described, i.e., are 

they two or more quasiparticle states or does one have to generate them by 

constraining the isospin to take on prescribed values when solving theHFB 

equation. Some of these questions are expected to be answered in the near 

future. 
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TABLE CAPTIONS 

Table I. HFB solution corresponding to the axially symmetric prolate shape of 

Mg24 , axially symmetric oblate shape of s32, and the axially symmetric 

36 prolate shape of Ar . For each nucleus the italicized number at the top 

represents the HF single particle energy in the final state of the HFB 

convergence. This is followed by the component of the single particle 

5/2 1/2 dl/2 
wave functions in the jm representation (in the order: d

5
/ 2 , d

5
/ 2 , 3/2 

1/2 -3/2 -3/2) ( ,) sl/2' d
5

/ 2 ,d
3

/ 2 . This is followed by the BCS amplitudes ua and 1m va 

corresponding to T = 0 pairing. The order parameter 6 is given next. 
a 

The quasiparticle energy for the level a is shown last in the column also 

in italics. The expectation value of the Hamiltonian is shown split into 

two parts, EHF and E .. palrlng 
The chemical potential A and the expectation 

values of the quadrupole Q20 and Q40 are also given (the Q20 and Q40 

are given in arbitrary units). 017 single particle energies are used. 

Table II. The spherical solution for Ne20 displaying combined T = 0 and T = 1 

pairing. The axially asymmetric HF solution went to this solution when 

the pairing correlations were selfconsistently included. The single 

particle energies are those used in Ref. (6). Each column represents a 

jm state. The first number in each column is the HF energy by vp(a), 

2 
T=l T=O 

Re v (a), 1m v (a), the total occupation v (a), 6 (a), 6( a) , 6 ( a) , np np p np np 
the gap parameter 6 (a) , and the quasiparticle energy E All quantities 

a 

have been defined in Sect. III. 

Table III. Change of the HF wave function and energy due to the HFB correla-

32 tions for the axially symmetric oblate state of S and prolate state of 

Ar36. The first column gives the pure HF single particle basis. The 

second column gives the HF single particle basis in the final HFB solution. 
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i.e., with HFB occupation numbers. In each column the HF single particle 

energy is shown first in italics followed by the wave function in the 

representation of Table I. 017 single particle shell model energies are 

used. 

Table IV. Variation of properties of the selfconsistent field with the single 

24 
particle £·s force strength a£.s for Mg . The dispersion is defined as 

~ v~. "EHF is the reduction of the HF energy due to the dispersion 

a 
Ea>A 2 
and A is the inertial parameter defined as A = li /2~. The unit of 

energy is the MeV. 

Table V. Cranking moment of inertia parameters (A. = 1/2~. in MeV) of the 
l . l 

axially asymmetric HF solutions and the HFB axially symmetric solutions 

for Mg24 and 832 . In each case the first values presented correspond to 

017 single particle energies and the second to the single particle energies 

of Ref. (6). 
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Table I. 

Mg24 8
32 Ar 36 

'-

-17.882 -20.281 -23.012 

0 0 0 .... 

.678 .119 - .616 

.289 .001 .080 

.676 ·993 .783 

0 0 0 

0 0 0 

.111 .128 .001 

.994 .992 .999 
1.473 1. 512 .008 

6.659 5.950 6.979 

-12.242 -19.840 -21. 659 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

.965 .982 .989 

.262 .19l .150 

.581 .142 .001 

.814 -.990 .999 
2.494 1. 554 .235 
2.636 5.536 5.449 

(continued) 

',. 



-35- UCRL-18363 

Table I. Continued. 

Mg24 8
32 Ar36 

-10.369 -18.025 -21.445 

'1'!" 0 0 0 

.659 .810 . 787 

.646 .578 .091 

.385 - .098 .610 

0 0 0 

0 0 0 

.819 .182 .030 

.573 .983 .999 

2.793 1.343 .314 

2.973 3.747 5.239 

- 7.000 -16.790 -19.451 

1 1 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

.994 .393 .280 

.llO .919 .960 

.987 2.371 2.065 

4.499 3.278 3.838 

(continued) 

-( 
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Table I. Continued. 

Mg24 8
32 Ar36 

- 5.419 =12.872 -17 .159 

0 0 0 

.326 0 .022 '-

.707 0 .993 

.628 0 .119 

0 - .191 0 

0 .982 0 

.998 .891 .456 

- .056 .453 .890 

.673 2.272 1.311 

6.007 2.810 1.616 

- 2.599 - 9.565 -15.424 

0 0 0 

0 - .574 0 

0 .816 0 

0 .068 0 

.262 0 .150 

.965 0 .989 

.997 .991 .844 

.081 .137 .536 

1.440 1. 398 1.685 

8.907 5.154 1.861 

(H)HF -71. 508 -173.600 -232.929 

(H)p. - 5.832 - 5.231 - 3.7.,,29 alr 
(H) -77.340 -178.831 -236.658 

A -11. 389 -14.526 -16.215 

(Q2:! 15.311 -19.533 4.046 

(Q40) - 5.377 -39.001 - 3.432 
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Table II. 

-3/2 d1/ 2 d5/ 2 1/2 d1/ 2 -3/2 
d5/ 2 5/2 5/2 8 1/ 2 3/2 d3/ 2 

-10.654 -10.584 -10.519 - 6.235 4.065 3.916 

.373 .272 .196 .058 .069 .057 

.373 .272 .196 .058 .069 .057 

.142 .417 .528 .000 .005 .018 

.300 .321 .355 .007 .010 .007 

.783 .723 .693 .570 .995 .827 

.783 .723 .693 .570 .995 .827 

.302 1.128 1.891 .000 .073 .266 

1.148 1.523 2.130 .806 1.409 1.199 

1.255 1.628 2.224 4.991 7.234 7.343 

(H\F = -34.618 Ep. = -5.119 alr Etotal = -39.737 

A :: -11.160 

c, 
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Table III. 

8
32 Ar36 

t." 

HF HF (with HFB HF HF (with HFB 
occupation) oc cupat i on ) 

- 20.416 - 20.280 - 23.677 - 23.012 

0 0 0 0 

.071 .118 .739 .616 

.002 .000 .103 .080 

.997 .993 .666 .783 

0 0 0 

0 0 0 

- 20.001 - 19.791 - 22.060 - 21.659 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

.978 .981 .980 .989 

.209 .193 .198 .150 

- 18.269 - 17.991 - 21. 575 - 21. 445 

0 0 0 0 

.805 .809 .673 .787 

.591 .581 .150 .091 

.058 .096 .724 .610 

0 0 0 0 

0 0 0 0 

(continued) 
.., 



-39- UCRL-18363 

Table III. Continued. 

S32 Ar 36 

HF HF (with HFB HF HF (with HFB 
occupation) occupation) 

~ - 16.257 - 16.738 - 18.414 - 19.451 

l. l. l. l. 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

- 12.848 - 12.866 - 17.528 - 17.159 

0 0 0 

0 0 .026 .022 

0 0 .983 .993 

0 0 .180 .119 

.209 .193 0 0 

.978 .981 0 0 

- 9.416 - 9.533 - 14.897 - 15.425 

0 0 0 0 

.589 .577 0 0 

.807 .814 0 0 

.040 .068 0 0 

0 0 .198 .150 

'. 0 0 .980 .989 
I 

(H)HF = 
/ 

hi 
-177.293 -172.926 -235.966 -232.933 



Table IV. 

a~.s 
HF gap Dispersion Quasiparticle 

.gap 

-1.2 0.550 0.408 6.144 

-1.6 1.111 0.367 5.988 

-2.0 1.712 0.321 5.801 

-2.4 2.360 0.268 5.595 

-2.8 3.065 0.208 5.378 

~. 

lIEHF Ep . al.r 

2.957 -7.426 

3.317 -6.812 

3.472 -6.031 

3.415 -5.108 

3.066 -4.007 

~F ~FB 

0.098 0.318 

0.111 0.305 

0.123 0.286 

0.134 0.265 

0.146 0.242 

~ 

I 
~ 
o 
I 

c::: 
o 
~ 
t-' 
I 
f--' 
co 
W 
0\ 
W 
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Table V. 

Mg24 832 

Nonax. Ax Nonax. Ax 

'<', A .338 .236 .281 
x 

.242 .387 .211 .223 .259 

A .182 .208 .281 
Y 

.242 .509 .249 .223 .259 

A .389 z .541 00 00 .471 .405 00 00 

,-I 
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FIGURE CAPTIONS 

Fig. 1. Occupation of the four-fold degenerate single-particle states of Mg24 

for the HF, HFB (BCS) solutions and for the projected eigen-state of the 

total number operator. 

Fig. 2. Moment of inertia parameter fl2/2~ as function of the mass parameter 

for present HFB calculations. For comparison the HF results of Ref. (6) 

including the corresponding axially symmetric solutions of Mg24 and S32 

and the average experimental values are shown. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mISSIon, nor any person acting on behaJf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefuJness of the information contained in this 
report, or that the-use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resuJting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to ,his employment or contract 
with the Commission, or his employment with such contractor. 




