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ABSTRACT 

We consider applications of Lorentz invariance 

. and Regge' pole theory to the phenomenological study of 

-photoproduction of pions from nucleons 'and nucleon

nucleon scattering., We first work out the'kinematics 

tor the more general cases having all unequal and nonzero 

external masses, and then take the limit of equal baryon 

masses and zero photon mass. We then consider the 

applications of Lorentz symmetry at t ='0 (i.e. con';' 

sp1racy), and explicitly obtain the photoproduction, 

daughter sequence through analytici ty arguments. The ", 

fac~orization of ,the photoproduction Regge residues is ' 

shown to be consistent with the conspiracy relations in 

the nucleon-nucleon and pion Compton scattering 

processes. Finally, we analyze high energy pion' 

photoproduction data along with nucleon-nucle6n data 

assuming the existence of an M = 1 pion parity doublet 

" 
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conspiracy. W'e investigate the consequences of 

assuming a square-root type zero or a full zero in the 

~ NN vertex·function. The possibility of the existence 

of an M = 1 B -!' par"'ty U·,.···l~··,:r'+ "co~';;'""":';:i(,'Y ':0 i"nvesti-.J.. \.) ~., I •••. .J V ., .. l, ".~ ..."' ~.... . •• ::J 

gated qualitatively through a photoproduction sum rule 

for the photon iaoscalar amplitude, and by requiring 

consistenoy between p.henomenologice.l fi ts. Addi tional 

experimental tests for an M = 1 B trajeotory are 

, : 
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INTRODUCTION 

It has been known for some time that the differential crOGG 

sections for positive pion photoproduction
l 

show a marked forward 

peak very close to t=O, similar to the peak found in np charge ex-

2 change, with 'a width close to ~. The successful application of the 

assumption of an M=l pion Lorentz pole with a zero in the nNN vertex 

2 function to np charge exchange makes a similar conjecture attractive 

in pion photoproduction. 3 Although the unequal external nand. Y masses 

make the direct application of the usual group theoretical arguments at 

t=04 more difficult, analyticity arguments and the asymptotic behavior 

of amplitudes can be used to give meaning to an M=l pion daughter seq-

uence, which possesses the same members as in NN'scattering. We study 

the general kinematics of photoproduction and NN scattering by taking 

the limit of equal baryon masses and zero photon mass in the reactions 

involving all unequal and nonzero external masses. We next show that 

the constraints in photoproduction, pion Compton scattering, and ~~ 

scattering can be satisfied by the asymptotic Regge pole contributions 

to the scattering amplitudes assuming factorized Regge re'sidues. 

Tne existing positive pion photoproduction data range from 

laboratory momenta of 2.6 to 16 GeV/c. We find that the M=l parity 

doublet (the pion n and its parity doublet partner n') provides a 

2 satisfactory explanation of the data up to t=-O.5,GeV if the p, A2, 

and B trajectories are also included (as they were in Ref. 2). These 

latter trajectories are all a9sum~d to be M=O trajectorieG with the 

BNN residue vanishing at t=O. (The D parent trajectory is completely 
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-neglectep. here, Le., we assume it decouples completely from the UN 

~n<i Y:rr channels). The only other known meson trajectory that could 

be exchanged here is the Al trajectory. Although the Al trajectory, 

(with an M=O assignment) seems necessary to fit certain resonance pro

duction data,5 we do not include it here. Thus the fits here are con~ 

sistent with the assumption of zero (or'small) A1NN and A1Yn 'couplings. " 

-The question of the order of the zero in the nNN residue function 
• 
is also investigated (this dynamical zero is denoted here by to)' We 

fin4 that the assumption of a full zero in the vertex function is 

preferred over that of a square-root type zero in the above model. 

constraints involving factorization have been imposed from previous 
6 

fits, and a fit as suming the existence o,f a double zero in the pion, 

NIT ~~~ residue function has been carried out for the reactions 

np ~pn and pp ~ nn. This double zero occurs around to~' -2.5 112 

rather than '" ' 2 to '" -Il as is the qase' if a single zero is 

assumed. 

We have also qualitatively investigated the possibility that 

the B trajectory is an M = 1 Tather than an M = '0 object. For 

some t~me people have speculated about the possibility of the B 

trajectory conspiring with an as yet unknown trajectory, usually 

denot~d by pI, from certain high energy data. 7 Here we find evidence 

from two sources that this may be the case. The first is a photopro- ~ 

duction sum rule for the B trajectory, similar,to the Bietti-Roy-Chu 

Bum rule' for the pion trajectory. 8 It was found that there, was evide~ce 

from this sum rule for a conlJpiring pion with a zero in the pion residue 
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at to ~ -1.5 p2, ,quo.li ta.tivcly (but not exactly) conaiotcnt with 

phenomenological fits of the data. We perform a similar, calculation. 

using the small 'photoprod,!ction isoscalar amplitudes for the B trajec-

tory and find similar results; the B residue is small and nonvanishing 

at t = 0 with a zero displaced by about +5 ~2. The second source 

comes· from the pion photoproduction and NN data,. relying on ~he Regge 

fits. The small M:! 1 B amplitude suggested by the sum rule r:eems 

inconsistent with the large M:: 0 B amplitude found :i.n the fit. 

Further, if one demands consistency of the position of the zero in. the 
I . 

pion residue function found in these fits with the Bietti-RoY-Chu sum 

rule, an M = 1 B trajectory is preferred over M = O. Experimental 

tests involving the pp-nn and ~.p-yn reactions at small tare 

proposed to make a quantitative determination possible. 

In Section I we give an account of the pion photoproduction 

and NN scattering formalism. In Section II we ·describe the data and' 

the fits. Section IIIdescribes the photoproduction B sum rule. Section 

IV is concerned with qualitative remarks designed to support an M=l 

assignment for the B tra.jectory. 
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I. KINEMATICS OF PION PHOTOPRODUCTION AND NN SCATTERING 

A. Pion Photoproduction 

We first consider the reaction with all the external masses 

being nonzero and unequal; We define the sand t channels as 

s: yNl '4 llN2 

t: yn: .... NIN2 

where my'~'~' and m2 denote the masses of y,n:,Nl , and N2 respectively. 

We denote the t channel scattering angle by 9
t 

(Zt= cos 9 t ) and the 

t 
t channel helicity amplitudes by f A A A (s,t) Parity conservation 

1 2' Y 
reduces the number of independent amplitudes to six; hence we consider 

only those amplitudes with A =0 or 1. We define Ai=_+ to mean A = + .l. Y i - 2 

(i=1,2). Ext~acting the half angle factors 

from the helicity amplitudes in the usual way, we define the six 

parity conserving amplitudes9 

oj: 

f "+1' (S,t) • 

j: f (Sit). 
t-,I 

, (t 
SiJ\.f\ . f++,1 

t 
f+-!, .1: 
1+ Zt 

t 
f++J O 

t 
+"'-/ 0 

~ f~_I' ) 

t 
. f-+.,. 
1- ~~ 

e,) 

1 I 

I. 
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+ Notice that the amplitudes f +~,O are zero via parity conser-

'vation. Now in the unequal mass case, the helicity amplitudes are 

, presumed analytic at t=O, since no psuedothreshold or physical region 

boundary coincides with this point. Since Zt -001 + O(t)' as t-lil 0, we 
, 1 
~ - -- ~-

see that f'" 1 and f + ' 0 have t 2 singula.rities, while ++, -, 
f"'- have 

+-,1 
-1 . 

t singularities.' Further, since both ti,\., l' only depend on f t -+,1 ' 

at t=O, 

a.s t ~o 

This relation is the unequal mass conspiracy relation. Con-' 

spiracy relations will be discussed in more detail later. ' 

The parity conserving partial-wave amplitudes fJ~\ A \ (t) 
1\.1 2J/\'y , 

are defined through the usual partial wave expansions of the parity 

conserving amplitudes 

where A=Ay and ~= ~-A2' 

The functions eJ;t~:(Zt) are defined and listed in Ref. 9. 

vie remark here that eJ -OO (Zt)=eJ -10( Zt) =0, accounting for the 

absence of the second term in the expansions of f~ and f-'++,1 +~,O 

Next, we use 'the L-S coupling method of Jackson and HitelO 

to exttact the threshold and psuedothreshold kinematic singularities 

from the parity conserving amplitudes and to find their threshold and 

psuedothreshold relations. This method involves' expanding the partial 

wave helici ty amplitudes, in terms of L-S coupling amplitudes and then 

using the known behavior of these amplitudes around thresholds 
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and psuedothresholds (psuedothresholds may be treated in exactly the 

same manner as thresholds if npsuedo" L-S amplitudes are defined with 

the parity of the lighter particle at each vertex being changed if it 

is a fermion; all parities otherwise remaining unchanged.) 

The intrinsic spin and orbital angular momentum associated 

with the initial (rn) and final (Nl N2) states will be denoted by S,L 

and S' ,L' respecti V"ely. We define the L-S t·channE!l partial wave 

amplitudes f~~S'LS l-rfth parities (_l)J and (_l)J+l . respectively, 

through the expansion 

f 31: ( .1 ~.~ C"",-,,& .(ooA r ·" C OJ 1,-'\& f:T ~ (t) 
.A" " t, s L.J. 0" .i.. t I'Ll'" I I 

I a '''r ,,'u! -. .. . I. $ 3' L'$' LI 
('I) 

where are the usual Clebsch-Gordan coefficients. Near 

initial or final thresholds or psuedothresholds. we expand the L-S 

amplitudes respectively about"' T . 2;"'0, where i=N ,N' , P, P' denotes 
1 

222 " . 2 2 222 
TN = t-(J.l+my ) , TN' = t-(~+~) , Tp= t-(my-J.l) , and Tp' = t-(~ -m2) • 

Near TN
2=0 for example, we obtain 

~:t 

fI.!S'LS it) :: is) 
. J -2 

Next, we expand the e ±AJ.l(Zt) functions in powers of Zt , 
obtaining 

( &) 

This expansion is valid near 

2 Ti =0 when all external masses are unequal, since near these points 

.... -----

! " 



,~ . 

- 7 -

Multipl.ying the two series for f~;S'LS and eJ;I;AIl together in 

the expansion of the full helicity amplitudes yields 

We define L~ to be the ininimum value of the orbital angular 

, ',2 ( '/ ') momentum L in the;l; parity conserving, state at Ti =0 i=N ,N ,P,P • 

We obtain r; =.~ = r;, = L~ll and L~,=lJ~ll.for f~;i;.S/LS respectively. 

Further, f~+S'LS (fi;s'LS) do not couple t'o S' =0 at TN~=O (Tp~=O) 
respectively due to the'NN quantum numbers. 

The kinematic singularities of the full helicity amplitudes 
;I;. , 2 . 'L» J+~ 

f A. A. A. (s, t ) ,at TN =0 are just the factors T 1>1 - 1111 appearing 
1 2' Y , N 

in the L=L; term of the expansion (note that r;-J is independent of, 

J) . The thre~hold relations ,.at TN 2 =0 . are found by comparing expansions 

;I;. , 2n+2k 
for the amplitudes f in each order of TN • For n=k=O 

A.I A.2' A.y , 

we get the usual threshold relations, and for n,k>O we get derivative 

threshold relations when they exist. 

Following this procedure we split off the (L,n,k):-:(ti ~O,O) 

term from the expansion about .TN
2=0, obta.ining 

, . 
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+ + (7b) 

11 -1 
where a = L~ -~ +1 and 

, .t. ~ 

N :r~fLt. . 0-' op. .1 -A ItS"o for f;+J~ 1 "" :d: 
Qt!, 51' =: ?t cut-I) Ca: i:r C L!.':r 8.11 C t'''s'& S"l o+herwl'. J FL'S'&.~S 

The terms contributing to O(TN
2) are (~,n,k)=(~,l,O),(~,b,l) and 

(~+2,O,O). There are too many'unknown coefficients introduced to 

allow any derivative relations. Notice 'that the sum over Sand S' 

collapses. Also notice that l~ -r;\ '=1; hence the term T
N
a* in the 

expansion may be of the same order as the first term. 
, 222 

As mentioned, the expansions about TN" Tp , and Tp =0 can 

be similarly obtained. We do not write these out in detail, as they 

11 12 have been discussed by several authors. ' We will, however, treat 

the more difficult case of NN scattering explicitly in Secflon ID. 

These expan~ions lead us to define the parity conserving ampli-

tudes free of all kinematic singularities 
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1 

,-- 1 
Crt ft) 

t-2" 
Fl = sin ~\ ++,1 + --,1 ~(t 

?.l _ 6-)2 

1 
,..., 1 

Cft ft) t 2 
F2 = sin ~\ ++,1 --,1 (t - 4l-f)4 

Ct t ) - +- 1 1'-+:1 t 
F) = 1 +'Zt 

+ 1 - z· :J (t - 6
2 )l t 

Ct . ) 1'\.0 t 
"'" +-,1 1-:1

; ,( t -4;r~ F := 4 1 I- ,Zt . . t 

rv ft 1(t.- fj,2)t F5 = ++,0 

1 ,...... 1 ft. t2, 
F6 = sin 9

t 
1 '. +-,0 (t - 4l-f)2 (2) 

where M -

.-..; 

F and 
5 

refer to amplitudes with zero helicity 

for the massive photon. 

By comparing the expansions for the helicity amplitudes 
- ,.,. 

it can be shown that the Fi satisfy the relations 

, 
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"'" ~ 

2M :F' 1 + F3 

~ --' 
6 F2 - F4 

,..., ,..; 

F5 + 6 (4pkcos 9t ) F6 

= oCt - 4r.f) 

= oCt - tP) 

= oCt - 6
2

) 

2 = o[t - (mr ± ~) ] 

(a) 

(b) 

(c) 

(d) 

(9 ) 

~)2J[t _ (m + ~)2], 4tp2 = (t - 62)(t - 4r.f). 
y 

The unequal mass conspiracy relation becomes 

(lOa,) 

The unequal mass formalism given above is perfectly general, 

~. 

and would apply, for example to the reaction nN~ K ~ We next 

take the limit ~-'m2 ' thereby obtaining a formalism appropriate, for 

example, to nN ~ pN. To do this, we must expand the kinematic 
-.. 

singularity free amplitudes F
j 

in powers of t and 6 around 6. =0.
12 

While this procedure strictly speaking lies outside the framework of 

S-Matrix theory, it is most unlikely that a dynamical singularity in 

. ., 
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~ exists at ~ '=0, so that the expansion should converge in some 

neighborhood off). =0. 

Following this procedure, we write 

and insert this into the various relations, evaluating t at the 

appropriate values to make the right hand sides vanish. Since we have 

a power series in Ll equalling zero, the, coefficient of each power 

of il' must vanish separately. We then take the limit ~-+ O. It is 

, 00 00 -easily seen that (9b) and (9c) imply that c4 = C
5 

=-0; hence F4 and 
;-.I 

F -+O(t) in ,the equal mass limit. Next we consider the equal mass, 
5 

conspiracy relation. The unequal mass conspiracy relation yields 

01 00 while the coefficient of A in relation (9b) yields c
4 

= c2 
, ....., E AI E 00 00 

Associating the equaL mass 'amplitudes F 2 and F :; with c
2 

and c
3 

at t=O yields (as £a ..... 0) 

(lOb) 

Finally we 'consider the ,~ero mass limit of the photon. Writing 

IV E t 2 
F

j 
= F

j 
+ o(m

r
) and evaluating relations (9d) at t=(mr+\-L) and at 

, t=(m-\-L)2 respectively yields 
r 

o (n1lf) 
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t 2 
Adding these equations and letting my-' 0 yields F4 (s,~ ) =0, 

-E t 2 provided that F 6 does not blow up as my -- 0; hence F4 DC (t - ~ ). 
.-

Next we consider relations (ge). Since F is an amplitude for a 
5 

zero helicity massive photon plus ~ having a transition to the singlet 

NN state, one may expect a pion pole in this amplitude. Except for the 
o . 

case of rt photoproduction where charge conjugation does not permit the 

-pion pole, one cannot· argue that as my -. 0, F 2 becomes proportional to 

2 
t-~ . Rather, one obtains the normalization condition for the pion 

pole contributing to F2t. This condition and the t_~2 factor in F4t 

is the full content of gauge invariance for the t-channel helicity 

amplitudes of photoproduction. 

For small enough fixed m , both rela tions( ge) are valid 
y 

2, . 
arbitrarily close to t=~ Hence we may split off the pion pole term 

t 
in F5 ' obtaining 

Perturbation theory yields the coupling c~l) (in essence this 

defineS the charge e ) 

(I'.n . {4 ~ a. C" 1I";f" e,3wty . p}. - m¥) P-

o t (1) 2(2) 
We also write F2 = c2 + (~ - ~ )c2 

2 
Evaluating relations (ge) at t=(m t ~) 

o Y . 

for t ~ ~2 

respectively yields 

I 

'" I , 

I' 

:; 
Ii 

• I, 
,: 
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~=o 

2 2 
Since 2pkzt = s-m at t=~ we get the desired result as 

m .. 0, namely 
r 

t eSjJ-1 
r: ( I) - C(.') - -:-:~~ r2, S,}' - a ~ -:i(S-ntl ) (ll) 

Finally, then, we are le'd to define the amplitudes for massless 

photon photoproduction, denoted by Fit (redefining '4t = lim F4 ) 
.,'¥-+O 2 

where 

F t = I 
I sin ~\ 

F t "" I 
2 sin 9

t 

F3
t 

= G:;'~t 
F t. 

4 -G:;';t 

ttl 
(f++,l + f --,l),t .2' - ~ 

1 

(t)2 . 
2 ' 

t - ~ 

t 2 2 
Zt = (s + 2" - m -~)/2kp = v/2kp, 

Ll-,>o t(t - fl ) 

til) 

1 2 1. 
P = 2"( t - 4m )2. 

t 
and f A- A- A- are the m = ° r photoproduction helicity amplitudes. 

I 2' r 

The pion contributes to 
t .. 

F2 only whi~e sense-nonsense coupled triplet 

states contribute only t t t to Fl' F3 and F4 in leading order are 

composed of nonsense-nonsense coupled triplet amplitudes and uncoupled 

triplet amplitudes respectively. 
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B. Reggeization of the Pion Photoproduction Amplitudes 

Following the usual Reggeization procedure, we represent the 

amplitudes Fit for large s and small t by the Regge asymptotic series, 

neglecting cuts and the ·oackground integral. We obtain' 

where 

F t 
1 

F t 
2 

.,." t 
t3 

= L 
i 

= ~ 
i 

1 

(1 + o.i)(l ± e -brai ) a.-1 
i () i ( ) (VVo) ~ • 2 i lSR t Gr.:R· t s n J1fXi ~ 

(1 + ai )(l :: e":,irrCXi ) 

10/(t) 
(X -1 

G .i(t)(.L) i 2 sin rrai or Vo ' 

(1 + 0.1 )(1 ± e-irrai) 
[ - i) i 

2 sin a i YNR (t GNR (t) nai 

-(a 
iI i l)(t - ~.?)(t .·4m2

) rl/(t) G i(t)]C .... ;i-1 

II Vo ' 

t =L F 4 
i 

. 2 Vo : 1 GeV. 

(1 + ai)(l 

2 sin 

± e-irrai) 

fai Yl/(t) 
i . G1I (t) rrai 

, 
Ii. 

(13) 

The residue functions y .. (t) have·been given labels descrip-
. ,~J 

tive of the vertices. We label the singlet, uncoupled triplet, sense 

coupled. triplet, and nonsense coupled triplet NNX vertices by 

0, 1, S, N, and the regular J (p =: (-1) ] and irregular 

,),rrX vertices by R and I. The reoidues may cont.ain powers of a 

or t depending on the ghost-killing mechanisms and t = 0 .coupling 

, 
~ ; 

I 
: 

I 

I I 

,~ , , , 
I 
I 
i 

" , 

i 

! 
, 

i 

i 
I 

i , , 

, 
,; 

I 
" I 

:i 
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schemesP,6 and are denoted by Gij(t) (Table r). The connection of the 

Y d with factorizal>le resi,duc8 PiS is given in 'l'able 1. 

'~ The cross s~cti6n in the s channel in terms of helici ty 
, ~ 

amp~itudes is given by 
i 
i 

dcr( . Gev-2,) ""-t pD 
~ 

or in terms of the parity-conserving amplitudes, 

, 

dcr( -2 389.5 dit ~Lb GeV ).,. 2 2 
4n (s .. m ) 

, , 

... 

.;. 4z-c ~4w2 0 t)/-t)~ (~~- t)2Re (F3
t * F4t)~ 

J 

The :pho'copro)iu,c'c,'ion conspi:racy relation is 

(14a.) 

(14b) 

dO' 
NotiF€ that this conftraint removes the apparent singularity in dt 

at t ~ O. In terms of the M = 1 parity doublet conspiracy between 
:! 

the, II and It' we obtai~ the follOwing relation between the residue 
I 

functions 
. , 

d - l1'. an, 'lIm • ~ 
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(IS) 

The gauge invariance relation giving the pion-nucleon coupling 

constant for + rr photoproduction is 

lim 2 (t - ~2) rf~+,l(S' t) - r:_,1(8, t)] 

t-+ ~ 

2 
::: - Il eg (,~CL) 

Hence we obtain the connection between 2 
g /41! -1! 

and 1'01 for 

1!+ photoproduction: 

[

,..-.rr ( 2) ( I 1
2/t ) )2 1 c'OI ~ 1 - ~ . 0 

::.4; . 2 ' 
e1!~ 

(/b1,) 

- 11"( 2) where 1'01 ~ (see Table II). The relation 16a also 

requires a factor of (t _~2) in the B residue; otherwise the B 

would contribute to the pion pole. 

The constraint arising from factorization on the rr' residue 

function from nucleon-nucleon fits is given by 
.' 

! I 

! i 
I 
i 

I 
\ 

I 
! 
I 
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(17) 

where and are the same functions listed in Table II of 

Ref. 2. 

Finally we' remark on an amusing connection between the cross 

section calculated from the gauge-invariant Borntermfand that calculated by . 

using the M:= 1 conspirac~ assuming Namely, for 

small t and large s the Regge contribution is equivalent to the 

Born approximation~. Satisfying the normalization condition and the 

conspiracy condition with the residues ~rr(t) ~ ~g (1 + t/~2) and 

~nl(t) ~ ~ , one obtains 

(:~)Regge ~ 389·5 
2 2 4n(s - m ) 

:= 389·5 
, 2 2 

41t(s - m ) 

+ 

:= (~~) • 

\.: Born (/8) 

This coincidence accounts for the abnormal success of gauge 

invariant perturbation theory in fitting the rr+ photoproduction cross 

sections. 
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C. Satisfaction of the Conspiracy Relation for Pion Photoproduction 

We now show in detail how the assumption of an M=l parity 

doublet conspiracy satisfies the constraints due to analyticity at 

the unequal mass (yn) vertex and the conspiracy equation 

The Reggeized form of the amplitudes can be written formally as 

1"" ~t (s,t) ~-. -. f lilt-2ft
.' t-n. C!t&) it) 1111 »> e" tt) )' Jf It) + 

"., 

141 F3t ($~t) .. -/ .r. V ... -Zt\-' f"- ,''I' (t) - V C", (tl l'lf' (tJ 1--
ft. , J 

where for simpliCity we have assumed all trajectories are parallel, and 

where we have split off the leading order contributions corresponding 
. 

to the M=l doublet n-n' and the first daughter d. The t-n singular-

ities coming from the da 
A.~ 

exhibited explicitly. The 

regular in t about t=O 

c(.') (t) .. 

functions and the daughter ,residues are 

coefficierits cin)(t) are thus presumed 

Hence, expanding, 

We see that the nth derivative of c(n)(O) contributes a finite 
i 

amount to the conspiracy equation. Thus the conspiracy equation yields 

I 

: ' 

· , 
, , 

• i ! 
! 

! ! 
i I 
, i 
· I 

I 
: I 

· I 
I ; , 

, ' , ' 
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c (O)y (0) = c , (O)y ,(0) for the 11: and Jr' residues, and 
n n n Jr 

dn c~n)(O) = dn c~n)(O) (n=1,2, ... ) where all the pion-like traj-

dtn dtn 

ectories a
1
, with a,(o) ~ a (0) -2n will contribute to c

2
(n) and all n' 

1 Jr 

and d-like trajectories with a,(O)~ a (0)-2n wili contribute to c
3
(n). 

1 . n 

, Analyticity of F2t and F3t implies that cin,k)=O for k<n (i=2,3). 

The existence of 11: and n' -like trajectories is actually sufficient to 

guarantee analyticity of F2t and F3t since a new n (Jr / ) type trajectory 

enters in each order of t -nc~n) (t -nc;n) ) .. However, analyticity of 

t "-1 
F4 forces the existence of the first daughter d to cancel off the t 

singularity in F4t due to the nl, ~nd the other d-type trajectories are 

required for analyticity in higher orders in t -n 
f -'" t o ~ 4 . Thus analyti-

city requirements due to the unequal Yrr mass kinematics coupled with 

the con["-,iracy equation, assuming only the existence of the first rr-rr' 

doublet, forces the existence of the whole M=l Lorentz pole family. The 

constraints' 0-;'''' analyticity and conspiracy do not suffice to determine 

all derivatives of the residue functions. For example, we have two 

constraints on the zeroth derivatives of the rr,11:', and d residues 
, -1 . 

coming from F4t analyticity to order t and the conspiracy equation. 

-n ' However J unknown functions are introd,uced in each t 'term, so that 

the constraints tell us nothing about the nonzero derivatives of these 

residues. In general, the first n-2 derivatives will be completely 

th determined for the n '11:rr'd group, one derivatiye of order n-l will be 

lacking, and no information will be available for the derivatives of 

order ~ n. 
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D. Nucleon-Nucleon Scattering 

The Reege formalism for the equal mass NN scattering process has 

been summarized in Ref. 2. Here we give an account of the kinematic 

formalism appropriate for all une~ual masses and show how the usual for-

malism results in the limit of vani.shing mass differences. 

We procedein a manner similar to that followed in Section IA. 

We define our reaction as N1N2 - N3N4 (t channel). Parity conservation 

and time reversal invariance limits the number of independent amplitudes 

for the unequal mass process to six (upon taking the limit of equal 

masses, G parity in the t channel or the Pauli prinCiple in thes channel 

reduces 'Chis n'~mber to five) . Defining the parity conserving helid ty 

amplitudes f~~ ~ .~ ~ (s,t) in the usual way from the t-channel helicity 
3 4' 1 2 

amplitudes ft~ ~ ~' (S,t), we make the partial wave expansion, obtain-
3 4' 1"'2 

Jj;. ) 
amplitudes f ~ A ~ ~ (t . 

") 4' 1 2 

are related to ours up to a 

+ ~+ f f I' ++,++ J +_,+_' +_,+_ 

We remark that the amplitudes f. of GG~3 
~ 

factor by fi 

f+ ) , ++ +- . , in the equal mass limit. 

We next make the L-S expansion of the 'partial wave amplitudes, 

obtaining 

(lC) 

• "'1 T 2 2 2 2 
where ~;:::~l -~2 and 1-1=~3-~4' We aeJ. ne N = t-4M12 , TN' = t-4M

34
, 

T 2_ t_Ll 2 2 2 
(mi + m

j
)/2 Ll ij=mi -mj P - 12 , and Tp' = t-Ll 34 

where Mij= and 

Further, define 4tP1P2= TNTN,TpTp~ 
J± about we . We expand fL'S'LS 

. 
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Hence we obtain (splitting off the leading term) 

where 

(2..1 ) 

Here the absence of 8=0 coupling for f~:8IL8 has been included along 

with somp information about the Clebsch-Qordan coefficients in the 

± ~ JJ-l} ± Kronecker deltas .. Wehave, further, LN = LN, =1 J and Lp 

2 
respectively. To leading order we obtain at TN ~ 0 

- '"'\ 
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(1.3) 

where r
J 

= (2J+I) (2J)1 

2J (J!)2 
2 

Th~ expansions at TN' =0 are similar and 

will be discussed below. 

2 2 
The expansions at Tp =0 or Tp' =0 can be obtained by substituting 

(TN' .... Tp'), f+- ...... f-' . 
A3A4,AI A2 . A3A4,AI A2 

..... JA~± 
( i. e . a L'* sst 

N 
a"""' JA~ "f 

~ ~ss')' We also note that the 

amplitudes r{~'l corresponding to the process NIN~ ~ N3N~ where N~ 
, 1: --'P 

andN 4 have quantum numbers .J =(~) - may be obtained either by substitut-

;I;:t' J.± J:I; I 

ing TN+-+Tp' TN, .... Tp" ffA.l~ f lA.l ,and f lA.}- f {A.;1 or by 
1: 1: r • 

f :l; ...... f:r ' J;I; J'" 2 2 
substituting lA.\ --.. lA., ' f I A.l -. f .\ A.\ ' and T1 ~ Ti This same 

1: 1: 1: 1: 

procedure yields the amplitudes for NN scattering.. The NINk--N3N4 

process is useful because it factorizes at the intermediate state pion 

pole into a product of nN ~ nN amplitudes. 

Examining the threshold expansions, we find the relation 

(2. 4 a.) 
. 2 

The expansions about TN' =0 are the same for all amplitudes 

I : 

.' j. 

i. 

;: 
~ ! 
i :: 
'I 

I 

i j 
II 
, I 

- I; 
I: 
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if the replacements TN~TNI' 
.,..J:.l; 

and fL' 8' LS -+ 
,..J.l. 

fL~L'S' 

are made (note that symmetry is maintained in f-whicn ba:> only 
++,+-

J =L coupllngs). + The expansion for f is 
++,+-

+ O(~~)] 

Hence we obtain the threshold relation at T~, ~ 0, 

+ (lL/b) . 

The unequal mass threshold relations become the 

GGMW threshold relations Eq. 7.15b, 7.15d in the equal mass limit. 

Eg. 7.l5c is merely the statement that f has a kinematic sing-
+-,+-

ulari ty as TNT
N

, -+ 4p2. 

Next, we consider-the psuedothreshold relations. Making toe 

replacements indicated above, we see that the following relations are 

satisfied 

Finally we have the unequal mass conspiracy relation, obtained as in 

section IA 
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We next discuss the equal mass limit of the pGuedothreshold and 

conspiracy equations. First, using the results of the L-S expansions, 

we define kinematic singularity free amplitudes (with the usual 

t '-21( I Ai + I f-ll ) ) factor also removea 

f+ -I 
. -t:"~ r+ ::. (~N TNI) J1a. 

) f~+,+1'=' (Tp 7f , f' ~, 

r+ ::. f' T? 7ft 
,.,. - "" r? _ $ t-+-J't- ::. t-1T/J TNI "3i3 -~'f"- 'I ) 

f"" '-J.T,.I 
. .-.., 

f- - -i: r ~ ~,.. (27) "ttly-':' '" t. " P pI .. j ++, t - - t N TN' (, 

-
The ~L amplitudes then satisfy ,the relations 

-f . .;: _..I. T. -r Yt O( 1 t TAJ ~I J1,3 ,. t.. foIlll' ,::a Tp,) (a.) 

~I. ;owl 

3t, -+ t -& TAJ TJJIT,.T"tt ~,~ O(T/) ( b) 

Tp 7ft ~~ -+ Ti./ TIJf ~.3 -= 0 (tJ 

We next expana each amplitude in a triple power series in t, 

fl. 12' ana ~34' writing 

'" Z jld j J.. \(. 
JiL - .11<.( C i. . t tij~ ll.3'i 

2 ·2 We set t = Ll12 (or t= ~34) in the two psuedothreshold relations , 

set t=O in the conspiracy equation, and then equate coefficients of 

separately (it is not sufficient to set Ll
12

= Ll..34= 11 

and equate coefficients of powers of .~ ). ~urther, we must expand 



We obtain 

From (28a): 

From, (28b): 

002 = c3 
100 =,c 
1 
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Hence we obtain 

= 0 

and define 

and f4(5,0) = c~OO , where fi are the ki~ematic singularity free parity-

, -' '000 000 . ~ conserving amplitudes for NN scattering (note cl = c
3 

= 0, L e. I 

and %, pick up a factor t in the equal mass limit, as they must to 

cancel the unequal mass kinematic singu~arlties Tp-1Tp-l 'or t-l which 

are not present in the equal mass case') . 

and f 4 = f 4' Hence the equation becoI'(les 

+, - F;, - Gt f&4 ~ 0 ~t t -= 0 

or in terms of the GGMW 4»~ amplitudes, 

cb;- cP; .::: cP; - G>~ a,t of;::s 0 

This iathe equal mass conspiracy relation. 

Thus we .have shown that the usual NN scattering formalism results 

in the limit of equal masses in the unequal mass formalism. 
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E. Consistency Between Conspiracy Relations 

We show'here that the conspiracy relations for the three processes 

NN .. NN , rrr .. 1m , and rrr-rrr are consistent with each other and with 

factorization of the residues for anM=l type parity doublet conspiracy. 

Denoting the full factorized residues by ~ij=rirj where i,j = O,l,S,N,R,I 

are the vertex labels of Section IB, we obtain ~he following forms for 

the Reggeized amplitudes. 

1. iffl"'NN 

We have, formally (the exact expressions will not be needed) 

<1>,' - cA~ sZKJI:1D:;' (It) [t/{tJ}'l. 

~t - cJ>.t == k., It} [ D:(Z,;> - D~,_I (~)] [ )~' (t] 1~ 

+ kdlt)[D~(2t) + o.:~, (It)] (y/l U·)]~ 

where Da~1I are the da with the Legendre polynomials P replaced by 
"'...... ;\f..1 ' a . 

the usual~. Since at t=O,' Zt ..... s we ma.;y write expansions for D
a

;\f..1 

i f -2 W h . Ll A' a Da Da ,... 2a A a npowers 0 Zt . e ave U'"a~ 4~t ' 11 - 1,-1"" a+l aZt ' 

a ex ( ex-J· . « ) and D 11 + D 1, -1 .t:tI O. Zt ). To leading order in ztwhere a 1 0 = 

a(O)":'1, consistent with M=l), the conspiracy equation for NN scattering 

becomes [note K,(o) = K'If'(O)] 

at(o) 
(306) .(0) .,. , 

2. rrr .. NN 

t The connection of the photoproduction amplitudes Fi with the r
i 

". 
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is given by 

t 'rr;:- -; 
..l..MF;, :2 -lK7Ilr)~ ~ Ad.. 2~-i I:z: (f) Io1T{-/:} 

t ~t =: k1j,!tJ 04~' AoI. ~~-J 'ttl (t) ({iJiT'(fJ + K,(t) 'I; {fJ r,4 tfl . 0 (2:i1) (310J 

We have expanded the d-func~ions in powers of Zt~2 even though as 

t ~ 0 we have Zt'""'" 0 since these singularities are to be cancelled 

by the daughters as described in Section IC. Hence to leading order 

in Zt the conspiracy equation oecomes 

cUo) + I £31 b) 

The pion Compton scattering amplitudes FRR and FIr are analytic, 

where 

= (f~OjlO 
1 + z. . . 't 

t 

= ~10;10. _ .10,-10 . t 
(

"t ft.) 
~ + Zt ~ - Zt . 

The unequal mass conspiracy. relation 

( ) <rJ1'(0)2 -_ ("VRl1 I (0))2 is satisfied by the full fucto'rized residues \! f 

for the parity doublet solution •. This relation eliminates the 

apparent pole in t 
~lO,lO at t = o. 
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II. THE DATA M'D "FITS FOR + I'P -) 1f p, np -) pn, 

AND pp -4 nn SCATTERING 

A. The Data. 

. 
The photoproductior:. data used..l. "rere pod ti ve pion photoproduction 

d&ta at 2.6~ 2.7, 3.h, 3.7, 5, 8j 11, and 16 GeV/c lab momentum. 

Reliable nigh energy negative pion photoproduction data are scarce; we 

used only one point at 3.4 GeV/c, 2 l~ t = -0:37 GeV- as a constraint. 

We have included data up to t = -0.5 Gev2, consistent with the rn{ 

fi ts. vie have included the possibility of systematic errors' quoted by 

the experimentalists on the ordeT of it5%. In all, 62 photoproduction 

data points were used. 

The np ~ pn and PI" -) nn data were described in Ref. (2). 

In"all, 74 dats. points were used. 

B. Parameterizatior.l of the "Pion PaotoproduCtion Fit 

'rae most important par'i; of the parameterization of the pion 

residue function is the zero at If one makes the assumption that 

the zero in the NN ~NN pion residue is ~ single zero (i.e. a square 

root type zero in the NNrr vertex), then the square root zero must 

propagate throughout all vertex functions of the form XYrr.If, however, 

we assume that there is a full zero in the NNrr -vertex ~,d thus a 

double zero in the NN -4NN pion residue, only reactions involying ~~ 

need have the zero. (Of course 'there is nothing to prevent any other 
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XYI( vertex function from having such a zero, but it is then not 

required to be in any specific plae e.) While the origin and full 

content of the zero is not well understood, it seems to be connected 

with the apparent incompatibility ofM=l with the zero 'spin of the 

, _ . 2 Ie:: 
phys~caL p~on J ~ and recent work of Toller indicates that 

the hypothesis of a full zeTO in the NNrc vertex function is preferred 

over that or a square';root type zero from group theoretic grounds. 

Since earlier,fits to NN scattering assumed the square root type 

vertex zero, we have ::fit the NN data with the full NNrc vertex 

Iunctior. zero hypothesis and. find. that the zero is then required to 

be at around t.
O 

= -2.5 iJ.2 ora ther than. at _1-1
2 The photoproduction 

pion residue i'unc"Cion ~"1as a single zero in any case (we assume nothing 

about the rrcrc vertex in the full vertex zero case). We find that 

consistent fits to all data can be obtained with the full vertex zero 

hypothesis but that some discrepancy exists between the. values of 

g2j4rc obtained in the NN and ]?hotoproduction fits if the square root 

vertex zero is assumed. 

We next consider the zero ir. somewhat more theoretical detail. 

-Mandelstam15 has argued. that since "the M=l pion must choose nonsense at 

Circ6 =0 for the massless pion. (nO) case, all soft" pion amplitudes mus"t be 

small. However, M can also be defined through the asymptotic behavior of 
1 

unequal mass amplitudes, and one finds that the kinematic factors of t2 

yield small hard pion amplitudes as well .. Evidently, 'one must either give 

up the hypothesis that the pion is M=l, or else hope that the soft pion 

amplitudes will have additional zeros relative to the ha.rd pion ampli-

\' 
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tudes. This can easily be accomplished in Bethe-Salpeter models16 by 

regarding the pion trajectory as being composed as a superposition of 

crossing trajectories, which are regarded as the leading members of an 

M=l and an M=O family. A full zero is trlereby introduced in the ;rNN 

vertex function, and the physical pion (which must choose sense at ex =0) 
rc 

is produced through the M=O trajectory. Finally, by considering ghost 

killing mechanisms for equal mass scattering processes by looking at 

singularities in the group theoretic expansions at integer values of 

trajectories, Tollerl ? concludes that the zero in th~ rrNN vertex function 

exists, a.na. moreover that it is most likely a full zero. If such an 

analysis coul~ be' carriet out for unequal masses, it might happen that 

such zeros could depenc on the external masses, the zeros moving in 

close to t=O only when the equal mass limit is reached. Unfortunately, 

there are no unequ€l.l mass expansions that do not also make the unphysical 

assumption of parallel daughter trajectories. 18 An inverse,Regge-

Lorentz expansion would not possess this difficulty, since a separate 

inverse expansion could bewri tten for each daughter; the sum of the 
, 

daughter expansions would then collapse appropriately at t=o for equal 

masses. Although such inverse unequal mass expansions'can easily be 

perform i at as~ptotic s (nonuniquely), it appears difficult to write. 

expansions which have the correct analyticity properties as t -". O. 

We conclude this section by describing the rest of' the parameteri-
"~ 

zation. The parameterization of all trajectories and residue functions 

wc..s made consistent with meson-nucleon ana. nucleon-nucleon fits. 2,6 

The ~,rcl ,p, and A2 trajectories were considered fixed and the B trajectory 

slope was assur.1.ed unlmown. Factorization from meson-nucleon fits 

constrained the p and A2 residues, which were taken to have the 

" 
! 

1 ' 
! 

j , 

i 
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Cilew and Gell-Mann ghost-killir,g mechanisms at 0: = 0, reGpecti vely. 

Thus this fit violates 0 -A2 exchange degeneracy in this 

respect. The 1f1 was made to choose nonsense at Ct = 0, and its 

rp.siduec were const.rained throw:;h factorization with the UN fj t and 

the ccinspiracy equation. Altogether three coupline;::(p, n), 

five exponentials, one'trajectory (B) slope, and the zero to were 

used as variables. In addition, the ~~.6, 5, 8, 11, and 16 GeV/c data 

were allowed tO,have systematic errors of less than i71o. 

C. The Fits 

Phot.oproduction ii ts faT both cases of a full vertex zero and a 

square root type vertex zero were obtained. The parameters obtained 

in the former case are listed in Table II. The. amplitudes are 

pictured in Figs. 1 and 2,~ and the fit itself is' pictured in Figs. 3 

and 4. Although little effort has b~eri made to test the nonuniqueness 

of the fits~ it is probably true that they are not unique, so that 

these parameters should nO-G 'oe :ce£?;arded quantitatively too se:Ciously" 

He note in passing t.hai:. the small p E.!lrplitudesfound here seem 

consistent with the result of small ')'rrp coupling found in photo-

production dispersion relation calculations. 

A fh~ to the IIp-pn ana. pp-nr: ciatawas obtained with the 

assumption of a lull NNrr vertex zero, and these parameters are also 

presented in Table II. The notation used is that of Ref. (2). Fits 

wi th the square root zero at various locations were also obtained, and' 

will be discussed below. 

The best photoproduction fit for the square root vertex zero, 

ca.se i'ins obtained with X
2 = 73 for G2 points and a value of 
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2 . g /4 rr = 16.8, ~n some disagreement with the value of 

obt.ained in the NN fit for this value of to (to = -0.02'r). Fits 

with .larger values of to tend to decrease g2/)+rr for:rhotoproduction 

faster than 
2 . 

g /4n for :NN .scattering, so that the farther out we 

move to the closer we come to consistency. H0:-rever, for to = -0.034 

2 we obtain g /4 rr ::: 15 ahd 11. 7, respectively, for lP and NN 

scattering; we Calli'J.ot move to farther out and retain an acceptable 

V~~ue of g2/4~ ~ NN ·t" ~ H ror scat er~ng. On the other hand, moving the 

zero in to to::: -0.018 only ~aises 2 g /4n to 15.7 in NN 

scattering. Thus some inconsistency seems to. exist. 
I 

This discrepancy 

may, however, not be serious, since -we cannot "De sure that. there are no 

othe~ M = 1 conspiring :par'i ty doublets (e. g., B - pI). If there 

were, one could put ~ zero at some "GB < 0 into the B residue 

i'unction, and the data could then "De fit with a wide range of values 

for to since the coupling of the .pion would then no longer be 

constrainea at t = O. We discuss this point more fully in Section IV. 

Tne best photoproduction fit for the full vertex zero case 

was obtained withX2 ::: 66 for 62 points (not significantly different 

from the previous case). With u value of to::: -0.0), nearly equal 

values of g2/4rr ::: 15.4 and ll~.7 were obtained for photoproduction 

and NN . scattering respectively. Thus problems of consistency do not 

seem to arise if the zero is assumed to be a full"vertex zero. 

The value of the rr-/l1+ cross section ratio at 3.41 GeV/c, 
I) 

t ::: -0.37 Gev'- is measured to be o. '(3/2..1 = 0.3'3. We obtain 

:' 

.. ' 
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a(lr-)/cr(rr+) = 0.87/1.5 = 0.57 for both types of zeros, giving a 

total x2 of about 3 for the J1 and r(+ cross sectiono in each 

case. 

The photopl"oduction data. can 'oe Ii t weLL only out to about 

t = -0.5 GeV2 with the models 8.SSt,;uea. here. ?ast this point, the 

data show a break which vTe do :10t quantitatively reproduce. T'nis 

'oreak n ..... y be related to the structure in the pp ~ nn cross sections 

past t = -0.5 wnich the NN fits could not quantitatively describe. 

It is possible that the inclusio;?. of other trajectories (e'-g., an 

M = 1 p' or some amount of Al ) could be used to affect quantitative 

reproduction of the data. 

, 
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III. THE B TRAJECTORY PHOTOPRODUCl.'ION SUM RULE 

We begin by writing the sum rule, a positive moment sum rule 

for the even v part of the t-channel photoproduction amplitude which 

contains the B (but not the ~) trajectory. This t-channel amplitude 

is proportional to the photon isoscalar amplitude which in CGLN 19 

notation is (we use CGLN's v in this section) 

J\(v, t) = Al (0) (v, t) + t A2(0) (v, t) 

The sum rule is then 

N 
2 a: +1 

0 1 f v ImA(v,t)dv+ 
. eg t + lL .. ~ YOIB(t) R(t) 

N B 
.,. -

VB 4M 1t 2 a:
B 

+ 1 I 

t - 11 vt 
(31i) 

. where YorB(t) is the same residue used in the photoproduction fit, 

2 
4MvB = -11 + t,4Mv = B - U, 

and 

We evaluate A(v, t) by writing its multipole expansion formally as 

'A(v, t) = ,en-. t+ 1l2 ( 1 1 
l-·'·[i(v, t) +~, 2 -v + + v + VB)' 
it. 11 VB 

.(35") 

... \ 
It, 
! 

, , 

I 

" 

i! 
(. 

Ii 
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I: 
j; 

: : 
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where the multipole sum has the (real) Bo .. ~n t.erm explicitly removed. 

The sum L 9'1i (v, t) is given in CGLN through the multipole expansion 

i' 

of 1- (0) 
i 

where 

1-:"1"1 , 
~ ... t ) 

We use the parameterization of, the multipoles given by Walker 20 -

"em to evaluate the sum - L"'(i (v, t). Thisparaineterization utilizes 

i 

six resonances anti a number of non:tesonant parts, which are generally 

small. ' 
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The results of the calculation are preGented in Table III, 

and the integrands of both the Bietti-Roy-Chu and the B - meson sum 

rules at t ~ 0 are plotted in Fig. 5. 

It is seen that the B ~esidue is finite at t ~ 0 and has a 

The implication is that the B trajectory is an 

M = 1 trajectory, conspiring with an as yet unknown trajectory usually 

denoteQ as p'. Before turning to the relevance of this to scattering 

Qata.~ we remark that the form :found for the B residue suggests an 

analogy wi. th the pion residt;e .:'unction and pe:chaps suggests some 

co=relation ~etween the two trajectories in the sense of exch~ige 

degene~acy. If the B trajectory were to pass through the B meson 

and through zero at t = 0 the slope 0:.,,' 
D 

would be 0.79 which is 

not unreasonable. 

We comment next on the ~eliability of the positive moment sum 

~le. Firstj we note a Qefic~ency of the B sura rule that the 

corres~ )nding pion sum rule does not possess. First the Born term 

. , 2, 
here is depressed by a factor ,t - fl j relative to the pion sum rule 

so that the inherent stability of t~1e pion sum rule Que to a large 

Born term is lost. Secondl~lj the .:;mall isoscala:..~ amplitud.e is 

preswnably not too reliably determined, as it involves cancellation 

of large and nearly equal resonant amplitudes fOT n+ and n photo-

production. Tnus, if there were important isoscalar resonant contribu-

tions at k > 1.2 GeV/c the sum rule' would be inaccurate. We remark, 

however, that the integrand is positive over the whole region 

." ' 

I j 
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k = 0.2 to 1.2 GeV/c; hence to TevcrEC the sign of the inte~ral (thuG 

making the B an M:.: 0 trajectory), one would necd to undo the 

total effect of the firGt six resonances. Since we are workinG wi th a 

positive moment sum rule, this is not inconceivable. However, the 

con'/ergence of the integral over the first six resonances is good even 

with the positive moment, so the SUIT, rule as it presently stands 

converges well.. Notice that the "duality concept" as advanced by 

Schmid 8.1.'10. Chew,2l whereby domir.ant Regge trajectories provide a. semi-

local average to the energy dependence of the imaginary part of the 

amplitude a.t low energies in the resonant region,does not appear to 

hold in this energy region,as the contribution of the first six 

resonances to the B sum rule integrand produces only a wide positive 

bump over the wnole region of integration. In fact, the Bietti-Roy-Chu 

sum rule integrand is even worse, being purely positive at momenta 

0.2 < k <. 0.7 GeV/.:. and negative :;.~or 0.7 < k < 1.2 GeV/c (see 

Fig. 5). Thus photoproduction&~litudes a~ these energies seem to 

violate the Schrnid "du·ality concepT,} Ii ~hough there is no reason why it 

should not be valid over ~ la.rger energy region. Finally we remark on 

~he zero in the B resio.ue indicated by ~he sum rule. Tne zero is 

caused by cancellation of the Born term that rapidly increases in t with 

the nearly constant integral. If we double the integral, the zero 

moves outward to tB = +0.21t; if we cut the integral in half the zero 

moves in to tB = +O.C~. Since we cannot reliably estimate the errors 

on the integral, we carillot really, be sure that the zero is not in fact 

at tB = 0 (thUG indicating an M - 0 B trajectory). 
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We have also investigated the possibility of evaluating the 

1! and B resiciues using ordinary cutoff dispersion relations. The 

results are only roughly in agreement with the unsubtr.acted sum rules, 

yielciing M = 1 1! and' B :;:oesidues wi thou-G sr.y zeros and wi to 

magnitudes at t = 0 larger tnanthose of the "FESR by an order of 

magnitude. However~ the cutoff dispersion relation is satisfied very 

nearly by the Born term anG. roughly by the resonances, so that the 

calculation of the Regge term is inherently inaccurate. 

, ' 

'0\ 
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IV. IMPLICATIONS FOR Sf!AT'rnRING DATA AND THE PION SUM RULE 

The actual existence of an M ~ 1 B trajectory cannot 

conclusivelY be establiehed from experimental evidence. As we have 

shown, an M = 0 B trajectory 1e certainly compatible with the extsting 

data. We argue, however, that a.n M =: 1 B trajectory is also compatible 

and perhaps preferred by existing data, but that exhaustive fits using 

it would be inappropriate until measurements at small t are made of 

the high energy cross sections for the processes pp ~nn and 

rn ~n-P, These measurements should serve to determine the existence 

of an M::: 1 . B . trajectory in a model where only the 11' and B 

trajectories have M = 1, since the 1\'-B and .".' .p' interference terms 

change sign between the processes ,pn ~ np, pIf ~ nn , 'and between 
, , 

'YP ~ 11'+n, 'Yn .... n-p. If the 'B has the quantum number M::: 0 these 

interference terms at t::: 0 are ze'ro in all cases. However, for an 

M ::: 1 assignment these interference terms would be nonzero at t = o. 

Further, the small 't behavior of the pp ~nii reaction also provides 

a clear way to distinguish the type of zero in the nNN vertex 

function. 

Another reaction which would be critical in determining the M 

quantum number of the B' would be * nN ~ wN, near t = o. Notice that 

thiB reaction 1e the analog of the reactionrcN ~'pN~ involving1\' 

exchange. Finally, .pn ~np polarization measurements near t::: 0 

should affect th1sdetermination; these measurements are curren tly' in 

progress. 
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We now consider the implicnt.iona of consil1tcncy of hie;h-cnp.rgy 

data combined wit.h the pion sum rule for an M = 1 assignment for the 

B trajectory. 

A. Photollroduction 

If we take the result of the B sum rule'at least as an 

indication of the magnitude of the B residue, there appears to be a 

contradiction with the fIt. For It I > ~12 the fit with to:;: -0.03 

seems to require at least a factor of 30 times'the B contribution 

given by the sum rule. The M = 0 B assumed in the yp ~~+n fit 
. 

may therefore .be interpreted as simulating the effect of a small M ~ 1 

B amplitude together with the 0' amplitudes. If we assume small 

nrB and nyp' couplings, a medium NNB and medium NNp' nonsense 

coupling, and a large NNp' sense coupling, the M = 1 B and p' 

will very nearly simulate the M = 0 B amplitude assumed in t.he 

photoproduction fit, being predomi~ate1y equal to the sense-nonsense p' 
, 

. amplitude which vanishes at t = 0 '(see Fig. 6). 

It is possible that with different p or A2 ghost killing 

, mechani sms (or the inclusion of some amount of M:; 0 A1 ), 1e ssM = 0 

Bwou1d be required to fit the data. In any case, ,the ft+ photoproduc" 

tion fit can surely be made consistent with an M = 1 B_p' conspiracy. 

Next, we consider implications of an M = 1 B, trajectory for 

~- photoproduction. Assuming the ~xistence of an ' M ~ 1 B trajectory 

a.nd the zeros indica. ted by the sum. rules in the 1f. and B residu'es, 

, i 

, , , 
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it is phenomenologically clear that more constructive n-B and 
, . 

(r + pI) - (rr' + A
2

) interferences would give better reaultr, for the 

fit to the n-/n+ ratio at moderate t. This, unfortunately does not. 

predict that the n-/n+ . ratio near t = ° would continue to be small 

since the p and A2 terms vanish at t = 0, and these terms are 

significant at moderate, t. Notice that local fluctuations (i.e. 

maximQ or minima) should occur in the n-/n+ ratio 'in the M = 1 B 

model'when the 1t or B residues vanish. Notice also that as 

t ~O an M = 1 ntrajectory predicts that the n-/n+ ratio would 

be different from 1, \-lhereas the model utilized in the fit with the 

M = ° B residue vanishing att = ° yields the prediction of a 

ratio of 1 at t =0. Even if the p' nonsense and B residues 

were small as indicated by ,the sum rule, interference with the large 

1t and n' ampl1 tudes would produce a noticeable effect. Rence, a 

measurement of the n~ photoproductioncros~ section near t ~ ° 
would provide a critical test of th~ p' -B conspiracy. 14 

Next we consider nO photoproduction. Ader and Capeville and 

Bra.unschweig et a.1,22 ha.ve fit low energy nO photoproduction data 

utilizi.ng an M = 0 B amplitude very similar in niagnitude to \-lhat our 

M eo ° B would yield for nO photoproduction at small t (e.g~, 

t ~ -0.1). For higher values of t, the p amplitudes in our fit would 

simulate the B amplitudes in these fits (which did not include the p) • . 
Hence the eonjectured simUlation of the M e 0 B, by an M ~ 1 B + o' 

should fit the nO photoproduction data. 
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Finally we remark that; the presence or ubcencc of poluri7.uticm 

in rr p -l 11"°n is not critical to any of these arguments, since we may 

always fit the polarization with a sufficiently small p'rrrr residue. 

i3. fIN Scattering 

Next we consider implications of an M = 1 D-n' conspiracy 

for the pn -lnp and pp -lnn reactions. First, suppose that the 

I -) zero in the pion vertex function \rrNN is of the square-root type. 

The value of the zero to;:: -1.5 112 is consistent in the sum rule and 

the pho"Cuproduc,tion ii ts, but leads to some inconsist;ency in the NN 

fits, since 2 
g /4rr in the. NN fit turned out to be ratheI' low. 

HOYlever} an M = l B tra.jectory could easily remove this discrepancy 

by releasing the constraint on the, pion residue at t;:: 0, thus allowing 

a. higher value of, g2/4rr to be obtained. in the NN fit via destructive 

interference of the 11 with the B at t = ° [the pI and rr' would 

also interfere destructively (see l<'ig. 7)J. Notice that since more 

parameters are introduced in an 1\1 = 1 B fit, the amount of freed.om 

in fi~ting the ~~ dat~ actu~lly increases, so there is no Qoub~ that 

a s'Uccess::t.ul NN tit can ~e perforrr.ed. The zero in the B :..~esiciue 

would help to provide the necessary sharp peaks in the cross sections 

and the medium sized NNB and NNr l nonsense couplings wou~d no doubt 

be nonviolent enOUGh to achieve consistent fits. ,Thus, the pion could 

ctill be held acco'C.ntablc for. a la.rge role in malting the sharp peaks. 

~';otice that in this ca.se destructive interference in pn -+ np implies 

I' 
1 
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cbn~tructive interference in PP ~nn so that the PP ~nn cross 

sections should remain larger than the pn ~np crosssectionG at 

t ;,: 0 if th1e square-root type vertex zero model in correct. 

Suppose now that the nNN vertex zero is a full zero. The 

value of this zero required to fit both photoproduction and NN data 

is to ~ -2.5~2. This value is not consistent with the pion sum rule 23 

but could be made consistent if the M = 1 B tra,jectory were present. 

Moving the pion zero to 
'2 

to = -1.511 WOuld lower the t := 0 contribu-

tion of the pion in the NN fits significantly (assuming fixed 

2 ' 
g /4 n). The extra contribution needed in the pn ~ np cross section 

could then easily be provided by constructive 'interference of the B 

with the ,n, and the' p' with the n' (see Fig. 7). Thus, in this 

case of a full vertex zero, the interference in pp ~ nn would be 

destructive so that there should actually be a dip in the PI' ~ nn 

cross section for It/ < 0.02 GeV2 (Le., the pn ~ np and PI> ~ nn 

cross sebtions shbuld cross over)., 

To summarize, if the pion photoproduction sum rule is correct, 

the existing NN data seem to favor the existence of an M = 1 B 

trajectory regardless of the tY:pe of Zero in .the 'rrNN vertex function. 

If the pion ,sum rule is yielding misleading results, there is no 

preference from NN scattering',for an. M = 1 B trajectory since it 

could be that a full NNn vertex zero at t = -0.05 would be consistent 

with the sum rule. The existence of higher resonarlces with large )'N 

couplings could well change these sum rul~ results. In particular, 

measurements of the total 'cross section up to 2.6 GeV / c (where our 

Regge fits begin to work) would provide information on the yN pa.rtial 

vfdths of these resonances. 
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Table II. Parameters for fits with full NNrr vertex zero at to = -0.0) 

Parameters fixed from meson-nucleon scattering5 

a = 0.58 + l.llt 
p 

= -8.8 eO. 4t 

A2 A2 - A2/- A2 -O.llt b12 /bll = YNR ·YSR = 3·5 e 

Parameters obtained in nucleon-nucleon fit [notation and data normaliza-

tiona correspond to Table II in Ref. (2) J. Residue units are propor-
1 " .J. k 

tional to (mb)2, (equalling (mb)& (GeV) for appropriate va~ues of k) . 

..; - 89 for 74 points 

a 
rr = -0.025 + 1. 25 t 

a, = -0.025 + t 
rr 

= 0·35 
-4.4t e 

A2 llt 
Yll ::: 1.8 e 

= 8 ( ) lot - OOt ex
B 

+ 2 e 

[b
O

rr (o)/a
rr 

(0) Je 4 .8t 

= -6'8 (ex ' )~ e2 •2t 
re' 

= 
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Table II (Continued). 

Parameters obtained in n+ photoproduction fit. Residue units not 

proportional to 
. 1 k . 

(~b)?, (equalling (GeV) for appropriate values of k). 

x2 
= 66 for 62 points 

cxB = -0.4 + 0.95t 

p 0.166 e-9 •0t 
r SR = 

A2 
0.77 e -l.l:t 

"SR = 

- B = -2.95 ellt r
OI 

- ·n -0.078 e9 .1t 
"01 = 

- n' / 2 - n 3·7t 
"NR = - (2m ~l ) "or ( 0 ) e 

- n'r:; n' 1.86 -2.6t 
"'SR "'NR = e· 

g2/4n =.15. 4 
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Table III'; Results of the .. B meson sum rule 
'" \;\ ",) 

'1·- B 
Eq. (37) reads ; YOI (t) R(t) B(t) + I(t), where. B(t) 

is the Born term. The power series expansions of let) and B(t) 

around t ='0 are given by 

." I(t) = 
. '2 

-0~027 - 0.06t +0.06t 

B(t), I:: +0.0058 + 0~294t. 
':., " 
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Table IV. TABLE OF NOTATION 

Section IA 

ft t channel helicity amplitude for unequal mass process Y~~N1N2 
A1 A2 , "y 

f:L t channel parity conserving helicity amplitude (same process) 
"'1 "'2''''y 

fJ± t channel partial wave helicity amplitude (same process) 
"'1 "'2'''Y 

J± 
fL, S' LS (t) t channel partial wave L"8 amplitude (same .,process) 

"'J± 
fL'S'LS 

JAfl± r
k 

. 

"",JAil:L 

ar;SS' 
F.(s,t) 

1. 

~E 
F. (s,t) 

1. 

Section ID' 

~ . (s,t) 
1. 

Coefficients of L-S amplitude expansion around threshold 

Coefficients describing leading order behavior of helicity 
ampli tudes around threshold 

:L . 
Kinematic singularity free form of f A A A (s,t) 
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?IGURE CAPTIONS 

Fig. 1. Real parts of the re+ photoproduction amplitudes a.t 8 GeV/c 

for full NNre vertex zero to = -0.05. To leading order, 

, dO' i 2 I ' . B 12 21' , . (A \ • , 12 
dt 1 = Ire;,; + ;';PSR T 2) SR :r re 'SR 

I n',~hoi;oproduction 

Fig. 2. Imaginary ?arts of the re+ photoprouuction amplitudes at 

8 GeV/p for 1''1.111 NNr( vertex zero to = -0.05. 

Fig. 3. rr + :photoprouuction fit., Curves have been multiplied by 0.99, 

,l.03 J1 l.03j. 0.97, 0.93, respectively for 2.6, 5, 8, 11, and 

'16 GeV/c. 

Fig. 4. Small t region for 
.;-

rr pGotoproduction fit with the same 

normalization factors. 

Fig. 5. Int.egranus at J.:; = 0 for the B and pion photoproduction sum 

rules. 
2 ( • 

(~ 1m A_ 0) 
rr -"1. 

2 I \' 

and ~ 1m A \ -) respectively) ~ 
Til ' 

}-'ig. 6. 'Conj ectured. s iroula t:'on 0:: M = 0 B amplitude found in 

photoproduction fi twi th M = 1 B, p' amplitudes. 

Fig. 7. Conjectured M = 1 B rur.plitude and resulting rr amplitude 

for pn ~np scattering near teO. 

1'( v..mpli tude with M = 0 B assumed. 

re ~~litude with M = 1 B assumed. 

-. -. M = 1 B amplitude. 
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Th . t· " - . i ld da_(ft' (pn -'np) "" 1 rob e roar~ on r.e Ver~lC&~ ax~s y e 6. ~ -

at 8 GeV. 

Fig. 8. Real parts of the nucleon-nucleon amplitudes at 8 GeV/c for 

full NNrr vertex zero to = -0.05. To leading order, 

.i.. I ,,2. 
, rc 22 .'" 

, . 12 
+ rc 12 

To leading order the cou1>ied triplet aJnplitudes factorize; 

e.g., rr\l rc'22 = -(rr'12,2. Note that the (12) amplitudes 

. have b.dd.itional weight in the cross sections. 

Fig. 9. Imaginary parts of the nucleon-nucleon amplitudes at 8 GeV/c . 

for full NNrc vertex zero to = -0.05. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method; or process disclosed in this report 
may not infringe privately owned rights; or 

8. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 

this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 


