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ABSTRACT 

UCRL-18379 

It is shown that application of conformal mapping to two 

dimensional magnets, containing iron with nonlinear B(H) charact~rist.ics, 

allows calculation of magnetic fields in all 2D space. For some magnets 

of finite length, this information can be used to get a good a.pproximation 

for the stray fields in all of 3D space. It is furthermore shown that 

only minor modifications to POISSON are necessary to allOiW application 

of the same techniques to magnets with axial symmetry, leading in this 

case to solutions that genuinely and accurately describe the fields in 

all of 3D space. 
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I. INTRODUCTION 

It is sometime,s necessary to have information about the stray 

fields produced by two dimensional magnets. It is clear that the following 

consideration, being purely two dimensional, is valid ,at most up to a 

I 
distance,of the order of the physical length 

I 
of ,the magnet. We will 

\ 

later describe a procedure that can give approximate information about 

three dimensional stray fields and will finally discuss application of 

the basic procedure to axially symmetric magnets. To simplify the 

description of the procedure, we discuss its application to a specific 

magnet that is typical for the kind of problem that arises in practice 

(and also leads to simple figures that are easily drawn). Although of 
\ 

general validity, the description of the method is tailored to the use 

of the magnetostatic analysis program POISSON. (1) 

A. Stray Fields Produced By a Window Frame Magnet 

Figure 1 represents the cross section of 1/4 of a window frame 

magnet. The field lines are perpendicular to the midplane 0-8, and the 

symmetry plane 0-6 has a constant vector potential. For calculation 

of the fields with a digital computer, one obviously has to limit artifically 

the grid that is used for the description of the problem. Even when 

saturation effects are of importance, it is a reasonably good approximation 

. to limit the grid along the line 6-7-8 and put that line onto the same 

vector potential as the line 0-6. Whether one limits the grid in this way, 

or limits it farther outside, with air between 6-7-8 and the grid limitation, 

is immaterial for the method used to compute the stray fields. 
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When one wants to calculate the stray field at some point outside 

the magnet, the grid does not only have to include that point, but should 

go significantly beyond it in order to avoid falsification of the stray 

field by the artificiall,grid limitation. This lead.s to an impractically 

\ 
large total number of mesh points, since the magnet :i tself should still 

contain a reasonable number of grid points in brder to describe the 

stray field-producing saturation of the iron adequately. The large number 

of grid points and the errors resulting from the artificial grid limitation 

are avoided with the following procedure. 

One first solves the magnetostatic problem, without regard for 

stray fields, in the configuration shown in Fig. 1, with the artificial 

grid limitation along line 6-7-8. One then solves the same magnet again, 

but in the geometry obtained by applying the conformal transformation 

2 
w=-R /z (w=u+iv; z=x+iy) (1) 

to the original magnet. R is a suitably chosen scaling length, and Fig. 2 

represents the transformed magnet, drawn to the same scale as the magnet 

in Fig. 1, with R equal to the distance 0-5. 

The minor program modifications necessary to analyse a magnet 

wi th nonlinear iron in a conformally transformed geometry have been 

described elsewhere(2) and are incorporated into POISSON. 

To solve the magnetostatic problem in the transformed geometry, 

we limit the grid in the w-plane along the map of a suitably chosen con tour 

inside the magnet in the original geometry, for instance line 1-3-4, or 

alternatively the dashed circle. We obtain the vector potentials at the 

lei 
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grid points of that mapped contour from the analysis in the original 

geometry, and solve the resulting bouridary value problem,or boundary value 

problem with currents, in the transformed geometry. The field components 
I I I I I 

B ,B inside the contour 00 -6 -7 -8 -00 are obtained from the vector 
u v 

'j potentials by standard numerical differentatiop, and the field components 
, I 

B' B 'in the original g' eometry are obtained hy application of equ. (10) 
x' y 

of Ref. 2 and yield with equ., (1): 

(B -i B ) =(B -i B ) • ddWZ 
x y u v 

= (B -i B ) • (~)2 = (B -i B ) • (~)2 
u v z u v R 

It can also be practical to calculate from the vector potentials 

the multipole coefficients a of the complex potential describing the 
n 

fields in the w~plane: 

n 
a W 

n 

, This gives for the Laurent expansion of the stray field potential: 

(2 ) 

The only one step described above that is not routinely performed 

by POISSON is the transfer of the vector potentials from the contour 1-3-4 
I I 

to the mapped contour 1 -3 -4 in the w-plane. The simplest way to 

accomplish this is to map the grid points on the outer contour in the 

w-plane into the z-plane and cal,culate the potentials there by interpolation 

of the vector potential field. Linear interpolation should in general be 

sufficient, since minute details of the vector potential distribution along 

the outer contour in the w-plane should have only a small effect on the 
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stray fields. An alternate method to solve for the stray fields would be 

" 
to compute the scalar potentials along the contour 6-7-8 and use its map 

as the outer problem boundary in the w-plane. The first method is preferable, ~. 

since scalar potentials are usually not computed by POISSON and the stray 

f,ields would be more sensi ti ve to errors in the scalar potentials along 
I f I I I 

6 -7 -8 than they are to errors in the vector
i 
potentials along 1 -31-4 . 

It is clear that the computation of the stray fields in the w-plane 

allows the presence of ferromagnetic bodies in the stray field region as 

long as they satisfy the conditons implied by the two dimensional approxi-

mation. 

When one is dealing with symmetrical multipoles (2n-poles), it 

has been shown in Ref. (2) that it is advantageous to analyse their 

n-l n 
fields in the georretry obtained by the conformal transformation w=k z. 

Similarly, the stray fields of such a magnet should be computed in the 

t bt · d b t f . th 0 0 1 t °th Rn+l / n georre ry 0 alne y rans ormlng e orlglna geome ry Wl w=- z , 

and the stray fields in the original geometry are obtained from the fields 

in the transformed geometry with appropriately modified equivalents to 

equ. (2). 

When one is evaluating magnets that saturate badly, or magnets 

with an open iron core (for instance C-magnets), it is not always obvious 

how much the solution in the magnet is influenced by the artificial grid 

limi tation. To obtain a better solution, one can compute the stray fields 

as described above, then transfer the vector potentials obtained along 
I I I 

the map of the grid-limiting-contour of the original magnet(6 -7 -8 )to 

that contour (6-7-8) in the original geometry, and solve the problem again 
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in the original geometry with these new values at that boundary. With 

this i terati ve process, which in general will not have to be repeated, 

one clearly obtains a very accurate all 2D-space solution for the magnet. 

There are obviously other configurations where these all 2D-space solutions 

might be useful. One might, for example, want to know how the field in 

an', iron-free magnet is influenced by the presence of iron at a distance 
, Ir 

outside the magnet. 

It is worthwhile to point out that it is possible to obtain reasonable 

approximations for the three dimensional stray fields at virtually any 

I 
distance produced by magnets that have small end effects in the sense that 

they do not contribute significantly to the stray fields. One could 

derive the three dimensional stray fields from a vector potential that is 

obtained by superpositon' of finite length filamentary multipoles with 

strengths giving the "riear field" multipole strengths described by equ. (3b). 

B. Extension To Magnets With Axial Symmetry 

Magnetostatic fields with axial symmetry can be derived from a 

vector potential that has only an azimuthal component which is, of course, 

indeperident of the azimuth. If we introduce the axial and radial coordinates 

respectively as the x and y coordinates of a Cartesian coordinate system 

and furthermore introduce a pseudo vector potential 'if with only a component 

in the ~ x Y direction equal to y times the vector potential, then the 

magnetostatic equations for the axially symmetric problem can be represented 

by: 
-> 1 ~ xV (4a) B' := y \l c 
~ 

y(lBI,x,y) B/~ , (y l/~rel'. ) (4b) H := := 
0 

\/; x (I V, x V) := 
~ (4c) 

~o J 
. eYe 
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7 ~ ~ 
In these equations, J has only a component in the x x y direction, equal to 

~ 

the current-density in the original problem,and \7 c 

form of the del operator. 

is the Cartesian 

The only difference between equ's (4) and the equations describing 

a genuine two dimensional problem in Cartesian coordinates is the extra 

factorl/y, and the integration routine is easily modified to take thi~~ 
I 

into account. POISSON, just as its predecessor TRIM (as well as other 

programs), has this modification incorporated for the solution of problems 

with axial syrnrretry. It is clear from equ's (4) and Ref. (2) that in 

order to solve equ's (4) in a conformally mapped geometry, one needs to 

incorporate into POISSON the same modifications that are needed to solve 

genuine two dimensional problems in a transformed geometry, as well as 

the modification necessary to take the factor l/y into account. Although 

this has not been done yet, it is clearly a simple matter to do so. To 

find the stray fields for an axially symmetric problem, the same transfor-

mation can be used that was employed in the 2D case, and the rest of the 

procedure is also identical, with only two modifications: the power 

expansion, equ. 3, is not applicable, and the field components in the 

x-y (z-r) coordinate system are obtained from 

B -i B 
x Y 

(dV +i dV) • ddW
z
/ Y• 

bV dU 

In contrast to the two dimensional case, application of this 

procedure to an axially symmetric magnetostatic problem gives a solution 

that genuinely and accurately covers all space. 

L 
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Footnotes and References 

* This work was done under the auspices of the U. S. Atomic Energy Commission. 
, . 

1. POISSON is an improved version of TRIM (originally written by A. M. 

Winslow, Journal of Computer Physics,!, 149 (1967) and was developed 

by J. i R. Spoerl, R. F. Holsinger, and K. Halbach. POISSON uses, like 
I 

'TRIM, the vector potential in an irregular triangular mesh. 

2. 
1\ ' 

IK. Halb.ach, UCRL-18173, to be published in Nuclear l Instruments and Methods. 
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FIGURE CAPTIONS 

Fig. 1 Original geometry of magnet (complex z-plane). 

Fig. 2 Conformally mapped geometry of magnet (complex w-plane). 

I 
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Original Geometry of Magnet 

(complex z - plane) 

fig. 1 
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Conforma1ly Mapped Geometry of Magnet 

(complex w - plane) 

fig. 2 
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mISSIon, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 


