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*
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University of California
Berkeley, California

Auvgust 1, 1968

ABSTRACT
"Group theory provides an elegant geﬁeral solution of the
equal-mass conspiracy conditions but leaves open the possibility of a
" counterconspiracy" between a number of integrally spaced.Lorentz poles.
It is shown‘that factorization~of Regge pole residues and coupling to

channels of arbitrariiy high spin imply that only one - .counterconspiracy

(consisting of an infinite number of Regge poles) is possible in equal-

" mass scattering. It is also shown that if there is coupling to unequal-

mass channels then even this counterconspiracy is forbidden and the only
possible, solution is for the equél-mass channel residues to be those of

a single Lorentz pole.
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-T. INTRODUCTION

An elegant solution. to the equal-mass conspiracy conditions at
t = O has been given by Tollerl and Freedman and Wangg.using group theo-
retical arguments. They find that the conditions are satisfied by a
Lorentz (or Toller) pole which corresponds to an infinite sequence of
integrally spaced Regge poles. This group theoretical approach suggests
the plausibtle assumption that the scattering amplitude is given by a |
single Lorentz pole at t = O (for specified signature, internal quantum
numbefs, and trajectory intercept). However, there is thevpossibility

1"

of a " counterconspiracy" between a number of integrally spaced Lorentz
poles. In fact there are some_simple examples ofcounterconspiracies:
if a Regge trajectory couples only to channel spin3 zero (e.g., all
particles spinless) no conspiracy is necessary or if it:couples.only to
channel spin one only tree trajectories are necessary.u In addition the
singlevLorentz pole hypothesis is much less plausible than the single
Regge pole hypothesis, since all dynamics is invariant under 0(3) but
0(3,1) or O(4) invariance applies at only one point in t and only for
equal mass channels. In this paper we consider the question of counter-
conspiracies and show that under some reasonable physical assumptions
there is one '~ and only one possible counterconspiracy.

More precisely, we assume: (i) angular momentum is conserved,
(ii) there is only one Regge trajectory of given quantum numbers
[including «(t=0)] and its residue factorizes (no "accidental" crossing
of trajectories);and (iii) the leading trajectory in a conspiracy
couples to channels of arbitrarily high channel spin (for an& channel spin

S there exists an equal-mass channel with channel spin s 2 5, to
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which the trajectory couples at t = 0). We can then argue that
there are just two possible conspiracies. One is that of a single Lorentz
pole and ﬁhe other is a new conspiracy which yields an s-channel ampli-
tude that has only one helicity flip to all orders in the energy at t = O.
Thefefore there is only one possible counterconspiracy. That a single
Lorentz pole satisfies the conditioﬁs has been shown by Sciarrino and
_ 'I'ollerl’5 and. Nakanishi§; ' who combleted the proof of factoiizability
of the residues. We have not been able to give a general proof of the fac-
torizability of the residues for‘the counterconspiracy,but we have checked
it in many special cases.

If the leading trajectory alsoc couples to an unequal-mass chanhel,
as is to be usually expected on physical grounds, then using factorization
we can show that only the single Lérentz pole conspiracy:gives permissible
equal-mass channel residues.7 We thus come to the conciuéion that the
Lorentz pole conspiracy is expected to be the typicai conspiracy and only
in special cases (e.g., coupling‘only to equal-mass channels) are there
other possibilities.

The assumption‘(iii) of coupling to channels of arbitrarily high
channel spin is of course quite strong./ It eliminates the examples of
counterconspiracies for low spin channels mentioned above. However, it
is not unreasonable, since one might assume that high spin quasi two-two
amplitudes can be projected out of multiparticle amplitudes and then
Reggeized in the usual manner. Also the assumption is quite appropriate
for models with narrow resonances and infinitely rising trajectories.

In the finai section some comments are made about the possibility of

weakening this assumption without altering the conclusion.

In Section II we establish our notation. The conspiracy conditions
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are formulated as angular momentum conservation in the s channel. We
explicitly find their solution up to the order sa-z where « 1is the
t = 0 dintercept of the leading trajectory,9 i.e., for n=0,1,2,%,
where 1 1is the conspirator’number. There are only two possible solu~
tions. In Section III we show that the residues of the leading trajectory
and the first conspirator (n = 0,1) uniquely determine all the other
conspirator residues at t = O. The two preceding results taken together
prove that there are only two possible equal-mass conspiracies. In the |
course of the proof we derive an interesting property of the consplrator
residues [see Eq. (22)]. 1In the Appendix the properties of the second
conspiraéy are discussed further. Section IV outlines the proof when there
is parity conservation and time-reversal invariance. The unequal mass
problem is treated briefly in Section V. We give a simple derivation of
the most singular terms of the residues for arbitrary spins and point
out that these agree with the more general results of Klein.lo Then by
considering the coupling of eqal-massto unequal-mass channels we show that
only the Lorentz pole residues are allowed for the equal mass channel.
In the final section we give a summary of the conclusions and make a few
furfher comments.

The straightforward method employed below is less elegant than

group theory,but we believe it gives additional insight into the way

~conspiracy conditions are satisfied when factorization plays an impor-

tant role.
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ITI. CONSPIRATOR RESIDUES FOR n = 3

We consider the s-channel process 142 - 3+4 where m, = m3,
m, = m) and my, o, # 0. Thekcenter-of-mass helicity amplitude is
denoted by HiBK . (s;t). At t =0, rotational invariance about

MM .

the direction of motion requires H ‘to vanish . unless kl - XE = %3 - hh;
this is the conspiracy condition. Similarly the t-channel c.m. helicity
amplitude is denoted g (s,t).

At t = 0, the crossing relation gives

(8,0) = ? <">d ()d a s @ B (s,0).
H7‘37‘2+’7‘7‘ ’ 0o " 1™ 2 )3 “13‘&2 gy sHyHs °

From the identity.

S : ) M. -
dl‘é)‘s(g) “']_ ]_(G) = ZC(SB)S]_;S';”B: 'lJ-l)C(SBJ 51;5'57\-3: '7\1)('1) . kl

s'

a® (0)
“'3 -p'l} >\'3 _)\'1

we see that, if we define
,

S, =N\ +8,~
B (5) = ) Clsyssinyohy) © (5,808 ihgohy ) (1) * 17"
N}
S
] (s,0)
R
and
()= ) o ol (-1) LR
Hous 'y £ Clsyspssmy =1, )C(s55, 8" shgmpty
{p}
Ht . (S;O)
“5“1’“&“2

the crossing relation takes the compact form,lo
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s
HS)\S')\'(S) - 2“ d-p)\‘(g) du }\.1( ) HSHS “- ( )‘ (l)
ST -
We will refer to s and s'aschannel spins although they differ from the
- 51 PR~ a
usual t-channel spins by the phase factors (-1) and (-1) .

We neglect parity and signature until Section V.; thus the contribu-

tion of a Regge trajectory with residue B B =B (t = 0)
and o = a(t=0) is

t (Regge ) | _ ~0-1 5
H“}“l’“u“z( ,0) = Bu3ulﬁuuu2 euu-ug,HB-ul(Zt) 7 @)
where
] 2s + t '2@ﬁ + my ) -S -(%E"F%f) .
t [(t - bm, 2yt - hmg )]2 £ 0 2m, i,
The e functions are those of Andrews and Gunscn,
+lﬂ(u -n') .
-a- (ztie) = "—Efz—Eaj— [T(p-a) T(-p-a) Tw'-a) D(-p'-a)]= .
(ptp')

e’ 5
(2=1y (2l Vs -Do - —2—
Z ) — | Flu-op p'-0 -205 = =)

for z z 1. The following convenient notations,

Hmlmg

+ O(—%?) (z = 2z + i€ since t =t + ie),

X E 2w -
- Z—l lad
s

(]

1

' LT
N SptHp  TEH F(u-a)P(-u-a)}i
BSH - Z C(SLI_ :P-h “- )( 1) e 21-\(—2@) 1 BH)_,_HQ’

(3)
v 2 | Do) -a)]®
~ _ 51” 1 = D(p'-a)(-u'-a)i~°
BS'U-‘ - L—. C(S S S ’HB “’l)( J) 21‘\(_20,) Bu3“l b
by b

enable us to write
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'

ptp
t (Begge) _ ry -0 2 s -2 -
SN =By Bgryr ¥ (x) © Plu-o, w'-o; 205 —x) . (4)

The conspiracy condition is written as

s - ' .
HS?\.S'N'(S) = CSS')\.(X) X SMrJ ) (5)

where the x ¢ has been taken out for convenience. As will soon be
clear, we are led to consider the possibility Qf conspifing trajectories
integrally spaced below the leading one. Thus we combine equations (1),
(L)and (5) and introduce labels c, c¢' to indicate the channels to

obtain.

ccC

¢, () 8y, - T a5, @) & .x.<ﬂ>3c<“>fé° (e

n=

t

AL

_ 7 (14x) 2 F(n-q+y, n-g+p', 2n-20; -x)
where o now denotes the intercept of the leading trajectory.

9

This is our basic equation. We have included only one trajectory and its
possible conspirators on the right becuase it is clear that each trajectory

prlus conspirators must satisfy the conspiracy condition (5) separately,

since they contribute different asymptotic powers to HS 15

We now try to satisfy (6) power by power in x. We write

ce' _ ce'(k) _k
CSS'}\.(X) = i CSS’)\. X (7)
‘ k=0

Comparing coefficients of x° gives

\
\ -vc (O) sc(0
) @ el ®HEe .

1

ce'(0) 5

Casn AT

m

The rhs shows explicitly that the contribution of a Regge trajectory

e ek . 1h
Tactorizes to leading order. The rhs thus is a rank 1 matrix in A
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and N'. Since the 1lhs 1is diagonal we conclude at most one diagonal
element is nonzero. Wecall this element M. M always has a sigrnificance
with thiédefinition and it will be shown below that in the Lorentz Pole
solution it is the usual M quantum number, Since we also have factor-

ization in the channel types ¢, ¢ we conclude:

ce'(0)  _ ¢ c'
CSS'}\ - 7S 7s! am) (8)

which leads directly to

c ~c'(0
E) 75 > BS'EI.')

s' m c'
= du!M(é-) 75' . (9)
The reduced residues 730 for channel and channel spin (c,s) along with
M characterize completely the coupling of the leading trajectory and,

as will be seen, all the conspirators. The assumption (iii) can now

be restated as: For every S there 1s a channel ¢ and spin s 2 5,

with ¥ # 0. From (8) it Is of courseclear that 7S° =0 if s< |M
We now comparé coefficients of x in (6). For future reference

we quote

1

C
(14x) 2 Flu-o, p'-a; -205 -x) =

2 2 2 2

NP DEITARNIONS I T T +(Oé—l).,+aa-l)2.x2
2\ o 2(2a)(2a-1) 8ea-1) ~2(a M E%Eoz-lj

L 0(x0) - (10)
Using (6), (7), (9),and (10) and choosing (c,s) and (c',s') so VSC,
ct .
Yoo # 0:
ce'(1) ::* s 1y .8 1 s 7 c .s' ,m c!
CSS'?\ 5}\}\1 = L du}\(g) dl—’-'}‘-’(é-) dLLM(é.) 7S dH'M(é-) 78'

pp !

[% (% , a)}:agﬁl)”s;:ﬁ%)
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From the identity

Z,dix(g‘) ()" a3 = <S}‘|Ry-l(g) (3,)° Ry =

i
k J+ + J‘ k
(sh] (-3 ) [eM) = (on] 4=—5=] [am) (11)
it follows that 15
“ | +J +J
CC'(l) _ __l____ c ¢! + 1yt + - 1
CSS')\. 6}\)\' _{2a 7S .75 <S)\" 2 |SM> <S 7" | 2 IS M)

o . c c' . s (my ,c(1)
T3 Ts T SKM SX'M + li:?uh(2) Bsu
m

st ~c'(1) ‘

)
By assumption (ii), (c,s) and (c',s') can be chosen such that s, s'

v

max |[M * 1] and hence the leading trajectory gives an off-diagonal
contribution which must be canceled by a conspirator. The contribution
of the parent is written as

A-M - \M'-M
+

J ‘ (1) c
(M ) ) (s'nt] {5 G A

c ]
' for
S

MNZM,
(13)

and similarly witha J for A or A' <M. This removes the common fac-

. Th
tors. Therefore A=MEL A'=M A'=M-1

1 1
A= 2 0
(1) _ _ . a
Bsks'%' - =M ° 2 ° '
A=M-1 1 0 2

20 /o
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The first conspirator contribution must differ from the negative of this

Wy .

of the first conspirator contribution:

by the diagonal matrix Therefore using the factorizability

with bb'=Dbb ' =1. Or
+ - -+

pell) 1 (sul R (3) {% (%% b_(%) ERA S

g (—2a)§
and similarly for B ,( ) with b.'.

The preceeding arguments prove that (14) holds for all (c,s) with

¢ £0 and sz

We now consider a (c,s) with 7sc £ 0 and

. :
s We can choose 7s,c £#0 and s' z maletl'. It is clear

that the residues for the channel (c',s') given in (14) and the relation-
ship (12) determine the residues for the channel (c,s). We can write the
residues for (c,s) in the form (14) by using the fact tlmt either J+|sM)

or J_,SM) is zero (both are zero for s =M= 0 - an example of the well-

known fact that only alternate cénspirators couple to spinless channels).
c ~Co(1)
Finally we consider a (c_,s.) with 7, © - 0. We show that s i =0
o}

and therefore (14) holds for this case too. By considering coupllng -of

(co,so) to itself and repeating the arguments leading to (9), we see that

rdco(l) S, c cO(O)
B = 4 (3 since '5 = 0. However, we see that this would
5ot W2 s Soh

give a contribution to H for AN # A' when coupled to a channel (e,8)



-10- UCRL-183%97

with s 2 max’Nﬁl . Theréfore g ° is zero as required. We have there-
~ fore shown that (14) holds for allo(é,s). The preceeding argument can be
used again for n = 2,3%,+++ and therefore fortunately will not need to be
repeated.

We now compare coefficients of x2 and find further conditions on
bi’ bf' as well as all the second conspirator residues. We insert (9),
(10), and (14) into (6) and use the identity (11). Bgig;x, is defined

as the contribution to x2 of the parent and first conspirator with the

factors taken out as in (13). We find:



L)

ehstn o

Vi

A=M+d

A=M-1

A=M-2

N'=MH2 A'=M+1 A= A'=M-1
1 _ 1 + ' +v!
2(2ay(2a-1) . } 8(2a-1) "2mf2a-1)
- bbb 'u' +b b v
P 0. - + + 0
o+ ) 2leak a-1)
2(Ba) (2a-1)
a-1 ,
0 R (1-b+b+ ) 0 0
. 1 . utv . a(a-l)2 _ (prviuevt)
8(2a-1) T 2(ea)(2a-1) L(2a-1) 8(ca-1)
wv) (u'+v'
bb'u+bb 'v 0 +2(2a§§2a-15 °
_ + + + +
o) (o -1y (b u+ b+v)(b_'u' + b+‘v')
- 2(2a)(2a-1)
@-1 ,
0 0 0 Ta—(l-b_b_ )
_ 1 . u'+v'
8(2a-1) " 2(2a){2a-1)
1 0 b 'w +Dbb v 0
2{2a-1)(2a-2) C e -+

2a) (@ 1)

A=M-2

1
2Tea-1)(2o-2)

o1 u+v !
Blea-1) t AEN(Ea-1)

bbb 'u+bb v
- - + -

BEEICEY

2a)(2a-1)
bbb

" EE)(a-1)

_'F'F—

L6€81-TEDN
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Jd dJ
where u = (sM| —%r; |sM) = %(32 + s - M2 +M) ,
JJ '
v = (sM] —%ri ISM) = %(32 + 8 - M? - M),

and similarly for u', v' in terms of s
. .y . c
By assumption (iii) we can choose (c,s) and (c',s') with 7
Then Bik? must differ from a factorizable

matrix (the n = 2 contribution) by a diagonal matrix. This gives one

c _ :
#0 and s, s'z max

condition;

2 2 2 o
BMie) M 31512131-2 BM+2 M-2 BNHVI) is)M Bl\(4131+2 B}%-E) M’

. (2) (2) s - .
since BM+2 M-2 ~_BM-2 M2 Substituting the exp11c1t values gives an
equation relating b, b,'. After some algebra during which the sand s’

dependence factors out we find the two solutions"

M+

o M-?f . (15)

Reingerting this we can obtain the second conspirator residues using factor-
. c
ization. As before the cases s <max IMfEI and (co,so) with 7 © =0
o]
are then considered and the residues for all channels obtained. They are

given in Table I . Kiu(n) is the "kinematic residue" and

3e(n) _ goln) e me'(n) _ pmafn)
SR S SR A G (16)

A symmetﬁic factorization has been chosen. This can be done because a change

Lid S l . .
B —afg; B! —>§?§' is always permissible, since as yet the requirements of

b A
the discrete symmetries have not been invoked. The solution Ei = %%% can

be identified with a Lorentz pole by comparing with Eq. (A17) of Sciarrino

and Toller.,5



13- UCRL-18397

The above procedure can be extended to lower conspirators step by step.

The algebra becomes extremely complicated,however. We have done 1t for
n = 3 and find that for both solutions (15) it is possible to cancel the
off-diagonal contributions of n=O,l,2 by using a third conspirator with
factorizable residue. The results are given in the table. The Lorentz
17

pole residues agree with-those given by Akyeampong, Boyce, and Rashid.

For future reference we state the - s-channel amplitude to order

x5 which results from the second solution in (15),
B = g g ¥ [1 0 By oot P o) Eg)ea)
' » o 2.2 2-3°2
I , ‘ | |
C+ 0(x) ], v o 1)

and notice that it is pure helicity flip M. In contrast, a Lorentz pole
has helicity flips from M+n to M-n in order xn, as can be seen from

(6) and (11) and the next section, Eq. (22).
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ITTI. UNIQUENESS OF THE TWO CONSPIRACIES

We now prove that undervthe assumptions (i) - (iii) above the
.residues for N=0 and 1 uniquely determine18 those for all n if they
are consistent with the assumptions. in the previous section we have shown
that the n= 0,1 residues uniquely determine the n =2 residue fthe bi
must be given by (15) if they efe to be consistent with the assumptions].
To complete the proof by induction we show that, given the residues for
n=20,1,2,**,N-1, the n =N residue is uniquely determined.

By examining Eq. (16) in order xN, we see the n = N residue is

()

(the contribution of the first N-1 trajectories) and the

given by B SN '\
!
unspecified diagonal matrix Coo, iN) By 1
c(N) ge' (W) _ ee' (W) 5() c' '
Ren Rsint” = Coarn §Kh’ Bans ' A 7 Tsr (18)
where .
c(n c(n c'(n) _ Z et (n)
Z dm( 5) B RV =) @ @Y. a9
'

One can try to solve for the residues by taking

()
RZ&N) Bsxs'xo'
IR ) R (202)
sh sh s‘k !
o]
where ho # XO' % Ne This will give the ratios of all the Rcﬁy) except

c(N)

Rsk !
O

« To obtain it we could take

c(N) ()
R)\ 1 S?\- 1sl}\‘-L!

CN , (20b)

sk sxls x !

N A\ 1 3 S s 1 t . 1
where ko # xl % xl. This will work if and only if KO, KO 5 kl’ Xl
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can be found with

(w) (w) |
B 'y 15 B o+ 7 O. (1)
skos XO sﬁls xl

We will show the choice ko = M-N, Xo' = M+N, Kl = M-N+2, xl' = M-N

works. Once the residues for bne (s;c) have been determined uniquely, all

other residues are determined uniguely from the B(N) matrices by factorization:

In the proof we will need the fact that the "crossed residue" Rgin)
has contributions only for max{M-n, -s} £ A= min{Mtn, s}. From the ‘table
this is clear for n = 0,1,2,3. We prove 1t by induction at the same time
as the main assertion. Therefore

n n-1 T
O i 3@ (5,0 () 0+ s oo

sy -

Also bé?i for k odd vanish. This is true for n = 0,1,2,3, can be seen from

“Table I, and is proved below by induction. Therefore

| T \° g B2 J- n-2 T
gzﬁn)= (su|r {bn(n)(—gi) + br(lr_l) (_2:2) boeee bfz_zz(\—éi +b_(_2) (-él)n}lsm
x 7. (22)

Being more precise, we now use assumption (iii) to chose (c,s)

, |
and (c',s') with 7SC, ys,c £0 and s, s'Z max|MIN

. The contribution

of the nth trajectory (n £ N-1) +to order XN depends on the term of order
N-n | '
b'd in
!

Py
(1+x) N F(n-o+p, n-g+u'; 2n-2a; -x). (23)

It follows that the highest powers of u and p' occurring are (u)N_n

and (p')N-n. From (11) and the induction hypothesis (22), these give a

contribution
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50, Z(mmmsm{ ) oo b_n<n>(f2;)}_,sM>>
<(3 @ “<su|R{b'<n>( %y e nZ) Flow)

(S”R 5 T, (2 e b-n(n)(;—‘_)nJ}lsMD
el 0 G e (1)

= 0 unless M-N = A, A' S M+N.

Since (23) is unchanged under u ¢ -u and p' < =p' we see the total
power of (uk)(u’)L in (23) must be even. Thus fixing A' = Min we see

()

- - Mt - X
Bog' Min O unless A - (Mt n) is even

Thus if (21) holds, (22) is true by induction.

()

s M-N, s' M+N
x(s' M+N I( )ISM) has been taken out - see (13)], It is clear from (11)

N

Now consider B [as usual the factor (s M—N{( ‘) | sM)

and (22) that only a term (uu’x) from (23) will give a contribution
for the nth trjectory.
The coefficient of this term is easily seen to be

(-1)"® pen - 2q)

W-n)! T (W+n -2a) °

Thus
() .60 () (" reneza) (n) . (n)
' - I'(2n-2¢ n An
_b-N by By m- -N, s' M+N éio (N-n)! (N 2 n -2a) ®n Pn ‘

It 1s not difficult to iterate this equation to find
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(N) _ (W -20 - 1) (2b)
By M-N, s' M+N NI T (@N-eq-1) 7
which is noniero;.. Therefore
L), () () (W) 1 I(N-20-1)
byt by =y T by [ FleF -eq-1) (25)
() . () ,(N)
Now consider B; MN42, s' M- o b e bly 7o From (25) both
(N) , () ' N . .
N and bN are nonzero.. Thus Bs M-N+2, s' M-N is nonzero 1if
(N) = -b(N) b, (N) is nonzero andv we consider the latter. The

S M-N+2, s'M+N ~N+2 "N

coefficient of the term XN-I_l in (23) is in powers of u + u':

- )-n I‘(2n-2“ N-n -n)(N-n-1)(2n+N-30-2 N—n-é A\ N-n
[((1]\}21'1).' 1"(1\T+n-gc35) b7 e 12).( - va )“ >}(“)

(26)

+ lower powers.

Only ‘the terms given-ih (26) and-the-lasti two térms in (22) :contribute

to the element of interest: -

()

Bs M-N+2, s' Mth

(s M-N+2 -—) | sm)

N-1

3 N-n BEEN)
4: EN{‘I’)l).' r%gfﬁ:gg% (s M-2 I{( +2 ->

. (@-n) (W-n-1) (enet-30-2) (JiJ.)N'n'E} (1) ( )

N-n

il

12 —n+2
(n>( )} ) ()

After some claculations we obtain

()

By M-Ni2 s' MeN C

-+

(-1)""® p(en-2q)
(N-n)! T(N+n-20)

n=

* bfﬁze * ”('1\%2) [SEI + s = (MH2-n)(M+2-N) + (N"ml)(ml)}b-(-g) bfyl(n)
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PR S R N (27)

(

Since b;ﬁ) bﬁ(n) is already knowh, [Eq. (25), (27)] can ve solved for

bfgzg bﬁ(N) by iteration. Actually it is sufficient to find the coefficient
() 2 . () i .
Y of (s"+s) in By M2 s' M If it is nonzero there is
s . () .
at most one positive Sq for which BS M-T42 s' MeN vanishes and we can

choose s # s_. Taking the coefficient of &£+s on both sides of (27):

N-n
Al e Lo ) el

=

Tt is not difficult to iterate this equation using (15) and (25) to obtain

r

r(N-20-1) (M-N+1+0x)
L{v-1)! r{an-2a-1) (M-ar)
x@ | (@9
I'(N-2q-1)
LN-1)! T(2N-2a-1)

corresponding to the two choices in (15). Thus Y(N) does not vanish and
equatibns (EOa,b) can be used to determine the ratios of the residues.

For s §|NHN¢ and 7SC = 0, we can use arguments exactly as in
Section ITI. Therefore all the residues for n = N are uniquely determined
and the assertion is true by induction. Note that N must be > 1 for.
the above to apply since for N =1, A = A and Egs. (20a) and (20b)
become the same and the method fails. This was also seen in Section IT. Thus
the n = 0,1 residues must both be specified. |

Since the n =0 and 1 residues of the first solution agrée with
the Lorentz pole residues and a single Lorentz pole is known to be a possible

conspiracy, the first solution must be a single Lorentz pole. The second

solution, if it exists, is a new one (if one wishes it can be regarded as
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an infinite counter-conspiracy of Lorentz Poles). We will call it a

19 Under the

Class II conspiracy and a Lorentz Pole a Class I conspiracy.
stated assumptions the possible conspiracies are characterized completely

by @, VSC 5 M, and the Class I or II. The Class II conspiracy is

discussed further in tﬁe'AppendiX.
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IV. PARITY AND TIME REVERSAL
We first state our conventions for parity-conserving amplitudes and

Reggeization.go Let H be a c.m. helicity amplitude. Then

H, A " x ZE:(2J+1) a) A dih.(Z) ,  (m=max (I}, [a']}),

(50

wvhere z is the cosine of the c.m. scattering angle and A = Ké - Ka,
A=A - . Pertisl-wave amplitudes of definite parity (P = R(-1)7v -

= ii)f ‘are defined by

S 48, =V
JP J . a b J
ay, =ay ., +0 00 (-1) a’, . ,  (31)
Kakb,Kch Kakb,xckd a'b %a Xb,Kch
where v = {0 if 2(sa+sb) is even and % if 2(s +s, ) is 0dd} and the

2s.
i

parities n; are taken to be real [ﬂz‘= (-1) qi]. We define the signatured

amplitudes [T = (-l)J—v' for J integrall and continue as to complex J.

Then

JPT Se 57V Pt

) = on_7n, (-1) (32)
MMMy a " -x N MAy |

where 0 = Pt., Therefore at a pole in the complex J plane
PT ,PT

JPT - axb

a ~
)\a?\b,)\-c)\.d J - a(ty

we have
P Sa+sb-v Pt
B = 0nn (-1) B . (33)
xaxb a’d -ka-kb

The Mandelstam-Sommerfeld-Watson transform then gives
egge) Ly _ -(2a41) -is(a-v)y .PT -1
l‘@\’ -/\>\ (") - 2 (1+Te )[37\->\—b6>\>\' ?\.}\.' (Z)
Db d
(34)
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Using time -reversal invariance in the +t channel we have chosen B' to be
the same function of ' and the other variables as B. The residues in
(43) are actually the residues of the 0(2,1) partial-wave amplitude

l S J N g v
JP;b ™ x The definite~parity amplitude afJP is related to fJ by (51) and
o .

A p=d-l

J ’ 1J[ , J :
f . == dz H; . (z) &, ,(z) = (-1
anb’chd 2 A Hxakb,XCXd AN akb X k

The implications of parity conservation for conspiracies are obtainedby

using the basic Egs. (33) and (34). Earliy conservation in the s channel,
s

Mg, (-1) 2 b (PN g

s
) (s, t=0) = H a0 o o (s, t=0),
Hx5x4,x1x2 s, g =My = Ay
ﬂan('l)
gives
NzN 1
s R s+s' _s
Topan (8) = o (DT L, (), (35)
since A = A'. This implies that
CC (k)( ) _ nB'qu- (_l)S+S' CCC'(k) . (56)
ss "N Ny ss' -\
To preserve the symmetry of the resgidues we now define
rCcPT \ Sp” 2 2 [F(p-a ING u-a)]%
Pep = /. Clsy sp 83 i) (-1) or(-2a) | Bulug
Pty | (37)
for both (c,s) and (c',s'). From (33) it follows that
~CPT imv S+M/VCPT
Ben = o mgny e ()T ECED, (58)

and similarly for c¢' with oMy, =g N The ‘"crossed residues" have

5
the property
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cPt s,y ~ePr o Myl inv s+\ cPT
_ T _c -
Ry = > La5) B, = 1 (-1)"" R, » (39)
o 15

and finally the ieading-order contribution of a trajectory is

A4V
o (-l) T]i T]B‘ RS?\ RS'?\'.

Now the arguments>df Sections II and III must be repeated in the
light of Eqs. (36) and (38). There is the possibility. of four leading

trajectories with different quantum hgmbers P ahd T. However, since the
Pr(n) BPT(n )

H1H3 Mok,
are relatively complex for opposite signature,trajec-

productsvof the residues B are relatively real and the signature

factors [1+Te—iﬂ(a'v)j
tories of opposite signature can be treated separately. Also. the signature
of the nth conspirator must be (~l)nT to give the same phase. Thus

the contribution to order x° in (6) comes from at most two trajeétories
and is at most of rank two. From (36), for Mr#b C(l) is of rank two

so there must be two leading trajectories of opposite parity. For M = 0O
there need only be one and (39) shows in fact bnly one parity can contribute,
since A = O.

18
The unique solution satisfying the requirements is easily found

to be
i s T 5
R:;T(OL ‘ 1 N 6m + 7) 2 L o~inv (-l)S+M 6)\_-M] y ©
(2a+1)® L g N3 >
(%0)
-0 ; [ 1P P
RZX ( )= i N am - 2 iy o~ Loy (-1)S+M Sx-M] 750 ’
(2a+1)® T g

where by convention M 1is now taken to be positive and 7sc is pure.real

or pure imaginary. This solution is like .a. superposition of the previous
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solutions for M and -M with the residues arranged so the nomiagonal
contribubtions in A, A' cancel between the trajectories of opposite
parity.

As before, the contribution of the leading trajectories does not sat-
isfy the conspiracy condition in order x; and conspirators must be intro-
duced. The analysis proceeds as before. It is not difficult to see‘that the

following set of residues provides a solution,

1t
ip(1-P) ,
CPTn(n) e b M(n) ~inv, . \s+M L -M(n)
Rsk = 3 Rsk + 0mMy € (-1) n Rsx Vs 2
[2(q-n)+1]2 (-1)
S ()
where )
1 Class T
= b

(-1)* Class IT

M(n)

.Tn = 7(-1)"%, and Ry is the crossed residue in the case without parity

conservation. Also

() e e M+v | _M(N) 322& s+s' _-M(N) }
BS)\.S"’?\’ - 2'01 T]B (-1) BS)\.S'?\.' + nlne ( 1) BS}\.S'?\.'

(k)
From (41) and the symmetry properties (A%b) we obtain for either class

I or class 11,

. 7T -
e (n) EOP) [ o
= 1+ o

eiﬁv (_l)p+M+n} Kfz(n) - (AB)'

S

P

SH ) [2(a-n)+1] T N3

with «© = (-1)*t  (compare with Ref. 1). That (45) satisfies the
conspiracy condition can be shown by induction m n by using the symmetry

properties (A%ab) and the results of the previous sections that
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M(n) RM(n) _ BM(n)

- s'at T s ! + dlagoeal matrix.

Tt remains to show that the solution (42) is unique. First we
discuss M % 0. For half integral M it is eagy to show uniqueness by
induction. 1In each step we reduce the problem to the one without perity
conservation and use the results of Secs. II and III. In Fig. 1, the )
possible  normero elements of B N are shown. As a result of Eq. (22)
the contributiohs from BM(N) and B-M(N) never coincide. Therefore if,

for example, we take N\, A' = M—N, M-N+2," »++, M+N-2, M+N,

L4
o= +1 () gF=+L () o=-1 () gg=-1 (N)}
(- l) s A Rsh s A
_ M(N) e _ M+v cc'(N)
- 2 BS}\.S )\! 7 78' +’n T]3 ( ) CSS'}\ ) 6ml

and

o [ e 00 ez 003 ] o

Using (39) and adding or subtracting the equations yields

M+v
M(N) c ', T M3 (-1) Ccc'(N)

Pt(N) RPT(N)
2 ss'A\ v

Rsx s'A'

_c(l)

This is of the same type as considered in the no-parity case and all the
previous arguments can be applied to find there are only two possibilities

I:(N). Taking -A, -A' in the above range yields a similar equation

“for R
. M LM cie T

with B replaced by B . Requiring the property (39) gives the result
(7). For A not in the above range or s s |MIN| or 7sc = 0, arguments

Just like those in Section II can be used.

For integral M the proof is complicated by the fact that the
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contributions from BM and B-M overlap as shown in Fig. 2. A slightly
different method, not‘given here, must be used. Spécial care must be
exercised for M =1 to be sure the result analogous to Eg. (15) still
follows.

For M= 0, it follows from (41) that only one of the two possible
conspirators actually couples. For Ciass T (Lorentz pole), o is the same
for all conspirators (the parity alternates), whereas for Class II, o
alternates (the parity is the same). The symmetry properties (A%b)
thus have a striking coﬁsequence in this case. For M = O parity doublets
are not required and one would expect that their occurreicewould fherefore
beé "accidental." If we thus assume there is no doubling it is easy to
show (143) gives the unique solution. We have not been able to exclude the
possibility of "accidental" parity doubling,but we believe only the following
type of doubling can occur. For Class II it is possible to add to the
' conspiracy «_, P,T = another Class IT conspiracy oy = a - (ek=1), -P;
-TO (k integral). There is no interference, since the parities of
trajectories of the same « are opposite. There is not an analogous
possibility for Class I, because the ¢ of the leading member of the
second conspiracy would have to be opposite to that of the first conspiracy

and therefore by (39) the residue of this leading member would have to vanish.



-26- UCRL.-18%97

V. COUPLING TO UNEQUAL MASS CHANNELS

We now consider the adiitional constraints that factorization
imposes on the equal-mass channel residues wﬁen the leading trajectory couples
to an unequal-mass channel. We first determine the residues at the ﬁnequal . 4
mass vertex from unequal-unequalFmass scattering and then determine the
equal smass residues from factorization and equal—unequal-maés scattering.
~In both cases we appeal to the results of Freedman and Wang.el We consgider
an amplifude frée of kinematic singularities, expand in an asymptotic
series in s for fixed ¢t % O, and demand that the coefficient of each
power of s be  nonsingular at t = O. Only the potentially most singular
term for each power of s 1is considered,and therefore only the leading
t béhavior of the residues is determined. To begin with we ignére
signature ., parity, and time reversal.

First consider the +t-channel reaction

1 2 1 2 2 1
Then 2 2
ets + [t - (my +m)7 1t - (m) - my)"] 2ts
T 2] 2] T E
- (ml +m2) t - (ml - mg) 7
where %

T- {{t - (my + m2)2][t - (my - mg)e]} . (4h)

-

As usual we define

vz 2 L | (45)

7z, -1 ts ’ »

The t-channel momenta are given by

b - X (46)
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Finally we remove the threshold behavior by defining,
—(n) . otn —(n)  \-q+n
Bsu - (21)12) “‘:6'5}.1 2 leu! - (gple) . - és-lui . (LI“T) ’

~ +, -
where the’ B are given by (3). The t-channel helicity amplitude is then given by

o
A (n) -
H = f

n 2 '
oS By Bg " (1 + x) F(u-o4n, u'-o+n, 2n-20, -x).
n
(48)
In this case the crossing relation
s s
T X)d (X)d (X)H .
Hkaxh’Klkz o 1 1 XB %) T Ty sy
" (49)
does not take the simple form (1). However,
2 2 2 2
-s(t+m.2 - ) 6+ m -, R
cos Xl = - ‘ -1
[s(s-llmg Y12 g s = o J t -0
cos X5 —_— -1, (50)
S D
t -0

s =

t -0

When s — o, the s-channel boundary approaches

t = 0, so for the leading
asymptotic power of HS .

we have
s ‘ o
shs'N' Css'h SKX' s (Sl)
-~ O
-(o) -(o) s'-N' «
= P Pore (A1) s -
By the same arguments given in Sec, I1 it follows that we can write
-(O) 5(0) ’
= = 8 ,
SH 6HM 75 ) s % 0 -M Y (52)

where M 1is the s-channel helicity flip in leading order.
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e 8]
Since sin7§ and cosz§ have no singularities at t = 0O, Hs
itself must have no singularities at t = 0. From (50) it is clear that -
the crossing angles have no singularities at + = 0, and therefore Ht’

2
must have no singularities at t = O. Because x = s’ the contribution of

the leading trajectory will have singularities at t = O for lower powers
of s. These singularities are cancel'ed: by conspirator trajectories with

. . 2
singular residues.

The n = 0,1 contributions to (48) give for pu =M, p' = -M:
B e @y L (a) (M) ae 1) 5() o1
sMs ' -M 20 s '-M )
Therefore, \
2?
ACO R /ol I/
SH -2x £2 - M ‘s
1
D42
B(l) o1y ME_:_QL S@ S y (5%)
s'u! f -20 o2 n'-M s' °

The scaling factor f is arbitrary at preéent but is fixed by the
equal-unequal-mass case since we have already fixed the scaling factor in
the equal mass residue.

It is straightforward to write down the general condition for the

most singular term in the coefficient of sa N

Z (-1)N? p(M-4N+1) T(M-o4N+l) T(2n-2q) (.:7&) (n) B(n) - o,
=

(N-n)! TI'(M-o#+n+l) T (-M-a+n+l) T(N+n-22)

-

TIteration leads to a solution much like (24), ,

N
=(N) =(N) '(N-20-1) I'(M~a+N) T'(-M~c+N 572
BéM Perim = Ng I‘(gN—E)oz—J(.);‘O(ll\tl—gc) 1(“(- ?;y) &) 77 -

This agrees with the result of Klein.lO The inclusion of signature, parity
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and time reversal is straightforward with. use of (38).. The .result is

Pt (n) 111(1 -P)e [

(-1)” T(n-20-1) T(M-ortn) F(‘M“O‘“Ln)]? (5k)

,Bsp = 2 (a- n)+l 2 n! I‘(2n-2a 1) {M-a) I'(-M-or)
ﬂ 1 i
2 4l -imv s+M
(‘Og) [ | e (1) 8 ]75’
n-l- g
~JS .
where B 1is given by (37) for both s and s'. The phases are chosen to
be consistent with (52) and € = 71 for my g z m, .
We now congider the t-éhannel process
me+m o om 4w, .
Then 1
t2 [2s +t - (2m2 + ml2 + m22)] t%
Z = —> = (2s - %),
t N t%ij
L
where N = (t - bim® ), Z=2n" + ml2 + m, Also
x = 22—1 _ AL i (1 + _..1_...'_ 4.;....)) (55)
t t%s [1--—(2 + -—1—)] § > %
t2 7 ¢ -0

where only the most singular terms are kept. Finally
1
2
D= (t-lu”)” i}
- 2 2

The behavior of the crossing angles is rather different in this case,

) -(s + m,” - o )(t + m2 - my ) - 2m2 (m m22)
1” ((s - »m + g ) g(é - (m - m2) )}237

-t + my - My

~ 9 . N -1
s —® N t -0 ’
cos -1,
5 T
t -0
(s + n’ - m, )t - om° (m - m22)
cos X2 = ir
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1
> st +om”F _ t7 (» éTN —_— - N ,
5 —>w 242N N N2 t2%/ ¢ 50 212
s %, ——> - T
s —o 2t2s
t =0
9 6
As before, since sin-és- and COS?S- are  nonsingular at t = 0O,
H°  is s nonsingular at t = 0. The crossing angles Xl and X5 are
nonsingular at t = 0 but XQ‘,and Xh are singular. There we require
that
% 2 Sy t
a . (X)) a (x,) H .
bt Bt 27 TN TR T, sy
be mnonsingular at + = 0. This is our formulation of the conspiracy
conditions. As we will consider only the terms sa and t_E'sa_l we

can take X2 = XlF = X and use the method of Sec. II to combine the two

d functions. We therefore simply require that

S t
de(x) HSH’ 1M
¥

be nonsingular (n.s.). Considering the contribution for n = 0,1 gives;:

using (9), (52) and (53),

— polt
>~ (x) da® (“)7 7, i,@a (1 +x)° (1 ) (u—a)(-M-a) )
T
2 29
Sﬁi) [% (”-%9%] 7. %7 = (56)

The B for the equal-mass channel are defined analogously to (47). An
argument just like that leading to (52) shows M for both channels must be
the same.

Keeping only the most singular terms,
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sin(z - X) os X = 52%— s
2t%s
SO we have
. -iXJ | 5T 1(FX)T
a3 (*) = (sule  Ylsn) = (sule “ ¥ e = Ylsn)
. »
-i=d PN
~ (sple 2 Y(; - %¥£§ J ) | s\)
t°s J
T

y 1%

= (2 B g Y | )

Substituting this in (53) gives
k18

A . i’—‘J -iZg ,
3 (s)\.| (l+él-':le—J)e2 su) (1 - —"Zi—)(sule e y|s,M):s@')"’}’ ,
L.J tZS Ve ¥ S S

{;i_,dux(ﬂ)ﬁ E[ (\—Ea J 5%“ Tgrs

. Mg-a )
'ea t2 S
where (11) and (19) are used .in the last step. Therefore
1 . .
=(1) _ i, 20 N, ( M i
A %(Mg - aé) (Mzg I, +59)am W

i . % - J rd .
T <(-2a)(»142-a2>>' (o] a2 + () (aw) w7,

(57)

Comparing with Table I one sees that this is precisely the forh of the
Lorentz pole residue and the required choice for £ 1is f = -i. It is easy
to verify this result when the symmetries are included using (43), (54),
and (57).

Since, as.shown in Sec. III, the n=0 and n=1 equal mass residues

determine all the others under our assumptions,we conclude that only the
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Class I or Lorentz pole equal maSS'cohspiracy is permitted to couple to
unequal-mass channels. We believe that from (54) and analyticity in
equal-unequal-mass scattering it should be possible to show that all
equal-mass conspirator residﬁes must be those of a single Lorentz pole
without the use of assumption (iii).7'

Finally we remark that for zero-mass channels (mg =m = 0) the

residues are

(T (A
P1(n) _ elﬂ(l P) {6VM Foom, o, (-1)
My Ho

S.+t8, =~V
270 o 2 7(n) (58)

B v-M y)

where V':-._u21L = By From (58) we observe that only the leading trajectory

couples at t = O in Compton scattering.

PRy
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VI. SUMMARY AND DISCUSSION
Under thé reasonable physical assumptions'étated in Sec. I we find

that there are.only two possible ways to satisfy the equal-mass éonspiracy
relations. Both of thesé conspiraciesvare characterized by the "quantum
numbers” M and 7 (signature) - and P (parity) - if M - 0. The first
or Class I conspiracy is a single Lorenfz pole. The second or Class IT
congpiracy is new and has the property that'thé s—channel amplitude is
pﬁre helicity flip M to all orders in é; it can Be regarded as,an infinite
counterconspiracy of Lorentz poles; We also show that ifvthere'is coupling
to an unequal-mass channel only the single Lorentz polé solution is permitted
in the equal-mass channel,. On physical grounds it is therefore reasonable
to regard as mathematical accidents our Class II edual—mass congpiracy and the
known equal-mass conspiracies for low channel spins (e.g., the Volkov-
Gribov conspiracy).

Our assumption (iii) of couplihg_to arbitrarily high channel. spins is
quite Strong,but we éonjecture that the same equal-mass results follow if the

leading trajectory couples to only two channels of channel spin |M| + 2

()
sAs'A!

such s and s' there are still enough conditions to determine the residues

or greater. This appears plausible to us because if B is restricted to

uniguely except for special values of « when too many of the Bégg,x,

might vanish. Of course, if there 1s coupling to unequal mass channels the

stronger constraints imposed by analyticity in equal~unegual-mass scattering imply

a sindlelorentz pole and such considerations are unnecessary.
In conclusion we point out that the definition of M as the s-channel

10,22,23 provides a consistent interpretation

helicity flip in leading order
for all mass configurations and Eqs. (43), (54),and (58) give the leading

t Tbehavior of the residues in all cases: equal-, unequal-, and zero-mass

_ channels.
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APPENDIX. TFROPERTIES OF THE CLASS IT CONSFIRACY
The second conspiracy in (15) will now be discussed further. The

form (17) of the contribution to H° 1is very suggestive and leads us to

conjecture:
HS _ 6 6 v X-CZ l I‘(Qk—?Of-l) G X) k C C, (Al)
she'A' T AWM A %l T(k-20-1) in Ts Vg

k=0

= 6 8 X_a F(-O&, -0~ %; ‘205"1; _X.) 7Sc 7

e 1 ( )%_ 2 (or+1) o ot
S} e = [1+ (1x R 2
M x M (l+x)2 2

S,

Also Table I leads us to conjectﬁre

KMO‘(n /= @f ) (o, 1) a8 A (22)

su

~J
where P n) is a polynomial of degree n in p. This is also suggested

by (Al),vhich indicates symmetry under J, ¢»J_ and also leads to (a2).

Inserting (Al) and (A2) into (6) yields for the conjectured second conspiracy

o

2

P(ay - 55 201, -x) = ) PV (o) B (o) Pam)

x F(n-a+p, n-a+p'; 2n-20; -x), (A3)

This equation can be iterated to obtain.

(n) oWy ) (1)Kt
P (o ) CATY NPT S

k=0

| Py
r'(en-20-1-k) I'(en-2q-2k-24-1) r<————é—— +1

I'(n-20-1) I'(n-2q-k-£-1) r(ﬂi'“—l—+ 1 - ’D

x

(Ak)

D(n-tp) I (n-g+p')
X Ta-G+u-K) r(l-aw ~K) ’
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n! I'(en-20-1)

1
2
. s Oeye
where P(n)(a,u) =[I‘(n 2a-1) } P(n)(a,u) .
If the solution factorizes as required, P(n)(a,u) can be obtained by
) .

taking the coefficient of (u')" in (AL),

B k-n
P(n)(a,u) ) 216 n!(2) I'(2n-20-k-1) T(n-op) .

k!(n-k)! I'(n-20-1) I'n-o+p-k) (A5)

P(n)(oz,u) is thus a polynomial in p and o of at most degree n in
each., We can use the integral representation of the beta function. twice

to convert this into an expreséion useful for small p rather than small

5 ' A+1 1
("l)2 '(2n-20-21) J (-l)k(gu); 1‘\(2’2.’.'_.,_ k) P(g‘ -5 -0tk )
ST R ) TR T Teden
P(n%x b) n(Aggen
n-1

| ('l)k(Qp.)l P(g“*'l""k) I‘(g-l—am-k)
(2k+1)T(2p-2k-1) I‘(—:!-'-)
' 2

(-1) 2 '(2n-20-2u.)
n-2u+1 I'(n-20-1)

2

2 I‘(n+—;'— -Ol~}L)

‘n odd
(A7)

for puZ0, and P(n)(a,u) = (.-l)n P(n)(a,-p).

We have not been able to give a general proof that the residues

~e(n) _ Z (-2 )k—n [ n! }ﬁP(En—Ea-k—l W (n-ou)
P ki (n-x)! | '(Bn-2a-1 )T (a-2a-1) T (n-crn-k )
x dﬁM(g) 7sc (48)

when inserted into (6) satisfy the conspiracy condition or, alternatively,

Eq. (A1) is a possible form of H° and thus (A4) and (A5) are consistent.
&

rtor all uy,p'. The following special cases have been checked. The conjecture

~~
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has been cliecked for. mn =k ﬁith»ﬁhe.method7§f.sec. IT. :Since
P(n) is a polynomial in U, the consistency of (AL) énd (A5) can be
checked by comparing expressions for special vaiues of wu,p' . Teaking
M=k+a~-1~-n p' =%k"+a-1-n inﬁroduces considerable simplifica-
tion and we have verified the consistency for ki and k' =0,1,2,3 and

all n and «. This constitutes anothef complet¢ proof for n £ 3 and
checks a large number of values for n > 3.  For s =s' = M.= 0, the first

" conspirator residue vanishes and ﬁhus from Sec., III both conspiracies are

identical. In this case (A6) gives
;I‘

(-1 1) r(a-a)
P(n)(a)o) - ) | 1“(%) P(g - Q) b
0 n odd

and (Ah) agrees. These residues agree with the Lurentz pole residues
given by Akyeampong, Boyce,.and Rashid.17 We thus have confidence that
the second solutioh is a possible éonspiracy.

In conclusion ' we give the symmetry properties of the
Kinematic residues. For the Class I cohspiracy (Lorentz pole),

CRP) Lyt B e (ol (A%8)

SH
5

These follow from the results of Sciarrino and Toller” when the relationship
between our K and their V and W is taken into account. For the C(lass
II conspiracy (pure helicity flip M),

Kfi(n) _ (-l)s-M+n Kf?in) _ (_l)s+u K;Md(n) (A%b)

U, .
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These follow trivially from Egs. (A2) and (AT). Thus the two conspiracies
can be distinguished by the behavior of the kinematic residues under

M - -M. This leads to some characteristic differences when parity is included.

-~
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TableI: Kinematic Residues. R = Ry(g)]

Class I. Lorentz Pole.

20O foulrlam) = a5, )

fﬁf”_: - ;(SMIR{(M—;;:E@‘)% [t () + <M—a>(-2—)]}|SM>

(-2a)?

2

N
{[(M‘g-a )(M‘2 (o~ 1) [(M+oz)(M+oz Hhz

.
. M_Z..."_.E(Oi‘__];)___(gg +s -0 -a)I + (M—a)(M-owl)(—)]}

KM}'(B) = = 1 <S R
SH [-6(20-2 ) (20-3 ) (201 ) 12 ”| L) (- (a 1)2)0f -(@-2)%]

(2) _ 1 N
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sp

x [(04401) Qs 1><M+a-e>(——) 0P~ (0-2)? ) (i) (o +S-M2-ea+M>C )

| 3
+ 308 (02 )2 (1) (P52 0) (DMa0r) o) (e ) ]}Lm

Class II. Pure Helicity Flip M.

Kfi(o) _ dS E)

KMx(i) = 1(su

SK (_2

{(;) (——)} sM) 7 (—:;E)% m dliM(g)

Lo(@) o 1 2 @-ly .s 4w

SH [2(2&-1)(2&-2)]% W) a3

Kb’n(B);_ ‘ 1 ' ;(H3+3a5)d()
s [-6(ca-2)(2a-3)(2a-1 )12
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