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ATOMIC BEAM MEASUREMENT OF THE ISOTOPE SHIFTS

IN 127Cs, 129CS,-133CS’ 134Cs, 134mCs, and 137CS

Edmond Chen-ching Wang

Lawrence Radiation Laboratory
University of California
Berkeley, California

ABSTRACT

- A new atomic-beam technique has been employed to measure the isotope

shifts of five radioactive cesium isotopes relative to the stable isotope

13300 The shifts (in 1073 Gn_l) in the D, line are found to be
Isotope: 127Cs . 129CS | , 134Cs 134mCs 137Cs

IS : +5.9(1.5) +2.8(1.5) +1.8(1.0) -2.2(1.2). -6.0(1.5)

Here a positive sign means that the wave nﬁmbér of the”blliine for

the indicated isotope is greater than that for 133Cs.

The nommal volume shift is calculated to be 10.7 x 107> anL for the
addition of one neutron. There is evidence that points to the cancellation
of the normal volume effect by the deformation effect as a possible

explanation of the smallness of the observed shifts.
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I. INTRODUCTION

Of the methods currently available for the study of isotope shifts,
none is generally suitable for the study of radioactive isotopes,

especially short-lived ones. Conventional optical spectroscopy, level

~ crossing spectroscopy, optical scanning methods, and other techniqués

where the light is detected are not suitable for studying trace amounts

of radioactive isotopes in the presence of large amounts of stable

- carrier. Moreover, wall interaction interferes with attempts to study

small quantities of separated isotopes.

It has been shown recently that the atomic beam method can be

~ extended to the study of isotope shifts in radioactive isotopes. This

method has the considerable advantage over any currently existing
techniques that it can be applied to radioactive nuclei in the presence
of large amounts of stable carrier.

In this thesis we report the measurement of isotope shifts on

- five radioactive cesium isotopes. These cesium isotopes are chosen as

the subject of the study because of the availability of the methods for
production and detection. In addition, a study of the isotope shifts
over a large range of neutron number is of particular interest in. order

to observe the changes in the value of <%%> and in the nuclear shape
d 137

from the sphericalanuclei aroun Cs (which has a magic number of 82 -
neutrons) to neutron deficient Cs isotopes where a region of deformed

nuclei is expected.
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II. THEORY OF ISOTOPE SHIFT

Isotopé shifts refer to the displacement among the centers of
gfavity of the hfs pétterns of the different isotopes of an element.
The oﬁly huclear properties which are now generélly assuméd to be of
major importance in causing isotope shifts are the mass and the
distribution of nucléar charge. Other effects, such as nuclear
Cdmpressibility, nuciear’polarizatidnl etc., are omitted from the
present discussion, éiﬁte there is no evidence that they contribute
appreciably to the observed isotope shifts, and they have not been
treated theoreticaliy in any défail;

. As a reference 1eve1 for the purpose of calculation, we consider
the temm eﬁergy'appropriate to a point nucleus of infinife mass. For
both mass. and fieldgéffects, we adopt the following notation. The
“term eneréy'offan a;tual nucleus differs from.thé reference temm energy
by an amount AE, and the change in AE from one isotope to another is |
§(AE). In general, 8 will be used to indicate.chaﬂges in a quantity
:  between isotopes. In this section ¢(AE) will be called positive if
the level of’the 1ight¢r isoﬁopg lies lower than that of the heavier
isotope. In order to find the shift in a spectral line, &(AE) must be

evaluated for both'#he levels involved in the transitibn.

~A. Nuclear Mass Effects

1. Normal Mass Effect .

The non-relativistic Hamiltonian for a free atom with n electrons

is of the fomm

1&.!



-3-

-52
1 %

Ile~13

ok BT A v o
where _ﬁo is the nuclear momentum and on the 'electronic momenta re}ative
to a fixed coordinate system. M and m are the nuclear and electronic
masses, and V is the potential energy. The nuclear coordinate is
designated ﬁo and the electronic coordinates }-)oj‘
The following transformation leads to coordinates for the center
of mass and electronic coordinates relative to the nucleus:
Mjio ¥ m?oj :
§=—MTnJﬁ‘“"1+”j=?oj'§o . (2)
In tems of the new coordinates, the x-component of momentum of
the .cen"cer. of mass is expx;essed' as P, = ih3/ox. The quantities of
pj);'= ik 5)3?" are the x-componénts of electronic momentum r'elatiVe to
the center g)f mass even though x5 is mea.é_ured relative to the moving
nucleus.’ | o

~ In a.coordinate system where the center of mass is at rest

(F = 0), the Hamiltonian takes the fomm

} i A o > ‘ -
X = 2%_151 pj * (ij) v+ V(rj) . (3)

Comparison with Eq. (1) leads to a simple interpretation of the temms

in Eq. (3). The first term on the right-hand side of Eq. (3) is just

. the kinetic energy of the electrons (_ﬁ 0j = _I;j),‘ The second temm

represents the recoil kinetic energy of the nucleus (P = -z‘;'ﬁj) .

It is convenient to expand the second term on the right-hand side

. of Eq. v(3) and group the squared mdmenta with the first temm:
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JC=2_ ([%+I\l/[) ZE, +% % Bj.i;k-.,. V. (4)
jd j#k
#
The reduced mass is defined b 1_1,1 '
VTR T ' S "

The first term on the right-hand side of Eq. (4) gives rise to the
well-known normal mass- effect. This is the only mass effect that occurs
“in hydrogen and one-electron ions.
To see the energy dependence upon u, we consider the Schroedinger
équation
2 .
h 2 > > T
[’ E §: VJ + V(rls'--’ rl.l)-_ E(U)} ‘P =0 i (5)
e | Ea] My = p
~ Let the rj be formally replaced by rj = gﬁ) rj . The potential energy,
if magnetic effects are ignored, scales inversely as a length
. 5 5
R R L (©
j 3 itk Tk -
and hence
V@ = g VED . m

The Schroedinger equation then becomes

i | |
[—%vf«uvﬁ')-’lli‘-E(u)]wo, . (8)

' This equation has the same form as Eq. (5), and thus the energy levels

depend upon the reduced mass according to.

E(w) _u
Em) " m
~ Thus
S(AE) oy pass =BG = BGESL ©)



2. Specific Mass Effect

The second term on the right-hand side of Eq. (4) gives rise to the
so-called specific mass effect. ‘Because of the presence of the nuclear
mass in the denominator, this term is small in magnitude compared with
the remainder of the Hamiltonian and may be treated as a perturbation.
However, since it contains cross products of the momenta of different
electrons, the specific mass effect is not susceptible of exact
calculation, though invlight elements results in moderate agreement with
experimenf have been obtained; For heavier elements many electrons are
involved and the calculations become rapidly more complicated.

The differences in the mass effect for the isotopes of a given
eiement is proportional to lﬂﬁz, so that it is reasonable to.expect that
the order of magnitude of the specific mass effect decreases thfough'the
periodic table in the same way as the nommal mass effect does.
Kopfermann' suggests that starting from.the rare earths,.it is fairiy.

safe to neglect mass effects‘entirely, in comparison with field effects.

B. Nuclear Field Effects

1. NUclear,Vblume'Effect

A system consisting of an electfon and a point nucleus possesses
a certain energy. If the electron has an appreciable probability
density at radii down to zero, as in the ¢ase of'an s-electron;kthen
thé energy of the system is higher if the nucleus is spread out; for
instance over a sphere with radiu$ L than if it were conéentratéd
at a‘point. ‘Thus the nuclear electrostatic potential acting on the

electron depends on the nuclear charge distribution; if this changeé‘



from one isotope to another, the energy of an electron which penetrates
the nucleus will also change in the two cases.

In the early work of Racah® and Rosenthal and Breit® the change
- in binding energy of an electron due to the difference in its electrostatic
interaction with'a point charge.and the same charge spread over the
nuclear volume is calculated using a perturbation method; with this the
difference between two isotopes of the pbtential energy of the electron
in the nuclear region is averaged over the relativistc charge density
when the electron is moving in the field‘of a point nucleus. vThe poor
agreement (the experimental isotope shift being in general smaller b& a
factor of 2-3*) of the experimental data with calculations based on the
simple perturbation theory is not too surprising in view ef the possibility
.that the spreading of the charge would strongly distort the wave function
of the electron from its Couiomb form just inside the nuclear region,
where the perturbation takes place and thus con51derably affect the
llsotope shift. Attempts ‘to reduce this 1arge discrepancy between the
eXperimentai data and thevtheory has resulted in the development of a
more rigorous and accdrate method which was founded by quchs and later
extended by Bodmer.G This method has the advantage not only Of‘simplicity
and directness but also 6f'showing quite clearly what approximations are
made in obtaining the final expression. Using this method and a value
of 1.2 A3 g (instead of the old value of 1.5 AY3 ) for the nuclear
radius, the isotope shift is brought into considerably'better_agreement
with the experimental data.

Con51der the solutions to the radlal Dirac equations for the electron

(a) with the nuclear. charge assumed concentrated at a point, and (b) with

&



an extended nuclear charge distribution. It is convenient to use the

quantities
27x
X=— , a=1L%0
*H
mc _ mc

2 2
_ h® . . _e . )
where ay = ;;7- is the Bohr radius and o = Rc the fine structure constant;

V(r) is the potential energy (assumed spherically symmetric) of the electron

in the field of the nuclear charge distribution. The radial Dirac

equations may then be written in the form

gifk = X6 g WU-og
| (10)
g§£-= §~gk + f%a(l-U-e)fk
'wheré :
k = -(2+1) for j = o+ 1/2
=1 fori=4-1/2

is the Difaczquantum number of the electron, and fk* 8 correspond to -

the small and large components of the Dirac wave function, respectively.
Quantities‘appropriate to the point nucleus case will be distinguished

by a prime. Then from Eq. (10) and the corresponding'équatiOns for

fi, gi we obtain o ‘ _ | B

2amc? 2 (£ g - £ g) = (O - E)(EE * gl (1)

where AV = V-V' and AE = E-E' = AE We consider a point *1

spherical®

‘corresponding to a distance of the order of nuclear dimensions and such

that x; is outside the voiume occupied by the extended nuclear charge



distribution, i.e. such that AV = 0 for x = Xy Then integrating Eq. (11)

from x = Xy to x = =, we obtain

- 206 Steg
MEspherical = 28 M (A& &Y x o x NOY (12)
with
N(x;) = fx (E g8 & - . (13)
1
Using the normalization
f“ (£ + gl ax = 1 | (14)
o}

we may put N(xl) = 1 to a good approximation, since Xy & aZZA1/3 << 1,

the corresponding relat;ve e?ror in N(xl), and hence AEspherical’ being -
considerably less than x;. Then .
= 2 ’l‘_ [y 2
AEspherical = Zamc" (g -fig) o - x 33

1
Denoting the regular and irregular Coulomb functions appropriate to a
poiht charge Ze and an energy E by aFﬁr), aFéi), and.Gér), Gﬁl) for the
-small and large components respectively, we may write for x = xé, where

the potential is that due to a point charge,

) (i
a(c B + ¢ FM)

f = . :
: 1K . x=xg) - -(16)
g O+ o) |

for a poiht nucleus.Cé = 0. Thus CZ/Cl gives the amount of admixture
of the irregular Coulomb solution due to the deviation of the charge
distribution from a point charge. For X4 corresponding to a distance
of the ordef of nuclear radius the potential energy is very much larger

in absolute value than the binding energy and it is a very good



approximation to neglect the latter in evaluating the functions F, G

at the point Xq- These may then be expressed in terms of Bessel functions,

namely
- 1/2 : 1/2
fk(x) = a[ClJZG(Zx )+ CZJ-ZO(ZX )1
(17
N 1/2 1/2
‘gk(x) = C1A20(2x ) + CZA-ZO(ZX )
with
- _ 1/2
AZo (k O)JZO tX J20+1
- 1/2
A-Zo (k+O)J—20 tX J-20-1
22172 . L .
where o = (k"-a™)™“. Since x; << 1, it is in addition a very good

- approximation to retain only the lowest power of.x1 in the expansion of

fhe Bessel functions and Eq. (15) can then be shown to become
AE - 20?2 (2 né? 1 x% (18)
- ““spherical =~ "% "1 ¢ I'(Z2o -20 1. .
where T denotes the gamma functions. Only the ratio C,/C; on the right-

hand side of Eq. (18) deﬁends on the nuclear charge distribution.

Putting K = fk/gk, we obtain from Eq. (17)

<, al, L@ V) - A, (2x, ) A |
ol —172 72 (19)
1 Kk(xl)A'ZO'(le ) - @-Zﬁ(le' )

where K| (x;) is now assuméd evaluated neglecting the binding energy and

- 1s determined from the solution interior to xy of the-Ricatti equation

dK | |
koL 2 U-2 .2, U R
& "x &Tmktzm xtx s )
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which is obtained from Eq. (10) by différentiating Kk with resﬂect to

x and setting € = 1. If we rewrite Eq. (20) in the form

this may be transformed into an integral equation by multiplying by the

integrating factor x-Zk,
N2k R UL U2 2y a2k
K () = x IO (2_3 + s Kk) x dx , (21)

where k < 0. If Kk << 1, this may be solved by successive iteration
stafting with Kk =0..
Expanding the Bessel functions and keeping only the lowest power

of X1, Eq. (19) becomes

(@)

2 r(1-20) 2 (0K (p)

CI r(1+20) a-(k*o)K (x]) ) - @

As is evident from the derivation, CZ/Cl is then independent of.xl.
Substituting Eq. (22) in Eq. (18), we have

22 2 1 koK &) s

= 2a"Cimc Z o7 IR &) X . (23)

AEspher_ical 1 2072 (20)

The value of Kk(xl)'depends on the nuclear charge distribution. The

isotope shift is then

S adK, (x,)
- 2a2C%mc2 21 200 X120

§ (AE) .
spherical I 12 020) [a-(k+o)Kk(xl)f2

.oen

If in the nuclear region it is .permissible to write U/2a instead

of (U-2)/2a for the factor multiplying Ki, Eq. (20) becomes
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dK.. :
T e Kt K (25)

This approximation is equivalent to assuming xl/a2 << 1 for the factor
multiplying Kﬁ aﬁd is somewhat more stringént, especially for lighter
elements, than the condition Xy << 1 assumed previously. However,
for k < 0 we see from the iteration procedure for obtaining K, that the
term neglected only affects Kk in the second iteration, fhe error
involved in the additional term due to this being'less'than 10%. The
only practically important case for fhe isotope shift is in fact that
of an s electron, k = -1, and since, as we shall see, the additional
Aterm due‘to the second iteration makes only a relatively small
contribution, the error in K due to this\approximation is very small.
.In what follows we shall consider only s electrons and write K4 simply
as K.

Consider the spherically symmetric potential energy of thé‘type

. 2
velp o L@y e
o]

7 U mT r o T%

n
: 0

where T, can be considered as the nuclear radius. n can vary from -1
for a point charge through n = 2 for a unifonn dharge distribution to

ns=w when all the charge is on the surface. For potentials of this

form it is then seen by rewriting Eq. (25) that

X

K=xkE&) - - en
' 0 ‘ .

where X, = From this it follows that

4y
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= X, %
o] 0 1
and therefore, using Eq. (25),
oK (x,) b 2K(x,)
2
- 1" _ . il' - L 7%-[1+K (x1)] . (28)
o 0 1
Za2
With Xy outside the nuclear charge distribution where U = Sl
1
3K (x,)
1 2
X = il' {a[1+K (xl)] + 2K(x1)}
o o)
=.3—)1(;[a+(1+o)K(x1)][a+(1-o)K(x1)] : (29)
. g _ oK (x4)
Substituting GK(xl) = _5§7__'6Xo in Eq. (24), we obtain
)
2.2 2 1 a@ro)kx) 5,8,
§ (AE . =2 —_— . 30
( )spherlcal a C1mC FZ(ZO) a+(1—o)K(x1) Xy X, (30)

Recalling that the ohly condition on Xq is that‘x1 be outside the nuclear
charge distribution and of the order of nuclear dimensions, we may set

x; = x in the above equation, obtaining

a+(1+0)K(xo) 2 6xo
a+(Il0)K(x0) %o ° i;_' - (31

2.2 2 1

§ (AE) = 2a Clmc >
I (20)

spherical

Assuming the validity of Eq. (25) for k = -1, we may write Eq. (21) as
. X _ S .
ke =3y [ o mfe it e L (32)
X o) . ‘

/

Forvthe first iteration we have

X
kW = 2o [0 we? ax (33)
. 2ax o}
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and for the second

2) iy = D A e PRI B
KV (x) = KM/ (x) + U K (x") dx' . (34)
x) = K z—zfo[ ] x | |

Using this iteration process K(x) can be found as a power series in a.

Specifically for a uniform charge distribution we have

x(2) x.) - K@) = - 2—"51'(1+o.105a2) : . (35)

For the potential [Eq. (26)] the isotope shift then depends on the radius

.debnly through XOZO in addition to the relative change of radius 8x /x .

Although it would appear from the above that the first iteration is
not a Very'goodvapproximation for K(xo), nevertheless as far as the
equivalence of two charge distributions is concerned it is sufficient to

use only the first iteration. By integrating by parts twice and using

" Poisson's equation, the integral in Eq. (33) may be eXpressed in temms of

an integral over the charge density p, i.e.
S © 2.2
jf vi'? ar! =_2" epr'{ drt! - 29734 ‘ (36)
) 0 -
The upper limit in the'integral on the right is actually r but may be
replaced by «, since for the célculation of K(x) r must be effectively

outside the-charge distribution and for the pdtential [Eq. (26)] p.has

©
1}
7]
¥
55
N
=
A
~
O

37)

©
i}
o
L]
v
]
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Now let us look at the relation between the equivalent radii, R, and

R, of a surface and a uniform charge distribution, respectively, which

give'the same K(x ), by equating the expfessions (34) for n = 2 and C

e

The first temm is due to the first iteration and can immediately be

- n =oowith x = X,

g.(l 0.012a ) . (38)

obtained by equating

f " ortdr = =fem iyl | OB
o _

for n = 2 and nv= ©. The term from the second iteration makes oﬁly a

very small contribution. Thus the use of the first iteration is a

very good approximation when the'equivalence between the two charge

dlstrlbutlons ‘and not the actual value of KCx ) is being con51dered

Slnce the difference between a unlform and a surface charge distribution

can be considered as a extreme, the magnitude of the term in Eq. (38)

due to the second iterafion may be regarded as in the nature of an upper

limit to such a temm in the expression.for fhe'radius of the uhifohﬁ

Charge,distribgtion equivalent to some actual distribufion.llwe.see

then that for any charge distribution p, the radius of the equivalent

uniform charge distribution will be given with good accuracy by

RIE[ efec3eh . W

~ From Eqs. (39) -and (40) it follows that

‘5‘\1

\x ro' \
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-Then the volume dependent isotope shift can be expreSSed in temms of R,

as

' - 6R
2.2 2 1 a+(1+o)K(a) _20 “u
§(LE )spherlcal 4a C1mC 2112(2 ) a+(1 o)K(a) X Rﬁ : (41)

In this way we have related the isotope shift to the root-mean-square

‘radius of the nuclear charge distribution, which can be obtained from such

expefiments as the'electfon Scattering, x-ray spectroscopy of muonic
atoms, etc. The value of K(a) in Eq. (41) is that appropriate for a
uniform charge distribution and is given by Eq. (35). Cl2 is determined
from fhe nommalization of the radial Dirac wave function by putting g, /r

asymptotically eeual to the radial Schroedinger wave function for large

r. It has been shown by Rosenthal and Breit® that for an s electron

2

R 4 2
G = Eg;z'ag. [w(0) | o (42)

where R is the Rydberg constant and ¢(0) is the value of the Schroedinger

wave function at the origin. The value of |1p(0)|2 can be obtained from

optical spectroscopic data by means of the semi-empirical Fermi-Segré
formula’ 2
Iw(O)l ————-——-3 -3 ., (43)
ﬂaH n* -
where Z is the internal effectlve nuclear charge usually taken as Z;
Z is the external atomic charge felt by the valence electron, n* =_n-A.
is the effective quantum nunber obtained by'equating_the term value

energy to -RmZOZ/(n*)Z, and n is the principal quantum number while A

is the quantum defect. An alternative method for detemmining [w(0)|2

is the comparison of the atomic hfsAconstant A with the known nuclear

moment, using the relation in Eq. (73).
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2. Nuclear Deformation Effect

Nuclei which are deformed to a non-spherical shape will, after
avefaging over all orientations, appear more extended radially than
spherical nuclei of the same volume, thus giving rise to a change in
R, if the shape changes as neutrons are added, this again wi11 alter
Ru‘ This effect was introduced into.the theory by Brix and Kopfermann®
in an attempt to account for the observed isotope shift of Nd, Sm, and
- Eu. The theory has been considered explicitly by Ford® and by Wilets
et al.,1° and independently by Bodmer.!!

For the consideration of the nuclear deformation a quadrupole
deformation is generally assumed. In this case the surface of the

nucleus can be represented by
R(®) = a, [1+aP, (cos 0)] | (44)

where P2 (cos 8) = 1/2(3 tos2 6-1) and a is related to the Bohr deformation

parameter B by the relationship az = 5“ BZ ; In order to isolate the

deformation effect from other effects, it is further assumed that the

nucleus has constant volume éﬂ-Ros and uniform density
,7‘
p:—sje s r<R(e)
4TR
‘ . _ (45)
p=0 5 T >R(6) .

The constant volume assumption relates the parameter a_ and Ré_appearing

o)
in Eq. (44) and Eq. (45), according to

ay = Ry [1y/3Pee/39 Y (46)
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Then for the deformed distribution we obtain from Eq. (40)

R 2
u

%-7%—f-pr2d?

5 ]l ‘
a -
__23../r' [1+oP, (cos 6)]5'd(cos ) . (47)
2R
-1

Since az is usually very small compared with unity, thé above expression

can accuratley be approximated by

%2 = Roz (1-a2+ ---)(]_+2(y,2+ oou)
| (48)
= R02(1+(x2+ oon)
‘Hence we have the approximate result
R, = R (I+307) . . (49)
Substituting Eq. (49) in (23), the resulting éxpression then contains
the information on both field effects and may be called BEg: 1g
Expanding (1+%»oi2)20 and'kéeping termsvup to dz, we may write
Ruz0 = szg (l+0a2), | _ - (50)

obtaining

AEfield AESPhericalgl+Ga ) = AEspherical * AEdeformatidn“ ECHS
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G(AE)field - 6(AE)spherica1 * cs(AE)df:formation

éR

- 0 2 - o
- AEsphcrical Zo = ° o8 (a”), _ (52)

)
aH3 12 1 a+(1+0)K(a) .20 Ry
’"Roo AR IIP(O) I m)m Xo 20 —R; + 06 (0(. )

It is seen that G(AE)field can be expressed as a sum of two terms, one
depending on changes in nuclear volume and one depending . on changes in

nuclear shape. is always very much smaller than

AEdeformation

A but G(AE)defonnation may be of thé.same order of magnitude

Espherical’

as 6 (AE) since the nuclear deformation may change by a large

spherical
fraction of itself from one isotope to another.

From a consideration of electron scattering results for about
twenty nuclei, the deformations of which are known to be small, Elton'?

‘has given a semi-empirical formula for R,

1/3

R, = 1.123A%° + 2.3520°1/3 _ 207081 £, (53)

‘The expression now universally adopted is R, = 1.2A1/3 g,
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III. HYPERFINE STRUCTURE

If the finite .exténsion of the nucleus ié taken into accoﬁnt, the
electrostatic interé;tiqn between an electron and the nucleus must be
expre»ss,ed as an integral of volume elements of the electron and
the nucleus, i.e.

_(KE) = f f ———-——_)pein dTe'dTn " (54)

Te Tn lre-vrnI

where p e is the electronic charge density and N the nuclear charge
density. Assuming r, > r , we may expand l/l_fe—_fnl in terms of Legendre

- polynomials-and use the spherical hammonic addition theorem to obtain

5 0 :
6y =z (-1 f (D) 1 YE e, 99 a,

ka e e |
. , (55)
X (2%1‘) pnrnk Yc([-k) (en’ <b‘n) dTn ? N
. , .
n
or . |
SRR ORI €

The terms a(k) and ?(k) are spherical tensor operators of rank k operating
on the electronic and nuclear coordinates, respectively. It 1s evident

from Egs. ‘(55) -and (56) that they‘ are given by

QM = T Y& (o, 6) (572)
Zk+T- N q e’ e .
and ) | |
P = i e, Y e, 0 NG
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Restricting consideration to stationary nuclear and electronic

current distributions, for which 3—5 = 0, we may write

+ Voo :
In = c—V)xmn _ | (58a)
and
T - _ '
Jo=c v x m, . | (58b)

‘Here M o and ;ln are, like the magnetic field intensity H, pseudovectors.

Ramsey'?® has shown that under these conditions the magnetic interaction

|
]
I
'.3.+
>
Q.
=
[}
[}
O
[T
(D.
T
&
o

- _ 1
“ = - ¢

Th Te
" gan be written as
| (T m) (T )
v e M/ UV _ :
@ = f f e dr_ dr_ . (59)
' T 71 I-re-rnl .

- Since this has the same form as Eq. (54) we obtain at once

}cM = 3 10 (o) XM () : (60)
! k . - . _‘ ) ‘v .
where
(k) _ - (4m 2 e (k) : o
Mq T (Zklrl} - k+§ Yq- (ee’ ¢e) : _ ‘(613)
and

nn

N = ) e oK e, 0 (61b)
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Matrix elements of operators having the form of EQs. (56) and (60)
“are easily taken in a representation where I and J couple to F [(IJFMP)
representation]:

7 (1m0 # 0 | grpngy = Jept T
k )

OFF’ MM,

1. J F (k) ' &) 1s A
x{J. o k}(JHQ 13 CTETY . (62)

The 6 -j symbol showsvthet the series bfeaks off for either J + J' <k
or I +1I'<k.

The expectation value <w]0fy0 of any operater 0 must have positive
parity, since integrals over all space cannot depend on axis inversion.
Fdfestates with well-defined parity, lezvhas positive parity; 0 must
therefore have pesitive parity for (¢|0[y) to be non-zero. Operators
' Q(k) and &) poth have the parity of Y(k),bi.e. (-1)k. Therefore, only
k even values are allowed in fhe electric case. Since ﬁé Gﬁn) is a
pseudovector, §'ﬁe($'$n) is a pseudoscalar'having parity -1, and M(k)
and N(k) have the parity (—l)Y(k), or.(-ljk+1. Therefore, only k odd
values are allowed in the magnetic case.

Tﬁe first allowed electric interaction is Q(O)-F(Q), which is just
the Coulomb term. The second allowed tefm is Q(z) FCZ), the electric

quadrupole term. Defining

Q= AuQ®im (63a)

qy -(é&(JJ|F£2)|JJ>" a - (63b)
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and using Eq. (62) we obtain

-ezq;JQ[SK(K+1). - AI(I+1)J (J+1)]
STRT-T) (20-1)

(o, 8 2@ ppy - (64)

where K = F(F+1) - I(1I+1) - J(J+1). The term Q is the nuclear quadrupole °
moment, and ay is the gradient of the z-component df the electric field
at the origin. The quantity —eZqJQ is called the electric quédrupole
~ interaction constant and written as B.

The first allowed magnetic interaction is. M(l) -N(l) .~ Consideration
of the classical interpretation of M_(l) and N shows that |

: >
(JJIMgl)[Jq) ) _Jf ﬁg-me cos 8, «,

2

T
Te e

' > >

1 (Jexre)z
- c - 3 dT.e
e e '

'<B,Z>JJ- s o (65)
and '

(rrNB i =

A

>
Th (—V)n'mn)- 'dTn‘

n
_ 1 >
- 2c j; , (rnxJn)z dTn
n
= (UI)Z . - - : (66)

Using Eqs. (62), (65), and (66) we can théh write

(BY .\ .
(ant B oW amey = - iﬁ;ﬂi’-j o (67)
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which serves to define the magnetic dipole interaction constant A as

KB gg

A= I3

(68)

The classical expression for the magnetic field at the nucleus due

to a circulating electron with permanent magnetic dipole moment 1is

> > > > > > > .
g(o) = _ %I‘Xg) _ ]J(I“I') -531‘(11'1') . (69)
T , T
Writing that mrxy = hz'and:ﬁ = -2u0§ , the transition to the quantum
mechanical form of this operator is made,
' By o ReF o '
Bo) =-—d-5+=2X 71 . (70)
. R : T ’
This operator can be further simplified into!“
B By b aoyE ey
(o) = - [£ - (10)* (sC*) ]
T
=-—8 . - o (71)
i T . . - .

For the case of one valence electron in a non-s state it can easily be

shown that

(B)) 5 = -2, (—p XD | (72)
N

'So far we have»restricfed ogrselves tb the casevof rev>frn; howevér;
s electrons have a non-vanishing density ét the origin and thereby .
violate this restriction. This'density at the origin does not affect the
.electric quadrupole moment, sinée s eléctrons have spherically symhetric

- densities. and therefore cannot contribute to the quadrupole interaction.
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Fermi!S has shown that there is a contact interaction between the
intrinsic spin magnetic moment and the nuclear magnetic moment. Treating
the electron as a relativistic particle obeying the Dirac equation and

the nucleus as a point dipole, Fermi was able to obtain

A =g v (73)

where Y(o) is the value of the Schroediﬁger wave function at the origin.
Because of the vanishing smallness of the contributions from the
magnetic octupole moment and higher order electric and magnetic multipole

moments, the hyperfine Hamiltonian is generally taken as

¥nes =% * X2 - o 08

This Hamiltonian does not commute with either J or I, but does with their
~ vector sum F. The (2J+1) degenerate fine structure levels are thérefore
split into 2I+1 or 2J+1.(whichever nunber is smaller) levels by the
hyperfine strUéture inferaction. The new levels are'2F+1 dcgenerate in
the ébsence of an external magnetic field.

The interaction of the atom with an external magnetic field is given
by |

Kope = -8y ¥, J°H - g u T-H . | (75)

This term does not commuté'with'F, but F is antapproximatély'good.quantum
number at low fields. Therefore, at low fields the effect of the éxternalv
magnetic field is to remove the (2F+1)-fold degeneracy of the eigenvalues

through the interaction
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' (IJHWF|}C Xt|IJPM_F) =-gsu_ M

€ F "o "F (76)
where |
_ o F(E+D+I(J*1)-I1(1+1) , _ F(F+D+I1(I+1)-J(J*1)
8r = 83 2F(T+1) T8 2E(F+ 1)

In the high-field regiori (nuclear Paschen-Bach), F is no longer a good

quantum number and eigenstates are best labeled by I, MI; J, MJ.
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- IV. EXPERIMENTAL METHOD AND APPARATUS

A. Stark Effect

N Experimgntally, the isotope shifts have almost exclusively been
measured by tonventional optical methods. In 1965 Marrus and McColm *®
developed a new atomic beam method for the study of the Stark effect
in optical transitions. In the presént‘work this method was employed
to study the isotope shifts in six cesium isotopes.

-~ The pérturbation of an energy level by an external electric field
E isbdescribed,,if the polarization of the nucleus'is.neglected, by the
Hamiltonian - N

X, =D g ) - ' ' (77)

\
where'ﬁ is the induced dipole moment and is giveﬁ,by ﬁ = -e z ?i , %i »
being the positién vector of the ith electron. Applying_to ;n.alkali
for whith‘wé neglect perturbation of electrons in closed shells,-then '
E = —é?, T being the'position vector of the valence electron. It'ié'
well known that fdr states of well-defined parity the HamiltonianSCStb
gives no first order effect. The secondvorderJpefturbation gives for
a state ¥ characterized by the quantum numbers (nzLJFMf)
. 2,|<wo|e?#?§|ﬁp> k

A (78)
; .‘ o AEWY)

Neglecting the hyperfine energy of the states y in the denominator of
Eq. (78), Marrus, McColm, and Yellin'” have shown for an electric field
- directed along the z-axis that AW is independent of the quantum numbers

. 2 2
F and MF’ and obtained for the states Sl/Z and P1/2

P

iy
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' 2 2 12
122, {J(n Pl/ZHan 81/2)’
n’

) 2
_AE(n P1/2’ n 81/2)

2 %y plirln’s, ) |2} |

(79)
AE(n'2P3/2, n2s1/2)
and |
2 2 2
Mm?p, ) = L &% 5 1<n 81/7-”1””n P1/2>‘
/22 -9 © 7 AE(n'zsl/z,‘n )
2. 2 2
. 2|(n"“Dy 5l [In ed }. )
AE(n'zrg/z, nzPi/z)
respectively.

The Stark shift can also be expressed in terms of the polarizability
(o) of the state according to the usual relation |

2 . v
AW(nZLJmJ) = -F-Z- oav(nZLJmJ). » o (81)

Using the method of Bates and Damgard, Marrus et al. obtained from

2

Egs. (79) and (80) the following numerical values for Sl/Z and ZPl/2

1/2

56 x 10f24 an’

a(6 %S, ., +1/2)

and
2 N - 1an. -24 3
a(6 P1/2.¢1/2) =192'x 1077

l Thus the StarkHShift in the D1 (6 ZPl/2 > 6 281/2) 1ine is_giveh“by :

| 2 | |
s(am) = - B x 136 x 10724 . (82)
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Here the minus sign means a decrease of.ﬁhe transition frequency in the
presence of an external electric field.
It shouid be noted that since o is independent of the sign of m;
fhe two components of the hyperfine doublet are shifted by the same
2

amount, i.e., the hyperfine separation of the states P1/2 and 281/2

is not affected by a Stark field.

B. Apparatus

. - . The apparatus employed is a conventionél'atomic beam machine with
flop-in magnet geometry'®, as shown schematicallyvin Fig. 1. In this
machine the two regions, A and B, of very largé inhomogeneous magnetic
field have their field gradients in the same direction. In these two

regions, the atoms are acted on by a force given by

T
F = ._°¢xt oH.

P 52 83 Yo My 57 (83)

This relation is obtained by evaluating 3 . as defined iﬁ Eq. (75) in

t
the Paschen-Back region and neglecting the term'in'gI, which'is_aboht
1/2000vof g5- In or&er‘to be detected, an atom must have its deflécfion
in the A regionlcancelled by its.defieCtion in the B region; this
cancellatidn can occur if _ |

ny(4) = my(B)
This condition‘requires that the atom undergo a transition in the C:
- region. The C region consists of a péir of electric field plates, Withv:
a gap of about 0.029 in. -The.plates consist of a heated-glass cathode
and a stainless-steel anode (see Figs. 2 and 3), both of whidh-afe ground
" to within 10_4 in. The homogeneity Qf the electric fieid produced is |

estimated to be about 0.5% and is sufficiently good so that it does not
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133¢s absorption

beam
5H 133(:8
A - a resonance
z ~ lamp

| L L\
. oH - - ,
B > oz | D, fl_H'e_rv

\A’romic- beam apparatus

XBL675-3192

Fig. 1. Schematic diagram of apparatus. "
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ml““l"”:ll““W”Iz"“l"“g”‘l"'T"'l‘!"g"'l"‘l

XBB 685-3070

Fig. 2. Assembled electric field plates, with 0.029 in. gap clearly
shown.
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XBB 685-3071

Fig. 3. Another view of the electric field plates assembly.
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vCOntribuﬁe appreciably to the 1inewidth. The region between the plates
ié.illuminated with resonance radiation from a Varian X49-609 spectral
lamp filled with 133Cs. The light is filtered so that only the Dy line
(6 ZPl/2 + 6 281/2) is seen by the beam atoms. In the lamp line, the
hfs of the 6 zPl/2 state is not completely resolved and the lamp line
consists of a doﬁblet, the components of which are separated by the hfs
of the ground state. With this apparatus, the precision is limited by
the width of the lamp line, about 1500 MHz (50 mK). However, the
pfécision may be substantially improved by passing the filtered light

through an optically dense 133

Cs absorption beam. As shown in Fig. 4,

‘the absorption cell consists essentially of a source oven and a collimator
kept at the temperature of liquid nit{ogen SO as to reduce the Doppler
velocity of the absorption beam. The effect of the absorption beam is

to remove a doublet from each bf the lamp lines. The two coﬁponents of
the doublet are separated by the hfs of the 6 P 1/2 state of 133'5. In
our experlment the width of the absorptlon llnes varies from 150 to 250 MHz
(3 to 8 mK). In principle, this width can be made as low as the natural
iinewidth which for thebceaium resonance line is about 10 MHz. However,
such high precision would demand an electric f1e1d that is homogeneous

and reproducible to better than 0.5 x 107°

at field of almost 0.5 x 10° V/cm;
‘this is presently beyond our capability. |

The narraw gap -between the electric field plates is used as a state
seleéfor so that we can at will refocus atoms either with mJ(A) =1/2
or with mJ(A) = -1/2. For cesium isotopes with large nuclear spin and

hence with the two hyperfine states, F=1+ 1/2 and F =1 - 1/2, about

equally populated, this is essentially equivalent to refoéusing atoms in
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(gl

XBB 685-3072

Fig. 4. Absorption cell assemnbly.
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either of the two hyperfine states. However, for Cs and L Cs which
have I = 1/2 all the atoms with mJ(A) = 1/2 belong to the F = 1 state
while atoms with mJ(A) = -1/2 are equally distributed between the two
states, F = 1 and F = 0; therefore refocusing a m, state is not equivalent
to refocusing the hyperfine states.

The Cs atomic beam is produced by heating the sample, in the form
of a chloride or iodide, with calcium metal chips in the oven (see Fig. 5);
calciun reduces cesium halides at temperatures of about 400° C, giving
out cesium metal.

Stable cesium can be detected with a rhenium hot wire. Since the
ionization potential of cesium is less than the work function of rhenium,
Cs atoms that hit the wire are boiled off as ions and accelerated to a
collector plate where the resulting current is measured with an electro-
meter. The detector for the radioactive isotopes are freshly flamed
platinum foils which are shown in Fig. 6 together with the holders. The
atoms that are refocused strike and stick to the platinum foil. After

exposure the foils are taken out of the beam machine and counted in a

continuous flow methane beta counter, shown in Fig. 7.

C. Stark Tuning

1. Without Absorption Beam

Consider the action of a 133Cs atom in the atomic beam irradiated

by the resonance radiation. At zero electric field the absorption lines
of atoms in the beam coincide with the center of the emission lines in
the lamp. Consequently, resonance absorption of photons takes place.

In the subsequent decay, half of the atoms will undergo spin-flip and

will contribute to the flop-in signal at the detector. As the electric
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XBB 6711-6664

Fig. 6. Platinum foils (0.001 in. thick) shown with beam machine
button holder and beta counter holder.
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g. 7. Beta counters and associated electronics.
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field is turned on, the Stark effect shifts the center of the absorption
lines to lower frequencies until resonant absorption no longer occurs

and the flop-in signal goes to zero. However, when the electric field

is sufficiently large so as to shift the absorption lines by an amount
equal to the ground-state hyperfine structure, a new overlap of the
absorption lines with the emission lines of the lamp occurs, ang another
flop-in signal is Observed (see Fig. 8a). In this way the Stark shift
can be measured in the Dy line; and from the v dependence characteristic
of the Stark effect a calibration of frequency shift versus applied
voltage squared is obtalned.

If the atomic beam consists of atoms of some other cesium isotope,

‘then-because of the different ground-state hyperfine structure, the

different nuclear spin and the isotope shift, there is in general no
signal at zero electric field. However, if the frequency of the absorption
lines is displaced to the high-frequency side of either of the emission
lines of the lamp, then the application of a suitable voltage bringé

the absorption lines into coincidence with the emission lines and a

~signal is observed at the detector. In Figs. 9 and 10 are shown the

observed signals for a Cs beam, respectively.

2. With Absorption Beam - -

" are separated by the hfs of the 6

o As'mehtibned.above, the effeCt'ofﬁihe,absorptien‘beem is.to remove
a doublet,from each of .the lamp lines;vthe two components.df thecdoublet”’

2 133 133

p £ Cs.'.The_obServed 2 Cs

1/2 °
intensity pattern in this case is shown in Fig. 8b and can be understood

with reference to the energy-level diagrams shown in Fig. 11. At zero

133

electric field the absorption lines of the Cs atomic beam overlap the
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Fig. 8. Observed 133C§ signal versus square of applied voltage;
(a) without absorption beam, (b) with absorption beam.
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Fig. 10. Observed signal versus square of applied voltage for

a 137Cs beam.
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133cs absorption lines

625, 62Py,
F=3 4 3.4
8 v
A .
2 : oy
| | ! | |
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Stark-tuned *Cs absorption lines
(a)
'33Cs absorption lines
62S,,, ’ ' 6P,z
F=3 4 3 4
B
A
: 2 v—
| 1 ‘ I |
F= I—E I+ I-E I+§

Stark-tuned XCs absorption lines
: {(b)

133cs absorption fines
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| ’ 2 v—=0
: I | r : | |
F= I-*é I+§ , I_E I+§

Stark-funed(x?s absorption lines *
c

XBL686-3054

Fig. 11. Labeling of the intensity minima. (a) o_: coincidence of beam-

absorption line 1 with '33Cs absorption line A R_: coincidence of
2 with A; o : ccincidence of 1 with B; ¢ : coincidence of 2 with B.
(b) o': coincidence of 1 with A"; B': coincidence of 2 with A'; o':

coincidence of 1 with B'; &': coincidence of 2 with B'. (c) o,

coincidence of 1' with A'; B,: coincidence of 2' with A'; o, : coin-
cidence of 1' with B'; ¢, : coincidence of 2' with B'. o
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33Cs absbrption beam, and a minimun in the

absorption lines of the 1
intensity curve is observed. HoWever, as the electric field is turned
on; the Stark effect decreases the frequency of\the absOrptioh lines
of the atoms in the beam apparatus, and the observed sigﬁal increases.
However, when the electric field is sufficient to shift.the freduency
by an amount equal to the hfs of the excited (6 2Pl/z) state, é second
intensity minimum is observed. At higher electric fields when the
frequency is shifted by an amount equal to the ground-state hfs, the
beam absorption line is brought info resonance with the second lamp-
emission line. Here three intenSity minima are observéd. These three
minima are equally spaced and correspond to a shift by an amount equal

to the hfs of the 6 2

P, State. |

As can be seen from the'energy—leVel diagram, the separation between
the  two minima labeled 8_ + y_ and B' + v!, in Fig. 8b, éorresponds to
a Stark shift of the eﬁergy levels edual to 9192 MHz, the approximate hfs -
of the‘lSSCSvground state. Using this as a calibration and taking the
separations between B_ + y_ and 6_; between a' and B! + y!, and between
B! + y' and &', as eqﬁal to the hfs of the 6'21'-’1./2 state of'13§Cs, we
obtain'® |

133

) _ :
Av (6 ‘Pl/Z) = 1167 +40 MHz

This Value is in good agreement with the value (1173 £10 MHz) obtained
by cbnventional optical spect_roscopy.20

»;A similar situation pertains when the atomic beam consists of sdme'
other éesium isotope,'sz. Whenever the Stark tuning brings aboufian
overlap of the beam-absorption lines with the lamp-emission lines, there

are, however, as can be seen from Fig. 11, four possible overlap positions

of the Stark-shifted energy levels of XCs beam atoms with the unshifted
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levels of 133Cs atoms in the absorption cell. These overlap positions
correspond to minima in the observed intensity pattern. From Fig. 11
it is also apparent that the separation between the minima o and y and

between B and § corresponds to the hfs of the 6 2P state of XCs,

1/2
while the separation between o and B and between y and § corresponds to
the hfs of the 6 2P state of 133Cs. Thus from the position of the

1/2
intensity minima we can obtain the hfs of the 6 ZPl/2 state of XCs,

and further, with a knowledge of the ground-state hyperfine structure

(see Table I), infer the XCs _ 133

“

Cs isotope shift.



Table I. Some Relevant Quantities
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of the Cesium Isotopes.*

Cesium

Half-1life Nuclear u AV (6 Zsl/z)v
Isotope T1/72 S?in in n.m. in MHz
127 6.2 h . 1/2 1.44(3) 8900 (150)
129 31 h 1/2 1.48(3) 9229 (30)
133 7/2 2.574(13) 1 9192.63177
134 2.2y 4 2.9901(12) 10469 (12)
134m 2.9 h 8 1.0964(9) 3684,5(5)
137 30 y 7/2 ©2.8379(9) 10115.527(15)

* All taken from Ref. 21 except the values for the nuclear magnetic
moment of '27Cs and '2°Cs that are taken from Ref. 22.
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V. EXPERIMENTAL RESULTS

A. Sample Preperation

1. The Isotopes 127Cs and 129Cs
The isotopes 127Cs and 129Cs are made through the reactions 1271
(o, 4n) 127Cs and 1271 (o, 2n) 129Cs respectively, by bombarding 1271

in the 88-inch Cyclotron at Berkeley with a-particles of the appropriate

7

energies. For the production of 12 Cs the energy of the bombarding

29

a-particles is 70 Mev, and for the production of . Cs it is 45 Mev. In

Fig. 12 is shown the cyclotron target.

The desired radioactive isotope (127Cs or 129Cs) is produced in the
form of an iodide. In order to extract this from the bombarded target,
the following chemical procedure is followed. The bombarded iodine
target is boiled in a beaker with carbon tetrachloride, a good iodine
solvent, and water to which has been added a suitable amount of the
stable carrier to serve the purposes of field calibration and beam
normalization. With a lower boiling temperature and smaller latent heat
of vaporization than water, the carbon tetrachloride is quickly boiled
away, together with almost all of the iodine by sublimation. Boiling
the remaining solution to dryness leaves the radioactive cesium with the
stable carrier in the form of halides on the walls of the beaker. The
beaker is then washed with water to dissolve the cesium halides, and the
activity is transferred to a test tube. The solution is boiled down to

about one cc. This condensed solution is then finally transferred into

the oven and slowly heated to dryness.
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XBB 686-3991

Fig. 12. Water-cooled cesium target assembly.
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134 134m

Cs and Cs

2. The Isotopes
These two isotopes are made by the irradiation of the stable cesium

(in the fom of a chloride) in a nuclear reactor at the Lawrence Radiation

13

Laboratory at Livermore at a flux of about 10" neutrons an %-sec”! for

134m 134

either six hours (to produce Cs) or a week (to produce Cs). In

34Cs (2.2 y) is produced only in a

134m

the former case the long-lived 1
B negligible amount; in the latter case.the quantity of Cs is, because
of its much smaller half-life (2.9 h), sufficiently reduced a couple of
weeks after the shutdown so as not to interfere experimentally.

3. The Isotope 137Cs
137

ThebiSOtObe Cs.can be purchased from the Oak Ridge National
Labératoryjas a fission‘product. It comes in the.fonn’of a chloride. In
order to get a homogeneous mixture, the sample is dissolved in water with
a suitable amount of stable cesium chloride. The solution is filteredv
to get fid of any appreciable quantity of the daughter (Ba) isotopé,vand

boiled down in a test tube to a few droplets. The concentrated solution

is then transferred into the oven and slowly heated to drynéss.

B. Experimental Results

1. Hyperfine Structure of the 6 %p State

1/2 |
It can be shown from Eqs. (68) and (73) that

2y - | -
av(6 2P, ) oo (B, (0)? 55 |
1/2
which is the same for all the cesium isotopes. Since all but 134mCs»of

the radioactive cesium isotopes concerned in this experiment have a

- ground—étate hyperfine structure separation comparable to that of the
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stable isotope, we should from Eq. (84) expect for these isotopes a
value of the excited (6 2Pl/z) state hyperfine structure separation

comparable to 1173 MHz, the hyperfine structure of the 6 ZPl/z state

133Cs. Consequently, the two minima B andly, each having a width

of 150-250 MHz, are not resolved. This is experimentally seen to be

the case. In these cases the value of AVX(6 2Pl/z) is determined from
the separation between the minima a and 6, which is equal to AvX(6 2Pl/z)

133, 2
plus Av->°(6 Pl/z).

In principle, the hfs of the 6‘2

P1/2 state of a-radioactive isotope
can be‘determined‘from the position of the intensity minima obtained in
any. of the three cases shown in Fig. 11. For 127Cs and 129Cs,.both
haying‘a nuclear spin equal to 1/2, the minima o_'s and B_'s however do
not exist. This is easily seen to be a consequence of the fact that the -
transition F = 0 (6 ’p, ) *F=0 (6 zs‘1 /) is forbidden, i.e. that the
Beam absorption line marked 1 is missing in Fig. 1la and Fig.lllb. ‘

127 29¢s can only be

Therefore, the hfs of the 6 2P1/2 state of 12/Cs and !
obtained from the overlapping configuration shown in Fig. 11c. Although
the beam atoms with mJ(A) = -1/2 are'initially équaliy distribﬁted
between the two hyperfine states F = 1 aﬁd:F = 0 of the ground state of
127Cs or 129Cs, when these atoms are refoCused there may be, however, a
partial overlapldf the minimum &, wifh the minimm §_, arising frOmbthé
comparable magnitude of the ground-étate hfs‘of these twa isbtopes'with
that of 133Cs., This partial overlap of the minima wili broaden the

width of the observed intensity minimum and addvto thé experimental error.

Thus the minima o, and §,_ are best located when the beam atoms with
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133 2

mJ(A) = 1/2 are refocused. In this latter case, Av 1/2

6 ) = 1173 Miz

is used as a calibration.

134mCs, intensity minima arising from both the cases b and c of

Fig. 11 are observed. For 134Cs and 137

For

Cs only the case b gives a complete

pattern; §_ and §_ are also observable. In fact, the lifs of the 6 2P

1/2
137 ‘

state of Cs is determined from the separation between the minima S_

T . 133, 2 133,, 2 137,, 2
and o', which is equal to Av™""(6 Sl/Z) - AvTTU(6 Pl/z) - AV (6 Pl/Z)‘

The minimum §' for 137

Cs is skipped just because of an.arcing problem of
the field-plates at high/fields.
- Some typical observed intensity patterns are shown in Figs. 13-17

for the radioactive cesium isotopes. The final results, as obtained

from the data tabulated in Tables II-VI, are

27(6.2p1/2) = 1160 +45 MHz.
129 ¢ 2P1/2) = 1243 #45 MHz
134m(6 Pl/z) = 541 +36 MHz
134(6 Py ;) = 1324 30 MHz
(6 pl/z) = 1275 45 MHz

The values are in goodvagreement with those as follows obtained from

Eq. (84) by using the known values for the ground-state hfs of the

133

isotopes and taking the value for the 6-2P1/2 state hfs of ~~~Cs to be |

1173 MHz:
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Fig. 13. Observed Cs signal versus square of applied voltage.




Signal (arbitrary units)

-51-

/L.
f e

A

V22(62P,,) + A2 (6%P,)

14.

! 8,
| VR R 1
0] 40 160 180 200
(Applied voltage)® (kV)?
XBL686-3056
: 129 .o o . .
Fig. Observed Cs signal versus square of applied voltage.
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Fig. 15. Observed 134mCs signal versus square of applied voltége.
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Fig. 16. Observed 134Cs signal versus square of applied véltage.
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Fig. 17. Observe Cs signal versus square of applied voltage.
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Table 1I. 127Cs Stark. Shift Data
Calibration Stark Shift
Intensity Minimum MHz/ (kV)2 (kV)z MHz
o, 15.64 *0.05 34.0 1.5 532 +25
o, 15.12 £0.05 36.0 #1.5 544 +25
S, 15.36 *0.05 187.0 %2.5 2872 +48
o 14.48 £0.05 37.0 #2.0 +3]

543
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129

Table III. Cs Stark Shift Data
‘ - Calibration Stark Shift
Intensity Mimimm -  MHz/(kV)? | k)2 MHz
o, o 15.17 0,05 25.0 2.0 379 32
s, 15.64 +0.05 181.0 2.5 2831 48

o | 15.48 $0.05 29.0 +2.0 449 +32
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" Table IV. 3*MCs Stark shift Data
Calibration Stark ‘Sﬁift
Intensity Minimum MHZ/(kV)2 : (kV)2 MHz
al 15.40 0.05 332.0 *2. 5113 +47
B! 15.40 0.05 411.0 +2. 6329 51
! 15.40 *0.05 365.0 2. 5621 +49
8! 15.40 +0.05 443.0 *2. 6822 *53
a, 15.70 +0.05 93.0 *1.! 1460 +28
a, 15.64 *0.05 94.0 +2. 1470 £36
o, 15.64 0.05 128.0 *4. 2002 +69
‘a+ 15.36 +0.05 93.5 *2. 1436 +35
o, 15.36 +0.05 130.0 4. 1997 +68
a, 15.56 +0.05 190.0 3. 1440 51
o, 15.36 +0.05 94.0 3. 1444 51
o 15.36 0.05 131.0 *3. 2012 53
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Table V. 134Cs Stark Shift Data

o Calibration Stark Shift
Inten$ity Minimum MHz/(kV')2 (kV)2 | MHz.'
5, 14.48 £0.04 44.0 +4.0 637 60
5, 14,39 +0.04 47.0 £2.0 676 +31
5, 14.48 £0.04. 45.0 1.5 652 24
s 14.30 +0.04 136.0 +3.0 1045 +48
5. 14.48 +0.04 135.0 £2.0 1955 34
o 14.76 +0.01 585.0 +3.0 8635 50
5! 14.73 £0.01 1757.0 £3.0 11151 +52
o 14.76 0.01 587.0 £2.0 8664 £35

5! 14.73 +0.01 757.0 £3.0 11151
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~ Table VI. 137Cs Stark Shift Data
Calibration Stark Shift
Intensity Minimum MHZ/_(kV)2 (kV)2 MHz
6 14.39 +0.03 109.0 #3.0 1569 +46
a' 14.42 +0.03 575.0 %3.0 8292 52
a! 14.45 +0.04- 574.0 +3.0 8294 65
S 14.48 +0.03 102,0.13.0 1549 #46
S 14.48 +0.03 108.0 +2.0 1564 +32
o' 14,59 +0.04 1 570.0 4.0 8316 +80
o 14.54 +0.04 572.0 iSfO 83.7 *66
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127 .. 2

(6 Pl/z)(calc) = 1136'MHZ

29
(6 2P1/2)(calc) - 1178 Miz

134m(6 Pl/z)(calc) = 470.MHz

134(6 P /p)(calc) = 1336 Miz

(6 Pl/z)(calc) = 1291 MHz .

2. Isotope Shift in the D1 Line

- From the measured hyperfine structure of the 6 2Pl/z'state_and

the position of any of the intensity minima, the isotope shift relative
to 133Cs of a radioactive cesium isotope can easily be determined as

follows. With reference to Fig. 18, it is evident that

15(127cs - 133s) ={:%_Av127(6 251/2)*5 C 1,127 Pl/Z%]
M7 133 13
'[m (6%ﬂﬁﬁm)%6%ﬂq
= + 177 +45 Miz
=+ 5.9(1.5) x 0 e’ .
Siﬁilarly, we obtain
15(1%%s - 133csy = +2.8(1.5) x 1073 em?
/o 1s(PBes By = -2.2(0.2) x 107 an’?
15(*33cs - 13%s) = +1.8(1.0) x 1073 ™} .
1s(*cs - 70y = -6.0(1.5) x 1072 en’!
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133 127
| Cs Cs
g ————— F=
¥ 9. > AvI27 (62P,,)
—_— F= -
F=4 LR - ©
Av'33(62P )1 €9 ;“'T——
Fe3 ——-Y_
(F:4 ———————1—— F= )
. . iL ""JL"-‘ c.g
Ay|3§(62 Sl/Z) { C€g —— —"' v | 2 ’AVIZ? (62 S|/2)
F=3 F=0)

XBL687 -3002

Fig. 18, Schematic eﬁergy level diég?am'for'the determination of the

127¢s - 1335 isotope shift.
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Here a positive sign means that the wave number of the Dy line for the

133

indicated isotope is greater than that for Cs.

C. Calculation of Nuclear Deformation from the Isotope Shift
The total observed isotope shift is a sum of the contributions from

. the mass effects and the field effect, i.e.

S(AE) tota1 = S(4E) oy, mass G(AE)sp. mass G(AE)field‘ (89

where it is now assumed that the values of S (AE) apply to the differences

in the upper and lower levels involved in the D1 transition. The normal
3

mass shift can be calculated from Eq. (9) and is found to be -0.34 x 107> m

133 - 134

for the isotope pair Cs - “°"Cs. A recent recalculation by Bauche??

shows that the specific mass shift, which is given to be +0.38 x 107> an’t
for the same pair, almost cancels the normal mass shift. Under this
. favorable condition the mass shifts may entirely be neglectéd and Eq. (85)

may be rewritten as

§(AE) toea1 = (8D 5014

Fradki_nf2l+ has given an estimate of the ratio of the isotope shifts
arising from s and P1/2 electrons of the same pfinciple quantum number;
thié is equal to az/(1+o)2'(where a and o are as defined in section 11B),
assuming hydrogen-1like Schroedinger wave‘funétion. Its numeyiéal Vélue

for cesium is about 0.04. Huehnermann and Wagner?® have obtained for

the 133cs . 134

Cs Cs isotope shift in the D, and D, lines the respective

values of +1.17(5) x 107> an'* and +1.25(6) x 10> an™ L.

If we assume a -
cancellation of the mass effects in the D2 line also, the difference.v

between these two values can then be explained as the isotope shift of

(86)

-1

G

"
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2

‘the 6 P1/2 state. This corresponds to a ratio of 0.06. Therefore, the

assumption of no isotope shift for the P1/2 electron seems to be well

justified, if we are interested in only getting something of a qualitative

nature out of the isotope shift data. _
2
Under this assumption we may then write, using Eq. (52) and uz = 5“ g’

SR
— A 0 5 2
S(E) tota1 = MBsph 20—+ o 8(ET] - @n
. o 1/3 -13 .
where AEsph is given by Eq. (23) and.RO = 1.2A x 10 an. This

relation permits us to calculate the squared nuclear deformation parameters
of the isotopes from the isotopé shift data. In Table VII are presented
the results to date on the isotope shifts (measured with respect to

133Cs) of eight cesium isotopes in the nuclear ground state. In the case

131Cs.and 132

of Cs, the isotope shifts are measured in the D, line.
Assuming no isotope shift for.the 6 2P1/2>state,' they serve our pufpose-
well; and no correction is made.

Table VII gives alsd the sﬁectroscopic quadrupole moments and the

intrinsic quadrupole moments obtained from the formula

Q, = Lost (88)
where W is‘the intrinsic quadrupole mament and Q the spectroscopic
quadrupolé mbmenf. o | | _

, In_thé eValuation_bf AESph,.the value of 1¢(oj|2'uséd is the

aVerage of the values obtained.with'the aid of"Eq. (73) frcm the known
nuclear magnetic moments and.ground—staté hfs of the isotopes. These
véluéé éré-given_in Table VIII,.togethervwith the'AS's. The normalvvolume

1

effect is calculated to be 10.7 x 107> cm” per addition of one neutron.
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Table VII. Isotope Shift and Nuclear Quadrupole Moments#*

Cesium 15 in 107> ! Q Q,
Isotope (relative to 133Cs) barns barns
127 +5.9 +1.5
129 - +2.8 £1.5
131 -0.33 £0.05 -0.59 #0.01 -1.596
132 +1.72 +0.05 +0.46 £0.01 +1.610
133 0 -0.003 +0.002  -0.006
134 +1.8 +(1.0) +0.356 +0.002  +0.699
135 -1.23 £0.11 +0.049 $0.002  +0.105 -
137 +0.050 +0.002

© -6.0 #1.5

+0.107

* Values not obtained in this experiment are taken from Refs. 26-31.

v

>~
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Table VIII. Values of A, and Iw(o)l2

A lv(o) | 2
N Cesium Isotope 10720 erg 10%° 3

127 5896.401 2.608

129 6114.369 2.632

133 1522.568 2.638

134 1541.309 2.627

134m 287.185 2.670

137 1675.427 2.633

Average 2.634
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The resulting calculated values _for'B2 are

62(1¥cs) = 11.27 x 1072 + 2 (F37cs)
82(1%s) = 8.55 x 1072 + 82(137cs) “
82(F3cs) = 6.63 x 1072 + g2 (Fcs)
82(13%cs) = 5.24 x 1072 + g2 (37cs) (89)
2 (133cs) = 4.21 x 1072 + g21%7cs)
2(1%cs) = 2.81 x 1072 + B2(137 cs)
g2(135¢cs) = 1.85 x 1072 + g2(F3cs)
Here the value of 137Cs is chosen'as the referencevpoint, since-137Cs has

a magic closed neutron shell with N = 82.
The nuclear deforﬁation parameters can also be calculated from the

intrinsic quadrupole moments according to the formula

Q = —>x R (8+0.3 8% . o)
(5m)* o
2137 o2 r _ - B
Taking B“(*7'Cs) = 0.01 x 10™“ as calculated from Eq. (90), numerical

values can be obtained for the quantities in Eq. (89). These values are
presented in Table IX and plotted againsf the mass number A in Fig. 19,

together with the values obtained on the basis of Eq. (90).
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Table IX. Values of 8?

- g% in 102
Cesium Isotope From Isotope Shift From Quadrupole Moment

127 11.28 ---

129 8.56 ---

131 6.64 \ 1.07

132 | 5.25 1.08

133 4,22 0.00 -

134 - 2.82 - 0.20

135 - 1.86 0.01

137 001 0.01
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© - ® From isotope shift
ol + From spectroscopic
10X10 = — quadrupole T
moment
®
B* ®
5% 10" 2|— O ]
®
®
®
o+ +,:
L+
o) + + @®
127 132 137
Mass number

XBL687-300I

Fig. 19. Sguare of nuclear deformation parameter versus mass

nunber.

-
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VI. DISCUSSION

Both the presence of the finite though small isomeric shift

134Cs and 134mC

between s and the nearly complete cancellation of the
mass effects seem to indicate that the observed isotope shifts arise
essentially from the nuclear field effects. As is evident from Fig. 19,
the nuclear deformation deriVed from the isotope shifts shows a steady
increase with the increase of the number of neutron holes. This
observation is in agreement with the theoretical prediction of the
existence of a region of nucleér deformation among neutron deficient
isotopes in the region 50 < Z < 82 and 50 < N < 82.%3223% The experimental
observation ofﬂdeformed‘nUClei among the neutron deficient even isotopes
of Xe,?®* Bé_and Ce3® also has a bearing on this'point.. Moreover, these
deformed nuclei have ground-state bands characterized between rotational
and vibrational, i.e. they are not permanently deformed. Since

<Bvib> = 0, the resulting intrinsic quadrupole moment will be, as can

be seen from Eq. (90), much smaller than it wouldjbe if the nucleus

" were permanently deformed.

The above evidence seems to be a convincing argument in favor of

the interpreation that the smallness of the observed shifts in the

‘cesium isotopes is a result of the counteraction of the two field

effects.
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