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ABSTRACT 

A comprehensive theoretical description is given for the effects of 

magnetic resonance on the angular distribution of radiation emitted from oriented 

nuclear states. The formulation is made in a general way. It may be applied to 

an ensemble of nuclei oriented by any method: for example, nuclear reactions, 

angular correlations, and low-temperature nuclear orientation may be treated. 
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In fact the theory can also be applied to optical double resonance experiments. 

Statistical tensors are defined to describe nuclear orientation in the "resonant" 

state. Interactions of the oriented ensemble with extranuclear fields are then 

considered, and the effect of a radio-frequency (rf) field on the angular dis

tribution of radiation is given. 

Two formulations are given for the "pure magnetic" case, for which 

numerical calculations were done. One employs angular correlation formalism, 

following the evolution of the density matrix in the laboratory frame S, while 

the other is more closely related to conventional NMR. In the latter approach 

. the transformation into the frame S"', wherein the statistical tensors are 

time-invariant, is described in terms of a "Generalized Torque Equation" gov

erning the motion of a unit vector along the symmetry axis in S"'. Both for

mUlations are exact. 

Time-dependent distribution functions are worked out in detail, both 

with fixed and random phase angle between the rf field and the initial symmetry 

direction. Fast oscillations due to the constant magnetic field ar,e modulated 

by slow oscillations due to the rf field. Time-integral curves were calculated. 

These show great sensitivity to the rank of the relevant statistical t.ensor, 

to geometry, and to the phase of the rf field. .Multipole structure is predicted 

for certain geometries, with the resonance line showing a nUmber of maxima equal 

to the rank of the statistical tensor. Under certain conditions two types of 

asymmetry are observable. A "transient" asymmetry appears for low rf field 

values: this synnnetry is sensitive to the sign of the nuclear moment, but it 

disappears in high rf fields. Odd-rank statistical tensors can also give respqnse 

functions with "persistent" asymmetry that remains at high rf fields. This is 

a parity effect and is not sensitive to the sign of the nuclear moment. Effects 

of relaxation are also discussed briefly. 
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1. INTRODUCTION 

. 1-7 
Recent progress in nuclear radiation detection of NMl~ (NMR/RD) has 

stimulated us to develop a theoretical description of this method, which is 

presented here. We have two principal aims: (1) to provide a description tl:1at 

is sufficiently exact and complete as to be immediately useful to anyone plan-

ning experiments in this area, and (2) to give a unified descriplion that 

stresses the essential similarities in the various experimental technjques 

that may be combined with NMR. The three such techniques that we shaJl con-

sider are nuclear orientation, perturbed angular correlations, and angular 

distributions following nuclear reactions. We denote the combinations of these 

with NMR as NMR/ON, NMR/PAC, and NMR/NR, respectively. Experiments of these 

types have typical double resonance character, with the "effect" being observed 

by the spatial multipole intens.itypattern of the nuclear transition rather 

than by its energy absorption. For all experiments of this type it is desirable 

to achieve a sizeable degree of polarization or aligrunent of the nuclear state 

such that it exhibits a non-isotropic radiation pattern of the general form 

w(e) = 

Here, BA is the orientation para.meter, G
A 

is the perturbation factor, and A'A is 

a pa.rameter that depends only on the nuclear transition. The three methods 

mentioned above each apply to a certain lifetime range: 

1. NMR/PAC will involve states with 10-8 sec < T < 10-5 
1/2 -

2. NMR/NR applies to isomeric states in the 

minutes; 

-8 range 10 sec 

sec; 

< Tl / 2 < 
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3. NMR/ON requires Ti/2 ~ hours, except for reorientation in .inter

mediate stat~s with Tl / 2 ~'Tl' where ,Tl is the nuclear spin lattice relaxation 

time. 

The o:r'igins of the NMR/RD field are diverse: this fact has probably 

delayed its development. Indeed. the basic knowledge and technology for experi-

ments of the types cited above were available in 1960 or earlier: they only 

awaited being put together. In 1952 Deutsch and Brown
8 

used annihilation 

radiation to detect NMR in positronium. Aiready in 1951 Brossel and 

Bi tter9 had calculated NMR lineshapes for optical double-resonance lines, in 

which atomic excited states were oriented by optical pumping and resonance 

absorption ~as detected by depolarization of de-exciting dipole radiation. 

. 10.' 
Guichon, Blamont, and Brossel reported the effect in atomic mercury in 1956. 

These experiments are very similar to the NMR/RD methods, and it can 

be shown tll:att Our th.eoretical description is sufficiently general to 

include the optical double resonance work. 

Two papers appeared in 1953 in which Bloembergen and T~nmer suggested 

11 ' 
NMR/ON and'Abragam and Pound / 

. 12 . 
suggested NMR PAC. Neither of these suggestl.ona 

was quite specific enough to lead directly to a successful experiment,13 but 
, \ 

they laid the theoretical groundwork for the two methods. Between 1953 and 

14-20 1966 several very interesting experiments were reported . in the general 

area of NMR/RD. Unfortunately, they all depended on rather special 

properties (such as beta asymmetry, gaseous samples, special lattices, etc.), 

and in any case none of them was very close to the 1953 proposals. Thus the 

applicability of NMR/RD was rather limited. 
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With the success of recent experiments on both solutes in host metal 

1-7 lattices and free atoms, the scope of NMR/RD has become much broader. 

The NMR/PAC, NMR/ON, and NMR/NR methods have all been shown to work. An impres-

21-26 sive number of resonances have already been observed. Although several 

discussions have appeared in which theoretical aspects of .tMR/RD were 

27-30 .. 
treated, lt is clear that the growth of the field calls for a more general 

and thorougb treatm.ent, as given below. In particular, the following points will 

be ca.refully considered: linesbape, power dependence, rf-phase, fa.vorable 

geometries, and time-differentia.l effects. 

Before considering the theory of NMR/RD, it is useful to consider its 

range of application, and particularly to define the limits ofi. ts applicability. 

NMR/RD and conventional NMR are complementary rather than competitive. In fact· 

it is inconceivable with present technology to do both conventiunal NMR and 

NMR/RD on the same nuclear state. It appears that NMR/RD alone is applicable 

to most nuclear states of lifetime less than years. At the other end of the 

stability spectrum the NMR/RD methods might be able to produce observable effects 

for states having lifetimes down to 10-9 sec or perhaps even shorter. It would, 

____ -8 ) 
however, be pointless to study such very short-lived states (i.e., T ~ 10 sec 

by NMR/RD,because the natural linewidths would preclude measureluents of higher 

a.ccuracy than that obtainable with time-integral PAC. For slightly longer-lived 

-B 
states, in the L ~ 10 sec range, time-differential PAC becomes applicable. Using, 

for example, the stroboscopic observation technique,3l time-differential PAC 

can be made not only as accurate as Nlv11~/PAC. but actually a Ii ttJe better. This 

advantage arises because the stroboscopic method yields the Fouri er transform 

of the time spec trum, which is essentially equivalent to an :mmline, but with 
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no rf broadening. To do NMR/FAC ~fficiently on the same state would require, 

as we show later, a radiofrequency field of sufficient intensity to increase 

the linewidth by about a factor of two. Therefore NMR/RD offers no ~ priori 

-3 ... 8· 
advantage of accuracy for sta.tes in the 10 to 10 . sec range. It may, however, 

be appiied to cases in which the resonant frequency is so high as to preclude 

f t ti 1 . . f 1.00RhF~·.2l as mng, as· or In any event NMR/RD is ,unlikely to be of much 

-8 . 
value for states of lifetime T < 10 sec because of natural line-width, or for 

. 6 
states with T > 10 years fpr intensity reasons. For nuclear states in the range 

(10-
8 

sec) < T < (years), NMR/RD combines the advantages of NMR with the extremel.y 

high sensitivity of single.quantum detection. In comparison with conventional 

NMR, NMR/RD qs.s much higher sensitivity. 

The essential equivalence of the three NMR/RD methods is established 

and discussed in Sec. II, and the density matrix formalism is introduced. 

General equations for perturbation of an angular distribution by an rf field 

are derived in Sec. III. In Sec. IV th.e "pur.e" magnetic resonance case is 

treated by another geometrical approach more familiar in the NMR field. Section 

V presents a discussion of several properties of the perturbation factor. In 

Sec. VI the resonance behavior for specific geometries is discussed. In Sec. 

VII the influence of relaxation is treated briefly. 
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II. PERTURBATION OF ORIENTED STATES 

11.1. Description of Oriented States 

An ensemble of oriented nuclei mB\Y be prepared in several ways. The 

absorption or emission of unpolarized radiation in a direction ~l by a randomly 

oriented ensemble (ordinary source or target) produces an oriented ensemble of 

nuclei which is axially symmetric about ~l' Orientation of nuclei can also be 

achieved through the interaction of external fields with either the (static) 

magnetic dipole moment or the (static) electric quadrupole moments at low tem-

peratures. Dynamic microwave or optical methods of nuclear orientation, which 

depend on the emission and absorption of radiation in the electronic environ-

ment of the nuclei, can also be used. 

It is assumed here tbat the oriented ensemble of nuclei possesses an 

axis of cylindrical symmetry. which we shall denote by the unit vector~l' 

The state of the oriented ensemble at the time of fOI"Ill8.tlon t = 0 will be repre-

s ented by the densi ty matrix p (0) with matrix elements ( 1m' I p (0) I 1m > in the 
z 

representation lIm}, where I is the angular momentum quantum number of the 

individual nuclear states and m and m' are eigenvalues of I with respect 
.z 

the quantization axis z. If z is parallel to the symmetry axis ~l' 

density 
-

matrix is diagonal in the lIm} representation at t = O. 

It is convenient to expand the density matrix p(O) in terms of 
z 

the 

irreducible spherical tensors of rank A, the so-called "statistical 

tensors".32 The statistical tensors are defined by 

p~(O)z = L(-l)I+m
1 

(I-m'ImIAq) (Im'lp(o)IIm) 

m 

to 
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USingtheorthogonal:tty relation of the Clebsch-Gordan coefficients 

( I-m' 1m I Aq) this definition leads to the mul tip0le expansion of p (0) : 
z 

\" (-1) I +m' (I-m' 1m I Aq) A (0 ) L Pq z 
A 

The tensors are hermitian in the sense that 

Under a rotation R of the quantization coordinate system by the Euler angles 

a, S, y which carries the z axis into a new z' axis, z -+ z', the statistical 

tensors transform according to the irreducible representation D(A) (z -+ z') of 
qq' 

, the three-dimensional rotation group R33: 

p~,(O)~, == L p~(O)z 
q 

DA (z -+ z') 
qq' 

(4) 

where the indices z and z'represent the quantization coordinate systems. 

If the symmetry axis ~l is chosen as the quantization axis, pA(O)k 
q _1 

is invariant 

under a rotation about ~lt i.e. under the transformation D~q,(a,o,o) == 
r -iqQ, 
U I·e • 
qq 

Hence, in this representation we have after the transformation 

A ' 
p(o) 
q' ~l 

(5) 

and the orientation of the ensemble of nuclei of spin I is completely described 

A ~ 
by the 21 parameters Pe(O)k.Even values of A mean alignment of the nuclear 

",1 

ensemble. The p~(O\ are id~ntical (except for a trivial factor) to the 
_1 ' 
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orientation parameters BA(I) which are employed in the theory of nuclear 

orientation .. 34 ,35 Different sign conventions are used in nuclear orientation 

theory. We.shall adopt the relation 

(6a ) 

or 

BA (I) = (21 + 1)1/2 L (_l)I+m (I-m rmIAO) P(m) (6b) 

m 

Here P(m) is just p , a diagonal element of the density matrix. The orienta
mID 

tion parameters are normalized such that 

if L P(m) :: 1 

m 

The orientation parameters can be computed from Eqs. (6) if the popu-' 

lations P(m) of the axially symmetric m - sUbstates are known from the method 

of orientation (e.g. low temperature orientation, Coulomb excitation, nuclear 

reactions, etc.). 

For an ensemble that is oriented by observing, in the direction k = z, 
-1 -

a preceding (unpolarized) nuclear radiation X emitted from a (random) state 

10' the orientation parameters are similar (but not identical) to the directional 

distribution parameters AA On as defined. in directioIi.&l correlation prObleIrijl.36 

Consider a ~t&te of spin I oriented by the observation of a preceding gamma 

radiation of mult:ipole components (If,L) (If = E (electric) orlf = M (magnetic» 

emi tted in the decay' 10 -+ 1. TQe ori..enta.ti.on parameters are given in tenu.a. Qf 

reduced emission matrix elements (III~N ~ilf)IIIO)' 
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LTIL'TI' 
B,\(I) = =::.....:.:..----~~-----, ........... --~-----~-----

1\ \. 1 ( III j A ( TI ) II I ) 12 
, (7a) 

L _~ .. :"L 0 
L,TI 

where FA{LL'IOI) are the F-coefficients as defined e.g. in reference 36. !<'or 

a pure multipole gamma radiation (TIL) the B,,(I) are simply 

The quantization (symmetry) axis for the B,,(I) is of course, the observation 

direction ~l' 

The or1-entation parameters of a state I that is oriented by the 

observation of radiation X other than gamma radiation is given by 

, * ( III XL II 10 ) 

where the b A (LL' 'Xl) and ( III xLII 1
0

) are the parti cle . parameters and the reduced 

matrix elements, respectively, for the emission of the particle X with multi-

polarity L and L'. The particle parameters for 8-transitions usually include 

the reduced matrix elements and the factor (_l),,+L+L' .36 

In nuclear orientation experiments the parent nucleus, a long-lived 

isotope, is oriented, and the B,,(I) may be calculated from knowledge of the 

ambient temperature and the Hamiltonian describing the interaction of the 

nuclear moments with extranuclear fields. 

, (8) 
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Nuclear reactions produce an ensemble of nuclei oriented relative to 

the beam direction. The orientation is axially symmetric if the incoming par-

ticles are unpolarized and if the outgoing particles are observed at 1800 or 

not at all. The BA(I) parameters thus depend upon the detailed reaction mech

anisms. Often the assumption is made that the population distribution in mag~ 

netic substates is G~ussian, with maximum population in the substate(s) that 

have minimum spin projection in the beam direction. 

1I.2. General Deeqription of the Perturbation of an Oriented State 

The central problem in calculating the influence of an extranuclear 
. '" 

perturbation on angular distributions or correlations is the computation of 

the time-evolution of the density matrix p(t) from a given initial state p(O) 

for a specific perturbation Hamiltonian X: 

p(o) ___ 'Jf ___ ..... ;:> p ( t ) 

Th t . 1 ide' ., th Nt' 32 e 1me-evout on of a nS1ty operator 1S g1ven by e von· eumann equa 10n 

i h p = [J(', p] = J(' p - p J(' 

The operators p and J(' must be defined in the same reference frame. 

Solutions of Eq. (9) are found by introducing the time-evolution operator 

A(t), which represents a time-dependent unitary transformation of the density 

matrix p: 

p(t) = A(t) p(O) A(t)t (10) 

..... 
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can be derived. 
qq 

A comparison with Eqs. (3) and (16) shows that the G _(t) 
AA 

are actually the expansion coefficients of the hermitian adjoint statistical 

A f 
tensors p • 

q 

An ensemble of nuclei formed at the time t = 0 with a symmetry axis ~l 

changes under an extranuclear perturbation into an ensemble that is given at 

time t by the statistical tensor 

~. 

p (t) = q Z 

where Eqs. (4), (5), and (16) have been used. For the representation axis z 
~ 

of p_(t) 
q Z 

and a symmetry axis of the perturbing interaction can be 

chosen in order to have a particularly simple form of the attenuation coefficient 

(Eq. (17». If the statistical tensor 
5.: 

p_(t) that describes the perturbed ensemble 
q 

is to be represented in the original ~l representation, one has 

A • - (~)* L A * -> k) P-(t)k = P_ (t) Z 
D __ (z 
q'q -1 q ..;.1 

<i' q' -

(20) 

[ 
.. -, 

(~)* A * DO,) (k z) G qq (t) (z --:> k ) = Po(O)~ -> D . 
Oq -1 AA z q'q _ -1 

qq'A 

II.3. P~rturPation by a Static Magnetic Field 

The Hamiltonian that describes the interaction of a static magnetic field 

~o with the magnetic moment 
]IN 

~ = g ~ 11 of a nuclear state has the form 

.~. 
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K; - E . ~O (21) 

It is diagonal if the direction of ~O is chosen as quantization axis z, i.e. 

~O = HO :z.·where ~z is a unit vector. Thus 

= _H(_l)I-m,( I 
o , -m 

1 ~) (III~III) 
o 

.- -HO m ( III ~II I ) 0 , 
[(21+1)(1+1)1]1/2 mm 

, (22) 

where the Wigner-Eckart theorem and the explicit expression for the 3-j symbol 

have been used. With the conventiona.l definition of the ma.gnetic moment 

~ = (I I I ~ I I I) ::: I ( III ~II I ) 
z [(21+1)(1+1)1]1/2 

the energy eigenvalues are given by the well-known expression 

(24) 

where g is the g-factor of the nuclear state and ~N is the nuclear magneton. 

In this equation we have introduced the Larmor frequency 

In the{Im} representation, i.e. ~o = He, the evolui~ion operator is 
- O-z 

diagonal; 



-14- UCRL ... 18413 

(inlA(t) 1m ). 
-iwcft 

= e 6-mm 

and after summing over and using the orthogonality property of 

the Clebsch-Gordan coefficients, the perturbation coefficient (Eq. (17)) takes 

the simple form 

G.
qq_(t) . -iqwot . 

- e 0 - 0 ~ 
AA~O qq AA 

The time-evolution equation (16) for a static magnetic intera.ction thus becomes 

(28) 

This equation is equiva+ent to the equation that describes a rotation of the 

quantization coordinate axeS about ~O through an angle a = -wot : 

Hence, if one writes the statistical tensor p~(t) in a representation with 

respect to a coordinate system SO(t) that rotates about ~O = HO:z with the 

angular veloei ty -wO (1. e., in a left-hand sense)' one obtains 

=L (30) 

q' 



-15- UCRL-18413 

This equation is the quantum...mechanical equivalent of the Larmor thee·rem, which 

states that the influence of a uniform static magnetic field ~O on an ensemble 

of magnetic dipoles 11 can be expressed by using the description of the ensemble 

for ~O = 0 but with reference to a coordinate system that rotates with the Larmor 

frequency Wo abo~t ~O· 

If the ensemble has a symmetry axis ~l the effect of a magnetic field 

~O can be described by a :rotation of the symmetry axis ~l about ~O with the 

Larmor frequency w00 This interpretation will be useful in later discussions. 

11.4. Perturbation by Radiofrequency Fields 

11.4.1. The Time-Dependent (Differential) Perturbation Coefficient 

The presence of a static magnetic field HO causes a splitting of the 

energy levels of the nuclear states (Eq. (24)): 

where the quantization axis is parallel to ~O. A radiofrequency (rf) field of 

.' proper frequency and polarization direction will induce transitions between the 

magnetic substates and will alter the degree of orientation of the ensemble of 

nuclei. 

An rf field, ~l(t), is considered whose magnetic vector is perpendicular 

to ~O' i.e., it lies in the x-y plane. A circularly polarized electromagnetic 

field is represented by the magnetic vector 

± e sin 
-y 

(Iwlt + Ll)]; 
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where the index + or - indicates right or left circular polarization, respec-

tiv€ly. The phase 6. accounts for the fact that the radio frequency field has 

a particular direction at t = 0, when the nuclear state is formed. If con-

tinuous rf is used with no "phase-locking" one has to average over the phase 6.. 

The necessity to introduce a phase angle distinguishes radiative detection methods 

from continl,1.ous,...wave NMR in stable nuclei, where no time scale is defined by 

ei tller crelt,tion or decay of a nuclearsta te , although an analogous time scale 

exists in pulsed NMR exp~riments . Thus, for short-lived isomeric states _, the 

lifetime represents a minimum "time window", which results in a characteristic 

line width even for very long nuclear ,relaxation times. 

For a linearly polarized (lp) field along the x-axis one has 

e cos 
-x 

Following the usual practice we may regard ~!(t) as being composed of right

and left-:eircularly polarized components ~f (t) (see Eq. (32)). Only the com-

ponent rotating with the - same sense as the nucle-ar Larmor precession can induce 
, I 

resonance. This component is determined by the sign of the nuclear g-factor. 

Allowing for w to have the sign defined by w = - T!rlw I we may write the 

resultant magnetic field acting on the nuclear state as 

(34) 

The interaction Hamiltonian in the laboratory system Sis: 

3C (t) = -~ . H ( t ) (35) 

,:.- -
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e.g. for a circularlypola.ri zed rf field: 

(36) 

This expression follows from the fact that the effective magnetic moment operator 

~ is proportional to the total angular momentum operator I 

By using the operator identity37 

-iI ejh 
I cos e + I sin a = e z I 
x Y x 

e 
+iI e/h z 

the Hamiltonian (Eq. (36» can be written in the form: 

(38) 

The Hamiltonian (Eg. (39» is expressed with respect to the laboratory system 

S. 

For the computation of the perturbation coefficient Gq~(t) of Eq. (17) 
AA ~ 

the matrix elements of the evolution operator A(t) (Eq. (12» in the {1m} . z 

representation with respect to the laboratory frame S are requireq. In order 

to apply Eg. (12) the Hamiltonian j( (t) ofEq. (39) must first be transformed 

to a frame of reference S' such that H' does not contain the time t expli-

citly. This transformation is accomplished by introducing a system S' that 

rotates with the angular frequency w about the z-axis of the laboratory sys-

tem. This tra.nsformation is represented by the time-dependent unitary trans-

formation. operator 



u(t) = 

"If''' i-n S' and the Hamiltonian ~ 

-18-

is 
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-(40) 

(41) 

The term -iflU tau/at, ·which must be added because the transformation is time-

dependent, corresponds to the classical Coriolis force. 

The execution of the transformation (Eq. (41» leads to 

This "time-independent" Hamiltonian is not diagonal. It describes an inter-

action of the nuclear ensemble with an effective magnetic field H in the x'-z' 
~e 

plane of - S': 

(43) 

The direction z" of H is given by the angle S with respect to the z'-axis 
",e 

(see Figs. I and 2) 

tan_a = (44) 

Hence, by a further rotation V(S) of the coordinate system S'(t) about the y' axis 

through the Euler angle B the new z" axis is made to coincide with the 

direction of H : 
-e 
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iI S/h -iI S/ft 
= eYJ'{"e Y 

" The explicit evaluation of J'{' by using operator identities similar to 

Eq. (38) gives 

3(" 
].l 

= -g /- [(1 (46) 

This Hamiltonian is diagonal and has the matrix elements in the angular momentum 

representation {In} " 
z 

with 

E c t •. 1'1 w n6 , n nn e nn 

At resonance W = WO~ the energy splittings are given by 

They are independent of HO. The solution of the Schrodinger equation (Eq. (11)) 

in the system SIt is now given by 

A"(t) = e 

i "U''' - fl ,n. t 
(49) 

Since we want to find an expression for the matrix elements (m\A(t)\m >, 

the time-evolution operator A"(t) must be transformed back to the laboratory 

system S: 
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A(t) = [U(t) v(B)] A"(t) [U(t)V(B)]t 

-iI B/h i1 B/h 
= u(t) e Y A"(t)e y ut(t = 0) 

The operator Ut acts on the initial state and hence must be evaluated at 

t = o. The evolution operator is now expressed in the angular momentum repre-

senta tion rIm}. : . Z -

(iii!A(t) 1m ) 
-11 (wt + 6)/h -i1 B/h iI B/h iI !::./h 

= ( iii I e Z e Y A II ( t) eYe Z 

[ - (- )] -iT B/h iT Bfh = e -i m wt + m - m!::. (m leY A" (t) e YI m ) (51) 

Using the closure relation L In ) (n I = 1 twice, one obtains 

n 

(mIA(t)lm) = [ e-i[mwt + (m - m)!::.] (mle-iIyBfhln )(riIA"(t)ln) 

nn 

iIBfh 
x (n leY 1m ) 

'fJ''' Since II\, is diagonal in the representation {In} II, the evolution operator 
Z 

A II. (t) i8 diagonal: 

(i1!A"(t)ln) 

Introducing the D-functions (Ref. 33, p. 22) 
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(54) 

eq. (52) can be expressed in the explicit form: 

(iiilA(t) 1m ) 

n 

-iE tjh n 
e 

Here, the rela.tiond( I) * un = d (I) (B) 
. mn mn has been used. 

The perturbation coefficient that describes the interaction of a cir-

cularly polarized radio-frequency field plus a static magnetic field with an 

ensemble of nuclei with spin· I is now easily constructed from Eqs. (17) and 

( 55) : 

+m' +m' 
(I .,mlc rml ~ )( I ..an 'Iml Aq ) 

() () () ( ) . (- )6 -i[ (E -E ,) + quh]tjh 
x d.,:I (B) d I (B) d I (8) d_ I (B) e-1 q-q e n n . (56) 

ron ron m'n' m'n' 

For a further reduction of this expression the perturbation coefficient 

is written in terms of the Wigner 3~j ,symbols instead of Clebsch-Gordan Coef-

ficients: 

. L (-1 )21 + m + m + A + 

- , m.m.n.n 

.( ) ( -) I I A I I A 

5: m' -m q iii' -iii q 
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The summations over m .and -m can now be performed by using 

= (_l)m-nd(I) .(13) and the contraction relation for the D-functions 
-m-n 

(Ref. 33, p. 123): 

D(I) (13) D(I) un (I I A) 
mIn' . -m-n = 

n' -n p m 

and similarly for the sum over m. The result is: 

-
Gqq(t) = [(21.. + 1)(2X + 1)]1/2 

AX z 
~, 

L 
n,n' 

. -i(.q--q)b. -i[ (E -E I) + quh ]t/h 
x e e n n 

It is important to recognize that the perturbation coefficient (Eq. (59» is given 

in a representation where the quantization axis z is chosen in the direction 

of H. A similar approach applies to any perturbation that is desc.ribed by a 
-0 

Hamiltonian of the form: 

(60) 

where J(static is symmetrical about the z-axis and H f(t) is periodic and in 
-r 

the xy plane. For static quadrupole interactions with axially symmetric field 

gradients, however, each transition frequency must be treated individually. 

Throughout this discussion it was assumed that relaxation interactions 

are negligible, 1. e., i twas assumed that all relaxation times are long com-

pared with the lifetime of the state .of interest. The influence of relaxation 

phenomena will be discussed in Chapter VII. 

i 

.~. 



.' 
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It should be noted that the perturbation coefficient (Eq. (59)) describes 

the situation in which the circularly polarized rf component is rotating in a 

plane perpendicular to the static field ~O. The sign of w refers to the cir

cular polarization of the rf field that induces resonance. For a linearly 

polarized rf field the sign remains undetermined. The ensemble responds pri-

marily to only one of the two circular polarization components that constitute 

the linearly polarized rffield, but it is only possible to determine which 

component 1.8 responsible by using the phase 6. The effects of the other com

ponent have been considered by Lewis. 38 

I1.4. 2. The Time- Integra ted Perturbation Coeffic i ent 

If the nuclear states under consideration have a finite lifetime T, 

the observation of the influence of extranuclear perturbations on the ensemble 

is limited to time-intervals of a few T after formation of the states at 

.t =0. If all nuclear states are observed, independent of the actual time when 

they happen to decay, the weighted average is observed, with the decay factor 

e -tiT as weighting factor. Such a "time-integrated" observation is described 

by the integral perturbation coefficient: 

(61) 

After performing the integration over the differential perturbation coefficient 

(Eq. (59)) one obtains: 
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( I I A) (I I Xl 
n' -n p n' -n p 

(62) 

II.4.3. The Role of Phases in the Differential Perturbation Coefficient 

The phise b. that was introduced by Eq. (32) defines the state of the 

radiofrequency field at the time of the creation of the nuclear state, t = O. 

The phase angle b. appears in the transformation (Eq. (40)) from the laboratory 

frame S to the rotating frame stet) as the angle between x and x' at 

Two cases of phase relationships must be distinguished: 

a) Random Phase Distribution 

When the rf field is completely unrelated to the formation of the 

nuclear state_the phase distribution is random. This situation corresponds to 

continuous wave rf experiments with radioactive sources and accelerator beams, 

where the nuclear states are produced continuously and without any time-relation 

to the rf field. 

Since all phase angles b. are equally probable, the corresponding per~ 

turbation coefficients (Eqs.(59) or (62)) must be integrated over the phase 

-i(q-q)b. angle. The phase b. appears only in the factor e . Hence the inte-

gration over b. reduces to the integral 



-. 

I 
21r 

J.e-ilii-q)A dA = 

o 
o -q,q 
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Thus in random phase observations oniy terms with q = q occur. 

b) Fixed Phase Angle 

UCRL ... 18413 

The fixed phase angle situation can be realized in NMR/RD observations 

because of the possibility of synchronizing the origin of time t = 0 with ~l(t) 

by for exatnple!t phase-locking rf trains of proper length to accelerator pulses 

in NMR/NR, or by sensing the phase and sorting the data into bins in NMR/PAC 

experiments. In these cases no restrictions apply to the general form of the 

perturbation coefficient in Eqs. (59) and (62) and the particular value of f::. 

that describes the experimental conditions must be used. 

I1.4.4. The Perturbation Coefficient for Magnetic Interactions 

For equidistant splittings caused by a static magnetic field flo the 

perturbation coefficients Gq;(t) are independent of the spin I of the nuclear . AA 
states and terms with A ~ A vanish. A proof of this statement will be given 

and an analytical expression for Gq~(t) will be derived. 
n 

For a pure magnetic interaction one has (see Eq. (47)) 

E -E , - (n - n') w h = pw h nne e 
(64) 

and the summations over n 'and n 'in Eq. (59), can be performed keeping p 

fixed. The orthogonality property of the 3-j symbols results then in 

(2A + 1)-1 0AA' Hence, only terms with A = A remain and the final result for 

the differential Gqq(t) can be written in the form: 
n 
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-i-qwt -i(q--q)fl = e e L (65) 
p 

This expression for Gqq(t) describes a periodic pattern in which a fast oscil-
AA· . 

-i-wt -lpW t 
lation e q is amplitude-modulated by slowly-varying components e e 

For the time-integrated perturbation coefficient one obtains. 

(66) 

From this equation it can be seen that the perturbation coefficient 
-"qq 

G is independent of the nuclear spin I. This is true because no interference 
AA 

terms with A ~ X occur. The physical reason for this is that one deals here 

with pure magnetic interactions which always give an equidistant splitting, i.e. 

one basic frequency. Interference terms with A # X would occur for quadrupole 

and combined magnetic-plua-quadrupole interactions. 

In the case of a random rf phase, the formula for the perturbation 

coefficient is appreciably simplified. Averaging over all phase angles fl 

leaves only terms with q = q and Eq. (65) reduces to 

-iqwt 
e 

+A 

L 
p = -A 

(67) 

In the following we note some useful symmetry properties of Gqq(t) 
AX 

that apply for fl = O. 

:'" 
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The symmetry about resonance is to terms of order 

., (68) 

The symmetry of &;; with respect to a sign change in q and q is 
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- , 

III. ANGULAR DISTRIBUTION OF RADIATION EMITTED FROM PERTURBED ORIENTED STATES 

111.1. General Expression 

In this chapter we consider the angular distribution of some nuclear 

radiation X2 that is ~itted from a perturbed oriented ensemble of nuclei. The 

emitting oriented state at the time t is represented by the statistical ten-

sors of Eqs. (19) or (20). The quantization axis z for the representation of 

X * p_(t) in Eq. (19) is the quantization axis for the representation in which q z _ 

the p;rturbation coefficients, Gq~(t) are most conveniently expressed. 
AA ' 

The emission and observation of the radiation X2 in the direction ~2 

A-
is described by an efficiency matrix £(~2) or an efficiency tensor £q(~2)' 

which is defined in te:qns of £(~2) b)' Eq. (1). The result of this observations 

i.e. the angular distribution or correlation of the radiation X2 with respect 

to the symmetry axis ~l of :the unperturbed ensemble is given by the trace: 

Tr(P(kl;t) 
- z 

where P(~l) and £(~2) must be expressed in the same represents. tion, e.g. in the 

~...;coordinate system. Using Eq. (2) and the orthogonality of the Clebsch~Gordan 

coefficients, Eq. (70) can also be expressed in the form: 

A-
The efftciency tensors £q(~2) are p~rttcularly simpl~ if ~ representation 

is chosen with respect to the observation directionk2 of the radiation X2 . For 

X 
directional observations, i. e. for polarization-insensitive detectors, £q(~2)~2 

vanishes for q '" 0 (axial symmetry about ~2) and the £8(~2)~2 are simply the 
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angular distribution parameters AX(X
2

) for the radiation X2 as defined in angular 

correlationproblems. 36 E.g., for gamma radiation we have 

(12 ) 

The efficiency tensors in the z-representation are: 

The angular distribution or correlation function is now easily constructed from 

Eqs. (71), (19), ana. (73)1 

where the unitary property of the D-function has been used. 

I · d' h' 1 h . 33 f the D-funct1ons are replaced by the correspon 1ng sp er1ca armon1CS: 

(75) 

and if the orientation parameters (Eq. (6a)) are used Eq. (74) takes the well 

k f
· 36 nown orm: 
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. 411' 
W(_kl ,k_2;t). -----

121+1 
• (16) 

The angles 8i and 4>i characterize thfi! directions fi With respec.t to the 

quantization axis ~. in system S in which the perturbation coefficient G~~(t)~ 

1s represented (s ee Fig. 3). 

For vanishing perturbation Eq. (17) reduces to 

, 

and the summation over q = q~ln Eq. (74) results in D~~)(~l +~2) = PA (cose), 

where e is the angle between !l and ~2. Hence the unperturbed directional 

correlation is given by the usual expression (after dropping the irrelevant 

factor (21+1)~1/2): 

wee) =L BA (1) AA (X2 ) PA (cose) 

A 

111.2. The Response Functi~n r A (t) 

(78) 

In order to facilitate the planning and analysis of NMR/RD experiments 

the "angular distribution functions" W(~I'~2;~o,t) for some typical and useful 

experimental arrangements will be given. The formulae are restricted to pure 

magnetic dipole interactions, Le. A = A and to directional distributions. 

For a specific choice ·of the angles 81 '¢l and 82,4>2 (see Fig. 3) the 

directional distribution or correlation function (Eq. (76» can be written in the 

form: 



... 
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w(al<pla2<p2;~ot) = LBA(I) AA(X2 ) rA(t) 

A 

UCRL-18413 

Terms with A > 4 are of no practical interest. The coefficients r
A 

are 

given by (see Eq. (76)): 

41T 
= 2A+l Gqq(t) Y~ (8

1
,<P

l
) Y, - (8

2
,<P

2
) 

AI.. A,q A,q 
(80) 

and a corresponding equation for rA' describing time-integrated experiments. 

For random phases q = q; hence the terms with q # q vanish. The definition of 

fA is chosen in such a way that it contains the perturbation and the geometry. 

In the unperturbed case r A reduces to PA (cosB). 

Of particular interest is the geometry in which ~l and ~2 are parallel 

to HO' because it leads to a simple expression for the angular distribution. In 

-addition, since q = q = 0 for geometrical reasons, there is no dlfference between 

the random and fixed phase case. The fA(t) coefficients are for this geometry 

identical with the perturbation factor: 

(81a) 

In the case of "antiparallel geometry" the odd terms change sign according to 

(81b) 

For more complicated geometrical arrangements explicit expressions for the 

fA .-coefficients are given in Tables I-III. 



-32- UCRL-18413 

IIL3.Geometrical Interpretation of the Perturbation Formula 

III.3.1. S~tic Magnetic Interaction 

For a static magnetic interaction with a field ~O the perturbation coef~ 

ficients are given by Eq. (27) for ~ = ~O and the angular distribution function 

(Eq. (74» is of the form: 

-7 k ) 
-2 

(82) 

where the unitary property of the D-functions has been used. Using Eq. (29) the 

distribution function (Eq. (82» can be expressed in the form 

W(~1'~2;t) = L A (·x) A(O)* D(A)*(k. -to ·H· ) D(A)*( tOO) D(A)*(H -to k } 
A 2 PO k Oq -1 -0 qq" -wO " q'O -0 ",2 

-1 

where 

A,q,q' 

(83) 

L .( 84) 

qq' 

The statistical tensor p;(t) is the same as p~(O\ ' but in a repre
_1 . 

sentation with respect to the coordinate system that is obtained by the appli-

cation of three successtve rotations to the coordinate system :with :1 = ~l: 

first ~l -to !!O' then a ro.tation by ex. = -wO t about ~O 

... 
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This statement is equivalent to the discussion following Eq. (30), i.e. 

that the effect of a static magnetic field on an oriented ensemble can be 

described by a rotation of the symmetry axis ~l of the ensemble about ~O by an 

angle a' = wt. 

To reduce Eq. (84) the group property of the D-functions can be used. 

The successive application of two rotations RI and R2 , in that order, can be 

expressed in terms of one rotation R by using the group property of the D-matrice.s: 

(85 ) 

Hence, the summation·over q and q' in Eq. (83) results in: 

(86) 

A comparison with Eqs. (79) and (80) shows that PAT cos net)] = r A (t) . The 

angle n(t) is the angle between K(t) and ~2' where ~(t) is the symmetry axis 

of the ensemble at the time t. The symmetry axis is represented by a unit 

vector K( t) that is obtained by rotating the original symmetry axis ~l about !:b 

through + wot. That ls, 

cos n(t) = K( t) . k 
-2 

.( 87) 

where e =~2 - ¢l. Using this expression it is simple to derive the angular 

correlation function for !& direction of the magnetic field with respect to the 

\ 
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detectors • The two most common special cases are: 

(l) If .~. and/or ~2 is parallel or antiparallel to ~othe time-dependent 

term. vanishes and the angular correlation is unperturbed : 

cos n= cosel cose2 • 

(2) If ~l and ~2 are both perpendicular to ~O. a ~etry that is 
. . '. 

commonly used for the measurement of unidirectional magnetic per-

turbations, the angle n(t) is given by 

n{t) .. e - II.) t o (88) 

III. 3.2. Static Magnetic Interaetion in the Presence of a Radiofrequency Field 

The angular distribution of radiation X2 emitted f"'rom an oriented ensemble 

that interacts with a static magnetic field ~o and a radiofrequency field ~l (t) 

is given by Eq. (74) with the perturbation coefficient ot Eq. (65). 

W(!:1'~2; t} =: L 
A,q,q,p 

-ipw t 
)( e e * (A)( Q ) e-iq(wt+~) D_(A)*(H + k ) 

Dpq O,-p,O qO -0-2 

=L AA(X2) A * rA(t) PO(O)k 

A -1 

=L AA(X2) p~(t)· 
A 

'"' 

\.;.> 
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A * By rn.a.king use of Eq. (29), Po (t) can be written in the form 

A * PO(t) L 
qq'pp' 
qq' 
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(1.)* (1.)* (1.)* (A)* 
x D, (o,a,O) D , (-w t,O,O) D ,_ (0,-13,0) D __ , (-wt-L\,o,O) q p pp e p q qq 

Again the summations over q, ql, p, p', q, and q' can be performed and the 

result is 

Thus the angular correlation function can formally be written as 

(91 ) 

This means that, as in the static case, the influence of the perturbation can be 

described by a. time-dependent angle n (t) . 

Before leaving this section, let us recapitulate, with emphasis on the 

physical meaning of the above results. 

Referring to Eq. (90), we can understand the effect of the rotation 

matrices DCA) in the following way. At time t = 0 the ensemble has symmetry 

about ~, a.nd only statistical tensors withq =0 are nonzero in a frame with 

A * z axis aiong ~l,i.e., only tensors of the form PO(O)k are nonzero (the complex 
_1 
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conjugate notation is used to retain consistency with Eq. (11». Now in the 

pure magnetic case it is possible, using successive time-independent rotations, 
. ~. *. \ . 

to express POCO) in a frame Sfll wherein the Hamiltonian vanishes. For t > a 

the frame Sf 1.1 rotates relative to the S frame. It is thus necessary to 

transform ba.ck into the S frame using the (now time-dependent) rotation 

matrices in reverse order, and finally to transform into a frame with z-axis 

A * along ~2' in order to obtain the desired PO(t)k' To express the symmetry axis 
-2 

at time t = 0 (i.e., the ~l axis) in the SIt, frame the following operations 

must be performed: 

1. Rotation of the ~l frame through the angles (o,-el'-~l)' to express 

~l in the S frame at t = O. 

2. Rotation of the S (or xyz) frame about, ~O through angle b. in 

order to adjust the rf phase. This operation defines the new 

x' axis as being along ~l at time t= 0, and ~l is then expressed 

1n the S' (or x'Y'Z') frame at t :; 0 (Fig. 1). 

3. Rbtation of the S' frame about the y' axis (see Fig. 2a) through 

the angle 13. The new z" axis then falls along H , and kl is 
-e -

expressed in the S" frame, at t = 0. Now at t = 0 the S" frame 

coinci des with a rotating frame S'" that rotates about z" = z'" 

with frequency W , and in which the magnetic field disappears alto
e 

gether (see Fig. 2b). Thus ~l is also expressed in S'" at t = o. 

The remaining rotations in Eq. (90) describe the time-evolution of the 

symmetry axis, and express it in the laboratory frame. Since the direction of 

this axis will no longer coincide with ~l' we shall now call it K(t). Thus after 

the above operations the-vector that we have is K(O)"'. We must now: 
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4 . Rota te the S'" frame about H (i. e., about z" = z"') through the _e 

angle -wet. This gives ~(t)". 

5. , Rotate the S" frame about the y" = y' axis through the angle -S 

to give ~(t)'. 

6. Rotate the 3' frame about ~o (Le., about z' = z) through the angle 

-wt-Ll, thereby obtaining K(t) expressed in the S frame. 

The resulting vector K(t) must be related to the 'emission direction ~2 

in order to obtain the angular distribution in the ~2 direction at time t. This 

(A)* . 
is accomplished by the last rotation, D_ (4)2,8

2
,0), which expresses K(t) in 

q'O - -

the ~2 frame. 

The' two ways of computing the angular distribution from Ci state that is 

perturbed by static and radiofrequency magnetic fields, as given by Eqs. (79) 

and (80) on one hand and by Eqs. (90) and (91) on the other, are identical. 

The rotations which are contained in fA(t) (see Eq. (80)) in a rather impli

cit manner were discussed one by one in Eq.(90) only to provide the reader 

with a physical understanding of the rather formal derivation of the perturbed 

angular correlation function. In the next chapter the same approach will be 

made to describe the behavior of the syrmnetry axis of an ensemble under the 

influence of static and periodic magnetic fields, in complete analogy to the 

behavior of the magnetization vector in conventional NMR (Bloch equations). 
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IV. THE GENERALIZED TORQUE EQUATION: AN ALTERNATE APPROACH FOR MAGNETIC 

INTERACTIONS 

The theory developed above is exact and complete. It may be used to 

describe any NMR/RD experiment involving magnetic and quadrupole interactions, 

etc. However, for pure magnetic interactions, the most important single case, 

we have also found another ·approach to be valuable. This second formulation, 

which owes its origins to NMR theory, is derived below. 

The transformations, described by Eqs. (89) and (90) and the discussion 

following, a.re simply successive rotations in space. Equation (90) was for-

mulated to displa~ their spin-independence, for the magnetic case. It is also 

useful, however, to eliminate specific reference to the ranks of the statistical 

tensors. To dO.so we exploit the symmetry of the system by transforming into 

the reference frame S" I wherein p is time-independent (except for nuclear 

A decay) and axially symmetric (1. e., p == 0 for q i: 0). Of course this means 
q 

that we must express ~l' the direction of a.xial symmetry at t = 0, in the 

reference frame S'" wherein the part of the Hamiltonian that describes the 

interaction of the nuclei with the time.,.dependent magnetic field, which can 

be written in the laboratory frame as 

is always zero. This is accomplished by three successive rotations, 

Rl (8 -+-8') = 

cos(wt+6.) 

-sin(wt+6.) 

o 

( 
l. 

sin(wt+6.) o 

cos (wt+6.) o 

o I 

",Ii-' 



R (S' .-.. S") = 
2 

cos13 

o 

sina 

cosw t 
e 

o 

o 

1 

o 
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-sin~ 

o 

cosB 

sinw t 
e 

cosw t 
e 

o 
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o 

o 

1 

The Sand S' frames were defined in Sec. 11.4.1. and illustrated in Fig. 1. 

The SIt frame introduced above~ has axis zIt along ~e with a = cos-l <t::(~' ,~"). 

Finally S'" is a rotating frame rela ti ve to S": the purpos e of R 3 is to 

"transform out" the remaining magnetic field H so that 
-e 

~S ' , f ( t) - 0 ( 93 ) 

Figure 2 illustrates SIt and S"'. For 6 = 0 there is a one to one correspondence 

between (S"', S", w , H ) and (S', S, e -e w, ~o), as a c.omparison of' Rl and R
J 

will 

show. 

We now denote a unit vector along the symmetry axis of p as K(t), 

without reference to the frame in which it is written (see Eq. (87)). Clearly 

it must satisfy the boundary condition 

K(t=O) = k 
- -1 

and it may be written in Sf"~ at t = 0 as 

where kl is referred to the S frame. 
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To express ~(t) in S we need only transform back, obtaining 

The explicit form for ~S(t) is 

= {[ (cos 2S cos(wt+Ll) cosw t + si~2S cos (wt+Ll) - cosS sin(wt+Ll) sinw t)cosLl 
e e , 

+ (cosS cos(wt+Ll) sinw t+ sin(wt+Ll) cosw t)sinLl]k
1 e e, x 

+ [(-cosS cos(wt+Ll) sinw t - sin(wt+Ll) cosw t)cosLl 
e e 

+' (cos2S coa(wt+Ll) cosw t - cosS ,sin(wt+Ll) sinw t + sin2S cos (wt+Ll) )sinLl)k.
1y e _ e 

+ [sinS cosS cos(wt+Ll) - sinS cosB cos(wt+Ll) cosw t + sinS sin(wt+Ll) sinw t]k1 }e e e z-x 

+ {[(cos2S sin(wt+Ll) cosw t + sin2S sin(wt+Ll) + cosS cos(wt+Ll) sinw t)cosLl 
e e 

+ [(-cosS sin(wt+Ll) sinw t + cos(wt+Ll) cosw t)cosLl 
, e e 

+ [-sinS cosBsin(wt+Ll) cosw t + sinB cosS sin(wt+Ll) - sinS cos(wt+Ll) sinw t]kl }e· 
e e z -y 

+ {[ (sinS cosB - sinS cosS cosw t) cosLl + (-sinB sinw t) SinLl]k
1 e' e x 

.. 

+ [(sinS sinw t) cosLl + (sinB cosB - sinB cosS cosw t)sinLl]k1 e e y 
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Observables in conventional NMR are related to the magnetization ~, 

which obeys the Torque Equation, 

dM 

dt 
Y~ xH -= 

where y = ew·tft· This property of M is of great utility in visuali zing the 

behavior of a spin ensemble in a conventional NMR experiment. We note that NMR 

* with K(t) theory is embodied in the previous sections: M is collinear and its 

magni tude in S I I I is proportional to P~' In fact Eq. (98) is just a special case 

for A = lof the more general transformation expressed by 

dK ... 
-= 
dt 

y~ x H 

In many NMR/RD experiments M = 0 because of·the parity symmetry of the experi

A ment, which requires Po = 0 for odd A. For these cases a "torque" equation 

still obtains, however, because, as inspection of Eq. (98) shows, the direction 

of M, rather than its magnitude, is important in the Torque Equation. Of course 

Eq. (99) depends on the states of the individual nuclei in the ensemble having 

gyromagnetic ratio y, but it in no way requires a finite magnetization 

ensemble. Rather, the torque equation should be regarded as a transformation of 

coordinates that will eliminate H(t) and allow the density matrix to remain time-

independent in SIll. This is not a new result, of course, but our point of view 

is of nece13sity a little more crystallized than is common in the magnetic reso-

nance literature, where M is usually nonzero. The essential physical content 

of our approach is given in papers by Rabi, Ramsey, and SChwinger39 and by 

32 Fano. We may therefore write a Generalized Torque Equation, 

* The case Mil z in a continuous NMR experiment is analogous, then, to ~lll: in an 

angular correlation experiment. Pulsed NMR experiments provide examples in which 

a natural time scale exists and for which ~l is not parallel to the z-axis. 



d~(t) 

dt 
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(100 ) 

in a form that indicates explicitly its validity in the laboratory frame at any 

time t. Of course it is valid in any frame. This equation may be confirmed 

in detail by substituting the explicit expressions (92) and (97) into (100). 

Now net), def.ined in Eq. (87) can be written in this notation as 

cos net) = ~2 . ~s(t) (101) 

It is the angle between the ~2 direction, to the second detector', and the sym

metry axis of the density matrix, as before. Themultipole radiation pattern 

can be de.scribed by Legendre polynomials in the S'" frame, 

To evaluate the counting rate in the laboratory frame,. S, at time t, we need 

only know n (t), the instantaneous angle between ~2 and K( t). Thus 

But this result is identical to Eq. (91): only the point of view is different. 

For the time-integral functions 

(103) 

we need only evaluate the time-integral Legendre Polynomials, 

\ 

.. 

... 



", 
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00 , f e-
t
/ T 

FA (cos n(t)) dt 

o 
(104) 

For any ~1.~2,A these integrals can be written as linear combinations of inte-

00 -tIT [ 'c' ) Jn grals over powers of cos l1(t), of the form fO e cos nt dt. with 

n :E:,;;; A. Now cos net) is itself a linear combination of povers of sines and 

cosines of the anglesw t,S, and wt+t.. After some trigonometric manipulation , e 

all the necessary integrals can be written in terms of integrals of the forms 

00 

f o 
e- t / T cos(~ t) dt , 

e 

where t is an integer. 

and e-t / T sin(~ t) dt 
e 

, 

As &n example we shall work, out the angular distribution for a 

s-pecifi~'geom.etry and relate it to the geometrical interpretatiori. We consider 

the case ~1I+z'~211 .. z (Geometry no. 1 in Tables I and II), and calculate r1 

and r 2' From Eg. (97) we have k1x = kly = 0; thus 

cos net) = 

and 

3 4, 2 2 2 3 " 4 = 2 sin S cos wet + 3sin S cos B coswet + 2 cosB 

The time-integral response function has the form 

"r 1 + 3 ,40 3 . 4B 3 '2B . 20 [1 ( )2]-1 2 = - 2 2, cos ~ + 4" Sln + cos Sln ~ + WeT, 

1 
2 
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For the limiting case wIT + 00 ,the last two terms approach zero and we have 

( 
2 ' )2 u - 1/2 

u
2 + 1 

(106) 

where u is the frequency in units of wI' u = (w-wo)fUJ. = cot S. The geo-
A 

metrical interpretatiop of this function is illustrated in Fig. 4. The r ' 
2 

integral (Eq. (104» is taken, for each value of w, around a circle on the 

unit sphere. The circle must pass through ~l' where the path of integration 

starts (z' in this case), and H goes through the center of the circle. Far 
-e 

off resonance (top of Fig. 4) H is near z' and P2( cos n (t» is near unity all 
-e 

around the circle. At resonance (bottom of Fig. 4) the integral is taken around 

a meridian, and 
A 

r (00) 
2 

A 1 r (00) = 
2 

has the hard-core value 

(107 ) 

At intermediate values of u the integration path (Eq. (104» heavily weights 

" " n' n. -1f2 ' rA the equatorial regions, v where P2 is negative, and 2 drops to a single 

minimum in each direction around u = O. Thus we have a complete geometrical 

interpretation of the curve. Similar arguments can be made for other geometries. 
A 

For the limiting case WIT + 00, an expression for the r A functions 

defined in Eq. (80) is easily written down for any arbitrary g~ometry. We note 

that K(t) precesses about H until H is the effective symmetry axis of the 
-e -e 

system. Thus 
A 

PqH 
-e 

= 0 for q # 0, and only is left. But for any 
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only A 
pO( t=O)K was nonzero, and thus only PA (+) will be nonzero. o ~ K Hence the 

general transformation equation for spherical statistical tensors (Eq. (4)) 

becomes 

(108 ) 

Here a'S'y' represent the rotation angles from the K(t) frame to the H 
-e 

frame. Now a' and y' are time-dependent, but S' is not: it is the angle 

between H and K( t) . But DO,) is independent of a' and y' : in particular, 40 
-e 00 

DO')(a'S'Y') = p,\ (cosS') 
00 f\. 

Thus 

(1l0) 

where we have now used By similar arguments the rotation 

of ~e about ~O gives an analogous relation for statistical tensors in the s 

frame, namely 

(lll) 

Now the angular distribution of radiation from the oriented state varies in the 

(112) 



Thus, for -+ 00 

A 

W(~1'~2,WIT -+(0) 

and we have 

r (00) = 
A 
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(113) 

(114 ) 

as the limiting lineshape for any geometry and frequency as WT-+oo 
1 

In this "torque equation" approach the spin-independence is manifest 

from the beginning because we never use an lIm} representation. There is 
-

only one response function, r
A 
(t), for each tensor rank, rather than the Gii(t). 

r A (t) is always real. Of course the two theoretical approaches give identical 

resul ts, and they require about the same amount of computational work.. The chief 

advantage of the theory developed in Sec. III is its generality, which permits 

ready extension to more complicated Jf(t). 
e 

An advantage of the present approach 

is the readily-grasped relationship between the experimental geometry and fA(w). 

With the functional forms of the Legendre polynomials in mind one can, with 

littie or no actual calculation, predict the symmetry properties of fA(W) and 

even the qualitative shapes of the resonance curves for a given experiment. 

The two theoretical approaches have been used interchangeably to obtain 

the results given in the following sections. 
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V. TIME-DEPENDENCE OF ANGULAR DISTRIBUTIONS 

V.I. General Discussion 

A time-differential observation shows the periodic motion of the nuclear 

magnetic moment under the influence of ~o and ~l' The time-dependent pertur

bation coefficients G~~(t) are essentially the Fourier inverse of the time

integrated perturbation coefficients G~~(w). Consequently the observation of 

the time-dependent perturbation factor does not lead to any additional infor-

mation as compared to the time-integrated obserVation, but its discussion is 

instructive for the understanding of the resonance behavior. 

The time-differential perturbation coefficient for a pure magnetic 
-

interaction is given by Eq. (65). Near resonance the time dependence of G~i(t) 

d t 'dl 'II t' f t' -i[qwt + (q-q)ll] th t ' Ii correspon s 0 a rap~ y~OSCl a ~ng unc ~on e a ~s amp -

tude-modulated by the slowly-oscillating function 

-ipw t 

= L> e (115) 

p 

'This low-frequency component can be interpreted as the rotation of the nuclear 

spin. with frequency w about the effective field H in the Larmor frame that 
e ~e 

in turn rotates with -frequency w about ~O (cf. Fig, 1), The high-frequency 

component originates from the transformation into this Larmor frame and repre-

sents physically the spin rotation with frequency w, Of course ~O and ~l are 

the two magnetic fields actually present, Thus any experiment can alternatively 

be described in terms of the high and low frequencies 

W and w. 
e 

and rather than 
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For frequencies far off resonance the modulation frequency increases as 

given by we (Eq. (47)). Finally for Iw - wel»lwll the perturbation coefficient 

approaches the form 

L e-i [ Cp+q)wt + (q~ )6] 

p 

and only the high-frequency component is left. Here the limits 

and 

Lim S 

Lim 
S -+ a 

have been used. 

= a (See Eq. ( 44 ) ) 
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It is possible to perform experiments in such a way that the rapid spin-

rotation term vanishes for purely geometrical reasons. In Fig. 5 examples of 

the low-frequency oscillation are given for A = 1,2. For q =q = 0 (Fig. 5a) 

the oscillation can be observed directly in geometry no. 1 (Tables I and II) 

. and the time-dependent angular correlation is determined by 

(116) 

The explicit forms at resonance, which can also be evaluated from Eq. (97), are 

-cos w t e 

3 2 = '2 cos we t 
1 
2 

(117) 

If q '1 0 and q = 0, as applies to geometries 5, 6, and 8 in Table I, then only 

the low frequency we occurs in fA(t). For geometry 5 (Fig. 5b) the explicit 

forms at resonance are 

(3/8 )(1 - cos2w t) (1 - sin26) -°1/2 
e 

(118) 

These functions are plotted in Fig. 5b for 6 = 3n/4 and for random 6. In the 

latter caSe rl(t) and r
2
(t) are obtained from the above expressions by 

replacing cos 6, sin 6, and sin26 by their ensemble-averaged values of O. This 

causes fl(t, random 6) to vanish, while the oscillatory part of T2(t) is 

reduced by a factor of two in. amplitude. 
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For those cases in which the experimental geometry is such that q ~ 0 

(no. 2, 3, 4, 7, 9 through 13), the oscillation with w forms an envelope for 
e 

the rapid oscillation of frequency w (Fig.5c). The phase factor (q-q)t. 

which is added to the high-frequency term in Eq. (65) simply describes a con-

-iqwt stant shift of the periodic pattern e The angular correlation can be 

calculated by the corresponding formula in Tables I and II. 

For geometry 13 the specific expressions for A = 1 and 2 at resonance 

are 

fl (t) = ~l . ~2 = -1. ([cos(wt + t.) - sin(wt + 6) Jcos w t cos t. n e 

+ [sin(wt + t.) + cos(wt + t.) ]sin t.} 

(1l9a) 

Choosing t. as random, these expressions become 

1 = 2 cos(wt + n/4) (1 + cos wet) 

1323. 2 = - 8 + 8 cos wet - Ib sln2wt (1 + cos wet) (1l9b) 

The behavior of rl(t) is straightforward. It is simply the product of fast 

and sloW terms. If such a curve were observed with time-resolution much s.lower 

-1 - -than w , then fl(t)obs would simply vanish. By contrast, f 2(t) exhibits 

more interesting behavior. With poor time-resolution only the term in sin2wt 

would vanish, leaving the slow component 
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as shown in Fig. 5(c). 

Figure 6 shows the rapid oscillation wtwhich, at resonance~ near t = 0, 

represents the spin rotation in the field ~o (the influence of ~l is not yet 

evident). Examples are shown for two specific geometries (No. 9 and 11), with 

-3 Hl/HO = 10 . A number of features are illustrated by this figure: (1) The 

shapes of the curves are identical for the two. geometries chosen. (2) Near 
-

t = 0 only terms with q = <i contribute since lim G
qq

( t) = 1.(3) Because of 
t-+() A.A. 

(2), the starting phase of the spin rotation is determined by the geometry alone. 

Although not shown in Fig. 6, the curves for w/wO = 1.001, 1.000, and 0.999 are 

practically indistinguishable on this scale near t= O. The geometrical inter-

pretation of this behavior is clear, since nea~r t= 0 the limiting value of 

fACt) for these geometries is 

(120) 

To observe a resonance effect the condition WIT ~ 1 must be fulfilled. Thus~ 

-3 . for H/H
O 

= 10 ~ as 1.n Fig. 6 9 the amplitude of the rapidly oscillating functions 

will be appr.eciably affected only after::::; WO/Wl = 10 3 oscillations. An example of 

this be~vior is given in Fig. 7 where a time segment of the differential per

turbation factor TA(t) near wlt = 10-3 wot = 1 is shown. The following features 

are apparent: (1) The curves differ for different values of w/wO' indicating 

the resonance ·effect. (2) Random and fixed-phase curves differ due to the 

contribution of factors with q -; q in the case of fixed phases. (3) When pas-

sing through the resonance a change is observed for both amplitude and phase. 

" 

1 
I 

.. 



.. 
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The behavior of the amplitude and phase near resonance depends crucially on the 

time segment selected and the specific geometry. For example, Fig. 7 repre-

sents a special case. In geometry 9 the rf field at t = 0 is parallel to ~l 

at the resonant frequency (w ::;; wO) and therefore has no effect at all. In fact 

rather than inducing transitions it prevents them, acting thereby as a holding 

field. Thus the effect observed at w = Wo for any geometry in which ~l is 

parallel to ~1(0) is really an "antiresonance". This effect will be discussed 

further in connectio~ with Figs. 10 and 15. 

The rapid oscillations shown in Figs. 6 and 7 represent spin rotations 

about the constant field HO which are conventionally measured with the field 

oriented perpendicular to the detector plane. They are only observable in 

levels with long lifetimes, and with reasonably low values of HO' This means 

that in time-differential experiments one must take into account the envelope 

functions only if the time resolution is sufficiently good to resolve the high-

frequency component. Should this fast oscillation be averaged out by the 

instrumental time resolution, only terms with q = 0 contribute to the final 

perturbation factor (see Fig. 5c). An example can clarify this point. At room 

temperature the resonance for 100Rh in Ni occurs at about 340 MHz.l The aver-

age period of the A = 2 oscillations in Figs. 6 and 7 is 0 = n/wo' 

or about 1.5 nsec in th.e case of 10~h in Nt. An observa.tion of this 

fast oscillation requires a time resolution of about 1 nsec. The situation is 

still more difficult for 100Rh in Fe which at room temperature has a resonance 

21 frequency of 883 MHz. This frequency corresponds to a time per-iod of about 

O 7 Th ·· th t . t' f 100Rh .5 nsec. . us, lt is dlfficult to observe e fas spln ro atlon 0 

in Fe or Ni with present experimental techniques. However, this difficulty was 
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the very reason that led to the NMR/PAC method. which is not in any way 

restricted by the time-resolution of the equipment. 

V.2. Random rf Phase 

If the time of formation of the nuclear level is unrelated to the phase 

-of the radio frequency field, averaging over all phase angles leads to q = q 

(Eq. (63)). For this situation the modulation function Eq. (115) at w = Wo 

has the form 

(121) 

In the rotating frame S'(t) at resonance the direction of ~e coincides with ~l' 

TI 
which gives a ="2 and we = WI· Thus. the quantization axis of the repre-

sentation in which Jell is diagonal is parallel to ~l; the states I In) are 

stationary with respect to the x'-axis. 

In experiments where the symmetry axis ~l (~2) of the oriented ensemble 
-

is parallel to the quanti zation axis ~ = ~O' with respect to which G)q~( t) is 
"'\ 

given, only terms with q = 0 (q = 0) contribute and Eq. (121) simplifies to 

= SOO(t) 
AA res 

-ipw t 
= [e 1 

p 

(122) 

where the explicit expression for P~(O) has been used. The sum over p includes 

only terms with A + P = even. 

.. 
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In this specific case (q = q = 0) the angular distribution of the 

radiation X
2 

is given by (compare Eq, (76)): 

(123) 

where 8 is the angle between ~l (II~O) and ~2' Equation (123), with expression 

(Eq. (122)) for the perturbation coefficient G~~(t) inserted, describes a 
AA res . 

rotation of the angular distribution pattern about ~I with a frequency WI' If 

the g-factor of the nuclear state is unknown, observation of the time-dependence 

of G~~(t)res makes it possible to determine the effective amplitude, H~ff, of the 

radio-frequency field at the nucleus. In those cases wiere the externally 

applied rf field is enhanced by a paramagnetic or ferromagnetic coupling the 

enhancement flt,ctor Cl + ~nt/~t} can be accurately determined, This possibility 

of a direct ob~ervatlon of Heff is a valuable feature of theNMR/RD method. 
1 
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VI. NMR BEHAVIOR OF TIME-INTEGRATED ANGUlAR DISTRIBUTIONS 

VI.I. General Considerations 

In time-differential experiments the total perturbation factor is 

always periodic' in time irrespective of the magnitudes of HI and HO provided 

only that these fields are sharply defined. However, time-integral measure-

ments yield attenuation effects which depend sensitively on HI' HO and the 

lifetime T. In contrast to conventional M-fR we find in NMR/RD a wide variety 

of line shapes. There are several reasons for this additional complexity, 

notably the extra vector ~lt higher multipole-order observables, and the natural 

time scale of the nuclear decay. 

In planning an NMR/RD experiment one often wants the highest possible 

sensitivity consistent with the geometrical constraints, if any, imposed by 

the apparatus. Clearly there are many possible distinct sets of experimental 

conditions. The relative orientations of the four vectors ~l' ~2' ~O' and ~l' 

the magnitude of wIT, and the option in some cases of fixed or random phase 

present an embarrassment of choice. With the observation of a few basic prin-

ciples, however, selection of an optimum geometry is usually straightforward. 

There will be important symmetry considerations for a majority of experiments. 

The. formalism developed in Sec s. II and III led to a general formula 

(see Eq. (62)) for the time-integrated perturbation coefficient that describes 

an axially syriImetric static interaction in the presence of a radio-frequency 
/ 

(rf) field. For the special case of pure magnetic dipole interactions the per-

turbation factor has the form given in Eq. (66). This equation can be used to 

describe resonan~e experiments with various geometries and phase relations. In 

order to discuss resonance effects in time-integrated NMR/PAC measurements, a 
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few typical numerical results will be preserited for some specific geometries 

and representative parameters. The discussion will distinguish between the 

resonance behaviors for random- and fixed-rf phase. 

For some specific geometries the form of the angular correlation function 

can be obtained from Tables I (A = 1), II (A = 2), and III (A = tl ). In each 

table the response function fACt) is expressed in terms of the time-dependent 

perturbation factors G~~(w,t) (Eq. (80)). The time-integrated response function 

fA (w,t) bears the same functional relationship to the time-integral factors 

"qq . - "qq: 
GAA(W) (Eq. (61)). Since the phase angle ~ is included in G~i(w,t) and GAA(W) 

(Eq. (65), (66)). the relations in these tables are valid for (iny ~. The cor

responding ft..(w,t) or fA(W) for random ~ may be obtained in each case by 

striking out the terms with q ~ q (Eq. (67)). 

Also given in Table I are the explicit expressions for 

fA (t) = PIlcos n(t)] = ~(t)'~2 that are found from Eq. (97) or by working 

out the G~~(w,t) factors in detail (Eq. (65)). Time-·integral functions fA(W) 

may be obtained by integrating on T -1 e -tiT dt (Eq. (104)), While response 

functions for random ~ are obtained by integrating over (2'lT)-1 d~. The cor-

responding expressions 

and 

r4(t) = P4[cos net)] = ~ (K(t).k )4 _ ~ (K(t)'k )2 + * 
o ~ ~2 4 -2 0 

are not given explicitly in Tables II and III, but they may be calculat.ed, for 

each geometry, from the appropriate expression for ~(t) '~2 as .g;iven in Table T. 
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Before starting we note that there are four natural frequency variables 

for any experiment: w,. WO' ~, and l/T. We can completely characterize any 
"-

experimental situation by calculating fA asa function of the dimensionless 

* held constant. Let us make an observation at 

this point about linewidth. For low rf power (WIT « 1) the natural line

width hiT may be approached, but few nuclei will participate in rf transi-

tions. For high power (WIT » 1) most of the nuclei may experience rf 

transi tions, but the linewidth will broaden to tV hwl . Clearly maximum 

efficiency is achieved for WIT tV 1. 

VI.2. Random rf Phase 

VI.2.1. Resonance Line Shapes for ~l and/or ~2 parallel to ~o 

The general expression of the perturbation factor for random rf phase 

follows from Eq. (66) with q = q: 

(124) 

"-

This equation can be used to calculate the various terms of fA in Tables I-III. 

An inspection of these tables shows that whenever ~l or ~2 is parallel to the 

z-axis, as is the case in geometries no. 1 through 8, the response function fA 

"00 contains only the one term GAA , since q = q. Therefore the discussion will con-

cern mainly these" terms. Since the imaginary parts cancel for q = 0, we obtain 

from Eq. (124) 

* 'l'he signs of Wo and WI are defined consistently. Thus. (w-wo) /W1 is always 

understood to mean (w-Iwol)/( Iwll). 
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(125) 

At resonance the perturbation coefficient becomes (compare Eq. (122)) 

for (A+p) even 

= a for (A+p) odd . (126) 

An interesting feature of NMR/RD experiments is that a nonzero "hard-core" 

"'00 value of GAl.. exists at resonance for A even. In the limit of large rf 

amplitudes, i.e. large values of HI' such that WIT» 1 is satisfied, only 

the term with p = a in Eq. (126) remains: 

+00 

(a OO ) 
AA res =~ [A! !] 

for even (127a) Lim 

Here, AI! = A(X-2)(A-4) .. ·2 or 1. Using a more physical picture the hard core 

for S = rr/2 comes about by integrating the Legendre polynomial around a meri-

dian in the z' - y' plane. 

even 

:: a 
\ 

A odd (12,b) 
\ 
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The' existence of this lower limit or hard core for A = even implies that, ~ 

resonance, a fraction of the anisotropy always remains, no matter how large 

the imposed rf amplitude is. This hard-core behavior is illustrated in 

A _ (GAOO) 
Fig. 8, in which r A - AA res of Eq. (126) is plotted versus HI/HO for some 

representative values of WOT. 

It is important to note, however, that at frequencies off resonance 

AOO 
the perturbation coefficient GA).. (w) with A = even can actually reach zero for 

sufficiently large amplitudes of HI. The perturbation coefficient (Eq. (125) 

vanishes, even for p = 0, if d~8)(8) = PA(cos8A) = o. This condition can be 

expressed in terms of the "maximum perturbation frequency" WI by using Eq. (44): 

I 
W 

(

COS 6A 
1 - -.' 1

1
=::::;;2=:;;' 

v· COSBA 

HI) H . 
o 

(128) 

Here SA are the angles for which the Legendre polynomial PA (\~osBA) vanishes, 

e.g. SA=l = 900~ 6A=2 = 54.7°, and 6>..=4= 30.6° and 70.1°. Since WI in Eq. 

(128) is symmetric about resonance 
AOO 

wo' GAA behaves like a A-fold split resonance 

line. This structure is demonstrated in Fig. 9 for'A = 1 through 4. It is a 

purely geometrical effect caused by the fact that multipole ra,liationwi th its 

characteristic intensity pattern is used to detect the resonance. This effect 

. b d f 1" 1 . d' 9,41 d 11 th was f~rst 0 serve or the case 1\ = 2 ~n opt~ca stu ~es, an a e. 

formulae derived above apply to optical double-resonance experiments as well. 

In connection with optical double resonance work it was pointed out9 

that the splitting 'of the resonance line allows a reliable determination of HI' 

The distance between the points of maximum perturbation is obtained from Eq. 

(128) 



(Wo - WI) 
.20 - cos iJ A 
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(129 ) 

For A = 2, for example, cos 13 2 = ± 1//3 which gives (wo - w') = w/l2. Thus, 

wi th the frequency scale chosen in Fig. 9 the two minima occur at ± 0.71. Of 

course, the ~nuclea.rorientation is not destroyed at these minima, because of 

coherence exists among the substates. The nuclei are still oriented about H , _e 

and an adiabatic frequency shift will restore the orientation in the laboratory 

frame. By contrast, relaxation effects will destroy nuclear orienta.tion in the 

H frame (see Sec. VII). 
-e 

The resonance behavior of 
"00 
Gn (w) is shown for A = 1 to 4 in Fig. 9. 

'l'he frequency scale was chosen in such a way that the width of the curves is 

normalized with respect to H
l

. The effect of power broadening of the resonance 

line which occurs for increasing rf amplitudes is rea.dily deduced from this 

figure. It is apparent from the figure that for ~ random and any 

is an even function of (W-WO)/W
l

' and hence is insensitive to the sign of w00 

'I'tlis statement also a.pplies to any geometry with random ~ and a = q '# O. For 

q = O. this result i.6 easily proved from Eq, (125) using the relation 

[db~)(e)]2 = [d~~}(n_B)2 (see Eq. (68)). 

If th.e angular distribution of allowed {3-rad1ation emitted from a 

polarized nuclear state is used to detect the resonance. the line shane is 

determined by the term in A = 1. In this case Eq. (125) reduces to 

Cl30} 

\ 

\ 
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Hence the line shape as a function of W is a Lorentzian, as was pointed out 

by Sugimoto !i al.
20 

VI.2.2. Resonance Line Shapes for ~l and ~2 Non-Parallel to ~O 

In the case of random phase these geometries lead to a response function 

which contains factors of the form given in Eq. (124). Examples are geometries 

9 through 13 in Tables I-III. It can be inferred from Eq. (124) that the terms 

yi th q. ¥ 0 are considerably smaller than those with q = O. Numerical calcu-

lations confirm this. "'00 
Thus for· complicated geometries the leading terms GAl.. 

determine the shape of the resonance. 

At resonance Eq. (124) takes the form 

(131) 

For W T -+ 00 these perturbation terms s'how the same hard-core behavior dis-
1 

cussed in connection with Eg. (126). In addition, a similar effect may be 

achieved even at modest r:( amplitudes for large values of WOT. Keeping 

WIT constant the perturbation term (a~~)res vanishes for WOT -+ (X) unless q = O. 

Large WOT and WIT values can be realized in experiments with large magnetic 

fields and long nuclear lifetimes. 

In any NMR/RD experiment a natural symmetry axis about ~l exists at 

t = O. As ~(t) evolves there is no symmetry axis fixed in the laboratory frame 

until, as WOT -+ 00 , ~O becomes a symmetry axis. For random-phase cases the 

symmetry is very simple. Whatever the position of ~l' ~(t) will precess until 

... , 
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" PO' originally diagonal along ~l' becomes in the time-average diagonal along 

~O' i.e •• until the nuclei become oriented along ~O' in the ensemble average. 

" Since ~l and ~O are in general not parallel, the magnitude of Po(~O) is usually 

less than that of P~(~l)' because of averaging. If ~O is the only magnetic 

field present, We have, for the limit WOL -+ 00 (cf. E~. (4» 

(132) 

If a strong radiofrequencyfield is also present, and wIL -+ 00 with Wo » wI 

still, then K(t) must be averaged around ~e before being averaged around ~O. 

For this case Eqs. (110) and (lll) give 

(133) 

The line over p,[cos(kl,H )] denotes an average over 6. For frequencies far 
A --e 

off resonance, B -+ 0 and Eq. (133) reduces to E~. (132). 

" Now (PO)H is simply a statistical tensor describing an ensemble of 
-0 

nuclei oriented relative to ~O. Thus the response function corresponding to 

Eqs. (132) and (133) can be written respectively 

A 

rA = P,,(cos81 ) PA(cos82 ) (134) 

for WOT -+ 00 with no rf field present, and (cf. E~. (114»: 
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for W T -+ <Xlvi th w» wI • 1 0 In the average over n, the specific form 

should be used. Because I~\ (x) I has its maximum value of 1 at x = ± I, it is 

clear from this relation that the strongest angular correlations are obtained 

with parallel geometry, ~ln~2"~O' Inspection of Tables I-III shows that for 

00 each geometry the coefficient of Gn is PI. (cosel ) PI. (cos8 2 ). 

Finally, for A odd, random n, and ~l in the x,y plane, we note that 
A 

fA (w) vanishes identically for all wIT and W because the ensemble average 

over n must be taken over odd powers of cos(~l - n) (see Eq. (135)). 

VI. 2.3. Comparison with Spin-Rotation Measurements 

A few observations can be made about the advantages and the applicability 

of time-integrated NMR/RD in comparison with time-diffe·rential PAC measurements 

in static fields oriented perpendicular to the detector plane. 'The latter, also 

known as the "spin rotation" lllethod, measures the interaction frequency as a 

function of time. A Fourier analysis of these data yields the interaction 

frequency. An elegant derivative of the spin rotation method is the "strobo

scopic" technique,31 which compares the interaction freq1i'ency with a known 

frequency standard and in this way directly measures the frequency transform 

of the time spectrum. 

An advantage of spin rotation or stroboscopic methods is that no energy 

is absorbed by the nuclear ensemble and thus no power broadening occurs. The 

width of the frequency transform is given by the nuclear lifetime and/or any 

relevant relaxation. time. The applicability of these time-differential 
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techniques is, however, limited by the resolution time of the detection equip-

ment. Hence for large interaction frequencies NMR/RD is the only method that 

can be applied. Notice that the conditions for the NMR technique to work 

effectively are Wo T » land WIT ~ 1. Thus if a large effect j s to be observed, 

the resdnance line must be broadened by HI. The extraction of any information 

about the lifetime T or a possible relaxation time Trelax by means of Eq. 

(125) then depends crucially on the knowledge of Hl . 

VI. 3. Fixed rf Phase (Pulsed rf) 
A 

VI.3.1. Symmetry Properties of fA for ~2"~: 

A 

Turning now to fixed-phase experiments, a wide range of behavior of rA 

is possible. It is worthwhile to discuss cases in which at least one of the 

vectors ~l' ~2 is along ~o (these are the best cases in the sense of providing 

the largest effects). If the rf-phase has a well-defined value with respect 

to the time t = 0 when the nuclear level is formed, terms with q f: q occur in 

the angular correlation function ("lee Eq. (66)). The general form of the response 

function as defined in Eq. (80) can be obtained from Tables I-III for a few 

interesting geoIlletries. For fixed rf phase /::, the response functions depend 

strongly on phase angle and geometry and have little in common with the ones for 

random phase (Fig. 9). We wish to characterize the important symmetry properties 

of fA' for two reasons: (1) It is of practical value to know the relative sensi-
-

tivities of G~~ for different experimental configurations; and (2) we want 

explore the possibility of determining the sign of gHO without using a cir

cularly-polarized rf field ~l (t) . We shall discuss the sign of gHO or that 

of Wo rather than that of g alone because for some important cases hyperfine 
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fields of unknown sign may play the role of ~O. The cases WIT ~ 00 and wll 

fini te will be discussed separately. 

From Eq. (66) it follows that for ~ fixed the cross~terms of the 

"qq perturbation factor, G
AA

, with q ~ q, have finite values aswll ~ 00 Thus 

even in the saturation limit i\ (00) is strongly geometry-sensitive. We shall 

first discuss four cases in which ~2 is parallel to ~, which gives q = 0, 

since Y"'-q(O,<p
2

) = 0 .. _!2f+f 
A q, 0 v--rm-' The limiting value for G~~(WI l ~ 00) consists 

only of the term for p = O. Thus, from Eqs. (66) and (80) it follows that in 
A 

this case the response function fA(Wll ~ 00) can be written in the form: 

A 

r (00) = 
A 

+A 

L 
q=-A 

cos (136) 

Figure 10 shows r (00) 
A for 1 ~ A ~ 4 for the cases (91 = n/2. <PI = 6, i.e., 

·t 

~l" x at t = 0), (91 = n/2, <PI = n/2 + 6, Le., ~l" y' at t = 0), (91 = n/2, 

<PI random, Le., ~l random in the x'y' plane at t = 0), and, for comparison, 

(9
1 

=~ 0, i. e., ~lll ~'). TJ::te asymmetry that remains, for odd A, as 

~ 00 will be referred to as persistent asymmetry. It is insensitive to 
A 

the sign of gHosince in the limit WIT ~ 00, r
A 

depends only on 13, which is 

invariant ag~inst a sign c~nge of gH
O 

(compare Eq. (44)). A physical picture 

of this result would be the following: In the S' frame K(t) precesses over a. 

circular path (see Fig. 4); for W l ~ 00 
1 . 

-tiT the factor e approaches constancy 

and all segments of the circu.lar path are weighted equally. Thus the sense of 

the precession is unimportant and the sign of gHo does not affect fA (00). 

}cram Eq. (136) the following rules can be established: 
A 

(1) For 6 fixed and A even, r A (00) is an even function of (W-WO)/Wl ' 

as in the case of random phase. 
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A 

(2) For 6. fixed and A odd, fA(OO) is either an odd function of 

(W-WO)/Wl , or else it does not depend on frequency at Hll, and vanishes for all 

frequencies. 

The antiresonance phenomenon arises again in Fig. 10, in connection 

with the four curves labeled r A (x, z), because for this case, ~(t) and!:1. are 

both parallel to the x axis in the S'(t) frame at resonance, and gl there-

fore acts as a holding field. Because ~I induces no transitions at w == WO' 

the perturbation factors have the same value at resonance as they have far off 

resonance; i.e., fA (w == wo ) == 1\ (w = ± 00). 

The remaining category of experiments, not covered by the above dis-

cussion, is that for which ~ is fixed and WIT is finite. In the limit 

WIT ~ 00 the imaginary terms i(p WeT) vanish. (See Eq. (66).) For WT'Vl, 
1 

however, these .imaginary terms are about the same si ze as the real components. 

and they can le ai to asymmetries that are sensitive to the sign of gH
O

' Si.nce 

in this section we are concerned only with ~211~, the discussion applies to 

geometries no. 1', 5, 6, and 8 in Tables I-III. For these geometries the 
A 

response function fA (which is of course real) includes imaginary parts 
-

1m {G~~} which bring about an asymmetry. It should be remembered that Re {G~~} 
-

and 1m {G~~}_ have opposite symmetries about resonance (see Eqs. (68)); for even 

(odd) q. the real (imaginary) part of G~~ is symmetric about the resonant fre

quency, while the imaginary (real) part is antisymmetric. 

The response fUnction r A can be affected in two ways. Both arise 

from the sense of precession about Hl and both are transient, disappearing as 

WIT ~ 00. It is not feasible to observe the sign of Wo . directly in a time-

A 

integral experiment. as this sign will affect fA only in order w/wO' Thus 
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all gHO sign determinations are made by measuring the sign of wI' as the 

geometries given below will indicate. We shall refer to the sign of Wo or 

WI interchangeably. This implies that we know the sign of ~O and also the 

phase IS, which gives the s'ign of ~l at t = O. MaximUm., sensitivity in sign 

determinations· can be attained by taking ~2 along ~O: this choice precludes 

any possibility of determining the sign of Wo directly, but (as discussed 
A 

later) it offers the greatest variation of rA with w. 

The first way to infer the sign of the interaction is from asymmetry 

of the response function about the resonance. The sign of Wo can affect 
A 

r A to render, 

Thus is neither an even nor an'odd function of 

(_1)).. times the reflection of fA (wo < 0) through the resonant frequency. 

As an example Fig. 11 shows.the resonance curves which are to be 

is 

expected with geometry no. 5. The marked feature of these curves is the asym-

metry about W = W o for opposite signs of WI' or equivalently (for even) 

for the angles <PI = 45° (225°) and 135° (315°). This asymmetry can be used to 

determine the sign of WI even when linearly-polarized rf is used. The dif

ficulty in practice, however, is that the shift is small and can only be picked 

up in experiments that have great sensitivity and are free of additional broaden-

ing. 

To understand the origin of the observable asymmetry, let us folJ.ow 

K(t) as it evolves in the 8' frame according to the torque equation (100). At 
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resonance, with ~ellx', rA is insensitive to the sign of WI for even t..: 

this is a consequenc.e of the even parity of PA. Off resonance this is no 

longer true. Suppose W is slightly below WO' for example, and H is thus 
-e 

in the (+ Xl, + z') quadrant of the X'z' plane. For 81 = rr/2, <PI = rr/4 as 

shown, and WI > 0, K(t) will start. up into the (+ x I , + Y I, + z') octant, n (t ) 

will decrease rather abruptly from rr/2~ and r2 (t) will increase rapidly from 

-1/2. For WI < 0, on the other hand, K(t) will swing down into the 

(+ x', + y', - Zl) octant and net) will increase rather slowly from rr/2. 

Thus r 2 (t) will remain longer near -1/2. For IWITI rv I a large fraction 

of the nuclei will decay while the effects of this transient asymmetry are 
A 

still large, and they will affect rA' For IWITI» 1 this is no longer true 

and the line becomes symmetrical. Clearly experiments of the class illustrated 

in Fig. 11 are completely equivalent to time-integral PAC experiments in the 

S' frame, with precession taking place about H . 
-e 

The second way in which the sign of WI can affect rA is really very 

similar, though superficially quite different. In this case fA is an even 

function of (W-W
O 

)/W
I

' but it is a different even function for (VI> 0 than 

for WI < O. Figure 12 illustrates this effect for geometry 8 (~l =~ ~ (e +e ), - V"2 _y_z 

k2 = e, b. = 0). This is the exact equivalent, for NMR/PAC, of the most cornmon 
- -z 

arrangement for determining g-factors by time-integral PAC studies. In fact, 

for W = w· we find o 

00 

~ 

(138) 
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(139 ) 

Here The difference at resonance~ due to the A = 2 term, 

is 

a 
2 

W(Wo > 0) - W(Wo < 0) 

= 2 W(Wo > 0) + W(Wo < 0) 

-3A 
u..2 is maximum for 61 = n/4, WIT = 1/2: (().,) - 2 2 max - 4 + A2 

(140) 

These equations 

are familiar from angular .... correlation theory. Maximlml sensitivity is obtained 

I 

in time-integral PAC by applying and reversing a DC magnetic field (the ana-

logue of ,our HI at resonance) perpendicular to the correlation plane in which 

two detectors are placed at a relative angle of n/4 (or equivalent). The 

"attenuation factor" [1 + (2W
I

T)2]-1/2 is well-understood: it leads to a 

vanishing difference when WIT becomes very large. In the NMR/PAC case this 

factor makes the effects of the sign of w
1 

on the lineshape transient. 

For A > 2, 81 should be smaller than n/4 for maximum Gt A, because 

the largest-amplitude, highest-frequency,component of PA(cos 8) varies as 
A 

cosA8. For example, f4 is relatively insensitive to the sign of Wl for 

81 = TI/4, but is more sensitive for 81 = n/8 (Fig. 13). 
A 

For A odd, the odd parity of FA leads to more asymmetries in fA' 

In general, however, these asymmetries can be divided into a transient type, 

that conveys information about the signs of wl and/or AA' and a Eersistent 

type, that depends only on the sign of AA' In Fig, 14 we illustrate an 

experiment that is the A = 1 counterpart of the one illustrated in F.ig. 12. 
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Here 6
1 = 7T wa.s chosen to maximize the difference 

1.2.1 
w(WO > 0) - W(Wo < 0) 

= 2 W(Wo > 0) + W(Wo < 0) 

when 

A 

(W
I
T)2]-1/2 r l = [1 + cos(6

1 
- 6') (141) 

at W = wo' with 
-1 

6' = tan WIT in this case. a l is maximum for 

The persistent asymmetry in Fig. 14 happens to be zero. In Fig. 11 (top 

panel) we have a case in which both a nonzero persistent asymmetry and a tran-

sient asymmetry occur. As IWITI + 00 the transient part vanishes and no infor

mation is available about the sign of W
l

. 

A· 

VI.3.2. Symmetry Properties of rA with ~l and ~2 in the x-y Plane 

It is evident from Table II that the magnitude of the resonance effects 

for A = 2 drops by about another factor of two if neither ~l nor ~2 is any 

longer parallel to the z-axis but both are instead perpendicular to it (geome-

tries 9-13). This can easily be understood from Eq. (114), since P2 (0) = -1/2. 

A similar result is observed for A = 4, but. with a greater reduction in the 

effect. For odd A. perpendicular geometry destroys the integral effect. This 

is easily deduced from Eqs. (97) and (101): the (k2 ) . (K (t)) terms in 
- x,y -s xy 

cos net) are all linear in cos(wt+6) or sin(wt+6): thus all odd-rank rA have 

high-frequency factors with zero average value. They therefore average to zero 

in the transformation S' -+- S. Hence we shall consider only even-A cases further. 
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for geometries 9. 11, and 13 in Tables II and 

III are shown as examples- in Figs . 15. 16, and 17. All these geometries are 

convenient for beam experiments, with the exception that no. 9 is not suitable 

. ext' ext 
for target fOIls where ~l and ~o have to be in the plane of the foil. They 

differ only by the angles <PI and <P2 for ~l and ~2' Through the factors 

<P e iQ<P2 e -q 1 and (compare Eq. (76)) the clLoice of the angles sensitively affects 

the superposition of the various terms of, the response function in Eg.. (80). 

The phase angle t:, of the rf field and the angles <PI and <P2 are eg.ui

valent in the sense that they occur in Eg.. (76) in the form 

exp[-i{g.(<PI-A) - Q(<P2-A)}]. A particular value of t:, can be compensated by 

rota ting the detector system by an angle t:, about the z-axis (cf. Figs. 1-3). 

In'Fig. 16 a transient asymmetry around the resonance frequency shows up 

for WIT "-' 1: again it can be used to determine the sign of wI' provided that 

the phase angle t:, of HI at t :::: 0 is known. Since both detectors are located 

in a plane perpendicular to the z-axis, the rotation of K(t) about the effective 

field can no lOnger be visualized as easily as in the foregoing section in which 

the system was invariant against rotations about the z-axis. CIearly, there if; 

no rotational invariance with respect to the z-axis in geometries like the ones 

shown in Figs. 15-17. The general response function for these complicated 

geometries must either be calculated according to the formulae given in Tables 

I-III or by calculating PArcos net)] with the proper vector K(t) (see Eqs., 

(91) and (97)). 

If we are not interested in a transient asymmetry effect like the one 

shown in Fig. 16 and the li.fetime of the nuclear state is sufficiently long to 

permit reaching the asymptotic value WIT -+- 00 , a simple form for the response 

- j 

1 
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functi'on can be deri.ved. For any "perpendicular ll geometry with ~l and~2 in 

the x-yplaoe Eqs. (66) and (80) yield 

A 

f (00) = 
A 

= a 

for A and q even 

for A and q odd 

From Eq. (142) or Eq. (114), the limiting value of the A = 2 response function 

at resonance can be obtained as 

For the particular geometries shown in Figs. 15-17 one finds 
, ' 

A 

f (00) 
2 .res 

1 1 = 4' ib' 
A 1 

and - 8" ' respectively. The values of fA (00) off resonance are given by Eq. 

(114) . 

The resonance behavior of geometry no. 9 in Fig. 15 is the most obvious 

one for all perpendicular geometries since it has Hl as symmetry axis in the 

rotating frame. The rotation wt about the z-axis yields for W T -+ 00 
1 ' 

(144) 

the same hard~core value that was obtained from random rf phase in parallel 

geometry. Slightly off resonance f (oo) 
2 

dips to a minimum at a frequency 

between the zeros of P2[cOS(kl,H )] and P [cos 8], (see Eq. (1l4)). As we have 
- -e· 2 

noted before in discussing Figs. 7 and 10, geometry 9 is a special case because, 
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for w = WO. ~l acts as a holding field and the effect at this frequency is 

really an 8.ntiresonance. FQr cases in which the line is broadened by dipolar 

fields, the use of geometry 9 would serve to narrow the line, in analogy wi th 

similar applications in conventional NMR.
42

-
44 

However· in NMR/RD the ~l vector 

can easily be taken along ~1 without using elaborate pulse techniques. 

As mentioned above, it is considerably more difficult to visualize the 

spin motion in the case Iiol~1~11~J~2' illustrated in Fig. 17 for ¢2 = 1T/4 

¢2)' This in geometry 13 (although for large w-r 
1 

it becomes independent of 

geometry is important for accelerator experiments. Equations (66) and (80), or 

(114) are applicable here: Thus the "y_z" geometry of Fig. 10 gives a larger 

effect. For technical reasons it may, however,. be impractical to count along 

~O(i.e., !;il~O)' An interesting feature of this geometry is that the multi-
A 

pole structure of fX(oo) is degraded, for even A, to A/2 minima, which gives 

this particular geometry the advantage that the resonance line for A = 2 is 

considerably narrower compared with a normal width as shown in Fig. 10, perhaps 

allowing a more accurate frequency determination. The degradation of multi-

pole structure is a consequence of 

try, Le., 

A 

r (00) 
A 

varying as PX(cos S) for this geome-

(145) 

Variation of r (00) 
X 

as the square of PA (cos 6) in parallel geometry (Eq. (106)) 
A 

led to the complete multipole structure with A components. for odd A, fX(oo) 

vanishes for all frequencies because the angle between Hand kl is rr/2. 
-e -

To provide the experimenter with an estimate of how large a resonance 

\ 
effect is to be expected for tpe easiest experimental setup~ with ~Ol~l' three 
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possibilities are s1.lIllDl8.rized in Fig. 18. As a measure of the resonance effect 

at 6. = 0, WIT -+ 00 ,. and ~2 along x\ y, or z we define the quantity 

.. (146) 

which gives the change in fA(oo) at resonance for a given geometry. For odd 
A 

A, orA = ° for all geometries, if ~11!b' With even A, either Eqs. (66) and 

( 80) or (114) gi ves 

A 

orA (00) = PA (OHI-PA (0)] PI.. (cos 82 ) (147) 

Again the advantages of parallel geometry are evident. Even if ~l cannot be 

parallel to TIo' ~2 should still. be chosen parallel. 

Examples for various geometries and rf-phase relations given above 

served the purpose of pointing out experimental possibilities. A successful 

application of these ideas can be expected only for NMR experiments on long-

lived isomers. Fixed-phase measurements are hardly feasible for NMRjPAC and 

NMRjON and will probably be confined to accelerator experiments where it is 

technically possible to pulse the beam synchronously with the rf field. 
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VII. RELAXATION CONSIDERATIONS 

A genera.l discuBsion of the effects of rela.xation on angular correla-
. . . 

tions is beyond the scope of this paper. Such a discussion has been given 

recently by Ga..briel. 45 · The purpose of this section is to discuss explicitly 

the single most important case of relaxation effects on NMR/RD, namely the 

influence of spin-lattice relaxation on line shapes and intensities. This case 

is especially important for 'NMR/NR experiments. in .which nuclear lifetimes are 

often in the millisecond range and comparable to or longer than the spin-lattice 

relaxation time Tl . 

The a.nalysis in Secs. III and IV led to exact solutions for the time-

dependence of radiation ;from an initially axially-sYmmet:ric distribution of 

nuclei sUbJect to stat~clinp.rbtating magnetic fields. Now we shall intro-

duce a random perturbation, J<R, and show that the new solutions are similar to 

those that exist for the system in the absence of these fields. The time-
\ 

dependence of the ensemble is now described by (compareEq. (9» 

(148) 

The density IIl8.trix in a field-free frame may be written 

pI I I( t) = u t (t) p (t) u (t ) (149) 

where U(t).is the transformation into a coordinate frame in which KO vanishes. 

In the case of magn,etic interactions U(t) represents the transformation into 

the S I I I frame~ i.t is given by the series of rotations described by Eq: (90) or 

Eq. (96). After sUbstitution of Eq. (149) into Eq. (148) and comparison with 

Eq. (9), we have 

.. 
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(150) 

This equation is exact. Its validity does not depend on the relative sizes of 

Xo and ~. It describes the time-evolution of p I I I under the influence of only 

a relaxation Hamj..ltonian ~ I. = u-r~u. In many cases, however, JtR is invariant 

to rotation and we can write 

Combining Eqs. (150) and (151), we get 

ihp I " = [~, P I I I ] 

Let us examine the conditions under which Eq. (151) is valid. 

(151) 

(152) 

For X 
R 

to be invariant to rotation of only the nuclear coordinates, the interaction 

responsible for relaxation must be·isotropic. This means that the extranuclear 

environment, or lattice, must meet certain conditions. The basic requirement 

is that, in the ensemble, the lattice states available for participation in the 

relaxation process must not be associated with a particular direction in space. 

When the static ~iltonian Xo is associated with a particular direction in 

space, this condition requires llE« kT, where M is the energy quantum 

transferred in the relaxation process. For example, the problem in the mag-

netic case is that llE is implicitly associated with a direction defined by 

~O.Fram the principle of detailed balance any microscopic relaxation process 

must be rela.ted to its inverse by a proportionality factor eM/kT 
that. thereby 

relates the process to ~o' Thus unless llE« kT and ellE/
kT ~ 1, the relaxa-

tion process cannot be approximated as being isotropic, regardless of' other 

details of the system. 
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An additi.onal requirement is that the product of· the characteristic 

strength a.nd the correlation time of the ~'andom fluctuations be small,12 

W T «1 
pc (153) 

'l'his insures that .~ is small enough'to be treated as a perturbation. The cor

relation time of the perturbation must also be small enough that the system 

remains sub,stantially fixed during the period of one correlation time T c' i.e., 

W T «1 o c 
(154) 

It should be noted that these relations do not imply anything about the relative 

magnitudes of Wp ' and W
O

' or of Wo and the relaxation rate, although a suf

ficiently strong perturbation will of course mask any resonance effect. 

The unperturbed denSity matrix in the S'" frame at t = 0, Le., p'''(O), 

is diagonal in an m-representation whose z axis is the ~l axis. If the per

turbation ~can betaken as spherically symmetrical, then p" '(t) will remain 

diagonal along K(t) and its time-evolution may be expressed in terms of only its 

diagonal elements along the K( t) axis, p = (ml p 1m ). In first-order pert<lr~ation 
- ill . 

theory, Eq. {152) yields rate equations which can be written 

Pm ( t) = [ From' Pm' ( t ) 

in' 

In the transition matrix F, aUIDS on rows or c.olumns are zero. The general 

solution of Eq. (155) is 
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p (t) • p(eq) + m m l;, (0) 
1 

Here p (eq) denotes the equilibrium value of p (t) that is approached as m .. m 

t -+ 00, The setoi' exponential coefficients {-k
i

} are the eigenvalues of }' . 

(They should not be confused with the propagation vectors ~l and ~2') The 

quantities si(O) give the initial values of the eigenvectors of F: they 

are determined by the iaiti .. l conditions. The transformation S con-

nects the p basis set with the eigenvectors and diagonalizes F, i,e., m . 

2I 

P (t) - p (eq) = L S i C(t) m m m 1 

i=O 

F d' = 8-1 F 8 (157) 
lag 

The statistical tensors along ~(t), (P~)K(t)' which are constructed from 

the diagonal elements of the density ~ tri]l: in the m-representa tion,Pm, are 

nonzero only if q = 0 (Eq. (1». The time-evolution of these tensors is 

governed. by the same set of exponents {k,}: 
·1 

2I 

(P8(t»K(t) = [ 
1=0 

-k t 
i 

e 

From Eqs. (l), (156), and (158). and the bound.a.ry conditions 

p~(eq) = 0 A > 0 

(158) 



we 

The 

and , 

of 

a 
Po == 1~ independent of time, 

can Write, fbr A- ::: 0, 

ROi = °Oi 

consta.ncy of 
0, 

also requires O. For A-Po kO = 

RU = I',;i (0) L (_1)1+m 8mi (1-m 1ml>- 0 ) 

'm 

p~(t) decays to zero as a sum of exponentials, 

(p~(t) )K(t) 
A * (91) gives -for (PO)k in Eq. 

~1 

-k.t 
W(~l '~2' t) = L 

A,i 

RAt e 1. AA FA [cos n( t ) J 
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(159) 

> 0, 

(160) 

for A > o. 8ubsti tution 

(161) 

For the specific case of relaxation in metals via isotropic magnetic 

hyperfine interaction with conduction electrons, the perturbation ~ takes the 

fom 

'K
A 

:: A I'S = A 1 8 + ~ 1 8 + 1 S ] z z 2 + - - + 

We note that this i.nteraction is also isotropic in the S'" frame. The wO'rc 

conditi,on i.s eas~ly met: at the Fermi enerEP" the conducti,Qn electrons have 

T c tv 10-
12 

sec, v.hi,leeven for very large l1n?erfine fields Wo is only in the 

109 - 1010 ,sec-1 r . ange. The condition W T «1 
p c 

is also satisfied, but by 



'. 
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a smaller margin. because the instantaneous byperfine interaction with a COD-

duction electron exceeds the time-average interaction that is manifest as a 

hyperfine field or (especially) as a Knight shift. 12 Abragam and Pound shoved 

that the A ros interaction leads to a single-exponential decay of their 

quanti ty III~~, which is proportional 00 in the S'" frame, to to our G , or, 

A A 
(PO(t))K(t)O This is a consequence of the fact that each Po is itself an 

eigenvector 'i of F. This requires that 

(162) 

The Qrthogonality of the Clebsch-Gordan coefficients then gives, from Eqs. (160) 

and (162), 

=,.(0)6., 
1. 11\ 

Abraga.m. and Pound gave the decay constants explicitly. In our notation their 

result has the form 

Here the subscript A denotes the A I· S interaction. After evaluation of the 

Racah coefficient this reduces to 

2 A 2 
k).A (free atom)= -3" TeA (fl) S(S+l) A (A+l) (164) 

Now this result is directly applicable to isolated paramagnetic atoms. In a 

solid or liquid metal this expression for kAi\. would require multiplication by 
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a proportionality factor to a,ccount for eonduction-electron statistics. The 

relaxation constant kAA for either a free atom or a metal varies with A as 

\(\+1) and for \ = 1 the value of klA is just l/TIA , where TIA is the 

spin-lattice relaxation time. The subscript A denotes the A l'S mechanism. 

Thus we can write 

Accordingly.' Eq. (161) becomes 

= \' pA(O) e L 0 .kl A -

(166) 

In time-integral stUdies the response functions are obtained by multi-

1 -t/L plying the appropriate time-differential functions by - e, where T is 
T 

the nuclear lifetime and integrating on dt. Comparisons of Eqs. (91) and (166), 

however, show that the effect of considering relaxation is simply to multiply 

each respon~e f'\inction fACt) by 

e 

A (A+l)t 
2T '., 

lA 

Combining this with the factor ~ e~t/T, we have the factor 

the effective lifetime T' is defined by 

1 . -tit' - e where 
T ' 

.. 



1 - :: 
T' 

1 +A(A+l) 
T . 2TIA 

.~ . Now the integrals 

JOO rA(t) e-t/T ' dt 

o 
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(167) 

(168) 

all have the. same functiona.l dependence on T I. that the corresponding integrals 

in the absence of relaxation had on the true nuclear lifetime T,except that 

tbe integ:ra,l·reepoBse functions are all attenuated'by the .factors 

1 + (AWT)2 

1 + (AWT 1)2 

Thus relaxation reduces the relative magnitude ·of the resonant effect as well 

as broadening the line. It is necessary, in the presence of relaxation, to 

increase the rf field amplitude by a ratio T/TI 

attain a given value. 

in order that W T' 
1 

should 

These considerations are easily generalized to include also the effects 

of quadrupole relaxation caused by randomly fluctuating electric field gradients. 

The Hamlltcmia.n governing this interaction. X
Q

, is invariant to a coordinate 

transformation into the S'" frame where it can also be treated using first-

order perturbation theory. "-Taken alone, XQ would cause (PO)K(t) to decay as 
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(170 ) 

Here (eQ)2 V2 is the ensemble-averaged square of a fluctuating, axially,..symzz 

metric electric field gradient that causes relaxation, while 

relation time. Defining 

we can write 

1 
= --= 

TIQ 
K 2[41(1+1)-3] 

r 2 (21_1)2 

T Q is its cor-c. . 

(171) 

Since both the A l·S and quadrupole relaxation mechanisms are treated as first-

order perturbations, the effective spin-lattice relaxation constant is given 

The A-dependence of kAQ is different from that of k AA , however: from Eqs. (170) 

and (171), ~ 
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Thus the effective nuclear lifetime is given by 

= 1-.. + A(A+l) 
T 2 

f 1 1 
t TlA + TlQ 

(174) 

'l'his T' can be used in Eq. (168) as before. 

The above discussign of spin-lattice relaxation applies to solids, 

liquids, and gases. It is, within the assumptions that ~ is isotropic and 

that KQ is both random and axially symmetric, a rather complete treatment of 

relaxation effects in NMR/RD. In any magnetic resonance experiment the question 

of transverse relaxation (T ) must be considered. Since it is known that angu-
2 

lar correlation patterns in perpendicular geometries are sensitive tOT
2

,45 

it might be expected that our equation should contain T2 explicitly. However, 

relaxation that arises from J('Acan be described by a single parameter (A) and 

thus by a single relaxation time (TlA ), and similarly for :K'Q' In a general 

discussion of relaxation effects the coefficients kA are functionally dependent 

on both Tl and T2 . For example, Gabriel45 gave (in our notation) 

for isotropic ma.gnetic hy-perfine interactions. However when the criterion 

wOTc «1 is met, he pointed out that Tl = T2, and the k~q),become indeplfllldent 
, , t 

of q. We have avoided this problem altogether by working in the S fra.me 

where there is no transverse relaxation. 



-84- UCRL-184l3 

Of course this discussion applies only to T2 effects that arise from 

J{A and j{'Q. The high dilution of NMR/RD samples precludes T2 effects from 

interactions with lik~ spins, however, except possibly in NMR/ON experiments 

on very long-lived states. The remaining T
2
-like effect, namely inhomogeneous 

broadening, is well-known in both NMR/NR
4 

and NMH/ON3 experiments. 
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Table I. The Response Function r1 (t) = ~(t)'~2 for Selected Geometries. 
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Tabl e 1. (Continued) 
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Table II. The Response Func tion f 2 (t) for Various Geometries. The angles refer to Fig. 3. 
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Table III. ,The response function f 4( t) for several selected geometries. The angles refer to Fig. 3. The 

corresponding formulas for random phase can be obtained by omitting all terms with q - q. 
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FIGURE CAPTIONS 

Fig. 1. The transformation from the laboratory frame S into the rotating 

frame S' ( t ) . 

Fig. 2. The transformations (a) from the S' frame into the S" frame, with 

H as the z" axis, and (b) into S' 1 , , a second rotating frame. The S" + S' , , 
-e 

transformation transforms H to zero in the S'" frame. 
-e 

Fig. 3. The unit vectors ~l and ~2 in the laboratory frame. 

Fig. 4. Illustration of the way in which line shape follows from geometry, for 

the case + 00 Both ~l and ~2 are taken along the z (Zl) axis, 
A 

and diagrams at left are in the S' frame. f2 is evaluated by integrating 

-t/T e P2 [cosn(t)] dn around a circle described by ~(t). In case (a), for 
A 

(W-Wo ) «WI' n(t) is always small, P
2 

is near unity, and f2 is thus alSo 

near unity (heavy portion of line on right). For frequencies nearer wo' 

the form of P
2 

leads to minima and a hard-core value, as shown in (b) and 

(c) • 

:B'ig. 5. Slow component of fA (t) for three geometries, with W = wo. .For 

geometries 1 and 5 only the slow component (precession about Hl ) is 

The observable, while the fast component of f2 appears in geometry'13. 

curves $hown are for Wo = 12wl , In this case the envelope for random 6, 

indicated by dashed curves, ranges from +1 to -1/2, while the ~ value 

varies from +1/4 to -1/8. 

Fig. 6. fA(t) near t = a for A = 2,4, for geometries 9 and 11. Only the 

phase is different for the two geometries. 

Fig. 7. fA(t) for A = 2, 4 in the time region WIt 'V 1, where the oscillations 

have been substantially affected by precession about ~l' The curves have 

been calculated· for geometry 9 at resonance (b) and close to resonance 

(a and c). 
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A 

Fig. 8. Power dependence of r
A 

at resonance for geometry 1, showing hard-

core behavior for even A. 

Fig. 9. Line shapes for geometry 1, showing multipole, structure and saturation 

behavior. 

Fig. 10. Line shapes in the saturation limit WlT -+ 00, with ~2 along z and 

~l along x with -!::,. = 0, along y with /;; = 0, in the x-y plane with /;; 

random, and along z. 

Fig. 11. The approach to saturation for geometry 5, with!::" = o. Note sensi

tivi ty to sign of wIT which vanishes, for all A, ~s IWI TI -+00 • 

"-

Fig. 12. Response function r
2 

for geometry 8, with!::,. = O. Note sensitivity 

to sign of wIT, which dis appears as WI T -+ 00 For W = Wo this geometry, 

is equivalent to the usual method of determining gHO by spin rotation, but 

in the rotating frame Sf. 

A 

Fig. 13. Response function r 4 for a geometry similar to 5, and !1 = 0, but 

Fig. 

with 61 reduced to Tr/8 in order to enhance the sensitivity of r4 to 

the sign of WIT. 
A 

14. Response function r
l 

'for a geometry similar to 5, and !::,. = 0, but 

with 8
1 

increased to Tr/2 in order to enhance the sensitivity of the sign 

of WIT. 

Fig. 15. Response functions for geometry 9, with /;; = 0, and A = 2, 4. For odd 
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Fig. 18. Summary of the "on-off" effects to be expected for several per

pendicular geometries . 
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responsibility for the accuracy, completeness or usefulness of any 
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that its use would not infringe privately owned rights. 
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