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ABSTRACT 

A study is made of the scattering of high energy protons by 

protons. Several types of "cutoffs" are introduced into the singular 

tensor interaction proposed by Christian and Noyes; the triplet P 

state radial equations are·then solved by essentially exact numerical 

integration methods. The resulting cross sections show a more pro-

nounced disagreement with experiment than do the Born approximation 

cross sections of Christian and Noyes. Calculations are carried out 

in the vicinity of 350 Mev and 120 Mev. 
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INTRODUCTION · · 

Several experirrients have been carried out on the scattering 

of protons' by protons at energies greater than: 100 Mev:t_ ... 
4 

The .. 

'resuiti~ ·differential c'ross sections are·· charaete:i-ized bY spherically 

s;vnmietric angular distributions (in ·'the· center of mass' system)· and by 

a 'lack of dependence ··on energy •.. Between' scattering anglesr of- 20°' and 

160° and between energies of 120 Mev and- 350 Mev the cross· section' 

is ah~ht four or five miiiibarns per steradian. The results have been 

i~terpr~ted by Christian and Noye~5 (hereaft~r referred' tO as 11 CN11 ), 

' -. . ''6 ' ' ' 1 
by Jastrow , . and by Case and Pais • In the CN analysis (350 Mev) a 

square well singlet interaction was used which gave almost no 

• ' 0 
scatter~ng at angles greater than 40 • The problem then was to find 

a triplet interaction yielding an essentially· isotropic differential 

cross section. It was observed that any triplet central potential 

is undesirable since the cross section due to it would vanish at 90° 

(the wave function is antisymmetric), accordingly a teqsor force 

model was chosen. (The wave function must of ,cmirse st.ill be anti-
·. ~ ; ' . 

symmetric; however, with a noncen,tral potential the ant.i-symmetrization 
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is not expressed in terms of ~he polar scatte~ing angle, 9, alone, but· 

by the azimuthal angle, ¢, as well. The antisymmetric spin scattering 

matrix s(e, ¢) - s(1/- 9, ¢ t 7!') doe.s not necessarily ~anish at 
. . . 

e = 11/2 as it would if there were no ¢ dependence.) 

In order to obtain the desired "flat" cross section, Christian 

and Noyes found it necessary to use a potential with a "highly singular" 

-r/R; 2 radial dependence e . r • .. All triplet state calculations were 

carried o:ut in Bo~napproximation. Jastrow, on the otner.hand, attempted 

to obtain·agreement with experiment by introducing a :h.a,rd- C?re. into. the 

singlet interaction, thus permitting greater momentum tr11nsf.ers and 
0 . 

accordingly a_ .substantial amount of large .angle ( 90 } s.~attering.. The 

triplet, int,eraction was not then required to yield an isot.rppic _ CFoss. 
' . 

sec,t~on.. Neither the CN nor the Ja,strow interpretat:i,on was entirely 

succe~sful in fitting the experimental dai;.a, the princ~pal difficulty 

being too larg~ a theoretical peak in the forward direction due mostly 

to scattering of the singlet D state. However it was not in the spirit 

of the analyses to indulge in a detailed program of "curve fitting" 

but rather ~o illustrate the important features of the various inter-. 

actions chosen. This philosophy applies as well to the present paper. 

It is proposed here to examine more critically the triplet 

state calculations of Christian and Noyes, and, in particular, to 

investigate the validity of their use of the Born approxi~ation. 
:. ~ 

Single.t scatte.ring will .be. ignored. There is ·reason to suspect that 

results of the Born approximation applied to a highly singt4ar potential 
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\ ( 

may not be even qualitatively correct • 

radial equation for the 
.3: . -. - . . . . ·. ' -. . . -
P state (Appendix, Equation Ai8). In the 

0 ' 

vicinity of the origin-this tak~s the·form 

d
2
u + ~o ~ 

d 2 2 y y 

0 y = kr (1) 

(Choosing A 
0 
> 0 implies that the nuclear potential is effectively 

attractive in this state·, ~nd- sufficiently de-ep to do;m_~ate the 

centrifugal term as r~O ~) The solution, for A 
0 
> 1/4 , is 

composed' of spherical Bessel functions of imaginary order having an 

. . 8 
oscillatory singularity at the origin-: 

. u~ff' ,cos- [J)t
0 

- 1/4 log y+ :al 
y~. ' } . J 

. . -

An iriteractfon of this nature can be treated in a physically me~ningful 

way only if the ;singula~ity at the origin is in some arbitrary way 

11 cut off" • It is evident, however, that the region of the cutoff canno,t 

be arbitrarily small since several oscillations of the wave function 

' -

within the region would lead to bound states of the di-proton. Consider 

the integral equation satisfied by the solution to Equation (Al8): 

r .-ay 
j -2-. 

y y 
(2) 

The left hand side of the equation becomes the wave function in ~orn ,. 

approximation if th~ planewave_solution u = g1~y). is inserted as a 
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trial function in the integrand. The Born approximation is v~lid if 
,._ .... '. '~ .. .. . 

the exact solution does not deviate greatly frpm the freE;) pa!'ticle 

trial function. Near the origin the latter, g1{Y,), becomes just 
,. 

2 ! y ; the next zero occurs beyond the region in which the nuclear 
3 

interaction is appreciable, even for energies as· high as350 Mev. It 

is therefore evident that for sufficiently short cutoffs the Born 
• .. ·· 

approximation is invalid since the exact (possibly oscillatory) 
. . . . '. 

solution does not resemble the trial function. .Examination of the 

integral Equation. {2) snows, moreover, that the presence of a short-
. .· '.' . . .. 

range cutoff has a negligible influence on the Born calcula,tion itse,lf, 

simply because the singularity in the potential is masked by the 

1:, y2 factor from the trial function. {For conveni~·nce a square well 
3 . ·. . . -aYi 2 
c~toff may be visualized here; that is, the potential e fy for 

-ay 2 
y ~ y

0
. is placed equal to the constant e O/y0 for. y ~ y

0 
.) 

It is evident that the larger the cutoff radius the more nearly 

vali~ qecomes the first order iteration procedure. On the other 

hand a long range cutoff cannot be ignored in a Born calculation. 

It seems; then, that the CN procedure (Born approximation without 

explicit introduction of cutoff) can be taken seriously only if there 

.exists .som_e.kin4 of cutoff of.s'llfficiently long range to permit first 

order perturbation methods to have real meaning, yet short enough so 

that the perturbation calculation itself is not appreciably influenced 

by its presence. It will be shoWn here that, strictly ·~peaking, a 

cutoff fulfilling· these two conditions. does not e~i~t ~ 
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PROCEDURE 

The proce.dure adopted here is to introduce specific cutoffs into 

the CN' interaction and obtain a.n essentially exact solution to the 

scattering problem by a numerical integration procedure. The cutoffs 

considered will.be of two types: tensor force "square wells", in which 

the potential is given by 

V(r) 
- r/R 

e Mev 
2 (~/R) 

- ro/R' 
e Mev ~ constant 

. . 2 
(ro/R) . 

. . . ...;13 
R = 1.6 x 10 em. 

and "hard cores", where 

(3) 

for 

V(r) - oC· for r ~· r
0 

· and V(r) :Equation (J) for r·~ r 0 • 

(4) 

The =f sign refers to what will be called "attractive" and "repulsive" 

interactions, respectively. The Born cross section of course is the 

same for the two signs of the interactiono . 

!n attempting .to choo.se. a more .or less physic8:lly .meaningful 

cutoff radius, r
0 

,_ tht3 -"~ucleon Comp~o~. wave length". -ri'/Mc i.s a 

converp.ent guiqe. Part o~. the mo.tivati,on .(or choosing a radial dependence 

of the form·. e ~r/R p2
. is its similarity .to te_rms in ~he phenomsnological 

interactions predicted bymeson th~ories. _Such motivation hardly exists 
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at distances as short as 11'/Mc where, for example, the nucleon structure, 

as well as relativistic effects, may be expected to play an important 

role. On the other hand, to introduce a cutoff as large as J-6/Mc (about 

1/2 the meson Compton wavelength) more or less abandons the similarity 

to meson potentials. Essentially the same limits on r 0 . are obtained 

by a few rough calculations which indicate that a cutoff somewhat 

smaller than ~/Me would lead to a bound di~proton, and a radius 

greate~ than ·~/M~ tends to destroy the desired isotropy _of the cross 

section even in Born approximation. (The latter point is illustrated 

by a plot of the Born tensor amplitude in Figure L) The calculations 

were therefore carried out using a "short range cutoff", r 
0 
~ 11/Mc , 

and a "long range cutoff", r 0 ~ 2fi/Mc, for both the sq~are well and 

the hard core. .· The four cases considered will be denoted by the 

abbreviations: 

SRSW: st19rt range 'square well cutoff; Eq. (3) .with -13 
r = .24 X 10 .·· 

0 

LRSW:' long range square well cutoff; Eq. (3) with ro = .48 X 10""'13 

SRHC: short range ha~d core cutoff; Eq. (4) with ro = • 24 X 10-l3 

LRHC: long range hard core cutoff; Eq. (4) with r
0 

= • 48 X 10~l3 

3 3 3 3 
The p 

o' pl and P2, F 2 states for the SRSW case were 

solved by numerical integration and checked by iterating· the resulting 

radial· functions (using the integial equations) to produc.e the same 

shifts and ~plitudes to within a few perceri:t. All other· states 
3 . 3 . 

em. 

em • 

em • 

em. 

· F 
4 

} H
4 

etc.) were included in Born approximation, with cutoffs 

ignored~ Some details of the procedure are given in the Appendix. 
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The phase shifts for the LRSW cutoff were then obtained by a 

perturbation method using as trial functions in the integral Equations 
. . 3 

(A21) the radial functions for the SRSW case, e:icept in the P
0 

state 

of the "repulsive" interaction, which was integrated numerically. _(The 
. . 

state is effectively attractive in the "repulsive" interaction and 
. . 

repulsive in the "attractive" because of a minus sign appearing in the · 

corresponding matrix element of the tensor operator SJ.'2•) Inspection 

of the differential Equations (Al8) and (Al9) shows that the effective 

well depth in the 
3P state is twice as great and of the opposite sign 

0 

3 
as that of the P 

1 
state. From the remarks following Equati~ns (A23) 

in the Appendix, it is apparent that the most important quantity in the 

coupled system is the P dominant P phase sh1ft. Furthermore, in the 

P dominant mode the term 

e 
- ay 

2 
y 

3-rt w 

- ay 
is asymptotically smaller than the term =e--~ - 2 

y 

u; from the power· series 

expansion it is clear that it also starts out much smailer near the 

origin. Ignoring for the moment this· _coupling term, then, and comparing 
3 3 3 

the size of the P2 potentialto the P
1 

and P
0

, it is seen that 

the latter are, in absolute value, five and ten times as large as the 
3 

former.; Accordingly it is reasonable tot hink that the P 
0 

phase shift 

in the "repulsiv'e" case and the in the "attractive" will exhibit 

a great deal more sensitivity to the nature of the cutoff than will the 

coupled 3 3 P2 , F2 states. The perturbation calculations for the long 

range square well cutoffs indeed showjustthis sort of behaviour. The 
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coupled phase shifts in fact differ negligibly from those of the SRSW 

cutoff. 

The foregoing argument~ indicate that a fair approximation to 

the hard core cutoff cross sections should. result from taking the core 
3 . 3. 

into consideration.only in the P
0 

an~ P1 states and using the 

square well cutoff phase shifts in the coupled states. However, the 

following somewhat more refined procedure was used which still avoids 

the labor of repeating the coupled numerical integrations. Starting 
. .. 

with the unperturbed SRSW solutions, the P-dominant P phase shift, 
2 

~l . , is added to the "hard spherett P phase shift, 

hs 
tan 8 

p 

The nature of the approximation can be readily seen by considering a 

similar procedure for an uncoupled integral equation (see Appendix for 

notation): 

sin 

. ·.; 

= 

u . = a 

'(fb = 

o.c::> . 

gl dy + sub ub gl dy ::::: sin 

Yo 

S hs +sin S 
p sw 

.· ( 5) 

strong repulsion (approXimates hard. core). · 

-ay/ 2 e y . for y z y
0 

, 
-av 2 I = e b 

0 /y
0 

::: constant .fo.r y ~ y
0

• 

Trial function . ua exact solution when Ub:: 0. 

Trial function ub . = exact solution when Ua := 0.· 
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. .. ,. .. 
phase shift for squar·e well cutoff • 

-- .. 

phase shift for ·hard core cutoff. 
'· 

· P._ phase. shift for- har4- core alone. 

y ·-s 0 

ub "1> gl d;r is n~glected. 
0 

2 '.2 2 
Analogo~s treatment of. a13 , . _ a31 , .· . 33 shows,. that the influen~e of 

the hard core em these quantities is negligible. T~e phase shifts 
2 2 013 , 8

31 
-(unperturbed .SRSW value Js 71'/2) feel the core somewhat 

more strongly; however they may _deviate as much as 2o% from 11'/2 
Jm . - . . . . . 

without changing the,: cS .- s . by more ,than_ll few perce_nt. (F,;quations A8.) 

-All hard core coupled PF phase s_hifts .were obtained in the 
:' ·-. . . ' . . 

manner just indicated.; all uncoup;Led P-state equations were integrated 

. _ numerically. 
1•: 

RESULTS AND CONCLUSIONS 

.Phase shifts and_ differenti&l cross sections at 350 Mev are 

. given in Table II and Figure 2. The "att;ractive~ inte~action evid-ently 

leads to a. greater. a.r:tiso~r_O.J)Y of the t;riplet cross section than does the 

11 repulsiven, r~gardless of _the_nature of tJte cutoff. , The near agreement 

of the exact crqss sections at 350 Mev V\fith those calculated in Born . . ' . . '·'' ·. 

approximation is surprising_ in -v-i.ew of the large. discrepanpies ii1 th(;! 

corresponding phase shifts. Similar discrepancies at 129 Hev lead_ to 

an exact cross section much larger than that obtained in Born approximation 

(Figure 3); apparently, then, the close agreement at 350 Mev is accidental. 
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Figure 2 also indicates that the greater. the "volume" of potential 

removed by the cutoff the greater is the angul~r variation of the cross 
' ·' .; 

section; Figure 1 illustrates the same point in Born approximation. 

The SRSW cutoff for the "repulsive" case·wa~ c~lci.llated. in 

detail at 129 Mev. The results, Figure 3 (curve A) and Table III, 

show that the predicted scattering"'is mueh too grea,t •. The trouble 
3 

comes almost entirely from the large P phase shift. To investigate 
0 

the, effect (at l29 Mev) of modifying the cutoff, attention.will be 
3 

restricted to the P state. (The arguments of the precedin_ g section 
0 

indicat~ that the coupled phase shifts are only·slightly influenced by 
. . .· . . 3 

the nature of the potential at short range; the P1 state is repulsive 

and s6 obviously ·insensitive to the cutoff.) A · Jp phase shi.ft of 
0 

.. 80 (instead ~f the 1.8 ~f Table III) yi~lds roughly the. ciesH·ed cross 

section (Figure3, curve·B). The required phase shift can be produced, 

for example, by the combination of a square well cutoff at .48 x 10-lJ em. 

and a hard core . -13 ( of radius .24 x 10 em., or, of course, by a hard core 

alone of radius 
. .. . •. -13 

somewhat larger than .24 x 10 em.) .. The cross section 

at 350 Mev wiil· then in any case lie between that of the SRHCand the 

LR.HC cut·offs-·sh~wn-in-Figure-2-. _' 

It 'isco~cluded, therefore, that, within-the framework of the· 

singlet a~d triplet models adcipted by.Chri~tiarl and Noyes, something 

simiiar to the 'following tripl,et potential seem's t~ y:i..e1d the: c:'losest 

approach to the experimental cross sections (Figut~ /J at i20 M~v ~~d 
:. :,. ..... 

35o Mev: 

f"· 
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(' . ' . 

= 
'~·. : .' 

V(r) 

V(r) = Mev = constant, 

V(r) - ~ 
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' .. 

. , I - ... · .. -13 .. · . 
• "48 x 10 · em. , 

. ·. "·· .. , '. . .~· .. . . 

(6) 

' 

r ~ r - • 24 x 10 -l3 em. 
0 

It is to be emphasized that significan7e should be attached only to the 

necessary degree of 11 severeness" (i.e., volune of potential affected) 
' 

of-the cutoff and not to its precise nature. 

It should be· mentioned that a cutoff sufficiently short to 

increase the 3p phase shift at 129 Mev to 2.2 is not obviously less 
0 

desirable than (6) (see Figure 3, curve C); the 350 Mev scattering 

would be changed, but not drastically. The effect of so short a cutdff 
, 

would be more pronounced at some energy less ~han 120 Mev where the 

3P 0 phase shift will have _decreased to ?//2. 

Using the potential giy:en by (6), the discrepancy with the 

experimental forward scattering is considerably greater than originally 

was indicated by the CN calculations. The disagreement seems sufficiently 

conclusive to justify ruling out a large class of static potentials for 

the p-p interaction. The class of inacceptable potentials is by no means 

exhaustive, however. Whenever a strong short range component (e.g., hard 

core) is\included in the singlet interaction (thus permitting large angle 
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· scattering)., the triplet potential acq~ires several more degrees of 

freedom since the requirement of isotropy may be dropped, In 

particular, triplet ce~tral potentials then merit consideration. 

.· .. · ... 
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APPENDIX 

The nucleon-nucleon scattering problem for a noncentral static 

potential will be formulated and discussed. The notation and method of 

treatl!lent adapts conveniently "tio a descriptionof pole~.rization effects 
. 9 

carried out in a concurrent paper • 

The asymptotic form of the triplet !3tate wave. function can be 
10 

written 

-
tJI 

i kz i kr 
r-..le '>I +·e 

" inc. -=---r-
s'Y 

~"inc. 
·(Al) 

A;_nc. = triplet spin function of initial state where s(e, ¢) is. 

the triplet spin scattering operator, the matrix for which is given · 

C"Jms 
explicitly in tenns of the c.omplex phase shifts, 0,( , by 

Jms . 

1)~ . ~(cos e) 

_..:_::J__ 0 -1 m' 
-------- -~------ ------------·-- ________________ __S,_-= --

A ''· .· 

2 i ¢ 
C e 

-i ¢ f2'B e 
2i ¢ 

C e 

-{2n e 
i ¢ 

A 

1 

0 

-1 

(A2) 
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.t"J, ± 1 
2i o. 

~ - 1 
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,t. -1] (1- l)A;t . ~ 

,, . 

is an operator .in ~ripiet spin space defined by Eq• _(A6). 

Coulomb scattering is neglected. The boundary conditions of the scattering 

problem yieldalso the relationship between the complex phase- shifts and 

the asymptotic form of the radial wave func_tions. To obtai~ this relation-

ship~ first expand the wave function of the system in eigenfunctions, 
2 

of total ang:ular momentUm. J , and . Jz • Separate the radial. from 

the spin-angular d'ependence by ~eans .of the expansion 

'/'Jm = 2i- u.( (r) 

Jm · · · . . 2 

Jm 

o/i. 

where the 'f£ ·are eigenfunctions of J , J z and the orbital 

I 
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2 
angular momentum L • The Schrodinger equation for the radial functions 

becomes: 

J 
where V J,£.' (r) 

Jm Jm 
( flit ' V(rl 01' <Y2) o/,( ) is independent of m .• 

The scal9-r product denotes an integration over the surface of a sphere 

and summation over spin variables. 

For a tensor interaction, the orbital ang'-llar momentum is not 

a constant of the motion and V(r, d'i' <f2) contains off~diagonal elements 

between.states of the same parityll. 

.... 
'' 

1 
. 2J+ 1 

J-1 

- 2(J - 1). 

0 

J 

0 

2(2J + 1) 

0 

/ 

Jt 1 £ J.. 
6 {j(J + 1) J-1 

0 J 

'-2(J + 2) J+l 

(A5) 

Jm 
The orthonormal set of spin-angular functions, (/J,( can be 

expressed irt·terms of spherical harmonics and spin functions by means 

of the Clebsch-Gordon expansion: 
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and 

Defining the projection operator 

J.s Jm 

= s J ~m-ms ,ms (/)1. so that 

(A6) 

. , 

the general expansion for the wave function of the system takes the 

form 

Jm 
c. 
l. 

J 
~in (kr - RJ/;2 + 8 li) 

(A7) 

The subscript i is summed over the two regular solutions to the 

coupled equatitm in :(A4)· (see discussion following Equations A20). 

Jm 
For uncoupled· states, pu~ · c2 :: -0. The asymptotic form of (A7) 

is the same as (Al) with S defined by (A2) provided that
5 

·t 



.• 

(" 

D e J 

. _.8J,±l 
2i . 

J-1 

J, 0 
2i s 

.·, 'J-1. 

.. : .• .:..18-

QJ, 0 
2i 0 

UCRL-1841 

J tl' * 
: EJ + 2i ~- . J . · . . W : (Dj e . ) . 

. J+ L· 

: EJ - 2i~ J ± 1, 
J . 

. . ~ 

J,± 1 
,2i 8-. .. 
. J+l * 

w· = (DJ e ) .. 

(AS) 

where: 

J J 

J . J 

.. -i(&: J~l,J+t 0Jtl,J-l) 

- aJ-1 J+l aJ+l .J-1 e 
. ' . ' 

J J 

i(8 J-l,J-1--sJ+l,Jtl) . J 

---- J 

J J 

i(g J~l-,Jtl- 8J+l J-1) 
. - , . 

A 

EJ = e -a. · a. · ·e 
J-:l,J+l J+l,J-1 . 

. J. ; . J . J .. 
W - a · sin( S · - (" . . ) . = 

. J;..l,~1-l . J-l,J-1. .o J-l,cl+.l . 

J .. ·.. J ' ... J . 
a sin<o ~S ) 

J+l,cl-1 .· . . J+l,J+l :. Ji-l,J-1 

(A9) 
J J 

a· = a - 1 
cT-:l,J-1 J+l,J+l 

for ·all uncoupled states.· 

The subscript i in Equations· (A?) he:re. takes on the values J-1, Jtl 

instead of 1, · 2. The Wronskian conditions. (A9) follow immediately from 

the differential Equations (A4) or (A20):. 

constant (AlO) 
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:B~iilndary c~nditions at the 9rigin require the constant to be zero·; the 

asymptotic form of (AlO) is (A9). 

In Born approximation, Equations (A2)-- and (AS) become: 

B s = 

J± 
E..J-1 

1 
k L 

J,J.,ms 

ecJO 
J+l 

· ·B Jm 
(21.+-1) 8 s 
' »J. ' ' 

= 

7fms :e 

,f = J-1, J+l .. 

l 

€/o 
J-1 

-f*i 
;, 

(All) 

- L = 2J -£ 

(Al~) 

For aey lj,near combination of central and tensor potentials, with 

arbitrary excha~e depen~ence, V(rj crj_,- o-2) = [- J(r)S12 '- Jc(r~(a + ~x J, 
Equation (All)_ can be· written in the closed form10: . 

2i ¢ 

where 

- 2 Cf 

i ¢ 
- c2 e 

.; ,. 

- 2 i ¢ 
C e 

·- 3 ' 

- C e 2 

.. i ¢ 
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F 

c2 = _]_ sin e c_ 
.{2 

c3 - ... 2.[ c..,+ cos e c_] 
·.· ,., 2 . . .. 

c:t :: a cK. t b cL E. a c (e) ± b c ( 11 - e) • 

UCRL-1S41 

J 
.. 

2 
F(e) = 1L ;r Je(r) 

~2 
sin Kr dr 

Kr 

(A14) 

The pr,ocedp.re :'for. calcillating. S w~ll be to . remove from the Born 

scattering'zna.trix (Al3) the first few terms of its partial wave 

expansiOn (All),_and to,rep::tace them by the corresponding terms in the 

exact scattering matrix. The result will then correspond to a scattering 

matrix containing explicitly the phase shifts of the few lowest angular 

momentum states and implicitly the Born approximation on all higher 

states. 

s. -.· -. 
B... I s+s 

~,J,±l 
~ ~ B J~l 

= e - 1 ~ 2i 8! 
2l.. (I: ,o 

OK. , B J ,O 
:: e -l-2i S,.e 

(Al5) 

' where S is defined analogously to equations (A2), (A3), but with 

A
IJ tJ ... '" .J J 
R.. , B I. ;. replacing A/. · , B..( • 

For p-p scattering, replace S(e, ¢) with S(.9~ ¢) ..;. S(ft = e~ ¢+-/)"). 
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The triplet contribution to the differential scattering cross 

~ ' 
section, reduced to terms_ containing just Legendre poiynomials is:· 

~~)triplet 

c~~ h.r. 

(
d() ) . 

d.A. lcr. 

(Al6) 

- · ~o-~orn + fo.a: 2-· + ( ckr \ + (d·<r)' - 1 Tr(s+s) 
\d..ll-j_ . . \dATI \d.A),. \CiA - 4 

tr1.p. . CI .. . . 

B;t- B 
lTr(S S) 
4 

-- ~ fh+~L][foCA,+4J'ilt~(ArP1,+~P3>] 

+ [acK ~ bCL] [£2( Yo+ "1"~2)1· f.o -Yi:P~n 

'of- I 
1 Tr(S S ) 
4 

A ' ' ' ' • • ~ ' ' 

" ,•, I 

E. - 1:--. ·-.- 0 w -2 o- ' 2- ' 
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\, 

10 11 11 21 31 

.. 
A __ .· = -b +A + 3.D. _.:£4 +-A --o .,· ·.. 0 ' ,0. '2 2 z '2 2 

·.- . ·-... 

-,{ 

1{ 

Ac 
1 

L\ 
c· 

10 11 21 31 30 
- - 2/::l -Ll -+ 5 ~ LA = 31S. - 2 2 . 2 ~~2 2 

00 11 21 20 21 
= -~ + 2 L.\ 1 + lb - 2Ll + 3~ 

1 2 2 1 1 3 

21 
= - 2l:1 

3 

·. '· :· 

20 
- 3.t1 

3 

D
lO All 

- t 21J 
- 0 0 

··2o '21 . 20 
= 6..6 . 6/l +9A 1 1 . 3 

10 10 
= + 6/l .· 

21 
4A 

3 

11 21 31 /111 
3..60 3 . ~4 - 15/J ·+- -3/>. -· 0 2 ' ·22 ·.· i -2 . :. '•' 

00 11 20 21 
= L\ + 3lll + 2Ll1 + 3h1 1 

= 3~~0 + ll21 
2 3 
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(Al7) 

1\ = b.r;: +3~1 
+ 2~6 

r ;£\ii1
+ 3/:.;;0

+ 2Aj;\6~q4!;~1_,.2A~~o 

Alll 221 ~330 331 + ~ + 511 + 3~ + 4A · 
22 22 22 22 

020 111 1\121 A 220 221 . A 020 121 

/\2 = 4A11 1- i~11 + 9l-l11 + 2 £.111 + ~All + 6 
13 + 6 A13 

121 130 131 110 + 1o.l\ + 6/J. + sA + 2/l 
02 02 02 22 

221 221 231 

~A33 + ~o ~22 .+ 1~0 Ll22 

.· . "331 13! ·, 130 . . 330 

· + 1± A2 +- 2£A22 + 72 L\22 -r 18L122. · 
7~. 7 . 7 7 

. ;. 

(Eq. A17 cont.) 1 
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(Eq. (A17) cont.) 

where 

010 111 . .· 121 . . 120 010 111 121 
2,11o -1- 6Ao1 + 6Ao1 +. 4.6o1 + 4A12 · + 3 A12 + 9A12. 

121 121 A 120 A 221 t-..030 · 1\131 
- 6612 + 18 b 21 + 2.£ 1->. + 12J,..\ + 61.->!. + 12 u 

J 

5 5 21 12 12 12 

J 

J J' 
I (B' )* 1 R. B 

4 1' 

(Al?b) 

The identity A 
J-1 

B · follows frorr. (At~)~ (A9). 
Jtl 
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The summation has been carried out explicitly over the 3s
1 3 

3P0 , 

3P1 , 
3

P2 , 
3n1 , 

3n2 , 
3n3 , and 

3
F2 states. In ~~) , DF 

interference has been omitted. For p~p scattering 3 te;vms wh:tch contai!l 

an even. subscript do not appear and (Al7) simplifies considerably. 

The radial differential equations for which ·nexact" solutions 

were obtained in the presen~ paper will be considered now in more 

detail. 
-ay 

Let U = e for y > y
0 7 -

~ay 

~ e o for 

3 p 
0 

3 
pl 

a ~ 1 ... .' 
kR 

. 
' 

2 

2 
Yo 

d u(O) - 2 u(O) + u(O) ;;; 4,.1 U u(O) 
dy2 2 

y 

2 . 
= 2AU u(l) d. u(l) - .,£., u(l) + u(l) ~ 

2 .2 
dy y 

2 
d u- 2 u+u = 

~ ~ dy y. 

2 --
d w -12 w + w = 

~ 2 
dy y 

3_ A U(u = 3 fo w) 
5 . 

~A U(4w = 3 f6 u) . 
5 . . 

2 
k :;;; ME 

:? 

The potential V(r) is given in. Equation (3). 

y ~ y ~ constant. 
- 0 

(Al8) 

(Al9) 

(A20) 
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There are four independent sets of solutions~ 

to equations (A20). Examination of the power series representation in 

the neighborhood of the origin shows that two of the solutions always 

vanish at the origin, and the other two are irregular and must be 

discarded because of the usual arguments on quadratic integrability and 

J. wu, .. ·111, ' { wu· 221 W1.ll conservation of current. The two regular solutions, { S 
be called a "fundamental set 11 • Any set of solutions arising from a 

linear transformation of the fundamental set will also satisfy all of the 

· boundary conditions of the scattering problem and hence may be used to 

('Jms • calculate the complex phase shifts o It is not difficult to give 

a plausibility argument showing that there ought to be one pair of 

solutions, 

in which the P state· is dominant, ·at least ·asymptotically, and another 

pair, 

in which the F state is dominant. Consider the integral equations 

corresponding to the coupled differential equations (A20) and their 

boundary conditions: 
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Y· 
.2 

ulC( (y) - ~ 
. 2 2 

U(u - 3 -{6 .. U~.J )g ' .. · dy ~ ... 
10( > • • ' . ~ 1; . . · .. 

0 

y 

(A21) 

y 

~-~ (y) - A~g/y) t pg_3(y)5U(4 u~ -3 #~"( )g3 dy 

0 

2' . 4. 
gl >L -' g ~..L. 
y~ 3 3 y~O 105 

The constants are arbitrary; the subscripts c;,( denote 

the duplicity of regular solutions and take on the values 1, 3. The 

asymptotic form of -(A21) yields integral expressions for. the_ amplitudes . 

'and phase shifts; 

(A22 cont.) 

.• 
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· (A22 cont.) ··· 
2 2 2 

A)(';·.·;:,; 'a~ cos 8)1; . : .. '· -~ ·. .· 

oO 
2 

a3c( sin - - 2 - s s U(4 ~~ - 3 -/6 ~~o( )g
3 

dy 

o·. 

where 

2 2 . . .. ·· . 2 

u~ 'V a3o( sin (y - · 31(/2 +- 8
3

Q( ) ·· 
... ,_ 

.. 

The weighting · intluence of the · g
3 

(y) term (which is· small through tout 

the region in which the nuclear potential is large) in the va~ious 

. 2 2 
integrands ·suggests that .the 11 subdominant" amPlitudes a13 .,. a

31
. might 

2 2 
best b~ __ kept .small bY p+aci~g A13 = A

31 
= 0 , which amounts to choosing 

2 2 8
13 

= 8
31 

= 71J2. In Born. approximat~onJI for which the free particle 

t .. 1 fu t' 2 - 2 ( ) 2 - 2 - 0 2 = ( ) 
r~a · nc .~ons ull - ·all gl Y ' ul3 = u3l::. ~ .. u33 - a33 g3 Y 

are used, Equations (A22).become~ 
., 

~ 
oO •· 

fo'A ju g
1

g
3
dy B 2 s 2 B 2 B 2 

8 ·- - 2 A U(g
1

) dy a :: . a.31 = 6 -ll ., 5 13 5 
·{• 0 0 ... 

~ (A23) 

B02 -p.~ 
'•':2 2 2 

1/;'2 - U(g3) dy 
gl3 

- ~·31 ~ - = 

33 
0 
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It is evident from_the behaviour of the functions g
1

(y) and g
3

(y) 

that~ of the four quantities now describing the coupled_ state sc,attering 
2 2 2 2 

811 ' al3 ' a31 ' 033)' 

2 ' 
S 

11 
might be ·large but the other three 

are small. (a~1 and a;
3 

may be normalized to -~·ri·ity. since only the 

ratios 

and are relevant • ) 
.. · .... · ·- ~ .' 

Ingerteral, wherever a comparison of the exactsolution'with the Born 

approximation could be made, the latter was found ·to be q,TJ,.ite:acc1,1rate 
. 2 2 2 ,,. . . 2 

for the three small. quantities (a
13 

, a
31 

, 8 
33 

) , with only _8
11 

showing marked deviations. Table' AI gives the compari'sori lit 350 'Mev·· 

for the SRSW case; · .. ·'. 

·To integrate equations (A20) numerically, it is cortveni'ent to ·.·· .. 

start with a power series solution near the origin (where the potential · 

is constant). The roots o.f the· indicial equations' are:· .. , -· '- .. ' ,· 

c:(. :: 6 , ~1 1 

o<; ~ 2 . ~2 = 
' 

~3 ::: ='1 , ~ 
o(4 - 1 ~4 - = 

= 4 

= 4 

= 1 where 

-·3 --

:·. 

u. ·--raQ· a.i 
~- .·. n 

n:::G 

. '--~ 

n+O( .. ·. 
y ~ 

(A24) 

n+~i 
y 

., '. 

,· . 
. '· 
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·~···· · L_··n+6 
= . an• Y ... 0 ,· .· ' 

The recurrences .relations are: 

an [<n +6){nf,,5) ~ 2 ]+ Kj_ an~~+ Kb~ - 0 

bn [en t 4)(n + 3) - 12] + K2 bn_2+ Kan_4 = 0 

(A25) 

(A26) 

a~~~(2n t 3) t. Cn [ (n ~ ~n t 1) - 21 + K1 Cn_2 t Kdn_4· :: 0 
' . . .. , 

where 

Jlpper sign: itattractive11 lower sign: 11 repulsive 11 

The quantl:t.ies a0 and d
0 

are undett=,lrmiried; the former merely defines 

the normalization and the latter represents the arbitrary amount of 

solution 1 . = 1 that may be mixed in solution of :::: 2. 
. ·.. . 

In some cases the coupled equations were integrated on a 

differential analyzer;. in others, a desk· calculator was used, To ch~ck 

the phase shifts, the resulting radial functions were used as trial 

functions in the integral equations, ~or the uncoupled equations, a 
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method recently descril:led by G. J. Kynch i.3 was used~, .,. Its advantage lies 
' . ~- ~ . ~ . ·, .• ~ ...... : ,:;1;' 

in the fact that the nuclear phase shift is integrated directly, whereas 

in an integration of the wave function most of the effort is "wasted" · 

in obtaining the centrifugal phase shift. If the quantity 

tan-l (-11.. S(y 1
)) represents the phase shift which would obtain if: 

' the potential for y a: y were placed equal to zero, then 

.tt 1 
(=l) d s,..e _ 

dy 

2 
V(g,l + Sg_.( ) 

2 
where d· u - fee+~) u + u ::: vu. 

dy2 y 

(A27) 

S(y) is either monotonically increasing or decreasing depending on 

whether the potential is repulsive or attractive. For· a square well 
. . 

cutoff, the power series expansion for S(y) (P state) is given by: 

S(y) 

so = .it. 
45 

Within a hard core S(y) = = gl(y)/g_l(y) 

let · V :::: £ : const'ant 

(A28) 

(P state).· 
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,.) , I 

· Triplet .p-p phase ~~hifts and amplitudes at 350 Mev for s~~la.r ;tensor 

··; pot-~ntial-wi.th'1$liort range·-·square;well cut'off. (SRsw ·case); 

l . 

,'l 

.. Repuls,iy~ __ Exact. .218 1-.101 -.098 ~050 . 11/2 
; ', 

.. ·.: 

:· .085 - .077'.. . ' 11/2. 
~ '• ~--~:.-. -~ ~ •'..::.. ' ,, ....... •_· . ..: , .. - ·. ~-- .. - - . . .: .. ' 

' . 

: Repu,lsive;,Born ·. '0 088 -.099 -.099 .067. ft/2 

· ..... 

Attractive .·Born -.088 .099 -.067 111~ . 

'<j . . 

;· 

' -

'.'1_ • 

. . · .... •• ·"ol· 
j, 

., 

. J ; ·' 

. ·,· -~ ' .. "":-~ .. ,_ 

.. 

~2-
·~13 

7(/2 

t/;2 

:• 

,. 

. ··. 



TABLE II 
)\~--~. {~;. 

' / 

Triplet,~-p phase shifts at 350 Mev for singulaf~tensor potential with various cutoffs/ (Cross 
(\ . . /\ . 

I I 

sections plotted in Fig. 2.) 

-
SHORT RANGE LON(7 RANGE' SHORT RANGE LONG RANG-E 

.SQUARE WE"LL C.UTOFF SQUt~,-~eL\.- HAP-0 C.O~E HARD CPRE 
~ORN 

AnRAC.'nvE REPULSIVE ATTRACTIVE REPULSIVE (REPULSIVE.) REPULSIVE ATTRACTIVE ATrRAC. TIVE' REPULS\VE 
., 

I -' . 

8?.. 
I 

- .002 - .048 B 20 ·. .005 -:- .029 - .035 ; . - .. 008 : 
-81 = -.033 Same as SRSW ... 

+i.242 +i.l84 ti.l70 +i.ll6 -- -i.l85- -i.239 
' ,. 

•· .·. 

. -
... . ... , 

- .022' . - .152 
Bsil = 

- .028 -·':':' .119 - .129 - .027 
.169 Same_ as SRSW .. . . .. i 

-i.lOO +i.567 -i.l71 +i.503 -i.514 -tL158 
A~ 

'?> ~1:' 
Pz-; •z. 

-- ~.;._ :,~:. . ~- . ·-· 

- .017 .018 B 20 - .013 . .013 .012 - .016 
. :- ~ ... s = -.011., Same· as SRSW -

.. 
-' -

-i.Ol6 -i.060 3 · -i.Ol6 -i.062 -i.020 -i.066. 
B~ 

'. ·-·~·-·"-·. .. ._., 
-. · ...... 

.. -:~; .. 

- .037 - .086 
Bs:1: 

- .045 - .07_8. ·- .082 - .035 
.188 Sam~ as SRSW 

-i.357- + 1.323 3 -i.356 ti.325 -1;,349'.' ti.331 

:z. 
A:3 

~R> s~ - .626 2.00 .880 -.616 1.24 - .64 .91 . - .66 I .• 32 
' ·- ·• - , .. 

'3g b~ - .360 - .351 ' .• 38 
) 

.04 .· - .• 47 .580 -.440 .540 - .37 
·.:· ., ... 

~ 
\JI 
I 

c::: 

~ 
~ 

~ 
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TABLE~ III ..•. , 
• 'f, : 

Phase -shifts .for~ tripl;~:t p-p, .. scat.tering at. 129 Mev,. using repulsive 
. . ( '. . . .· ... ·: .·. ' :' . . •' . . : 

singular; tensor. inte~~ction with. sh()rt ra~~ square well (SRSW) cutoff • 

3 J .. 
p2'' F 

2 

' . 
~ ~-

. , 

. .. . ~ 

·l 

'\ ··'· 

.. 

-~ ' 

. ~ ;· 

.240 

•:"'!'· • 

2 -.008 
Bl --

ti.Ol2 

2 -~.037 
Al = .. 

+L2Sa··· 

2 .002 
B3 --

-i.082 

·2 . -.027 
A = 3 . +i.l95 . i-

j• 

.. 
'·'· 

B
. :, . 
~ 0 

. Cl:.l . = ,. 590 

. . .. ~: ·;·, ... ·: ...;. '• 

B
8 

20 · ... · 
. ~- = ...;..021" 

•,' 

B sl
2

~.- .112 

-. ·. 

B~ 20. . 
03 = -.024 

.109 
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FIGURE CAPTIONs·· .. 

Figure 1: . Born tensor amplitude~'~ C(e) . (Equation Al4), for singruar · 

poter{tiais with various rar}ges (x~ = · ro_ ).--9f square ·well ·· · 
R . 

cutoffs. The radial dependence of the potentials is 

indicated on.the plot. x = r/R. 

Figure 2: Differential cross. sections (center of mass system) for 

triplet p-p scattering (neglecting coulo:mb) at 350 Mev 
. -r/R 

15.2 S12 e , Mev· 
. . .· (r/R)2 

using a singular tensor potential 

with various cutoffs. Dotted curves show Born cross sections, 

solid curves are "exact". Phase shifts are in Table II. 

"Short range" means 
-13 ... 

: o48 X 10 'em. 

r = .24 ~ 10-13 em.; "~ong range" 
0 

Figure 3: Differential cross sections for triplet p-p scattering 

(neglecting coulomb) at 129 Mev p.sing cutoff singular 
i: 

tensor potential. Curve A.: SRSW cutoff.' Curves B, C 

have. cutoffs adjusted to give the 3P0 phase shift!;!. indicated . 

on the plot. 

Figure .4: P-p scattering at 350 Mev, 129 Mev. using the cutoff. 

singular tenf;or potential given by Equation (6) and a 

squ~~e well singlet interaction ( Chris.tia~ and Noyes) • 

Coulomh.scattering neglected. The experimental points at· 

350 Mev and those at 120 Mev denoted by • are taken trom 

Chamberlain, Segr~; and Wiegand
1

• The. points,:.~:; at 105 Mev 

are from Birge, Kruse, and Ramse?. 
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POLARIZATION. EFFECTS·!N. NUcr.EoN.:.NUctEbN scAT'I'EtUNG. 

Don R. · S'tiv~nson .. 

Radiation Laboratory' Department· of Physics 
University of California; ·Berkeley; CaLifornia,., 

May 29,'1952 

ABsTRACT 

If a beam of unpolarized nucleons is scattered froll1.a target 
;. 

of unpolarized nucleons, the scattered particles are pola:died (in a 

direction normal to the.scattering pla~e) provided ~hat theinter-

action contains tensor or spin-orbit forces. The polarization can be 

detected by.means of a second similar scattering since the cross 

section then contains an azimuthal dependence: 

·-r(e, ¢) :: · I 0(e) (1 + 6 cos·¢) , 

where .. £(9) is essentially the square of the polarization. Calculations 

are carried out by the author for a double p-p scattering using _the 

tensor interaction described in the. pre cedi~ paper, and; for a; double·. 

n-p scattering.usi~the central and tensor potential of ehrlstiari 

and Hart: (coritaini~ the "half ex~harige" dependEmce proposed by SerberL 

Th; polari,zaii~n produced by the first. scattering at. the· o'ptimum angle· 

o"t- · 9 ~ 50° was foUnd to vary from 6% at 40 Mev· t6 3.3% at 28:5 Mev 

for· n.:..p ~catteriilg and: from io% at i29 Mev 'to i5%'·at'350 Mev for p..:,p .· 
,, • :: . . ~ ·. .. . •. . • .. . .' !. . ·. ;j ,,, ' 

scatteririg. The n-p· result's {previously published) are consistent with 

the az.imuthal ~s~eti-y detected in a double scattering experiment 

reported by L. Wouters. 
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IIo POLARIZATION EFFECTS IN NUCLEON-NUCLEON SCATTERING 

Don R. Swanson 

Radiation Laboratory, Department of Physics 
University of California, Berkeley, Cali~ornia 

May 29, 1952 

SCATTERING OF A POLARIZED BEAM 

· For a single nucleon-nucleon collision in a definite initial 

spin state :Xi , the intensity of the scattered state is given by 

, (s .A:i_, S /G_), the expectation value of st S . S if? the 3X3 triplet 

spin scattering matrix defined in the Appendix of ~receding p~per1 ; 

s: (4X4 dimensions) is the same with singlet states included. The 

result of a measurement to which many scattering events contribute is 

necessarily the average expectation value of the measured quantity 

taken over an ensemble of all possible initial states of the system. 

The totality of information concerning a system can be expressed in 

terms of the q-dimensional density ma~rix o .. = fLa.cf a. 
(q) ;~·. * ·~ 

~ J1 . , 1 J 
. . . ' . 

where ~ a. u. 
1 1 

is the wave function of the system in the state 

g( , ~ is probability of occurrence, and ui a complete set. of 
' 2 3 

expansion functions. Following the method of Wolfenstein and Ashkin ' , 

.let ~4) refer to the.in~tial spin states of the two~nucleon system; 

then t~e differential sca~te~ing cross section is given by 'ltr( ~4)-g+ S) o 

Consider for the moment an ensemble of one particle (spin ~) systems; 
' ' 

a measurement of spin will yi~ld the result <Of> : Tr( e (2) cG.> . , 
from which it follows that the (two dimensional) density matrix can be 
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written e(2
) : i [ 1f.. <-;;;> • ~·1·. The four dkensional density 

matrix describing a spin state ensemble of tw-o-particle- systems is given 
,.- 4 . ' . . ,:· ..... ·. ,.,•; ------. 

by the "direct prod~ct" of the density mat;rices for the one particle 

ensembles, provided that the states of one.particle are not correlated 

with·those of the other: 

~4) (1) 2) : · ~(2 ) (1) X _ ~( 2 ) (2) or 

( () (4)) - . . - fp(2) (1) ]·--1'1' 0 f (/.2) (2) ] J•j I 
\ ij; i I j I L\ L \ 0 

Hence, 

(1) 

The differential cross section for a beam of particles of polarization 

pt = ( ~) scattered from a.n'unpolarized target < o:;) -::: 0 , • 
Il 

is therefore given by: 

(2) 

,, '• 

where <rt- is the triplet spin operator, and I the intensity of the 
. . -. . . ' . 0 

incident beam. _ The second equality follows from the absence of matrix 

elements inS between triplet and singlet states, hence the latter do 
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not contribute ~o the. "polarization term'' ·.·J:\ (a;)•Tr(~ ST .s). 
' . '. ' . .··g... ' ' .. : . 

, For an inter~ction. of th~ form.. .. . ..•. · . 

[A(r)+~·~B(rl}[a-t-bPJ , 
S is proportional to the (triple~ unit rilatrix and so the polarization 

term vanishes. In the case of a tensor or spin-orbit force, it ·follo~s 

from Eq. (A2) (reference 1) (or can be. proved by symmetry arguments5) 

that the polarization term in Eq. (2). is nonvanishi~ and proportional . 

to the component of polarization of the incident beam normal to the 

scattering plane. Detection of an azimuthal dependence of this type 

in the.nucleon-nucleon scattering cross section would'therefore 

constitute direct evidence for the presence of noncentral forces. The 

problem now to be cc:msidered is that of producing the. incident 
. . 

polarized beam of high· energy (S states ·alone do not contribute to 

polariiation) nucleons • 

. ~ .I~ an,, unpola;rized beam strikes an unp?larized ta~g!3t., J,he 

polarization of the scattered. b~am is .given by 

where 

system. 

~4) 

~--
(S :.:ri, .<ri s xi> 

cs xi' s .:1'i> = 
Tr(a* S s-1-)· 

Tr(ss+ > . 

: i l is the density matrix describing the initial 

A proof, based on the transformation properties of S, that 
·' • ' • • ' ', <. • • ~ • • • • • 

has been gf~en by Wolfenstein ~nd Ashk·i~:3. ·· A~·al~~br~ic tour de force, 
~ ' ' . . . . . . ' 

however, using the form (A2).(reference 1) for S, yields the equality: 
.: ;~ . 

; ·'· 
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- tan e cos ¢. Im LfP2 
+ J(J + l)P. ·] 

4k2 . J ' ~ J+l '. Ji-1 

x (.t-E-C] :. 0 

- (3) 

which vanishes immediately for purely central or S•L forces (uncoupled, 

~:ms = .c;; ) therefore o~ 0~ and does so for tensor forces as a consequ~nce 

of the Wronskian conditions (A9), (Al7b) reference·l. 

If the z1 direction i~ taken as that of the incident beam, 

then Tr( cr s+ S) :_ 0 may be readily confirmed~ ;placing the 
zl 

x1-axis in the scattering plane, (¢
1

;::0), the polarization is g~ven by: 

Q'1 (el) 

Il(el) 

.. 
' 

(4) 

where the subscripts 1 will be used throughout to denote the f~rst 

scattering. 

In the first scattering, introduce the subscript (b) to represent 

the particles originally in the incident beam, and (t) to denote those 

from the target. 'The polarization of the two scattered beams is the 

same~ 



~ ..... '1·-t-
:;: .. Tr(<r0 ' x . S . S) 

.. · ...•. ,.. . 

=47= 

1 -t-= Tr( . x <rt S S) 
I' •' 

~t 
:; ~ Tr(<r S S) 

UCRL-1S41 

(5) 

The nucleons emergi~g: at some laboratory angle (@ , ~ ) will be 

used to form the incident beam for ·a second scattering. If particles 

(b) are to be :used, th.e center of mass angles are 9 = 2 ® and 
' ' 

¢ = ~- ; for parti.cles ( t), howev~r, 9 :.:: · 17'- 2® and ¢ = ~ + 11 . 

Con_sider, for. example; the expe~iment. of Woute:rs6 .ii;l ~hich incident . . . . . . . '· . . . . 
'. 

protons ,produce a neutron peam by me~ps of a (p~n) reaction.; The (p,n) .. ·, ., .· . .: . ' ... 

collision is described by . s(e, ¢)? and the polarization of neutrons 

observed at.® .. . . . . ,p (cr-t> (e, ¢) .· 
r(e) 

where . 9 = rr' ~ 2 ® and 

' • • I • 

The scattering matrix itself'carries ali inforll'lation on 

the exchange nature of the interaction.:. In the case of two protons 

the S matrix is antisymmetric so it is of course immaterial whether 

9 = 2®, .¢ =·" ~ or e ='1f.- 2®! ¢.·= <P +.ff is used. 

The subscript 1 wili be used hereafter in place of (b) or (t) 

to indicate that the operator in question refers to once-scattered 

particles which form an incident beam for the second scattering. 

·.! 

THE DOUBLE SCATTERING PROBLEM 

·The coordinate' system ·for the second scattering 11 (x
2 

Y 
2 

z
2

) 

is obtained· by rotating (~ yi zl} about the . y1 _ axis until the 

z axis: lles ·along the new. incident b~am ,(Fi~re. 1) • 

-+ 
is unchanged, and represents (in the form of (OJ.)) 

Hence P = P 
· Yl Y2 

just the quantity 
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that must appear in.th~ density matrix for t~e ~e~ .initial state 

D (2) X 0 (2) 
\1 \2 

{6) 

The subscript 2 refers to particles of the second target. The latter 
~ . 

<fS2) = 0. · The differential 
. ,. 

is supposed to be unpolarized, so that 

cross section for'the second scattering is obtained from (6); .(2); {3 )/ 

and (4): .. 
~· ,, 

(~~)2 = J(el, 92' ¢2) cos ¢ . 
2 

(7) 

I 1 (e1) and I 2(e2) are the differential cross sections with polarization 

terms omitted. 

·In -the ·case of p.;.p scattering, ·or n-p scattering with exchange· 

dependence 1 t Px , so that interaction occurs only in orbital 

angular momentwn states of the· sa.nie parity, 'then th'e condition :. 

= 

implies Q(e) = = Q(1)"' - e) so that Q(11'/2) = d~ The contribution 

to the polarization at e = 1!/2 must therefore com~.exclus:lvelY 

from odd-even interference terms; the possibility of such a measurement 

suggests a test of the 1+ Px dependence_propqs,ed by Serber. 

Ignoring for the moment-the fact-that_the .second scattering 

occurs at,a somewhat lower energy than the-first, ~nda~suming.the ~W() 

involve the same types of particles (ioeo both n-p or both p-p), then 
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the measured rat~o at the optimum angl~s . e1 = ~2 = e~. is: 

2 
-·· 1 + ,(Q(I) 

1 - (Q/I) 2 
>· 1 . - . 

(8) 

Barring a somewhat remarkable dependence of Q(e) on en~rgy, a ratio 

greater tha.n 1 should in general be expected as the experimental 
• ' . ' :. • : -I ·.,: • . ~ • . • 

result whenever . e1 ;::::.· 92 o A relationship which led to Equation (3): 

J J 

- (BJtl - BJ-1)1 : 0 

(9) 

can be ·used to simplify appreciably. t~e form of. · Q(e) by eliminating A-C. 

6 . l I t t * ,.*I ) Q( 8) = 4 ·. Ini · E (B T. D ) + ~ .. · B' cot. 9 : 
Sk2' 

f E.2 (C+fo F)R(B+ D)= Q
1 + QI 

4k 

~, E.4 are defined in (Al7) reference 1 •.. 

·., RESULTS AND CONCLUSIONS 

(10) . 

For p,:;.p scatterin(?;, Q(8) is plotted in Figure 2 for allcases 

considered in'reference 1 except the long range hard. core model which 
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'. 
has been omitted because the coupled phase shifts were found. only 

roughly. The· domin~nt. t~rm.,of Eq. (10) ,· ~hich ·~16ne ·yields a ~alue. of · 

Q(e) correct t~ :Within 5o% o~ so is quite simple; for sin:guiar pot.entials 

(CK - c1 ) is very s~~ll·~ so that Qi > > Q1 ·; oiil.y P states have been 

kept: 

:'i2 ) lJ f~. (cos {!) ,. 

(:p.) 
; .. ·- ....... ·: 

'··' 

'3 . 
The importance of obtaining accurate values for the coupled · P2 phase 

shifts is clear; ·even rigorously there J.s no contribution to the 
·., ... 

. . 3 . 3 
polarization froni th'e P 

0 
.·and P1 states alone. Th~. polarization 

P(e, ¢=o) = ~· 

is plotted in Figure 3; the .value of I(9) was, taken in all cases to be· . 

the predicted triplet cross s.ection for the potential modeL used; that is, 
( • • • . . •. • '• •• . ~ - ' • • . ' . - . . ·. .• . • ' • ·• ... • ! • 

the ~ingl.~t ,sc~tteril)g as assumed. negligible for .... · 9 a, 50° ~ . If, 

instead, it is assumed that singl~t scattering can be introdu.c~d in_.~u,c~. 

a way as t~, b:ring.the. eros~ section.in ~ach case :UP to t-he experimental 

value of 4 millibar.ns, then Figure 2, rather than Figure 3~ shows more. 

clearly th.e. c;iependence of polarization on .choice of. cut<?ff •. With the 

potential gi''fen by Equation (6) of, reference 1, t-he_.PC?~ariz~tion .. 
. .. . ., . - ' ,·· . . . : •.· . · . ."\ ... .'.' .. ·. 

(at e. ~ .. 50~) is +O% (R ~ 

350 Mev. 

1.02)_at 129 Mev and. 15% (R ~ 1.05) at 
~. :: I ;: ... 

-: .·.: .. 

. For n-p s<?attering, t_he tensor and centra~ int_er.B;c:-ion~ qf 

Christian and Hart (containing the "half exchange" dependence pr9posed 
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by perber) is used. ~n Figure 4, Q(Q) is plotted for energies of 
:. ~ .~·. 

40, 90, 200, ~85 Mev. A similar plot of the polarization Q(9)/I(e) 

was given in an ee3:rlier r~port 7. A comparisol?- of Q(e) with . Q/I 

illustrates the point that I(e) alone carries almost the entire 

energy dependence of the polarization. 

If odd state forces were introduced into the triplet n-p 

interactio~ (by cha~g~ng ·the 1-t-. P x ·dependence), the polarization 

could be considerably larger because of the contribution from S-P 

interference: 

~p = 1 If a1 
2. m 0 
8k ·' . • I:. 

(12) 

To obtain some idea of the magnitude-of this term, suppose the same 

amount -of triplet odd·state interaction is introduced into the n-p 

· HB.miltonian' as l'ias ·used for the p-p interaction in the pre·cedirig · 

paperl. Interpolating the p-p phase shifts to obtain rough values at 

20() Mev,:. the result is· m, .;..J ·5· sin· 9 millibarns leading' to ""sP "" • . . 
R('fl/2) · -~· l.O)i Hence, although the asynunetry· is appreCiably 

infiue~ced by the pres~nce of odd states' the quoted uncertcdhty in 

the experim~ntal results of Wouters6 is too' great to permit any sharp . 

conclusions to be drawn on the' questi'on of the exchange dependence of 

the n-p· iriteractio~~ ·The· de'~irability of further experiments on n-p 

double scattering is, however, indicated. 

This work was perf~rmed 'under th~ auspices of the· Atomic Energy 

conmiissiori. 
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FIGURE CAPTIO~S. 

Figure 1: 
-. !···: - ..• 

Coordinate axes for double scattering problem. 
·: ·:-.:.:··" · .... ' 

Figure 2: Values of Q(9) = ! Tr(O"": ST S)- :.for p-p sc-attering at . s . . y - . . 
{lab. system) energies of 350 Mev, 129 Mev. -~ . = scattering· 

angle in center of mass system. The interactions indicated 

(cutoff singula~- te~sor).are those for. which' cross ~actions 

.wer~ computed . in reference 1 (Figl.treE;_ 2, 3) 
1

• 

Figure. 3i Values of Q(G) · .f~r p-p scattering at 350 }:fev. _· It(9) = It(9) . . . . ' . .. . ' .. ·. 

triplet cro~s section. Polarization is given by 

I (e) = singlet cross section. The function plotted hence s 

represents the polarization at those angles (9 ~ 50° for 

Christian and Noyes model) for which singlet scattering is 

negligible. The interactions indicated (cutoff singular 

tensor) are those for which cross sections were computed in 

reference 1. 

1 
Figure 4: Values of Q(e) = g Tr(ay s+ S) for n-p scattering at the 

energies indicated. The interaction used is that of Christian 

and H~rt. A. similar plot of polarization (Q/I) is given in 

reference 7. 
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