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ABSTRACT 

UCRL-18397 

Group theory provides an elegant general solution of the 

equal-mass conspiracy conditions but leaves open the possibility of a 

II counterconspiracyll between a number of integrally spaced. Lorentz poles. 

It is shown that factorization of Reggepole residues and coupling to 

channels of arbitrarily high spin imply that only onecQuuterconspiracy 

(consisting of an infinite number of Regge poles) is possible in equal~ 

mass scattering. It is also shown that if there is coupling to Unequal-

mass channels then even this counterconspiracy is forbidden and the only 

possible; solutionis for the equal-mass channel residues to be those of 

a single Lorentz pole • 
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I. INTRODUCTION 

An elegant solution, to the equal-mass conspiracy conditions at 

t = 0 
1 2 

has been given by Toller and Freedman and Wang using group theo.-

retical arguments. They find that the conditions are satisfied by a 

Lorentz (or Toller) pole which corresponds to an infinite sequence of 

integrally spaced Regge poles. This group theoretical approach suggests 

the plausible assumption that the scattering amplitude is given by a 

single Lorentz pole at t = 0 (for specified signature, internal quantum 

numbers, and trajectory intercept). However,there is the possibility 

of a If, counterconspiracy" between a number of integrally spaced Lorentz 

poles. In fact there are some simple examples of counterconspiracies: 

if a Regge trajectory couples only to channel spin3 zero (e.g., all 

particles spinless) no conspiracy is necessary or if it couples only to 

4 
channel spin one only ihree traj ectories are necessary. In addition the 

single Lorentz pole hypothesis is much less plausible than the single 

Regge pole hypothesi~ since all dynamics is invariant under 0(3) but 

0(3,1) or 0(4) invariance applies at only one point in t and only for 

equal4Uass channels. In this paper we consider the question of counter-

conspiracies and show that under some reasonable physical assumptions 

there is one and only one possible counterconspiracy. 

More precisely, we assume: (i) angular momentum is cohserved, 

(ii) there is only one Regge trajectory of given quantum numbers 

[including a( t=O)] and its residue factorizes (no "accidental II crossing 

of trajectories),and (iii) the leading trajectory in a conspiracy 

couples to channels of arbitrarily high channel spin (for any channel spin 

there exists an equal-mass channel with channel spin s ~ s 
o 

to 
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which the trajectory couples at t = 0). We can then argue that 

there are just two possible conspiracies. One is that of a single Lorentz 

pole and the other is a new conspiracy which yields an s-channel ampli-

tude that has only one helicity flip to all orders in the energy at t = O. 

Therefore there is only one possible counterconspiracy. That a single 

Lorentz pole satisfies the conditions has been shown by Sciarrino and 

Tollerl } 5 and Nakanishi,6 who completed the proof of factorizability 

of the residues. We have not been able to give a general proof of the fac-

torizability of the residues for the counterconspiracy,but we have checked 

it in many special cases. 

If the leading trajectory also couples to an unequal-mass channel} 

as is to be usually expected on physical grounds, then using factorization 

we can show that only the single Lorentz pole conspiracy gives permissible 

equal-mass channel residues. 7 We thus come to the conclusion that the 

Lorentz pole conspiracy is expected to be the typical conspiracy and only 

in special cases (e.g., coupling only to equal-mass channels) are there 

other possibilities. 

The assumption (iii) of coupling to channels of arbitrarily high 

channel spin is of course quite strong. It eliminates the examples of 

counterconspiracies for low spin channels mentioned above. However} it 

is not unreasonable, since one might assume that high spin quasi two-two 

amplitudes can be projected out of multiparticle amplitudes and then 

Reggeized in the usual manner. Also the assumption is quite appropriate 

8 
for models with narrow resonances and infinitely rising trajectories. 

, 
In the final section some comments are made about the possibility of 

weakening this assumption without altering the conclusion. 

In Section II we establish our notation. The conspiracy conditions 

• 
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are formulated as angular momentum conservation in the s channel. We 

explicitly find their solution up to the order sa-~ where a is the 

t = 0 intercept of the leading trajectory, 9 i.e., for n = 0,1,2,3, 

where n is the conspirator number. There are only two possible solu­

tions. In Section III we show that the residues of the leading trajectory 

and the first conspirator (n = 0,1) uniquely determine all the other 

conspirator residues at t = O. The two preceding results taken together 

prove that there are only two possible equal-mass conspiracies. In the 

course of the proof we derive an interesting property of the conspirator 

residues [see Eq. (22)]. In the Appendix the properties of the second 

conspiracy are discussed further. Section IV outlines the proof when there 

is parity conservation and time-reversal invariance. The unequal mass 

problem is treated briefly in Section V. We give a simple derivation of 

the most singular terms of the residues for arbitrary spins and point 

out that these agree with the more general results of Klein. 10 Then by 

considering the ccqili..ng of eqml-tn3S3to unequal-mass channels we show that 

only the Lorentz pole residues are allowed for the equal mass channel. 

In the final section we give a summary of the conclusions and make a few 

further comments. 

The straightforward method employed below is less elegant than 

group theory,but we believe it gives additional insight into the way 

conspiracy conditions are satisfied when factorization plays an impor­

tant role. 
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II. CONSPIRATOR RESIDUES FOR n ~ 3 

We consider the s-channel process 1+2 ~ 3+4 where ml = ~, 

m2 = m4' and ~, m2 f 0. The center-of-mass helicity amplitude is 

denoted by ~~4;~~ (s,t). At t = 0, rotational invariance about 

the direction of motion requires H
S

- to vanish unless ~ - ~ = ~ - ~4; 

this is the conspiracy condition. Similarly the t-channel c.m. helicity 

11 
At t = 0, the crossing relation gives 

From the identity, 

we see that, 

and 

if we define 
"\" 

L C(s4s2s;~4-~) 
[~} 

~ sl-~1+s2-~2 
L-O C(s4s2s;~4-~2)C(s3s1s';~-~1)(-1) . 
[~} 

Ht (s,O) 
~3~1; ~4~2 

10 the crossing relation takes the compact form, 



== \' d S (~) L 1-l:>-'2 
I-ll-l' 
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(1 ) 

We will refer to sand s'aschannel spins although they differ from the 
sl-:>-'l . s2-~ 

usual t-channel spins by the phase factors (-1) and (-1) . 

We neglect parity and signature until Section V,;thus the contribu-

tion of a Regge trajectory with residue 

and a = a(t=O) is 

where 

12 
The e functions are those of Andrews and Gunson, 

ti;(I-l-I-l' ) 

e~~~l(Z:!:i€) = e 2r(-2a) [r(l-l-a) r(-I-l-a) rl-l'-a) r(-I-l'-a)]~ • 

(1-l+I-l' ) 
. 1 a 1 2 2 

(!'2-) (ZZ+_l) ( ) ,\ F I-l-a, I-l'-a; -2a; - z-l 

for Z ~ 1. The following convenient notations, 

_ 2 
x::.­

z-l 

enable us to write 

(z == z + i€ since 

(2 ) 
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Ht (Regge) 
sIlS'Il' 

The conspiracy condition is written as 

C ,'\ (x) SS 1'-

-cx x 5/J'..' , 

where the -cx x has been taken out for convenience. As will soon be 

clear, we are led to consider the possibility of conspiring trajectories 

integrally spaced below the leading one. Thus we combine equations (1), 

(4),and (5) and introduce labels c, c' to indicate the channels to 

obtain, 

where 

~~ dS (~) dS' (~) ""2rc(nL.,.,.c' (n) 
w... 2 Il'r..' 2 fJ sll P S 'Il' 

n 
x 

cx now denotes 

11+11' 

(l+x) 2 F(n-CHIl, n-a+Il', 2n-2cx; -x) , 
the intercept of the leading trajectory.9 

(6) 

This is our basic equation. We have included only one trajectory and its 

possible conspirators on the right becuase it is clear that each trajectory 

plus conspirators must satisfy the conspiracy condition (5) separately, 

since they contribute different asymptotic powers to HS.13 

We now try to satisfy (6) power by power in x. We write 

Comparing coefficients of 

Ccc' (0) 
ss'r.. 

o 
x 

k x . 

gives 

The rhs shows explicitly that the contribution of a Regge trajectory 

" 't" t 1 d . d 14 Th h Hl C .orlze s 0 ea lng or er. e r s thus is a rank 1 rna trix in r.. 
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and f-I. Since the lhs is diagonal we conclude at most one diagonal 

element is . nonzero. We call this element M. M always has a significance 

with this definition and it will be shown below that in the Lorentz Pole 

solution it is the usual M quantum number. Since we also have factor-

ization in the channel types c, c l we conclude: 

ccc' (0):: c 
SSI", I's 

which leads directly to 

c' 
I's' (8 ) 

The reduced residues I' sc for channel and channel spin (c,s) along with 

M characterize completely the coupling of the leading trajectory and, 

as will be seen, all the conspirators. The assumption (iii) can now 

be restated as: For every so' there is a channel c and spin s ~ s 
o 

with From (8) it .is of .course clear that = 0 if s < 

We now compare coefficients of xl in (6). For future reference 

we quote 

1-1+1-1' 
-2-

(l+x) F(I-1-a, 1-1'-a; -2a; -x) :: 

1(1-11-11 ) ( 1-1
2

1-1,2 
1 + 2 -a- + a x +t2(2a)(2a-l) 

2 2 
-i1-1';-r:::+..:....I-1-:' ~ + (a -1 ) ill-1' + 
8(2a-l) 2(2a/ 

Using (6), (7), (9),and (10) and choosing (c,s) and (c',s') 

c' 
I's' :/: 0: 

C
cc' (1) 
ss'", b"",,' 

(10) 

so 
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From the identity 

IsM) (11) 

it follows that 15 

°AA' =[2~ 
+ ~ 7 s c 7 ,C' o),M o~'M J 

(4)::~~ l~:~~1 ] . (12 ) 

By assumption (ii), (c, s) and (c ' , s') can be chosen such that s, s I ~ 

maxiM:±" 11 and hence the leading trajectory gives an off-diagonal 

contribution which must be canceled by a conspirator. The contribution 

of the parent is written as 

P )I-.-M 
(sl-.I \-2+ IsM) (s 'I-.' I for 

1-., I-. '~M , 

and similarly with a J for I-. or I-. I < M. This remove s the common fac-

tors. Therefore 
1-.' ==M+l I-. '==M .. 

I-.==M+l 1 
0 1 

2a 2a 
B(l) I-.==M 0 

a 0 == Sl-.S I I-. t 2 
... 

I-.==M-l 1 
0 

1 
2a 2a 
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The first conspirator contribution must differ from the negative of this 

d o 1 t ° c(l)~,\,\,. by the lagona ma rlX ui",," Therefore using the factorizability 

of the first conspirator contribution: 

\' 
s :rry f3 c '(l) 1 (S''-''{ b+' C;)+ (~-*S'M) LJ dfllf,.1 (2" 'L b I 

S I fl' ( _20:)2 
IJ.' 

with b b I = b b I l. Or 
+ - - + 

~(l) = 1 1 (SIJ.I R (2~) ~ (J
2
+ J+ b (J

2
-)}lsM) 

sfl (_20:)2 y f+ -

NC I (1) 
and similarly for f3 I I with b+ I. 

S fl 

'Y c, 
s 

(14) 

The preceeding arguments prove that (14) holds for all (c,s) with 

y c 1= 0 and 
s 

s ~ max I M±ll. We now consider a (c,s) with y c ~ 0 and 
s 

s < max I Mill. s' ~ maxIM±ll. It is clear 
C I I 

We can choose y I F 0 and 
s 

that the residues for the channel (c',s') given in (14) and the relation-

ship (12) determine the residues for the channel (c,s). We can write the 

residues for (c,s) in the form (14) by using the fact that either J+ISM) 

or J_ISM) is zero (both are zero for s = M = 0 - an example of the well-

known fact that only alternate conspirators couple to spinless 
c 

Finally we consider a (c ,s ) with Y o 0 s 
o = O. We show that 

o 

channels). 
c (1) 

'{{ 0 0 
I-' S fl = 

o 
and therefore (14) holds for this case too. By considering coupling -of 

(c ,s ) to itself and repeating the arguments leading to (9), we see that 
o 0 

r-Jc (1) s c c (0) 
~ 0 d 0 (~)g 0 since ~s 

0 

fl = O. However, that this would I) s ~l we see 
f-i.M 2 s 

0 o 0 0 

give a contribution to HS for f,. ::f f,.' when coupled to a channel (c, s) 

c' 
'Ys I 

, 
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c 
with s ~ maxlM±ll. Therefore gs 0 is zero as required. We have there­

o 
fore shown that (14) holds for all (c,s). The preceeding argument can be 

used again for n = 2,3, .~. and therefore fortunately will not need to be 

repeated. 

2 We now compare coefficients of x and find further conditions on 

b
t
, b+' as well as all the second conspirator residues. We insert (9), 

(10), and (14) into (6) and use the identity (11). B~~l'A' is defined 

as the contribution to 2 x of the parent and first conspirator with the 

factors taken out as in (13). We find: 

w 



lJ (; ) 
",-,,'j.' 

N-lfJi;' 

A.=lh.l 

A.=M 

A.=M-l 

A.=M-2 

.. .. 

A '=M+~ 

1 
2 (20: )(20:-1) 

b b ' 
+ + 

- 2 (1\0: Hi20:-1) 

o 

1 u+v 
- 8 (20:-1) + 2 (20: )(20:-1) 

b b 'u + b b 'v 
+ + + + 
2{20:)( 0: -1) 

o 

A.' =M+l 

o. 

0:-1 Iia (l-b b ,) 
+ + 

o 

o 

o 

A.'=M 

1 u'+v' 
- 8(20:-1) +2~20:~1) 

b b 'u' + b b 'v' 
+ - + + 

- 2(2Cl'.X0:-l) 

o 

(b u + b v)(b 'u' + b 'v') 
- + - + 

2 (20: )(20:-1) 

o 

1 u'+y' 
- 8 (20:-1) + 2 (20: )(20:-1) 

b b 'u' + b b 'v' 
- + 

2 (2a)T"o:--=1j 

A.'=M-l 

o 

o 

o 

:1(I_b_b_') 

o 

... 

A.=M-2 

1 
2 (20:-1) (20:~2 ) 

o 

1 u+v 
8 (20:-1) + 2 (20: )(20:-1) 

b b 'u + b b 'v 
+ -

- 2"(2a)~ 

o 

1 
2C2a;T2a-i) 

b b ' 

-~-1) 

I ...,. ...,. 

c:: o 
::0 
t"" 
I ...,. 
00 
If,.) 

--.0 
--l 



J J 
where u = (sM! ~ IsM) 

-12-

l( 2 ~2) 4's +s-~+M, 

J J 1 2 2 
(sM! -T IsM) = 4(s + s - M- - M), v = 

and similarly for u ' , v' in terms of T 
S .• 
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By assumption (iii) we can choose 

'Y ,c I 0 and s, s' ~ max ! ~ !. Then 

(c, s) and (c I, Sf) with 'Y c, 
s 

s 
B(2) must differ from a factorizable 

')V.. I 

matrix (the n = 2 contribution) by a diagonal matrix. This gives one 

condition; 

(2) R (~2 ) = R ~2 ) 
BM+2, M ~ M-2 -M+2 M-2 

since 
(2) (2 ) 

BM+2 M-2 = BM-2 M+2 • 

(R(_2) _ C(2) ) 
-MM ss'M 

= R~2) 
-M M+2 

Substituting the explicit values gives an 

equation relating b±, b±'. After some algebra during which the sand s' 

dependence factors out we find the 

b+ b+' r~~ 
16 

two solutions 

b=~= II 
Reinserting this we can obtain the second conspirator residues using factor-

c 
ization. As before the s<max !~! and (c ,s ) with 'Ys 

0 = 0 cases o 0 
0 

are then considered and the residues for all channels obtained. They are 

given in Table I. ~(n) 
SJ.1. 

is the ,,'kinematic residue" and 

~c(n) 
sJ.1. 

~(n) 
sJ.1. 

= ~(n) 'Y c. 
s! J.1.' IS 

(16) 

A symmetric factorization has been chosen. This can be done because a change 
I 

""- -- ~-

[3 ~ f[3, [3' 1~1 
~-I-' 

f 
is always permissible, since 

the discrete symmetries have not been invoked. 

as yet the requirements of 

b+ M+a 
The solution -- - --- can b - M-a 

be identified with a Lorentz pole by comparing with Eq. (A17) of Sciarrino 

and Toller. 5 

... 

... 
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The above procedure can be extended to lower conspirators step by step. 

The algebra becomes extremely complicated,however. We have done it for 

n = 3 and find that for both solutions (15) it is possible to cancel the 

off-diagonal contributions of n=O,1,2py using a third conspirator with 

factorizable residue. The results are given in the table. The Lorentz 

"d h d "d 17 pole reS2 ues agree witht ose given by Akyeampong, Boyce, an Rashl • 

For future reference we state the s-channel amplitude to order 

x3 which results from the second solution in (15), 

(20:-1) (20:-2) 2 (20:-2) (20:-3) (20:-4) x3 
4 ~ + 6 

2·2 2·3·2 

and notice that it is pure helicity flip M. In contrast, a Lorentz pole 

has helicity flips from M+n to M-n in order 
n x , as can be seen from 

(6) and (11) and the next section, E~. (22). 

".' 
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III. UNIQUENESS OF THE TWO CONSPIRACIES 

We now prove that under the assumptions (i) - (iii) above the 

residues for ,n = 0 and 1 . 1 d t . 18 th f 11 un 1 que y e ermlne ose or a n if they 

are consistent with the assumptions. In the previous section we have shown 

that the n = 0,1 residues uniquely determine the ri = 2 residue [the b;t­

must be given by (15) if they are to be consistent with the assumptions). 

To complete the proof by induction we show that, given the residues for 

n = 0,1,2,···,N-l, the n = N residue is uniquely determined. 

By examining Eq. (16) in order N x , we see the n = N residue is 

given by B~~l'~1 (the contribution of the first N-l 

unspecified diagonal matrix C~~:~N) 5~,: 

trajectories) and the 

Rc(N)Rc'(N)_Ccc'(N)n. _B(N) c c' 
s~ S'~' - SS'~~' S~S'~' rs rst , 

where 

Rc(n) =L dS (~) ~c(n) Rcl(n) =L s I :rr Wc I (n) 
(19) 

s~ , ~ 2 sll J SI~1 dll I ~ I (2") f3 SIll I • 

11 III 

One can try to solve for the residues by taking 

RC(N) B(N) 
S~SI~ I 

s~ 0 (20a) 
RC(N) (N) , 
s~ Bs~ s '~ 

0 0 0 

where f.. I ~ I I ~. This will give the ratios of all the Rc(N) except 
0 0 s~ 

RC(N) 
s~ I • 

To obtain it we could take 
0 

RC(N) B(N) 
s~ I S~O'SI~' 

0 (20b) 
RC(N) B(N) 

, 
s~l s~s'~l' 

where ~' I ~I I~. This will work if and only if ~o' ~o', ~l; ~l I 0 

:>, 

.' 



" 

' .. 

can be found with 

(N) 
, Bsr.. s'r.. ' 

1 1 
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I 0. (21 ) 

We will show the choice r.. = M-N, r..' = M+N, r..1 = M-N+2, r..' = M-N 
o 0 1 

works. Once the residues for one (s,c) have been determined uniquely, all 

other residues are determined uniquely from the B(N) matrices by factorization; 

ln the proof we will need the fact that the "crossed residue" 

has contributions only for max (M-n, -s} ~ r.. ~ min (M+n, s}. From the 'table 

this is clear for n = 0,1,2,3. We prove it by induction at the same time 

as the main assertion. Therefore 

for k odd vanish. This is true for n = 0,1,2,3, can be seen from 

'Table 'I~ and is proved below by induction. Therefore 

c 
x 'Y s 

Being more precise, we now use assumption 

(c',s') c c' and with 'Y s ' 'Y, I ° and s, s 

of the nth trajectory (n ~ N-l) to order 

N-n x in 

~+~' 
-2-

(l+x) F(n-cx+~, n-cx+~'; 2n-2cxj -x). 

s'~ 

N x 

J n-2 J 1 
+ b(n) (\...::) +b(n) ("'::), IsM) 

-n+2 2 -n \ 2 

(22 ) 

(iii) to chose (c, s) 

max IM:tN I. The contribution 

depends on the term of order 

(II)N-n It fo110\vs that the highest powers of ~ and ~'occurring are ,... 

and (p' )N-n. Fr01ll (11) and the induction hypothesis (22), these give a 

contribution 
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00 [( d~ (~)(~)N-n (s~IR {b
n 

(n)(J
2
+ r + ••• + 

~~I . 

= 0 unless M-N ~ ~, ~I ~ M+N. 

Since (23) is unchanged under ~ ~ -~ and ~ I ~ ,",.~ I we see the total 

power of k t 
(~)(~I). in (23) must be even. Thus fixing ~I = M±n we see 

(N) 

Bs~s I M±n = 0 unless ~ - (M : n) is even. 

Thus if (21) holds, (22) is true by induction. 
J N 

(s M-Nl(2-) IsM) Now consider B(NM) N I M N [as usual the factor 
J N s -, s + 

x (s I M+N I( 2+ ) I sM) has been taken out - see (13)]. It is clear from (11) 

and (22) that only a term (~~'x)N-n from (23) will give a contribution 

for the nth trjectory. 

The coefficient of this term is easily seen to be 

t )N-n f ) -1 r 2n - 2a 
N-n)~ rN + n -2a) • 

Th:us 
N,..l 

) (_l)N-n r(2n-2a) ben) b,(n) 
(N-n)! r(N + n -2a) -n n 

h=o 
It is not difficult to iterate this equation to find 
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B(N) = 
s M-N, s' M+N 

r(N - 2a - 1) 
- N! r (2N-2a-l) , 

(24 ) 

which is nonzero~.. Therefore 

Now consider B(N
M
) N 2 

s - + , 

and bN(N) are nonzero., 

= _b(N) b' (N) 
s'M+N -N+2 N 

rfN - 2a - 1) 
r 2N - 2a -1) 

_ -b (N) b I (N) 
s' M-N - -N+2 -N • 

(N) 
Thus Bs M-N+2, s' M-N 

From (25) both 

is nonzero if 

is nonzero and we consider the latter. 

coefficient of the term N-n x in (23) is in powers of ~ + ~': 

The 

[ «(l)N~n r(2n-2a) (N-n (N-n)(N-n~~)(2n+N-3a-2) ~N-n-2\](fll)N-n 
N-n! r(N+n-2a) ~ + ) 

+ lower powers. 
(26) 

Ohlythe terms given ,in (2:6) andthelast: .. two' ;.terms in (22) contributE! 

to the,' element of interest! 

N-2 
(N) (3 _ '\ 

B M N 2 'M' (s M-N+2 I -2) IsM) s - + ,s -tn 

(_l)N-n r(2n-2a) 
(N-n)! r(N+n-2a) { 

J +J N-n 

(s M-N+2 I ~ +2 -) 

(N-n) (N -n-l) (2n+N-3a-2) 
+ 12 

After some claculations we obtain 

B(N) _ ~ 
's M-N+2 Sl M+N - ~ 

{b
(n) (N-n) [ 2 ( )(.) (. )(' )] (n))ll (n) x -n+2 + ~ s + s - M+2-nM+4~N -t N-n 7 1 l\l-lb _~Jbn 
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= 

Since b(n) b,(n) is already known, [Eq. (25), (27)] can be solved for 
-n n 

beN) b,eN) by iteration. Actually it is sufficient to find the coefficient 
-N+2 N 

Y (N) of (s2 +s ) in B (N) • 
s M-N+2 s I M+N 

If it is nonzero there is 

at most one positive So for which B~N~_N+2 s' M+N vanishes and we can 

Taking the coefficient of s2+s on both sides of' (27): choose s f. s • o 

~t 
It is not difficult to iterate this equation using (15) and (25) to obtain 

= 

r(N-2a-l) 
4(N-l)! r(2N-2a-l) 

r(N-2a-l) 

(M-N+l-ta) 
(M-a) 

4(N-l)! r(2N-2a-l) 

corresponding to the two choices in (15). Thus does not vanish and 

equations (20a,b) can be used to determine the ratios of the residues. 

For 

Section II. 

s ~ I MiN I and 'Y c = 0, we can use arguments exactly as in 
s 

18 
Therefore all the residues for n = N are uniquely determined 

and the assertion is true by induction. Note that N must be > 1 for 

the above to apply since for N = 1, ~o = ~ and Eqs. (20a) and (20b) 

become the same arlthe method fails. This was also seen in Section II. Thus 

the n = 0,1 residues must both be specified. 

Since the n = 0 and 1 residues of the first solution agree with 

the Lorentz pole residues and a single Lorentz pole is known to be a possible 

conspiracy) the first solution must be a single Lorentz pole. The second 

solution, if it exists, ~s a new one (if one wishes it can be regarded as 
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an infinite counter-conspiracy of Lorentz Poles). We will call it a 

Class II conspiracy and a Lorentz Pole a Class I conspiracy.19 Under the 

stated assumptions the possible conspiracies are characterized completely 

by (1" 
c 

ys ' M, and the Class I or II. The Class II conspiracy is 

discussed further in the Appendix • 



-20- UCRL-18397 

IV. PARITY AND TIME REVERSAL 

We first state our conventions for parity-conserving amplitudes and 

R . t· 20 t egge1za lon. Le H be a c.m. helicity amplitude. Then 

()() 

Il}. A- • A. A. (z) == \ (2J +1 ) 
a'o~ c d L 

J==m 

(m == max (I A.I , I A.' I }), 

(30 ) 

where z is the cosine of the c .m. scattering angle and A. == A.
c 

- ~, 

A.' == A.
a 

- \. Iartial-wave amplitudes of definite parity (p == ~ (.,.l)J -~ ... 
-.-

T)== ±f} are defined by 

where v == (0 is even and ~ if 2(sa+sb) 
2s. 

parities TJ. are taken to be real 
1 

[tli == (-1) 1T)i L We 

is odd} and the 

define the signatured 

amplitudes [1' == (_l)J-v for J integral] and continue aJ to complex J. 

Then 

(32) . 

where (j == PT. Therefore at a J plane 

we have 

The Mandelstam-Sommerfeld-Watson transform then gives 

.~\egge) (, .. ) . 
L '1." ,. I J " .... , .... 

a ) l~ d 

p" -0.-1 ( ) r.\""A. eM' z 
c d 

(34 ) 
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Using time-reversal invariance in the t channel we have chosen ~' to be 

the same function of T' and the other variables as ~. The residues in 

(43) are actually the residues of the 0(2,1) partial-wave amplitude 

• 
f~P "-- ."f.. "f.. ,1 The definite..;iErity amplitude ·fJP i's re}ated to fJ by (31) and 

a'o' c d 
00 

The implications of parity conservation for conspiracies are obtainedby 

using the 

gives 

fl3 fl 4 +' s = (_l)s s H ( ) 
fllfl2 s-"f.. s'-"f..' s , 

since "f.. = "f..'. This implies that 

CCC'(k)(X) = Ti3fl4 (_l)s+s' CCC'(k). 
ss'"f.. fl fl ss'-"f.. 1 2 

To preserve the symmetry of the residues we now define 

for both (c,s) and (c',s'). From (33) it follows that 

and similarly for c' The "crossed residues" have 

the property 
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and finally the leading-order contribution of a trajectory is 

"A.'+v 
cr (-1) 111113" Rs"A. Rs'"A.'· 

UCRL-18397 

Now the arguments of Sections II and III must be repeated in the 

light of Eqs. (36) and (38). There is the possibility,6:e four leading 

trajectories with different q~ntum,n~bers P and T. However,since the 

products of the residues f3:J?T(rt)f3PT(n) are relatively real and the signature 
fll ~ fl2fl4 

factors (l+Te-in(a-v)] are relatively complex for opposite signature,trajec-

tories of opposite signature can be treated separately. Also the signature 

of the ~th conspirator must be (_l)nT to give the same phase. Thus 

the contribution to order x
O in (6) comes from at most two trajectories 

and is at most of rank two. From (36), for M 10 eel) is of rank two 

so there must be two leading trajectories of opposite parity. For M = 0 

there need only be on~ and (39) shows in fact only one parity can contribute, 

since "A. = o. 
18 

The unique solution satisfying the requirements is easily found 

to be 

[OAM + 

e -inv (-1 )s+M ° J c "A.-M 'Y s ' 

where by convention M is now taken to be positive and is pure.real 

or pure imaginary. This solutiorl·is like a superposition of the previous 
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solutions for M and -M with the residues arranged so the nOniiagonal 

qontributions in f..., f...' cancel between the trajectories of opposite 

parity. 

As before, the contribution of the leading trajectories does not sat-

isfy the conspiracy condition in order 1 x and conspirators must be intro-

duced. The analysis proceeds as before. It is not difficult to see that the 

following set of residues provides a solution, 

cPr (n) 
R n 

sf... 

where 

== 
-irrv( . )s+M 

+ cr 112114 e -1 

(41) 

~n == _~(_l)n, and R~~n) is the crossed residue in the case without parity 

conservation. Also 

( _l)M+v [BM(N) 
Sf...S 'f...' 

B-M(N) ] 
Sf...S 'f...' • 

(42 ) 

From (41) and the symmetry properties (A9ab) we obtain for either class 

I or class II, 

cP~ (n) i%(l-P) [ {T12 114} 
,.J n e 
i3 == --- 1 1 + cr 

SJ-l [2 (a-n)+lJ2 111" 113" 

irrv e (-1 )1l+M+n] KM:x(n) y 
Sll s' 

with ~ - (_l)n~ (compare with Ref. 1). That (45) satisfies the 
n 

conspiracy condition can be shown by induction m n by using the symmetry 

properties (A9ab) and the results of. the previous sections that 
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M(n) RM(n) __ BM(n) t 
Rs", s'",' - SAS''''' + diagonal ma rix. 

It remains to show that the solution (42) is unique. First we 

discuss M -I o. For half integral M it is eaf3Y to show uniqueness by 

induction. In each step we reduce the problem to the one without parity 

conservation and use the results of Secs. II and III. In Fig. 1, the 

possible nomero elements of 
(N) 

B are shown. As a result of Eq. (22) 

the contributions from ~(N) and never coincide. Therefore if, 

for example, we take "" ",' M-N, M-N+2, ••• , M+N-2, M+N, 

and 

(_l)N [RO"=+l (N) RO"=+l (N) _ RO"=-l (N) 0"=-1 (N)] 
s-", s'",' s-", Rs''''' o . 

Using (39) and adding or subtracting the equations yields 

( )M+V 

( )
N M(N) c c' TilTi3" -1 cc'(N) 

= 0" -1 Bs",s'",' I's I's' + 2 Css '", ~,. 

This is of the same type as considered in the no-parity case and all the 

previous arguments can be applied to find there are only two possibilities 

f RP't"(N) Taking 
or s'" . -"" -",' in the above range yields a s~milar equation 

with M 
B replaced by -M B • Requiring the property (39) gives the result 

(47) . For '" not in the above range or s ~ I MiN I or arguments 

just like those in Section II can be used. 

For integral M the proof is complicated by the fact that the 
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M -M 
contributions from Band B overlap as shown in Fig. 2. A slightly 

different method, not given here, must be used. Special care must be 

exercised for M = 1 to be sure the result analogous to Eq.:. (15) still 

follows. 

For M = 0, it follows from (41) that only one of the two possible 

conspirators actually couples. For Class I (Lorentz pole), cr is the same 

for all conspirators (the parity alternates), whereas for Class II, cr 

alternates (the parity is the same). The symmetry properties (A9ab) 

thus have a striking consequence in this case. For M = ° parity doublets 

are not required and one would expect that their occurrence would therefore 

be "accidental." If we thus assume there is no doubling it is easy to 

show (43) gives the unique solution. We have not been able to exclude the 

possibility of "accidental" parity doubling,but we believe only the following 

type of doubling can occur. For Class II it is possible to add to the 

conspiracy a, P ,~ 
000 

another Class II conspiracy al = a - (2k.:..i), -P, 
o 0 

-~ (k integral). There is no interference,since the parities of 
o 

trajectories of the same a are opposite. There is not an analogous 

possibility for Class I, because the (j of the leading member of the 

second conspiracy would have to be opposite to that of the first conspiracy 

and therefore by (39) the residue of this leading member would have to vanish. 
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V. COUPLING TO UNEQ,UAL MASS CHANNELS 

We now consider Ult: o,cUitional constraints that factorization 

imposes on the equal-mass channel residues when the leading trajectory couples 

to an unequal-mas schannel. We first determine the residues at the unequal 

mass vertex from unequal-unequal-mass scattering and then determine the 

equal;nass residues from factorization and equal-unequal-mass scattering. 

21 In both cases we appeal to the results of Freedman and Wang. . We consider 

an amplitude free of kinematic singularities, expand in an asymptotic 

series in s for fixed t I- 0, and demand tb,at the coefficient of each 

power of s be nonsingular at t::: O. Only the potentially most singular 

term for each power of s is considered,and therefore only the leading 

t behavior of the residues is det~rmined. To begin with we ignore 

signature . ,parity, and time reversal. 

First consider the t-channel reaction 

Then 

where 

z 
t 

::: 

As usual we define 

2 
x :: z-:r-

t 

:::fl 
ts ' 

The t-channel momenta are given by 

2ts 
== 1 + 2 

..:r 
, 

(44) 

(46 ) 
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Finally we remove the threshold behavior by defini~ 

-;:{n) -a+n 
f3 Sll = (2P12) ',~ s~ , 

rJ 
where the" f3 are given by (3). Thet-'channel helicity amplitude is then given by 

1l+1l' 

sa-n (1 + x) 2 F(Il-a+n, Il'-a+n, 2n-2a, -x). 

n 

In this case the crossing relation 

does not take the simple form (1). However, 

2 2 
-s(t+m -m ) 

2 '1 
2 J;. 

(s(s-~ )]2 5 

:> 
s ~ co 

t ~ 0 

-1, 

cos X2 4---~» 1 , s ~ 00 

t ~O 

s ~ 00 

(48 ) 

2 
-~ 

:> -1 
t ~ 0 

When s ~co, the s-channel boundary approaches t 0, so for the leading 

s asymptotic power of H we have 

HS , 
SA.S'A.' s ~ 

> C 
co 

ss 'A. 0A.A. ' 
a s 

= 
-(0) -(0) 
f3 sA. f3 s I -A. ' 

(_l)s'-A.' 

(51) 

a 
s 

By the same arguments given in Sec. II it follows that we can write22 

-(0) 
f3 s ' Il ! = oil! -M 'Y Sf' 

(52) . 

where M is the s-channel helicity flip in leading order. 
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Since 
g 

o S Sln­. 2 

g 

and cos; have no singularities at t;= 0, HS 

itself must have no singularities at t;= 0. From (50) it is clear that 

the crossing angles have no singularities at t;= 0, and therefore Ht 
2 

must have no singularities at t;= 0. Because x;= ~s ' the contribution of 

the leading trajectory will have mngularities at t;= ° for lower powers 

of s. These singularities are cancel:ed by conspirator trajectories with 

° 1 °d 21 slngu ar reSl ues. 

The n;= 0,1 contributions to (48) give for f.!.;= M, f.!.';= -M: 

Ht ~ 
sMs' -M 

a (1 _ (M-a)(-M-a) #- ) + '§(l) E(l) sa-l 
s (-2a) ts sM s ' -M 

Therefore, 

[if -(,2t~ 8 - (1) f i I's f3 Sf.!. -2a . t 2", I-lM 
1 

-(1) 1 ° [if -cP)" ",1] 
Of.!.' -M I's' f3 s ' f.!.' - l -r f -2a t2" 

The scaling factor f is arbitrary at present but is fixed by the 

equal-unequal-mass case since we have already fixed the scaling factor in 

the equal mass residue. 

It is straightforward to write down the general condition for the 

most singular term in the coefficient of 
N 

\ (_l)N-n 

~ (N-n)! 
r(M-a+N+l) 
r(M-a+n+l) 

r( -M-a+N+l) 
r( -M-a+n+l) 

a-N s , 
r 2n-2a) L~)n -en) -en) 
=r7:N:::"+-n---:::::2-'-a) \1; f3 sM f3 s ' -M 

Iteration leads to a solution much like (24), 

-(N) -(N) _ 
f3 sM f3 s '-M -

0. 

This agrees loTi th the result of Klein.10 The inclusion of signature, parity, 
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and time reversal is straightforward with.use of ('38 ).~ The',result is 

PT (n) i}i:(l-P)E [ ,1.. 
~ n == e 1 (~l)n r(n-2a-l) r(M-a+n) r(-M_a+n)]2 (54) 
~sl-L [2(a-n)+1]2 n. r(2n-2a-l) r(M-a) r(-M-a) 

X «: )a/2 b~ + cr{~; :;} e -i~v (-l)"~ 5~_J s ' 
rJ 

where ~ is given by (37) for both s and st. The phases are chosen to 

be consistent with (52) and E = + 1 for m 4 , 3 ~. m Z, 1. 

We now consider the t-channel process 

m + m --) m
l + m

2 
. 

Then 1 

(2m
2 2 2 t'2 [28 1 + t - + ml + ~ )J t'2 z ~- (2s - L.), t == .8N t --) 0 ..'TN 

1 

wher e N == ( t _ 4m2 ) '2 , 2m2 2 2 
L.== +ml +~. Also 

x= 

where 

2 
z -1 
t 

only the most 

P == 

singular terms are kept. Finally 
1 

2 '2 
(t-4m ) N 

== -2 2 

The behavior of the crossing angles is rather different in this case, 

2 2 2 2 222 
- (s + m2 - m ) (t + IlL- - m ) - 2~ (m - IlL- ) 

X 
___ ~~~ ________ ~~~_~l~ ____ ~~l~l __ ~~_ 

cos 1 == { 2 . 2 1 

cos ~ 

(s - (m +ill2) ~[s -.(m - ~) ); 2!J 
-t·+ ffil ·_m 2:. ______ ~> " 2 
~ 

----;> -1, 
s --) ()() 
t --) 0 

t--)O 

2 2 222 
(s + m - ~ )t - 2m (ml - ~ ) 

-1 , 



----.,.>~ -
s ~oo 

t ~ 0 

As before, since 
Q 

o s d sJ.n"2 an 
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cos~ are 
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, 

nonsingular at t = 0, 

is - nonsingular at t o. The crossing angles Xl and X3 are 

nonsingular at t = 0 but X2 and X4 are singular. There we require 

that 

be nonsingular at t = O. This is our formulation of the conspiracy 
1 

d ot O A oIl id 1 th t sa and t-"2 sa-l we con J. J.ons. s we WJ. cons er on y e erms 

can take X2 X4 = X and use the method of Sec. II to combine the two 

d functions. We therefore simply require that 

\d~~ (X) Ht 'M L ,....,,, sJ-l., s -
J-l. 

be nonsingular (n.s.). Considering the contribution for n = 0,1 gives, 

(J-l.-a)(-M-a) x) 
-2a 

n.s. (56 ) 

The ~ for the equal-mass channel are defined analogously to (47). An 

argument just like that leading to (52) shows M for both channels must be 

the same. 

Keeping only the most singular terms, 



.. 
i 

so we have 

'~T 

sin(~ - X) 
2 

-1Z' C' ~ (sJ.lle y 1 -
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1 

+[ \~ dEl (~)f3(l)~ll [~(if _Cl)2] 4-
LoJ J.lA. 2 SJ.l .. f \:: -2a t 2 s 

J.l 

a 
y ,s 

s 

o 's 's' B1.M sa 1 + { (s;l.1 ~~ Jx + ¥~lsM)'s 
)( [! fM" -a

2j"110-4, , sa 
f \( -2a ' 1J t2s S 

where (11) and (19) are used in the last step. Therefore 

-(1) 
R, = 

sA. 

1 
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= i ( 1 ) 2" (J +) (J '\ - - " , (sA.l (M-ta) - + (M-a) -=-J IsM) N Y 
f ( -2a )(if _a2 ) 2 2 s 

(57 ) 

Comparing with Table ! one sees that this is precisely the form of the 

Lorentz pole residue and the re~uired choice for f is f = -i. It is easy 

to verify this result when the symmetries are included using (43), (54), 

and (57). 

Since, as shown in Sec. III, the n=O and n=l e~ual mass residues 

determine all the others under our assumptions,we conclude that only the 
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Class I or Lorentz pole equal mass conspiracy is permitted to couple to 

unequal-mass channels. We believe that from (54) and analyticity in 

equal-unequal-mass scattering it should be possible to show that all 

equal-mass conspirator residues must be those of a single Lorentz pole 

without the use of assumption (iii).7 

Finally we remark that for zero-mass channels (m2 

residues are 

n(l p) [ s2+s 4-v 1 
f3P'r(n) = e i"4 - 0VM + CJ 1)2 1)4 (-1) 0V_M 

1-141-12 

m4 = 0) the 

a. 
2 (n) 

t y 
J 

where v == -1-14 - 1-12 ' From (58) we observe· that only the leading trajectory 

couples at t = 0 in Compton scattering. 
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ill. SUMMARY AND DISCUSSION 

Under the reasonable physical assumptions stated in Sec. I we find 

that there are only two possible ways to satisfy the equal-mass conspiracy 

relations. Both of these conspiracies are characterized by the "quantum 

numbers" Mand 'r (signature) -and P (parity) if M = O. The first 

or Class I conspiracy is a single Lorentz pole. The second or Class II 

conspiracy is new and has the property that the s-channel amplitude is 

pure helicity flip M to all orders in s; it can be regarded aS,an infinite 

counte:rconspiracy of Lorentz poles. We also show that if there is coupling 

to an unequal-mass channel only the single Lorentz pole solution is permitted 

in the equal-mass channel. On physical grounds it is therefore reasonable 

to regard as mathematical accidents our Class II equal-mass conppiracy and the 

known equal- mass conspiracies for low channel spins (e.g., the Volkov-

Gribovconspiracy). 

Our assumption (iii) of coupling to arbitrarily high channel. spins is 

qui te strong, but we conj ecture that the same equal-mass results follow if the 

leading trajectory couples to only two channels of channel spin IMI + 2 

or greater. This appears plausible to us because if B;~~,~, is restricted to 

suchs and s' there are still enough conditions to determine the residues 

uniquely except for special values of a when too many of the 

might vanish. Of course, if there is coupling to unequal mass channels the 

stronger constraints imposed by analyticity in equal~unequaI-mass scattering imply 

a sin~Lorentz pole and such considerations are unnecessary. 

In conclusion we point out that the definition of M as the s-channel 

helicity flip in leading order10,22,23 provides a consistent interpretation 

for all mass configurations and Eqs. (43), (541and (58) give the leading 

t behavior of the residues in all cases: equal-,unequal~ and zero-mass 

channels. 



-34- UCRL-18397 

ACKNOWLEDGMENTS 

It is a pleasure to thank Professor Stanley Mandelstam for suggest-

ing this problem and for his unfailing advice and encouragement. I would also 
\ 

like to thank Professor Stanley A. Klein for discussions on the material 

in Sec. V., 

.. 

,. 
\ 



.. 

I 

" 

-35- UCRL-18397 

APPENDIX. ffiOPERTIES OF,',THE CLASS II CONSPIRACY 

The second conspiracy in (15) will now be discussed further. The 

form (17) of the contribution to HS is very suggestive and leads us to 

conjecture: 

("' 1 r(2k-2a-l) (. ~') k 
L 12" r(k-2a-l) '-:: '+ 

k==O 

Also Table I leads us to conjecture 

~c(n) == ~(n) C == f..l)np(n)(a ) dS (~) 'lsc 
f-' SI-1 SI-1 'I S ~ ,1-1 r1M 2 ' 

c' 
'ls' (Al) 

(A2 ) 

where ~(n) is a polynomial of degree n in 1-1. This is also suggested 

by (Al),which indicates symmetry under J+ ~J and also leads to (A2). 

Inserting (Al) and (A2) into (6) yields for the conjectured second conspiracy 

00 1-1+1-1' 
1 , /V(n) .v(n) n -2-

F( -a, -a- 2'; -2a-l, -x) == ~ P (a,l-1) P (a, 1-1') x (l+x) 

)( F(n-a+l-1, n-a+1-1 f; 2n-2a; -x), (A3 ) 

This equation can be iterated to obtain, 

)( r(2n-2a-l-k) r(2n-2a-2k-2t-l) r~---2- + Jy 
{ 

f. 1-1+1-1' ,\ 

r(n-2a-l) r(n-2a-k-t-l) rt 1-1;1-1_ + 1 - ~ 
(A4) 

x ;, ~~~:~~~, r 1\~~~" ~ , } , 
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1 

r-I(n) _ [ r(n-2a-.l) 1"2 p(n) ( ) 
where P (a,ll) - n! r(2n-2a-l)J a,Il' 

If the solution factori~es asre~uired, p(n)(a,ll) can be obtained by 
~ 

taking the coefficient of (Il,)n in (A4), 

P....., k-n 
p(n)C ) _ \....., n!(2) r(2n-2a-k-l) r(n-a+ll) : 

a,1l - ~ k!(n-k)! r(n-2a-l) r(n-a+ll~k) CA5 ) 

pCn)(a,ll) is thus a polynomial in Il and a of at most degree n in 

each. We'cari, use the integral representation of the beta function·· twice 

to convert this into an expression useful for small Il rather than small 

n. 

Cnt ) p '(0) Il = 

n 

(_1)2 
2n -21l+l 

n-l 

(-1) 2 
2n-21l+l 

We have 

~c(n) 
Sll 

rCE. - ! -O:+Il-k) 2 2 
~::"'--=-l'::----- , 
r(n~-a-Il) 

n even 
CA6) 

1 ' r Cn+:::- -a-Il) 2 

n odd 
(A7) 

not been able to give a general proof that the residues 

[ 
n! l~ r(2n-2a-k-1 )rcn_a+Il )} 

r(2n-2a-l)r(n-2a-l) r(n-a+ll-k) 

S (1!) C 
x dlJ,M ~ . y s (A8) 

when inserted into (6) satisfy the conspiracy condition or, alternatively, 

Eq. (Al) is a possible form of HS and thus (A4) and (A5) are consistent 

t\.1.1' ::11 IlJ Il'. The following special cases have been checked. The conjecture 

, .!. 
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has been checked Tor n ·;§;4 with the riiethodof Sec. II. 'Since 

is a polynomial in Il, the consistency of (A4) and (A5) can be 

checked by comp3.ring expressions for special values of 1l,1l' • Taking 

Il = k + a - 1 - n, Il' = k' + a - 1 - n introduces considerable simplifica-

tion and we have verified the consistency for k and k' = 0,1,2,3 and 

all nand a. This constitutes another complete proof for n;§; 3 and 

checks a large number of values for n > 3. For s = s' = M = 0, the first 

conspirator residue vanishes and thus from Sec. III both conspiracies are 

identical. In this case (A6) gives 

n 

(_1)2 r(~) r(n-a) 

r(.!) r(E. - a) 
2 2 

° 

n even 

n odd 

and (A4) agrees. These residues agree with the Lorentz pole residues 

given by Akyeampong, Boyce, and Rashid. 17 We thus have confidence that 

the second solution is a possible conspiracy. 

In conclusion we give the symmetry properties of the 

kLnematic residues. For the Class I conspiracy (Lorentz pole), 

(A9a ) 

These follow from the results of Sciarrino and Toller5 when the relationship 

between our K and their V and W is taken into account. For the Class 

II conspiracy (pure helicity flip M), 

~(n) (A9b ) 
Sll 
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These follow trivially from E~s. (A2) and (A7). Thus the two conspiracies 

can be distinguished by the behavior of the kinematic residues under .. 
M ~ -M. This leads to some characteristic differences when parity is included. 

'0 



* 
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TableI: Kinematic Residues • 

.. 
Class I. Lorentz Pole. 

~(O) = 
sll (SIl!R!sM) = d~(~) 

~(l) = 
sll 

• 1 ~d s~IRJIi' \ -" [(MK!) (~+) + (M-a) (~-)l}! sM) 
( -2ex ) 2 ~ -ex) 2 

\ 

. 2 

~(2) = 1 1- (sllIR { ~ '2 ~ [(M+a)(M+a_l)(J;) 
sll [2 (2ex-l) (2ex-2 ) ] 2 [ (li -ex ) (li -(ex-l) ] 

+ Ii' - ~a-d (i + s - Ii' - a) I + (M-a)(M-a+l) (Jdl }lsM) 

__ 1 _ 1- (SIl\R { 
[-6(2ex-2)(2ex-3)(2ex-4)]2 . 

Class II. Pure Helicity Flip M. 

~(l) = 
Sil 

~(2) = 
Sil 

1 1 (1l3 + 30:;51l ) d~(~) 
[-6 (20:-2) (2ex- 3) (20:-4) ]"2 
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FIGURE CAPI'IONS 

Figure 1. B(N) • M half integral (N odd). 
SAS 'A' 

+ = from BM(N) , .. 

- = from 

Figure 2. B (~~s 'A r • M integral (N odd). + = from BM(N) _ , -M(N) 
from B . ) 

o = from both. 
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