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ABSTRACT

We coheidef applications of Lofentz'invariance -
and Regge pole theory to the phenomenological study of
- photoproduction of pions from nucleons'and nucleon=
nucleon scattering. We first work dﬁt the kinematics
for the more general caseé having all uneqﬁal and‘nonéerov' 
~external masses, and then take thé lihit of equal baryon B
masses énd zero photon mass. We ﬁhen consider the
applications of Lorentz symmetry at + =0 (i.e. con-
spiracy), and explicitly obtain the photoproduction:_‘
“daughter sequence through‘analyticity arguménts. The”‘;'
factorization of the photoproduction Regge.residues.is e
shown to be consistent with the conspiracy relations in
the nuéleon-nucleon and pion Compton scattering
processeé. Pinally, we analyze high energy pion
photoproduction data along with nucleon-nucleon data

assuming the eiistence of an M = 1 pion parity doublet



conspiracy. We investigate the conéeqﬁences of
assuming & square-root type zero or a full zero in the
T NN vertex function. The possibility of the existence G-
of an M = 1 B-Jf parity douhlct'conﬁp;r&éy 8 investi~
gated qualitatively through a photoproduction sum rule |
for the photon isoscalar amplitude,.and by requiring
consisténcy_between pﬁenomenological fits.. Additional

experimenial tests for an M =1 B frajectory are

proposed
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INTRODUCTION

It has been known for some time that the differential cross

‘ 1 '
sections for positive pion photoproduction” show a marked forward
peak very close to t=0, similar to the peak found in np charge ex-

change, wiﬁh'a'width close to ue. The successful application of the

' assumption of an M=1 plon Lorentz pole with & zero in the xNN vertex.'

function to np charge exchange2 makes a similar conjecture attractive .

in pion photoproduction.3 Although the unequal external x and Y masseS"l

make the direct application of the usual group theoretical arguments ati: R

t=Oh more difficult, anélyticity arguments and the asymptotic behavior

';1 of amplitudes can be used to give meaning to an M=l pion daughter seq-';"

uence, which possesées the same members as in NN’scéttering. We study -
the general kinemétics of photoproduction and NN scattering by taking

the limit of»equal baryon masses and zero photon'mass in the reactions u;f

involving all unequal and nonzero external masses. We next show that

the constraints in photoproduction, pion Compton scattering, and NN

scattering can be satisfied by the asymptotic Régge pole contributions

%o the scattering amplitudés assuming factorized Regge residues.

The existing positive pion photoproduction data range from
laboratory momenta of 2.6 to 16 GeV/c. We find that the M=1 parity =
doublet (the pion x and its parity doublet partner x') provides a

satisfactory explanation of the data up to t5-0.5‘GeV2 if the p, A2,

} and B trajectories are also included (as they were in Ref.‘2).v These

latter trajectories are all assumed to be M=0 trajectories with the

BNﬁ residue vanishing at t=0. (The B parent trajectory is completely



neglected here, i.e., we assume 1t decouples completely from the R

énd Yr channels).. The only other known meson trajectory that could ”

be exchanged here is the A, trajectory. Although the A

1 1
(with an M=0 assignment) seems necessary to fit certain resonance pro-

trajectory.
¥
duction data.,5 we do not include it here. Thus the fits here are con- ‘
sistent with the a;sumption'of zero (orismall) AlNﬁ and A vr " couplings.

The question of the order.of the zero iﬁ the nNﬁ regidue fUnction'.'
is also investigated (this dynamical zero is denoted here by to). We ‘
find that the dssumption‘of a fuil zero in the_vertex function is-
preferred over.thét of a square-root tyfe zero in- the above model.
'Constraints-involviné factorization have been imposed from previous
fits, and a fit assuming the existénce'of & double zero in the pionlzi-;f
NN - NN residue function has beén carried out for the reactions  ‘
np - pn and.p; - nn. This.double ze?o oceurs around % R =2.5 u?

rather than t, % -u° as 1s the case if & single zero is
assumed;" _

We have:a;EOVQualitatively investigated the possibility ﬁhat
the B trajeétéry ie an M =3 rather than an M =0 object. For ;
gome time people have speculated &bout the bossibilijy of the B
trajectory conspiring with an as yet unknown trajectory, usually
denotgd by p', from certain high_energy data.7 Here'we findlevidence
~from two squrcesAthaﬁ this may be the case. The first 1s & photopro- ' o
duction sum rule4for the B trajectory; similar to the Biétti-Roy-Chu

8

sum rule for the pioq trajectory.” It was found ‘that there wasg evidence

from this sum Tule for a coﬁspiring pion with a zero in the pion residue
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[y

at t v*v-i.ﬁ u?,'gualitativcly (but not exactly) consistent with

o
phenomenological fits of the data. We perform a'similar.calculation_ g

- using the small photoproduction isoscalar aﬁplitudes for the B trajec- "

tory and find similar results; the B ‘residue is small and nonvanishing

at t = O with a zero displaced by aboﬁt +5 uz. The gecond source

comes. from the pilon photoproduction and NN data, relying on the Regge

fite. The small M =1 B amplitude suggested by the sum rule seems

_inconeistenf with the large M =0 B amplitude found in the fit.

Further, if o?e demands coneistency of the positlion of the zero in the

pion residue function found in these fits'with the'Bietti-Roy-Chﬁ sum

rule, an M =1 B trajectory is preferred over .M = 0, 4Experimental‘ ‘

tests involving the pp-nii and x"p-yn reactions at small t are
proposed to make & quantitative determination possible.

In Section I we give an account of the pion photoproduction

and NN scattering formalism. 1In Section II we -describe the data-and  -

" the fits. Section IIldescribes the photoprodﬁction B sum rule. Section

IV is concerned with qualitative remarks designed to support an M=l

'assignment for the B trajectory.
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I. KINEMATICS OF PION PHOTOPRODUCTION AND NN SCATTERING

A. Pion Photoproduction

We first consi@er the reaction with all the external masses

beiné nonzero and unequal. We definé the s and t channels as
s:. rNi - N |
t: m -

2

NlI\I2

where mr,u,ml, and m, denote the masses of Y’H-’Nl’ and N2. respectively.

We denote the t channel scattering angle by Qt (zt= cos Gt) and the

t channel helicity a.mplltudes by f RS (s;t) . Parity coris’erva-tion
1727y :
reduces the number of independent amplltudes to six, hence we consider

only those amplitudes with >_;Y=O ‘or ‘1;' We_ dé;f‘ine N,=+ to mean A\, = + %—

1= N
(1=1,2). Extracting the half angle factors

LR R TS 2 ' A=A~ l
(!* g) * ‘ -‘.I"‘ag %' r

from the helicity amplitudes in the usual way, we - defme the six

parity conserving amplitudes9

‘F,, ' (S't) _m.; ('f'f-o-, * -'Ff—,lv)

t s, t) ‘F i: | ,v-‘.;F.-tJ-..l-
Ff',l'( i + Zg RSN

- T . . t
Foao 5t 2 £,

Frp 0 = g fee )

<




‘,\}u“\

Notice that the amplitudes f+ are zero via parity conser-

++,0

‘vation. Now in the unequal mass case, the helicity amplitudes are
. presumed analytic at t=0, since no psuedothreshold or physical region

'boundary coineides with this point. Since z, -»1 + O(t) as t»0, we

t

- - ) 2 '
. 2 . o R
see that f )1 end £ +=,0 have t singularities, while f -1 have
t L singularities.: Further, since both tf:+; l_only,depend on f# w1
. : ) ’ =t .
B.t t=0, : .

3f4. _ - S

This relation is the unequal mass conspiracy relation. Con=- :
spiracy relations will be discussed in more detail i&ter.- |

The parity conserving partial-wave ampliﬁudes fJix ,x (t)
are defined through the usual partial wave expan81ons of tie2parity

conserving amplitudes

{\ M,;“‘f’ . Zmﬂ)ﬂc’*‘*«’ﬂu‘*’ + &) @) o A (t)] (3)

where x—x and b= A - *2'

The functions e I (z )} are dexined and listed in Ref. 9.

'~ We remark here. that e (zt) e -lo(zt) =0, accounting for the

absence of the second term in the expansions of,fx send f

+£,0°
10 -

++,1
Next, we use ‘the L-S coupling method of Jackson and Hite

to extract the threshold and psuedothreshold kinematic singularities -

, froh the parity conserving amplitudes and to find their threshold and

psuedothreshold reiations. This method involves' expanding the partiai

- wave helicity amplitudes.in terms of L-S coupling -amplitudes and fhen'

using the known behavior of these amplitudes around thresholds -

[y
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and psuedothresholds (psuedothresholds may be treated in exactly the
same manner as thresholds if "psuedo' L~-S amplitudes are defined with
the parity of the lighter particle at each vertex being changed if it
is a fermion;. all parities otherwise remaining unchanged.)

. The intrinsic spin and orbital angular momentum associéted
with the initial (yr) and final (ﬁlNQ) states will be denoted by S,L
and Sf-,L' respectively. We define the L-S t-channel partial wave
Ji

amplitudes fi S"Lé with parities (-l)J and (-l)J+l respectively .

through the expansion |

‘lj-‘l °)' 0‘. x‘"‘Ag : *
ﬁ s ‘r o s‘szu. J‘" ‘Vt s! C Lr CL'J'-T 'FL':'L‘S (t) (4)
m,my o A » ‘
vhere - C“ z are the usual Clebsch-Gordan coefficients. Near

initial or final thresholds or psuedothresholds. we expand the L-S

amplitudes respectively about xTie":O, where 1=N,N’,P,P' denotes

2

2 - 2 2 . 2 2
Ty = t-(p+mY) , TN,=_t-(m1+m2)2 ) Tp = t-(mr-u)e, and Ty = t-(ml-m2) .

Near TN2=0 for example, we obtain

rz ~Ft

'Ft.'s't.s () = R Z‘ Tu ‘f"us'_,uzn,s. o (s)
Next, we expa.nd the e tku(zt) functi.or.l_s_'in powers of zt-2,
obtaining : r-dy-na @ s o
Cap (2 = 2 PR A N (s)

where X\ = nax( Al ,lu‘) and n;{ﬂ . This expansion is valid near
T12=0 when all external masses are unequal, since near these pbints

Z,~» oo

t

«




L 7 -
J& Jx .
" Multiplying the two series for fL S'LS and e L together in
L} the expansion of the full helicity amplitudes yields
» ' |
=T+ SRS YRR Y. 0,42 Tl
) (Sf} = M N
Adayhy J‘éu’ {T" ' (Hﬂ) S C’-HS‘ Cur C Ks'y <TZ)
- w2k Znﬂk Yiu+ T Tk T, A }
I P TAu-
n%‘., ‘) [ 7r‘us' wan,s Ty, T 7%.'5' L+zn,s] ( 70~)

We define Lf to be the minimum value of the orbitgl angular

momentum L in  the = parity conéerving state at‘T 2.0 (i=N,¥',p,P’).

: :h__.x_’t_:Ji J-1 .
We obtain Ly = Lj = Ly = {J L} ana L, { p } for fL s’Ls respectively.
J+ J=
Further, 1 s 18 (fL'S'LS) do not couple to s’ -O at TN'_O (T ,_O)

respectively due to the NN quantum numbers.

*

The kinematic singularities of the full helicity amplitudes

2 .
ot (s, t) at T _O,are just the factors -TL“ 'J+}M appearing
kw 2,XY : ’ . N .

in the L--LN term of the éxpansion (note,that L;-J .is’independent of
J). The threshold relations-at TN2=O ‘are found by comparing expansions
2n+2k

' for the amplitudes fi v in each order of T ~« For n=k=0
>‘1>‘2’>" .

we get the usual threshold: relations, a.nd for n,k» 0 we get derivative ‘
- threshold relations when they exist.
Followmg this procedure we split off the (L n k) (LN 0 O)

“term from the expansion about T 2-0, obtaining



ot _ M T"" Tur 5 TAndt

FA.‘;,A'(s’t) - :%, (T { a’.:ss{
Tt | |
N TAm= X TAuF "

el S T ) (7b)
where Q = 'V- * +1 end
ere = Ly ~Ly
~J,\’L‘_ . ol .. ‘ ‘u‘h. { s'o {or ’;-ﬁ, j ~rd
L“s‘l = I.Z (27+) CVL:H Cu,l;r 6\:' C**s’ 8;4, o+hcrw|u FL’S’L:S

The terms'contributing to.O(TN )‘are (p,n,k):(L&,l,O),(Lﬁ,O,l) and
(L§+2,0,0).' There are too many‘ﬁnknown'EOefficients introduced to
allow any derivative relations. Notice that the sum over S and S
collapses. Also notice.that_]L§ -ﬁ§| =1; hence the term T s in'the,-.

N
expansion may be of the same order as the first term.

: N o
As mentioned, the expansions about TN?’ TPE, and :# =0 can

be similarly obtained. We do not write these out . in detail, as they

have been discussed by several~authors.ll’12 We will, however, treat

the more difficult case of NﬁAscattering explicitly in Section ID.

These expansions lead us to define the parlty conserving ampli-

~ tudes free of all kinematic singularities




Gty

-9 =
~ 1 (t t > t2
Fo= f + f e
i sin Gt ++,1 ey :7(t _ A?)z
1
iy “ "FV = 1 <ft - t ) t2 .
2 Ein gt ++,l “"’l (t - h}42)2‘
t f‘c
T = +=,1 -+,l> t )
3 1+ Zt 1l - Z_t g(t - A2)§
t .
~ f“___,l ' f?-+,l v t —
Fly = 1.z 1 -2z, /) (t = kuM)2
v AR
ne 1 2 %
o=, Tt - o8)2
’NF" — ___2:___ ft . t%' ’ .
T rmw e LR .
o (. 2 o o ld moem,
where J = {{t"‘ (m), + ) ]{T» - .(my - ) ] )y M = —

A = m = M. 3; and 'F% refer to amplitudes with zero helicity
for the massive photon.

. , , ' By comparing the expansions for the helicity amplitudes

~

it can be shown that the Fi‘satfsfy the relations.
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MF +TF = o - L) (a)

A"F'2 -F, = oft - %) (b)

¥, . (upk cos 8,) F = O(t - &%) (c)
vz (m,l s)Fg =T, = ot - (m W) (O

VEE + (n & )ik cos 0) F, = Oft - (m, £ 7], (o

()

where btk® = [t - (m SR - (n, + W3], btpd = (& - 22)(t - W),

The unequal mass conspiracy relation becomes

A (r-mp) Fy(s0) = zMi?:,(s,a) A my) (|0a)

The unequal mass formalisr_n given above is perfgctiy ger_)eral,
and would apply, for éxémplé j:o the reaction NN - K"Z_ . We next
take the limit m -em, , ?heréby obtaining a formalism appropriate, for
_ example, to _ﬂN -+ pN. To do this, we must expand the kinematic
singularfity free a@litudes ‘Fj in powers of tv and A around A& =O.12
W'hile tﬁis procedure strictly spéaking lies outside the framework of

S-Matrix theory, it is most unlikely that a dynamical singularity in
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A exists at A =0, so that the expansion should converge in some

vy

neighborhood of A =0.
Following this procedure, we write

~ . ff ma R
o= B, % tA
and insert this into the various relations, éva}uating t at the
appropriate values £o»make the rightﬁhahd sides vanish. Since we héve
a pover series in A equalling zefo, the coefficient of each power
of A must vanish separately. We'then‘take the limit A -+ 0. It is
easily séen that (9b) and (9¢) imply that c30= cgp =-0; hence fL and

?; ~—0(t) in the equal mass 1imit. Next we consider the equal mass

conspiracy relafion. The unequal mass éonspirécy_rélatidn yields

My = uramp) 2

4§
' . ' 01 00
while the coefficient of A in relation (9b) yields ey =cp
Assoclating the equal’ mass amplitudes ?;E and.?%E with cgo and cgo
" at t=0 ylelds (as A-0) | o
Cam EE o) = (p2-m2) E.E (5,0) | ~ (10b)

Finally we consider the zero mass limit of the photon. Writing
. | %BE = FJt + O(mr) and evaluating relations (9d) at.t=(mr+u)2‘and at

’ t=(mr-u)2 respectively yields

VZ (Mpxp) F, = EF = O(my)
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Adding these equations and letting mY—+ 0 yields th(s,uz) =0,
provided that F%E does not blow up as n%_-.(); hence th < (t - ue).

Next we consider relations (9e). Since ?g.is an amplitude for a
zero helicity massive photon plus n having & transition to the singlet
NN state, one may expect a pion pole in this amplitude. Except for the
case of ﬂo photoprdductibn where charge conjugation does not permit the
pion pole, one cannot argue that as mY;q'O, ﬁé becomes proportional to
t—ue . Rather, one obtains the normalization condition for the pion
pole contributing to F,°. This condition and the t-u° factor in th
is the full content of gauge invariqncevfor the t-channel helicity
amplitudes of photoproduction.

For small enough fixedvmr'_, both relations (9e) are valid
arbitrarily close to t=p? . Hence we may split off the pion pole term

in Fst, obtaining

«) :
t Cs (@) }
F; = E:;Er + c‘ .as 't-a‘uf

Perturbation theory yields the coupling cél) (in essence this
define& the charge e ) |

W vE . |
Cg = :'f- egm, (4ut-my) u*

We also write F2t = cgl) + (t - pe)dée) for t = p2

Evaluating relations (9e) at t=(th u)e. respectively yields
) ' '
[...f..f._._. + cm] + ' " 2 (0
VE L (mapiope s (M,*}l)"'pkit[f:,' + {(m,tla)-ﬂl}ca ]

Lf"w)‘

Subtracting these, we obtain to order mr

]




vt
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~ ) '
' b J_Z_EL. + 9 W
; m, u /“-szt C,| = O(m,,)

. ) D%:o

‘Bince 2pkzﬁ= s-m2 at t:u2 we get the desired result as
fnr -0, namely

t _eap
F (s, ut) = ¢} = T (w)

Finally, then, we are led to define the amplitudes for massless

Y _qim o Fy
L m >0 5

photon photoproduction, denoted by Fit (redefining P
' a=o (t - p)

T t 1

F = - (£ |, + £ ) P
1 gin et S s17 t - uz
t 1 bt 2y ok
fo = s, (Fy,,0 T2, ¥/ (=) )
ot ot N
Ft = :+"L9~l -+"L —'("‘l—t 2, -y
3 1+ 2z, 1-z ¢ - pé
. t t | | '
- D=
- T T VA CRNTE (O LI .

ot o2 8 t - pf 1 2.1

where z, = (8 + = - m~ - E=)/okp = v/2kp, ¥k = —Fr, p = Z(t - n°)2.
t 2 e . ~(6) 2 .
t

> and f
_ MAgsAy

are the mY = O Pphotoproduction helicity amplitudes.
The pioncontributes to F2t only while gense-nonsense coupled £riplet

t

 states contribute only to Flt. F3

and th in leading order are

composed of nonsense-nonsense coupled triplet amplitudes and uncoupled

triplet amplitudes respectively.
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B. Reggeization of the Pion Pnotoproduction Amplitudes
Following the usual Reggeization procedure, we represent the
amplitudes Fit for large s and small t by the Regge asymptotic series;

neglecting cuts and the background integral. We obtain

' — - -inQ . -
st (1 + ai)(L e _ i(t) ] i(t) v o, -1
1 T & 2 ein g "sR "/ Vsm (vo> ’
: | Z (1 + )1+ e im0y ‘ ; L
o = & Tsin 01 “‘) Gor (t)<v_o> ’
) (1 +a)(1 1 e M%) _ .
. T T -2 sin a0 4 m (8) G ()

| L . o, =1
g1 4 = ) 7111(4‘)9111“)](%) ’

¢
A
Q

% E:,(l + di)(l + e-{hd

NS D [a 7.8 6y (e)
kT e 2 sin qo; - {71711 MY MAT Y
Q-1

S 2 , '
I VN T TR O i .}_v__\
. V(ai - l) Jr ) 7NR (T’) GN-R (t) (

% | 'VO ‘). 2

=1 Gevz, 2 v ' _ ' (‘3)

' The_residue functions 7ij(t) “have been given labels descrip-

wnere YO
tive of the vertices. We label the singlet, uncoupled triplet, sence
coupled triplet, and nonsense coupled triplet NNX vertices by

0, 1, S, N, and the regular [P = (-l)J] and irregular [P = (Ql)J+l]
yrX vertices by R and ‘I. The resgidues may éontain powers of «

or t depending on the ghost-killing mechanisms and t = O coupling
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2,6

schemes, and are denoted by G

ij
7i§ with 1actorizable Lesiduee Bij is given in Table I.

| The cross Qection in the s channel in ‘terms of helicity
amﬁﬁitudes is given-by v

\

v
3

Ao, y o= 2 v 2 b 2 t
?i%(“o Gev ) = o 2 <lI+T‘ l, ¥ 'ft',ll * if‘:";lbl ,f-+,l
(s = ne i
(l4a

or in terms of the parity-coneerving amplitudes,

. | 2

) | PR t 2 l - t

T(ub GeV” ’)_== ;—(sﬁ%ﬁ {%2 - 1)[(u2 e
o t

/7
~

, 2 2
b (2,2 1)[1**———{—9— 17512+ n® - 02 - )75,

\ N L2 8% bl -
K - D)/-@}z”iu“‘ -‘l,)?Re(F3 7 )>.

The_photoproducfion conspiracy reiation is
om th(s, o) ="u2 FBt(s, 0) .-

NotiFe that this constraint removes the.apparent singularity in %%

the;.n and n' we obtain the following relation between the residue

r - n',
functions 7OI and 7NR S

(%) (Table I). The connection of the

)

]
o

at t=0. In terms-of'the M =1 parity doublet consﬁiracy between -
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- n Im -
X,m" (0) == -3 Yor" (0) (15)

The gauge invariance relation giving the pion-nucleon coupling

constant for n+ photoproduction is

1im  (t - u2)[f2+ l(s, t) - ff_ l(s, t)] = -'u2 eg (]G’a)

t- u2
Hence we obtain the connection betﬁeen g2/hn and 781 for

nt photoproduction:

(leb)

- 2 27y 92
g/ hn = -7143?{2731‘(“ )(1:2- uy/:tO)] ,

e-n'p
b pe

"

where ;b;(ue) = &€ (see Table_II).‘ The relation 16a also

requires a factor of (t --ug) in the B residue; otherwise the B
would contribute to fhe pion pole. o

The constraint arising from factorization on the ' residue

function from nucleon-nucléon'fits'is given by

i
i
i
;
i
i
i
i
.
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Y SRR _ 7! % ﬂ')
(:%SR ’NR Jphotoproduction (}12/(an') Y22 )N ’ (17)
1 1

where 71? and 722 are the same functions listed in Table II of

Ref. 2.

Finelly we remark on an amusing connection between the cross

section calculated from the gauge-invariant Born termsand that calculated by

' using the M =1 gx-n' conspiracy assuming tb = ug.- Namely, for .

emall t and large & the Regge coﬁtribution is equivalent to the
Born approximation. Satiefying the normalization condition and the

conspiracy condition with the residues Bﬂ(t) ~ %5 (1 + t/ug) and

Bﬂ.(t) ~ %ﬁ , one ébtains

: | 2
TR - { i L RS
.dti Regge p(s = m2)2 1 -;ﬁ/p2 n
389.5  fg (v sd)? &) .
bn(s - a2)° * (@ - t/®)? at

Born (, 8)

This coincidence accounts for the abnormal success of gauge

invariant perturbation theory in fifting the - photoproduction cross

gsections.
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C. Satisfaction of the Conspiracy Relation for Pion Photoproduction

We now show in detail how the assumption of an M=1 parity
doublet conspiracy satisfies the constraints due to analyticity at

the unequal mass (yx) vertex and the conspiracy equation

im F,_t(s,o) = ul Ff,t(s,o)

The Reggeized form of the amplitudes can be written formally as

amFlse) = v w T+ D A L

Ry 2

) E o) = v T, e Ty ET i)

Nisj

T .
Folsit) = £ v [e 0T +c w7, eﬂ T )

Nz

where for simplicity we have assumed all trajectories are‘parallel and

where we have split off the leading order éontrlbutlons corresponding
to the M=l doublet rx-x’ and the first daughter 4. The t © singular-

ities coming from‘thequku funqtion; and the daughter,residues are

exhibited e#plicitlyr The coefficienté cin)(t) are thus presumed

regular in t about t=0 . Hence, expanding,

k
(l)(*) = z C(" ’

We see that the n°! derivative of cin)(O) ~contributes a finite

amount to the conspiracy equation. Thus the conspiracy equation yields



A
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c (O)r (0) = cr,(O)?ﬂ,(O) for the x and x’ residues, and
. ¥

a" c(n)(O) = 92_ c(“)(o) (n=1,2,...) where all the pion-like traj-

3

at" at" | |
ectories o, with ai(O) > aﬂ(O) -2n  will contribute to cén) and all x’
and d-like trajectories with ai(o)a an(o)-En will contributé to cgn).

Analyticity of F t-ar_xd Fst implies that cgn’k)=0 Tor k?il(i:Q,}).

2
The existence of yx and ' -like trajeCtorieé is ﬁctually sufficient to
gudrantee anaiyticity ovaet‘and Fst-since a new v (/) type trajectory
enters in each order of t-ncén) ( ﬁ—ncgn) Y.  However, analyticity of
Fut forces thevéxistehce of the first daughter d %o.céncel off the t-l
singularity in th due - to the n’, and the other d-type trajectories are
required for anaiyﬁicity.in higherrorders in t7% of Fut. Thus analyti=-
city requirements due tovthe uﬁeéual T mass.kinematics coupled with

the cdnrﬂiracyveQuatioh, assuming only the existence of the fir;t n=r’
doublet, forces the existence of fhe whole M=1 Lo?entz pole'family. The
‘constraints oxr analyticity and cohspirécy do not éuffice to determine
all:derivatives of.the residﬁe functions. ‘For example, we.have two
constraints on thelzéroth derivatives of the n,x’, and & residues

coming from th énalyticity to ordef t-l Aﬁd the conspiracy equation. .
However,.unknowﬁ functions are introducedtin each t_n term, so that
the'constraints-tell us nothing about fhe nonzero derivatives of these
residues. In»geherai, the first n-2 derivafivés ﬁill be completely
determined for the nth xx’ & group, one derivatiyé‘of order n-1 will bé
lacking, and no information will Ee available fér the deriyativeé_of

order » n.
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D. Nucleon-Nucleon Scattering

The Regge formallsm for the equal mass NN scattering process has
been summarized in Ref. 2. Here we give an account of the kinematic
forma;ism eppropriate for all unequal masses and show how the usual for-
malism'results in the limit of vanishing mass differenées.

We procede -in a manner similar to that followed in Section IA.
We define our reaction as NlN2 ﬁaNh (t channel). Parity conservation

and time reversal invariance limits the number of independent amplitudes

for the unequal mass process to six (upon taking the limit of equal

masses, G parity in the t channel or the Pauli principle in the .s channel

reduces this number to Tfive). Defining the parity conserving helicity

*

A

amplitudes o= ' (s,t) in the usual way from the t-channel helicity

sy oM o

amplitudes <t . (s,t), we make the partial wave expansion, obtain=-

Jx

' (t).
x5xu,xlx2

are related to ours up to a factor by f, (i=1,2,3,4,5)e (£ ,
A i _ 4,

We remarx that the amplitudes fi of GGMW13

ot . o At +

i i . in the equal mass limit.
i T N N A = e ) 4

‘We next make the L~-S expansion of the partial wave amplitudes,

obtaining
pI® d,md :\ “A rt | '
n e 3.0y |
T‘\ 33l s%lu.' C“His "t gs C""T CL‘S’J' 'FL.'S LSH) (20)
A 2
where A=\, =\, and u:xj-xu. We define T "= t- hMle , N'* t- hM}h ,
= t- Al2 , and T =t~ A where M‘J= (m.+ m /2‘ and Aijzmi-m

Further, we define htplp2= T.T

N N'TPTP' . We expand fJ about

L's'1s
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threshold T 2:0

N
Tz L > yln ~ Tt ‘ : ) \
-FL‘SILS (t) = TN nz:o .l:\l FL’SIJ L.",z_nJS» ' (Zl/

Hence we obtain (splittirig off the leading term)

o : '
* L "I+ T (Tt 3Tk Tt TAM= T3 TALF
’CAA« Ll = Izs"',y(l,,zf; r Cltsw T2, T CLL3 | @)
where
ason‘a Fbr'v F:fﬁ-?
J'/\/.Li‘. J‘f (U*) C C/\“ A Ay, Ay é:né‘_rlo gl‘{" ';fer-r- N.T:t. |
Lis;' e i L ST < US'y .1.4“, Lis! 6‘“6“., orherwise L'S‘L:'.j

-Here the absence of S$=0 coupllng for fL’S LS

with some information about the Clebsch-Gordan coefficients in the

has been included along

N

_ respectively. To leading order we obtain at TNE;; 0

- Kronecker deltas. We have, .further, LN LE ={d'}l} and L; = L;, =F2J‘il}

: — : i , TIT+D ) S
‘§++,++ = T, ; (Tuzc) Tri 27— {3-4 i, F=1, 8 (27-)(2T+3) 7£.7ﬁ,x,:'-f,l M O(T” )]

+ [ 7= T NI+ \/ MR .
P = 2 2 i) nlz= Py ™ (7'“)(7-7"*)\13‘?3) ‘&ﬂ oy TOR)]
,-+ : L | =l - N - U- To ?:3-.1- .
T*'*ﬂ’*n 2 - kT";Y) r:r[ 27~ 4:.7-4,5 T4y Y@K LTe3) TJ-_'_" b 3_"".+ O(TN )z

—-
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'F++,++ = g (Tuzt [F;m

L, *

I (~7)*
(T+)C17-=)(27+3)

Tt

+

2 4
where r. - 2311)(27 |
J o7 (11)°

will be discussed below.

7 I-1 T fFr-
F,_“_ = T2 ZT:(KIZC) I3 371_523431*.

o(7h]
) ( -7 T+
Ta2e ¥ =1 " T=hy,34,)

;.:l'ﬁ,',:ﬁ-l,l + 0(7;'1)) ]

- - | ~T‘
-F++ - '?z',& Z(Tnzt)" G [ J FFi 'F:rg:n

+0(1})] (23)

Thé expansions at TN?=O are similar and

The expansionsfat T'2=O or TP?=O can be obtained by substituting

P
‘ : +
N‘ P xjxh,x

fJ-x A Xx i.e. agﬁ‘g;ﬂ
3™ 2 N

amplitudes fi[ l
and Nh have quantum numbers o= (3)7

*I

ing TNC—’T T - f

P’ Nl“TPI 3 f)\] i)\il .

:' Jt

tuti f > f
substl uting ‘K‘ ‘Kﬂ 3 iké

.procedure yields the amplitudes for NN,écattering.

correspondlng to the: process N N‘ -+ NN

- f
RIS

(T -»T ), £, -t ' ‘ J+

, and f .
A xu,xlxg

xx,x
: p

3

"F :
%ES’ ). We also note that the

" where N’
12 3y 2

may be obtalned either by substltut-

Jt _, Jx’
f or by

J¥ 2 2
3 gnd Ti - Ti

B and f
This same

=
The NlNg--iNBNJ4

process is useful because it factorizes at fhe intermediate state pion

pole into a product of nlN = N amplitudes.

Examining the threshold expansionsb, we find the relation

7;-};'(';:4' )+‘+ ?t f:ﬂ +- ) =

O(1y)

(24a)

The expansions about TN?=O are the same for all amplitudes
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+ ) . ~Ti T
except f . if the replacements TN~9TN, and fL’S’LS — i“SL’S'
are made (nofe that symmetry is maintained in £ _ which has only
. . )
J=L couplings). The expansion for £ is
Foy
~T+

L 3 T ay Y-
2 -4 9 ——— :
‘F'f-f’-f - 2 Z:- {7;/( 2{) r;' [ 27 =f ‘FJ'-I,I,J'-I,I * m ;J'—I,I,JOI‘(
+ O]l ot t=TE

Hence we obtain the threshold relation at Tg,aso;
+ o + ' 2y | '
.F’f'n‘-.- + ¥*ﬁ+‘ = O(TN' ) (qu)

The unequal mass threshold relations become the
GGMW threshold relations Eg. 7.15b, 7.15d in the equal mass limit.
Eq. 7.15¢ is merely the statement that f-+ + has a kinematic sing-

L

ularity as T —'hpz.

NTN‘ v } :
Next, we considerthe psuedothfeshold_relations. Making the
replacements'indicated above, we see that the following relations are

satisfied

f =T 'F-;-+,+-.' = .O(_Tfﬁ)

T;TP‘-';;-r-ﬁ—r ¥ TPT?' 2y ‘F-:-r,-g--‘ = OG‘:) (25)

Finally we have the unequal mass conspiracy relation, obtained as in

Section IA

tf—,,..ﬁ__ = -t,f,,_ﬁ_ as t-»0 - (26)
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We next discuss the equal mass limit of the psuedothreshold and

conspiracy equations. First, using the results of the L-S expansions,
Lad

we define kinematic singularity free amplitudes 3"_. (with the usual

1 }
t2( IN +1ul) factor also removed)

vC:ﬂH = (J},TN.)" H, o= (T =

‘Fi;,f- =& T, - ) | ’c;'»f"# E Ty T ’3\;3

Faecs €835, %, £, <t 5 @)
The :-‘;1 amplitudes then satisfy ‘,the relations

tT,T, 543 + £ T §1= O(7;,3‘)_ | ()

S e E LA R 0T

7‘:’7;”’;‘4 ¥ Tf‘#'Tu':é;s. | 'v=_0(.f.). - g (23)"

We next expand each amplitude in & triple power series in t
Xp )

AIE’ and A5i&’ writing - |

~ Jkd .
o= €. pd AR AR
:ﬁ‘ ) .\zk::'( [ t Aﬂ_ A3‘i

We set t = Aie (or t= Aih) in the two psuedothresholdl relations ,

set t=0 in the conspiracy equation, and then equate coefficients of
m n 4 t u A = A- —'.A

A 12 Aﬁbf separately (it is not sufficient to set 10 5=

A}

and equate coefficients of powers of A J. Further, we must expand
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2,85
5 = L | L2 LBas oy o
APz, =5+ 3 oMo+ D, M@Mw _“t t=4,
We obtain
' 000 002 010 , 100 , 020 011 , 001 .
From (28a c = ¢ =c,  +cC +c =c +c =0
) 5 3 6. 3 373 6 .
. 000 100 . 002 001 020 010
From. E&ﬂ el =0y +oe + 2(s-% 2 Ce  =rar kM =
o 1 1 1 ( ) 1 | 12M5u 6 =0
o 000 011 '
y 2 . ¥ =
F{om (28¢): )+ hwle 543 0
;  By symmetry we have c§29~=a0292_ and cgeo = cgoe .. Hence we obtain
. | 100 100 2(s-2 m) ,000
: ooy +M12 5h 3 + M 2' h _‘O
5&
lOO ~ 100
We set M12_ MBh = m and define °F (s O) <] f3(s,0) =<5
L 000 . s , . . :
and fh(s~0) =C) s Where f. are the klnematic singularity free parity=-.
conserv1ng amplltudes for NN bcatterlng (note CgOO_ CgOO = 0, i.e.v 35:
and 3 pick up & factor t in the equal mass limit, as they must to .
" cancel the unequai mass kinematic s1nguLar1t1es TP lT?-l "or t-f which
; ) . R . - . . ,.o ‘v 2~
are not present in tne equal mass case). We have fl ,l ’ f3 TN 5
and f = ;ﬁ . - Hence ‘the equation tecomes ' -
£, -f, - éefq... O at t=0 | ~ {29a)
or in terms of the GGMW <$i amplltudes, | ,
, £ ‘“ t € ] : ' '
qS. —da = ¢5 - @) at k=0 - (a9})

This is the equal mass conspiracy relation,
-Thus we have ahoWn{that the usual NN scattering formalism results

in the limit of eQual‘masses in the unequal mass formalism..
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E. Consistency Between Conspirscy Relations ' '
We show'hefe that the conspiracy relations for the three processes

TN - , TkNN , and yn=yr are consistent with each other and with -

factorization of the residues for an M=l type parity doublet conspiracy.

Denoting the full factorized residues b& Bij=rirj where 1i,j = O,l,S,N;R,I

are the vertex labels of Section IB; we obtain the following forms for

the Reggeized amplitudes.

- : ) . I

1. NN-»fN

We have , formally (the exact expressions will not be needed) 3

&F - d:* szK,mD,,,(z,)[ L]’

d>* ¢* = K., lt) [ D,'."(zt)fD‘f,-.(zt)].[lz'(tllz

+ K,.lt)[ Wizd + D (201 [ 40]? (30a)

i
!
i

where Dun are the d'ku with the Legendre polynomials P replaced by

the usual 63.'_:SinCe,at t=O,f zt-» 5 we may write expansions for D i
D : o N Q a ~ 20 Ci :
~in powers of z, ~ . We have @, = Bz, p* 1P, P A
: o Ko Ollv : ; ' v
and D4 +D 1,1 ® 0(z . To lesd1ng order in st (where al(o)_

‘a(0)-1, consistent with'M:l), the conspiracy equation for NN scattering

becomes [ note . K (o) = Kyie)]

- P (o) |
- [xo ‘0)]' = -l(oHo-l [y"()] : _(305)
2. yn oM A - -

The connection of the photoproduction amplitudes Fit with the v, ;
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is given by

AmBE = 2Kyl AR YT B
R =K S AT YT OU G KOG -0 (Gl

We have expanded the d-functions in powers of z,c-2 even though as
t =» 0 we have z£~v0 _since.thése singularities are to be cancelled
by the daughtérs'asvdescribed in Section IC. Henée to leading order

in z_ the conspiracy equation otecomes

v
—l;( N '-_( 0((0) ! -ﬁ‘ ‘A“( |
XI ) c( 0 =7 «(0)+ YR (0 ¥, 0) I (3ib)
LT
The pion Compton scattering amplitudes FRR and FII are analytie,
where | C -
: t . .
F _ lO 10 lO -10 t
"RR l +z “ 2 J (4 __p2)2;
. . 1o 10 _ Loz-Lo o |
FII - i + z. i- 2 ;) _ (320
The unequal mass.conspiracyfrelation
1 - I |
_-H FRR(S, O) = ’FII<B) O) g ) _ (325)
i .

i ‘. Co. * -'
{s satisfied by the (full) factorized residues (}I“(o))e = (}R" (o))2

for the parity doublet solution. - This relation eliminates the

appargnt pole in f at t = O.

10,10
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II. THE DATA AND FITS FOR yp - p, np —pn,

AND pp — nii  SCATTERING

A. The Data

”The photoprodﬁction data ueed” ﬁere pogitive pion.ﬁhotoproduction
deta at 2.6, 2.7, 3.k, 3.7, 5, 85 11, and 16 GeV/c lab momentum.
Reliéble highvenerg& negative'pion pﬁotoproduction.data are scarce; we
ﬁsed only one point ot 3.4 GeV/c, % = -0;57 GeV® as a constraint. 1% _
We have included data up to t = -0.5 GeV2, consistent with the I

fits. We have indluded_the‘poséibilitj of systematic errors’ quoted by.
the experimentalists on the order of i5%. In all, 62 photoproduction
‘data points were used.

" The np -pn and py -ni daté were deséribed in Réf. (2). |

In 811, 74 date points were used.

B.  Parameterization c¢f the Pion Pnotoproduction Fit

Tne most importaﬁt nart of the par&meterizatioﬁvof the pion
residue funciion is thé zero at tO. Iir one‘makes the assumption that |
the zerc in the Nﬁ - NN pion residue is & single zero (i.e. a'square
root type zero in the Nﬁn #értex),‘then the square root zers mst
propagate throughout all vertex functions 6f the form X?ﬁs.'If, however,
we assume that there is & fﬁli zero in the NN -vertex.and thus a
‘double zero in the NN — NN pion residué,‘ohly reactions invplying NN

nced have the zero. (Of course there is néthing_ﬁo'prevent any other

0
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XY« vertex function from having such & zero, but it is then not
requirea to be in any s?eéific place.) While the origin and full
content of the zero is nét'well understood; it seems to be connected
with the appareﬁt incompatibility of’M:l'wi£h the zero spin of the

=

physical piong’*/

and recent work of Tollef indicates thét

the hypothesis of a full zero in the Nﬁﬁ. vertex'fﬁnctioﬁ is preferred
over that Sf & square-root type zero from group theoretic groundé.
Sinég earlier,fits to NN scattering assumed the square root type
vertex zerb, we_haye it the NN date with thé‘full Nl verte*

function zero hypotheéis,and find that the zero is fhen required to

be at around to.= -2.5 “2 l}athér than at _“2 . Thevphotoproduction
pion residue fpnction:has_a single 2ero‘in any cese (we assume nothing
about the Yrt vertex in the full vertex zero caée). We find that.
consistent fits to gll data can be obtaihed with'the full vertex zero 
hypothesis but fhat'some disérepahcy exists between the.V&lues»ofv
gg/hn obtained in the NN and photoproduction.fits if the square root

vertex zero is assumed.

We next consider the zero in somewhat more theoretical detail.

. &
Mandelstam >

R : has-argued-that since the M:l‘pion must choose nonsénse at
'and =0 for the massless pion.(no) caée, all éoft'pion amplitudes mist be
small. However, M can aléovbe defined thrqugh the asymptotic behaviof of

~unequal mass amplitudes, and one finds that the ginematic factors of'p%
yield small hard piqn'gmplitudes as well.’ Evidently,'bne must either give
up the hypothesis that the pipn is M:l, ér; else hope that'the séff pion

amplitudes will have additional zeros relative to the hard pion ampli-
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tudes . bThis can easily be eccomplished in Bethe-Salpeter models16 by

regerdlng the pion trajectory as being composed as a superposit on of

crossing traJectorles, whlch are regarded ‘as the leading members of an.

M=1 and an M=0 family. A.full Zero 1is thereby introduced in the nlNKN

vertex function,.and the pﬁysicai pion (whiéh must choose seose‘af ad=0)o
- , _ it

is produced thfough‘the_M=O trajectory. Finally, by oonSidering ghost

xilling mechanisms for eqUal mass scettering pfocesses by.iooking at

singularities in the group fheoretio.ekpansions at integer vélues*of

L - 17 ST R

trajectories, Toller™' conoludes that the zero in the nNN vertex function

exists, anG moreover'that if is;most likely a full zero. If’suchvan

analysis could'be>carried out for uriequal masses, it might happen that

~ such zeros could depené on the external masses, the zeros moving in
" close to t=0 only when the equal mass 1imit is reached. Unfortunately,-

there are no uneqﬁal mass expansions that do not also make the unphysical

essumPtion of parallel<daughter trajectofies.LS Ah inverse.Regge-
Lorentz expan31on would not possess this Q1ff1culty, since & separate

inverse expan51on coula be wrltten for each daughter, the sum of the

daughter expansions would»then collapse appropriately at t=0 for equai_

masSes. Although such inverse unequal mass expans1ons can ea31ly be
perLorm iat asymptotlc 5 (nonunlquely), it appe&rs dlfflcult to write.
expanslons which have the correct analytLCity properties as —50._

We ‘conclude this section by describing the rest of the parameteri-

zation. .The parameterization of all trajectories and residue functions

2,6

was made consistent with meson-nucleon and nucleon-nucleon fits.

"The n,x?,p, and A2 trajectories were considered fixed and the B trajectory

slope was assumed unknown. TFactorization from meson-nucleon fits

constrained the p and A2 residues, which were taken to have - the -
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Chew and Gell-Monn ghost-killing mechanisms at & = O, respectively.
Thus this fit violates p -~A2 exchange degeneracy in this

respect. The n’/ was made to choose nonsense at @ = 0, and its

‘residues were constrained through factorization with the MM fit and

the cénSpiracy'equatibn. Altoééther three couplingz (p, e B),
five éxponentials, one trajectory (B) slope, and the zero ty were
uced as variables. TIn addition, the 2.6, 5, 8, 11, and 16 GeV/c' data

were allowed to have systématic errors of less than 7%.

C. The Fits

'Photoproduction fits for both cases of a full vertex zero and a

square robt type vertex zero were obtained. The parameters obtained

' in the former case &are listed in Table II. The amplitudes are

pictured in Figs. 1 and 2, and the fit itself is pictured in Figs; 3
and 4. Although little effort has been made to feét'the nonuniqueness
of'the fits, it is probably true that they are not unique, so that
these parametéré should néf e regarded quantitatively too-gefiouslyf 
We‘ncte_in ?assing that the'small. 5' amﬁliﬁudes.found here seem
cbnsistent_with the result of small 7np coupling‘fbﬁnd in photo-
production dispersion relation calculatiéns; ' |

& Tit to the np-pn &nd pPp-nf dats was obtained with the

assumption of a full NNx vertex zero, and these parameters are also

 presented in Table II. The notation used is that of Ref. (2);_ Fits

with the square root zero at various locations were also obtained, and -
will be discussed below.
The best photoproduction fit for the square root vertex zero

case was obtained with X2 = 73 for 62 points and a value of
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ge/hn = 16.8, in some disagreement with the value of g2/h”-: 13
obtained in the NN fit for this value of ty (to = =0.027). Fits

with larger vaiues of t. tend to decfease gg/hn' for photoproduction

0]

~ faster thgn ge/hn for NN scattering, so that the farther out we

0 o~

we obtain gg/hn =15 and 11.7, reepectively, for yp and NN

. move t. the closer we come to consistency. However, for 1, = ~0.03k

sCattefing;~we cannot move ﬁo. farther out_and retain an acceptable

value of gg/hn for NN scattering. On the other hand, moving the

zero in to t., = -0.018 oniy raises gz/hn to 15.7 in NN

O - .
scattering. Thus some inconéiétency seems to‘éxist. This discrepancy
may, however, not be serious, gince we cannot be sure that. there are no
other M = 1 conspiring parity ddublets'(e.gv B -p'). If there
were,'one cduld put & zgro'af.some_ tB < 0' into the B residue
function, and the dafs could then be fit with'a.wide range of values
for to ‘since the éoupling of fhe.pioﬁ would then no'longef be

constrained at t = O. We discuss this point more fully in Section IV.

The best photoproduction fit Tfor the full vertex zero case

' s 2 ‘ . : RSN C oo
was obtained with X = 66 for 62 points (not significantly different

from the previous case). With & value of ty = -0.05, nearly equal

values of ge/hn = 15.4 and 14.7 were obtained for photoproduction

~and NN scattering respectively. Thus problems of consistency do not

seéem to arise if the zero is assumed to be a full vertex zero.
The value of the n‘/ﬁ* “cross section ratio at 3.41 GeV/c,

) . . .
t = -0.37 GeV"™ is measured to be 0.73/2.1 = 0.35. We obtain



T : a(x™)/o(x*) = 0.87/1.5 = 0.57 <for both types of zeros, giving a

total X2 of about % <for the g~ and 1t cross sections in each

The photoproduction data cen ve fit well only out to about
. 2 e e, - . . i y
L = -0.5 GeV~ with the models assumed here. Past this point, the
data show & break which we do not quantitatively reproduce. Thise

break n.y be related to the structure in the pp — nii cross sections

past © = -0.5 waich the NN fits could not quantitatively describe.-

=

% is pogsible that the inclusion of other trajectories (e.g., an

=

=1 p' or some amount of Al) ~could be used to affect quantitative

reproduction of the data.
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"III. THE B TRAJECTORY PHOTOPRODUCTION SUM RULE

We begin by writing the sum rule, a positive moment sum rule
for the even v part of the t-channel photoproduction amplitude which

contains the B (but not the gx) trajectory. This t-channel aﬁplitude
, 19

ie proportional to the photon isoscalar amplitude which in CGLN

notation is (we use CGLN's v 1in this section)

‘K(v,. t) = Al(o). (v, t) + t Az'(o) (v, ) . {(33)

The sum rule ig then

N - _ aB+l
L : ceg t + l'—
v K N i
t i
(34)

hMVB = -p +t, My = g - u, . _ ‘i'.
and

R() SR

[}

2aB(1 +a )(2 + aB)(t/p X2m)

We evaluate A(v, t) by writing ite multipole expansion formally as | ' ﬁ

B

. : : . 2 .
A(V, t) = E 5 7 (V-y t) + ]:5 £ ( +- )
: ,i ‘ M t - p2 -v o+ v v + Vp. !

(35)
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; | where the multipole sum has the {real) Born. term explicitly removed.

The sum E: ﬁ%&(v, t} is given in CGLN through the multipole expaneion

_ i
o
of f;(o) where
\ h ) ’ - i < O
Ay, &) = o [(M o+ By )/(M + E,) T2 J/i(_)(v, t)

, . 1 1A ‘
- 2[00+ By)/( + )2 700}y, 1
- N 7 ()
+'l*1( (We Muy fj (V) t).

-

(W= P+ B (M + E)]
/

L"T(

) ) . = 0
g (Wt + MME)[(M + Ey /(M + )12 ‘?f )(v, t) .
k Wg ' -
{36)
Tae finai Torm of the_sum Tule is Thus
. . N | , O%+l
. ~ 7 S - - ) , -
F-2E (4 %) £ 2 f v T }_/Z(VM&V - l‘-*,'o_..b(t}R(t) N .
1o j it 1t Ui a_ + 4
,\hM’ ' . v‘, i o ’ B
. - - »
{37}

We usé the pérameferizatién of the multipoles given by Walker‘eo'

to evaluate the sum > 9ZQ(V, ). This*parameﬁerization utilizes

six resonances and a number of nonresonant parts, which are generally

small.’



The results of the calculation are precented in Table III,
and the integrands of both the Bietti-Roy~Chu and the B -meson sum
rules at ¢ = 0 are plotted in Fig. 5.

It is seen that the B residue is finite at t =0 and has a

zero at tB %-fiugs The impiication is that the B trajectory is an

M=1 trajectory, conspiring with an as yet unknown trajectory usually
denoted as g'. Before turning to the relevance of this to scattering
data, we remark that thelform found for the B residue éuggests an
T analogy with the.pion‘fesidue function and perhaps suggestls some
correlation petween ﬁhe two trajectories in the sense of exchange
degeﬁgracy. If the B trajectory were to pass ﬁhrough the B meson
" and through zero &t t = O the siope o' would be 0.7, which is
not. unreasonable.

Wé comment next on the»reliability of the positivevmoment'sum_.
ruléo First, we note & deficiéncy oY the B sum rule that the
corres; >nding pion sum rule does not possess. First the Born term
here is depressed by a factor {t - pz) relative to the pion sum rule
fo that the inhergnt stﬁbility of tae pion sum rule due to & large |
vBorn term is lost. Secondiy, the small isoscalar amplitude.is
éresumably not too relisbly determined, aé it involves cgncellation
of large and nearly equal résonant amplitudes for x*t and‘.n‘ photo-
production. Thus, if there were importantviéoscalar résonant contribu-
tions at k > 1.2 GeV/c the sum rule would bé-inaccurate. We remark,

however, that the integrand 1s positive over the whole region




kK = 0.2 to 1.2 GeV/c; hence to reverce the sign of the intepral (thus
makiﬁg the B an M = 0 trajectory), one would neecd to undo the
total effecﬁ of the first six resonances. Since we are’working with &
positive moment sum rule, this is not inconceivable. However, the .
cdnvergence of the integral over the first six resonances is good even
with the positive moment, so the sum rule as it @résently stands
converges well. Notlce that the "duality concept" as advanced by
Schmid a.nd'C'new,:21 whereby dominant Regge trajectories provide & semi-
local average to ihe energy dependence of the imaginary part of the
amplitude at low energies in the resonant region, does not appear to
hold in this'eﬁergy region,as the contfibution of -the first six
resonances to the B éum rule integrgnd produces only a wide positive
bump over the whole region of integration. In fact, the Bietti-Roy-Chu
sum rule integrand is even worse, being purely positive.at moménta |
0;2 < k < 0.7 GeV/c ané negative forr 0.7 <k < 1.2 deV/c (see

Fig. 5). . Thus pnotoproduction ampliitudes at these energies seem to
violate the Schmid "duality conce?t," though there is no reason why it
shoulc not be vaiid over & larger energy regioﬁ. Finally we remark on

Th

[¢4]

zero in the B residue indicated by the sum rule. The zero is

caused'by cancellation of the Born term that rapidly'increases in t with

the nearly constant'intégral.' If we double the integral, the zero
- moveg outward to ty =‘+O.2h;'if we cut the integral in half the zero
moves in to tB = +0.03.  Since we cannot reliably estimate the errors

on the integral, we cannot really. be sure that the zero 1s not in fact

at t, =0 (thus indicating an M = 0 B trajectory).
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We have also investigated ihe possivility of evaluating the
x and B residues using ordinary cutoff dispersion relations. The
results are oaly roughly in agreement with the unsubtracted sum rules,

yielding M =1 g5 and B residues withoui any zeros and with
magnitudes at t = O larger tnan those of the FESR by an order of
magnitude. However, the cutoff dispersion relation is satisfied very

nearly by the Born term and roughly by the resonances, so that the

calculation of the Regge term is inherently inaccurate.
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IV. IMPLICATIONS FOR SCATTERING DATA AND THE PION SUM RULE

The actual existence of an M =1 B trajectory cannot
conclusively be established from experimental evidence. AB we have
ehown, an M =0 ﬁ trajectory is certainly compatible with the existing
data. We argue, hoﬁéver, that en M =1 B  traJectory is also compatible
and perhaps'prefefred by existing data, but that exhéustive fits using
it would be inappropriafe until measﬁrements at smail t are made of
the high energy cross sections for the processes .pﬁ - nn and
yn - 1 D, These measurements should serve to determine the existence
of an M‘§ 1 ,B"trajeétory'in a model where.only the x and B
trajectories ﬁaie 'M = 1, since the ﬁ-B and ﬂfép’ interference terms
change eign between fhe'proéesees pn - np, pP - nn and between‘
¥p -;ﬁ*h, 7n‘-0i‘p, if the B hasvthé Quantum number M ; 0 theée
1h£erferéncé terme ét % =.0> ére iérb ihﬁall éaeeé. Howe&er, for an
M=1 'aésignment thege interference terms would bevnonzérq at t = 0.
Furtheré fhe smalllft' behavior of the pP - ni reactiqn.also provides

‘& clear way to distinguish the type of zero in the NN vertex

- functioh.

Another readtion'whiéh would be gritiéal in determining the M
quantum number of the B would bél AN o wN® near t = 0. Notice that
this reacfiqn is the analog of the reactioﬁ nN -;pr involving 5 -
exchange.. Finally, pn -»np. polarizatibn méaeureﬁeﬁte near t = 0
shouid affect'this-dete;mination} phese measurements are curfently in

progress.
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We now coneider the implications of consistency of high-energy
data combined with the pion sum rule for an M = 1 assignment for the

B trajectory. ' -

A. Photoproduction

indication of the magnitude of the B residue, there appears to be a

‘contradiction with the fit. For [t| > pu® the fit with t, = -0.03

"mechanisms (or the inclusion of gome amount of M = O AiL lese M =0

If we take the result of the B &um rule at least ac an

geems to require at leastva factbr of 30 timgé'the B contribution :
given by the sum rule. The M =0 B aesumed in the 7p - r*n fit
may therefore,be‘interpreted af simulating the effect of & small M = 1
B amplitude together with the p' amplitudes. If we assume small

nyB and nyp' couplings, a medium NNB  and medium NNp' nonsensge |
coupling, and a'iarge NNp' =sense coupling, the M=1 B and p;
will very nearly siMulate’tﬁe M=0 B amplitude aésumed in-the

photoproduction fit, being predomiﬁately equal to the sense-nonsense p'

. amplitude which vanishes at t = 0'(eee Fig. 6).

It 1a possible that with different p. or A2 ghost killing

B ‘would be required to fit the data. vIn.any case, the wt photoproduc=
tion fit can surely be made consistent with an M = 1 B-p; consplracy.

Next, we consider implications of an M =1 B trajectory for -

.
-

n photoproduction. Agsuming the existence of an’.M =1 B trajectory

and the zeros indicated by the sum rules in the x and B feeiddes,
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1t 1s phenomenologically clear that more constructive n-B and

(h +p') - (2" + Ae) interferen;es would give better results for the
fit to the n"/n+ ratio at moderate t.. This, unfortunately does not.
predict that the x"/x* ratio near ¢ = O would continue to be emall
gince the p and A, terme vanish at t = O, and these terms are

significant at méd_erate ~t. Notice that local fluctuationsa (i.e.

maxima or minima) should occur in the x=/x* retio in the M =1 B

model when the n or E. regidues vah;sh} Notice also that as

t +0 an M=1 B 'trajéctofy predicts that the 7*/x* ratio would
be different from 1, whereas the model uwtilized in the £it with the
M=0 B residﬁe vaniching at t© = O ylelds the prediction of 6
ratio of 1 at t ='0.4'Even if the p' nonsense and B residues

were small as indicated By'the sum rule, interference with the large

‘n and x' amplitudes would produce & noticeable effect, Hence, a

measurement pf the x~ pﬁotoproduction'cross gection near t = 0
would provide & critical test of the p'=-B conspiracy. 1h
Next we consider ﬂo photoproduction:. Ader and Capeville and

®have it low energy 0 photoproduction data

Braunséhweig et 31‘2
utilizing an M =0 B amplitude very similar in megnitude to what our
Me=0 B would yield for "0 photoproduction4'at,small t (e.g;;

t * -0.1). For higher values of t, the p amplitudes in our fit would

gimulate the B amplitudes in these fits (which did not include the p).

Hence the conjectured simulation of the M =0 B byan M=1 B+

should fit the n? photoproduction data.
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Finally we remark that the presence or absence of polarization
in n1’p —>wOn is not critical to any of these arguments, since we may

always Tit the polarization with a sufficientiy emall p'nn regidue.

3. NN Scattering

Next we consider implications of an M = 1 B-p' conspiracy
fqrrthe Pn - no and pﬁ"—?nﬁ reactions. First, suppose thaﬁ the
zero in the pion vertex function () ie of the sqﬁére-root type.
Tne value of the zero to = -1.5 ug. is consistent in the sum rule and
the phozuproduqtion.fits,_but leads.to SOmé inconsistency in the NN
f;ts, since ga/hn in the; NN fit turned out to be rather‘lo#.
'Howevér, an‘ M=1.B trajeétory could gasily\rémpvé_fhis discrepancy

by releasing the constraint on the pion resicdue at’ t = 0, thus aliowing

‘s higher value of g-/kn to be obtained in the NN fit via destructive

493

interference of the x with the at t =0 [the p' and r' would
also interfere destructively‘(seé‘Fig..7)];' Notice that since.more
parameters are iﬁtroduced invan_ M= i B fit, the amoﬁnt o Ireedom
in fitting the NN data actually increases, &0 the:e.is no doﬁﬁt that
| 4 ) . . .
& successful NN fit can be performed. The zerc in the B ‘residue
would help to provide the necessary sharp peaks in the cross sectiohs
end the medium sized NNB and Nﬁp' .honéense couplings would no doubt
be nonviolent'enough to achieve cénsistent Tits. .Thus,‘the pion could

ctiil be held accountable for.a large role in making the sharp peaks.

wotice that in this case destructive interference in pn —np implies
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constructive interference in pp —nn 80 that the pp —nn cross
gsections should remain larger than the pn —snp cross’sections at
vt = 0 1if thie sqnsre-root tyne.vertex zero model 18 correct.

Buppoee now that the nNN vertex zero is a full zero. The
value of this zero required to fit Both,photoproduction and NN data
s tb 8 220502, This value 18 not consistent with the pion sum rule 23
but could be made consistent.ifcthe M =1 B trajectory were pregent.,
Moving the plon zero to 'to = -l.Sn2 would lower the +t = O contribu~-
tion of the pion in the NN fits significantly'(sssuming fixed
ge/hﬁ). The extra contribution needed in the. pn —»np ‘crogs section’
could then'easily be provided by constructive'interference of the B
with ‘the . n, and the - o" with the ' (see Fig. 7):" Thus, in this
case of a fnll'vertex zero, the interference in' nE - nn would be
destructive §0 thst there should sctually be a dip in the pp - nn

2

cross section for Itl < 0.02 GeV (i e., the pn —>np and pp - nn

cross sections snould cross over)

To summarize, if the pion photoproductron sum rule is correct
the exieting NN data seem  to favor the existence of an M =1 B
trsjectory.regardless of the type of zero in the ﬂNﬁ. vertex’function. =
“If the pion sum rule is yielding misleading resuits, there is no
preference from NN scattering for an’. M=1 B trsjectory since it
could be_that‘a fpll NNn vertex zero at t = -0.05 would be consistent

with thebsum rule. The existence of higher resonances with 1arge YN

couplings could well change these sum rule results. In”particular,‘
measurements of the total cross section up to 2. 6 GeV/c where our

Regge fits begin to work) would provide information on the yN partial

widths of these resonances.,
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Teble 7. Lefinition of Gij(t) and the full residues Sij(t)
1. fTne factors Gij(t) in Eq. (2) are
a Chew p with M=0 S - at . p
GSR(t)l @ Gell-Mann A, with M =0 GNR(t) = t _ A,
a Gell-Mann n' with M =1 o - {1 S
at(l - t/pe) B with M=0 ' o Chew Al 4 uncoupled,
: a1 —-t/to) o with M =1 1 Gell-dann A [ 1 coupled,

(A +0)T (¢ +1)
N Vo (Pa+1 )P(a+;é_— .

the functions ';;j(p) in Eq. (2) are

2. De=fine X(a) . The connection of the full residue functions Sij(t) with

(@]

N
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- Table II. Parameters for fits with full NNy - vertex zero at t. = -0.09

. 0
o Parameters fixed from meson-nucleon scattering5
' ap' = 0.58 + 1.11t
%o = 0.5 + 0.86t
b, P/, ° = ¥ P/ P = -8.8 g0+t
12/°n % 'nr /7 T
A2 A2 = A2~ A2 -0.11t
Pro /bu = nr T’ = 35

Parameters obtained in nucleon-nucleon fit [notation and data normaliza-

tione correspond tb Table II in Ref. (2)]. Residue units are propof—
: 1 s 4,k , .
tional to (mb)2. (equalling (mb)* (GeV)" for appropriate values of k).

X = 89 for Th pointse

S . 10t
a = -0.025 + 1.25% | 7o = =800t (aB +v2)e
@, = -0.025 + t | 70* = 0.919(1 + /0.05)% et
' : - v L, 8t
ag = -0.4 + Q'9t. 722“»'r= [bO“(O)/a“(O)]e ?
i bt ! ! P
7110 = 0.35 e _ R .ylgn = -68 (anl)? é 2t
A2 e Mt g2/ = 1h.7
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Table IT (Continued). _ _ ol

Parameters obtained in g% photoproduction fit. Residue units not
1 | : -
proportional to (ub)?. “(equalling (GeV)k for appropriate values of k) i

66 for 62 points | E;

X
1]

R
]

-0.L4 + 0.95t S " - .0.078 &1t | !
- -9.0t - | - o
- 0.166 e 9' | 7NR“ = -(Em/uz) 701“(0) e? re

2.6t

1t - ' - | s
T gy Iy = 186 | |

= 0077 e—l,

‘— 11t
o= ‘20
701 95 e

gg/hﬂ = - 15 L

H
i
i
I
i
i
i
H
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ot

O 'i‘é.ble IIT. ';'f'Ré)suits-df the. YI,B'_'fv‘mésoh ‘sum‘rulé

ol

N . B(t) . 1(t), ‘where B(t) o ;';,:‘-';

s B (1) reads g (8) R(t)

S { . is the Born _term.v' The power series expa.ns:_lons of  I(t) and B(t) ;

around. “tv =0 ,aré‘. givén by

CUI(8) = =0.027 - 0.06t + 0.06t° UL

U B(t): =7 30.0058 4 0.20ht. °
"i?'l The reéidue:is zero.ﬁf"tB ~ 40,09, o
‘The contributions [X(-10° )] to I(t)|, o are givenby .

R

e

: P33(1258)i%;fé;OilffiSii(i56o)';}:0;13{‘iiﬁénrégbhéhizff;qgoltfaﬁh

20, ot
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Table IV. TABLE OF NOTATION
Section IA
ft t channel helicity amplitude for unegqual mass process Yﬂ»ﬁ N
A Ay A 1 12
1727y
fi)\ oon t channel parity conserving helicity amplitude (same process)
2’ Y . . X
th t channel partial wave helicity amplitude (same process)
Ay Ans A .
1727y
fgf‘hs. 1S (t) t channel partial wave L8 ampivitude. (same process)
“gfs LS Coefficients of L-S amplitude expansion around threshold
rl‘?‘“.t Coefficients in expansmn of e iw(z ) functions
' aJML:h Coefficients descrlbmg leading order behavwr of helic1ty
L;\ISS' . amplitudes around threshold :
f".(s,t) " Kinematic smgularlty free form of f ‘ (s,t)
i A XA A
) , _ v : 172’ T
~ E . = '
Fi_(s,t) lim - F,(s,t)
Cmem, i
t, . ~E | | - F
F.iv(s,@:) lim F, (s,t) (in Egn. 12, th' = lim : Py ).
) . S o) —_— .
S 0380 (s - By
Section ID
> (s,t) Kinematic singularity free amplltudes for unequal mass
1 process N -’N Nb,
Fi(s,t) Lim _ B*i(s,t)
. ‘ ey m ey |
N ' . 2 kK . : ~
C‘zkl (s) Coefficient of tY 4 10 A 3‘* in expansion of 3‘-i(s,t)
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"TIGURE CAPTIONS

Real parts of the x' photoproduction amplitudes at 8 GeV/e

 for full NNr vertex zero t,. = -0.05. To leading order,

0=
.' . 2 : H . \ « 2

ql = 2in 2 3|7+ 2lingy + (Ay)gp ¥ gy

- i n*photoproduction ‘

. ©e
T Q{ION’R v (A2)N'R + 'ﬂ'N'RI ¢

Imgzinary parts of tne " photoproduction amplitudes at

8 GeV/c for full NNx vertex zero %y = -0.05.

a photoprodﬁction‘fit.- Curves have been mnltiplied by 0.99,
'1.03, 1.0%;, 0.97, 0.95, respectively for 2.6, 5, 8, 11, and

‘16 Gev/c,

Smali ¢ wegion for n' photoproduction fit with the same
normalization factors.
Integrands at % = O for the B and pion photoproduction sum

2 . o 2 roN
ruies. - (_d;l Im A1<O" and . Im.Al\ !, respectively).

T

‘Conjectured simulation of M = C B amplitude found in

photoproduction fit with M =1 B, p' amplitudes.
Conjectured M =1 B amplitude and resulting x amplitude
for pn - np scattering near t = O.

n eamplitude with M

0 B assumed. .

...... ¢ eamplitude with M

1 B. assumed.

—- = M=1 B amplitude.



Fig. 8.

Fig. 9.
- for full NNrx vertex zero to'='-0.05.

The mark on the vertical axis ylelds %% (pn »np) = 1 mdb

at 8 GeV,

Real parts of the nucleon-nucleon amplitudes at 8 GeV/c for

full Nﬁn_'vertex zero to = =0.05. To leading order,
._.,' t - o . ) . . 5
Qo 1 a . ) .
a } = 2lr 2 3%+ 2lioyy + (M) + 1’y
Epn—enp o
Dp— N

+ 2laog, + (Ay)pp * 1l ppl" % blip v (By)p + ' 1

- To leading order tne coupledviriplét amplitudes factorize;

€uguy w'yy Moo = ‘(“'1272' Note that the (12) amplitudes

-have additional weight in the crdss'sections.

Imaginary parts of the nucleon-nucleon‘émplitudes at 8 GeV/c
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. ’

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



