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ATOMIC BEAM MEASURPMENT OF TIlE ISOTOPE SHIFTS 

IN l27C l29C o133C l34C 1 34mC d l37C s, 5, S, S, s, an s 

Edmond Chen-ching Wang 

Lawrence Radiation Laboratory 
University of California 

Berkeley, Califonnia 

ABSTRACT 

A new atomic-beam technique has been employed to measure the isotope 

shifts of five radioactive cesium isotopes relative to the stable isotope 

. l33Cs . The shifts (in 10- 3 em-I) in the Dl line are found to be 

Isotope: l27Cs l29Cs l34Cs 1 34mCs l37Cs 

IS : +5.9(1.5) +2.8(1.5) +1.8(1.0) -2.2(1.2) -6~D(1.5) 

Here a positive sign means that the wave number of the Dl line for 

h ° dO d ° ° h th f· l33C t e 1n 1cate 1sotope 1S greater t an at ors. 

The normal volume shift is calculated to be 10.7 x 10-3 em-I for the 

addition of one neutron. There is evidence that points to the cancellation 

of the normal volume effect by the deformation effect as a possible 

explanation of the smallness of the observed shifts. 
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, I. INTRODUCTION 

Of the methods currently available for the study of isotope shifts, 

none is generally suitable for the study of radioactive isotopes, 

especially short-iived ones. Conventional optical spectroscopy, level 

crossing spectroscopy, optical scanning methods, and other techniques 

where the light is detected are not suitable for studying trace amounts 

of radioactive isotopes in the presence of large amounts of stable 

carrier. Moreover, wall interaction interferes with attempts to study 

small quantities of separated isotopes. 

It has been shawn recently that the atomic beam method can be 

extended to the study of isotope shifts in radioactive isotopes. This 

method has the considerable advantage over any currently existing 

techniques that it can be applied to radioactive nuclei in the presence 

of large amounts of stable carrier. 

In this thesis we report the measurement of isotope shifts on 

five radioactive cesium isotopes. These cesium isotopes are chosen as 

the subject of the study because of the availability of the methods for 

production and detection. III addition, a study of the isotope shifts 

over a large range of neutron number is of particular interest in order 

to observe the changes in the value of ~2) and in the nuclear shape 

from the spherical nuclei around ~37 Cs (which has a magic number of 82 

neutrons) to neutron deficient Cs isotopes where a region of deformed 

nuclei is expected. 



II. TIIEORY OF ISOTOPE SHIFT 

Isotope shifts refer to the displacement among the centers of 

gravity of the hfs patterns of the different isotopes of an element. 

The only nuclear properties which are now generally assumed to be of 

major importance in causing isotope shifts are the mass and the 

distribution of nuclear charge. Other effects, such as nuclear 

compressibility, nuclear polarization,. etc., are omitted from the 

present dlscussion, since there is no evidence that they contribute 

appreciably to the observed isotope shifts, and they have not been 

treated theoretically in any detail. 

As a reference level for the purpose of calculation, we consider 

the tenn energy appropriate to a point nucleus of infinite mass. For 

both mass and field: effects , we adopt the following notation. The 

tenn energy of an actual nucleus differs from the reference tenn energy 

by an amount fiE, and the change in fiE from one isotope to another is 

8 (fiE). In general, 8 will be used to indicate changes in a quantity 

between isotopes. In this section 8(flE) will be called positive if 

the level of the lighter isotope lies lower than that of the heavier 

isotope. In order to find the shift in a spectral line, 6(flE) must be 

evaluated for both ~he levels involved in the transition. 

A. Nuclear Mass Effects 

1.' Nonnal Mass Effect 

'!lie non-relativistic Hamiltonian for a free atom with n electrons 

is of the fonn 

fl .. 
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J<: = 1 ~ -+ 2 + 1 is 2 + V c; '--'. -R ) 
TID . L P oJ' 2M 0 oJ 0 

J=l 
(1) 

where P is the nuclear momentum and p . the electronic momenta relative 
o ~ . 

to a fixed coordinate system. M and m are the nuclear and electronic 

masses, and V is the potential energy. The nuclear coordinate is 

designated R and the electronic coordinates ~ .. 
o OJ .' 

The following transformation leads to coordinates for the center 

of mass and electronic coordinates relative to the nucleus: 

MR + Un~ . o . oJ 
R = J M + nm 

-+ -+ r. = r . 
J oJ 

R o 

In terms of the new coordinates, the x-component of momentum of 

the center of mass is expressed as P x = IDa lax. The quanti ties of 

Pjx = :ih a!. are the x-components of electronic momentum relative to 
J 

the center of mass even though x. is measured relative to the moving 
J 

nucleus.' 

In a coordinate system where the center of mass is at rest 

(P = 0), the Hamiltonian takes the fonn 

1 -+ 2 . 1 -+ 2 -+ 
J<: = Tnl E p. +"21Vf (Ep.) + V(r.) 

. m j J j J J 

Comparison with Eq. (1) leads to a simple interpretation of the terms 

in Eq. (3). The first term on the right-:hand side of Eq. (3) is just 

the kinetic energy of the electrons (p . = p.). The second tenn. 
oJ J 

represents the recoil kinetic energy of the nucleus (Po = -~Pj)' 
. J 

It is convenient to eXpand the second term on the right-hand side 

of Eq. (3) and group the squared momenta with the first term: 

(2) 

[3) 

. :, 
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(4) 

The reduced mass is defined by ! = ! + ~ 
]J m 1V1 

The first term on the right-hand side of Eq. (4) gives rise to the 

well-moWn normal mass- effect. This is the only mass effect that occurs 

, in hydrogen and one-electron ions. 

To see the energy dependence upon ]J, we consider the Schroedinger 

equation 

[ 
1'12 2 + + J 

-""I:-:- L: 'iJ. + V (rl ' ••• , r ) - E (]J) 1jJ = 0 
~]J j J u 

(5) 

+ + ]J + 
Let the rj be formally replaced by rj = ~) r j . The potential energy, 

if magnetic effects are ignored, scales inversely as a length 

and hence 

+ ]J + VCr) = - VCr') m 

The Schroedinger equation then becomes 

(6) 

(7) 

This equation has the same form as Eq. (5), and thus the energy levels 

depend upon the reduc~d mass according to 

Thus 

6 (llE) . 
nor mass . . 

" (9) 

~~ 

,iii' 
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2. Specific Mass Effect 

I,"', The second tenn on the ri~ht-h:md side of Eq. (4) gives rise to the 

so-called specific mass effect. Because of the presence of the nuclear 

mass in the denominator, this tennis small in magnitude compared with 

the remainder of the Hamiltonian and may be treated as a perturbation. 

However, since it contains cross products of the momenta of different 

electrons, the specific mass effect is not susceptible of exact 

calculation, though in light elements results in moderate agreement with 

experiment have been obtained. For heavier elements many electrons are 

involved and the calculations become rapidly more complicated. 

The differences in the mass effect for the isotopes of a given 

element is proportional to 11M2, so that it is reasonable to expect that 

the order of magnitude of the specific mass effect decreases through the 

periodic table in the same way as the nonnal mass effect does. 

Kopfennann1 suggests that starting from the rare earths, it is fairly 

safe to neglect mass effects entirely, in comparison with field effects. 

B. Nuclear Field Effects 

1. Nuclear Volume' Effect 

A system consisting of an electron and a point nucleus possesses 

a certain energy. If the electron has an appreciable probability 

density at radii down to zero, as in the case of an s-electron, then 

the energy of the system is higher if the nucleus is spread out, for 

instance over a sphere with radius r o ' than if it were concentrated 

at a point. Thus the nuclear electrostatic potential acting on the 

electron depends on the nuclear charge distribution; if this changes 
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from one isotope to another, the energy of an electron which penetrates 

the nucleus will also change in the two cases. 

In the early work of Racah2 and Rosenthal and Breit 3 the change 

in binding energy of an electron due to the difference in its electrostatic 

interaction with a point charge and the same charge spread over the 

nuclear volume is calculated using a perturbation method; with this the 

difference between two isotopes of the potential energy of the electron 

in the nuclear region is averaged over the relativistc charge density 

when the electron is moving in the field of a point nucleus. The poor 

agreement (the experimental isotope shift being in general smaller by a 

factor of 2-34
) of the experimental data with calculations based on the 

simple perturbation theory is not too surprising in view of the possibility 

. that the spreading of the charge would strongly distort the wave function 

of the electron from its Coulomb form just inside the nuclear region, 

where the perturbation takes place, and thus considerably affect the 

isotope shift. Attempts ,to reduce this large discrepancy between the 

eXperimental data and the theory has resulted in the development of a 

more rigorous and accurate method which was founded by Broch5 and later 

extended by Bodmer. 6 This method has the advantage not only of simplicity 

and directness but also of showing quite clearly what approximations are 

made in obtaining the final expression. Using this method and a value 

of 1. 2 AI/ 3 fu (instead of the old value of 1. 5 AI/ 3 
fin) for the nUclear 

radius, the isotope shift is brought into considerably better agreement 

with the experimental data. 

Consider the solutions to the radial Dirac equations for the electron 

(a) with the nuclear charge assumed concentrated at a point, and (b) with 
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an extended nuclear charge distribution. It is convenient to use the 

quantities 

2Zr x = - ,a = Za 
'11 

U(r) =V(r) 
2 mc 

h 2 e 2 
where '11 = --r is the Bohr radius and a = fie the fine structure constant; 

me 
VCr) is the potential energy (assumed spherically symmetric) of the electron 

in the field of the nuclear charge distribution. The radial Dirac 

equations may then be written in the form 

where 

dgk k 1 
-:r::-. = - g + - (l-U-c)f 
w.. x k 2a k 

k = -(9,,+1) 

= 9" 

for j = 9" + 1/2 

for i = 9" 1/2 

(10) 

is the Dirac quantum number of the electron, and fk , gk correspond to 

the small and large components of the Dirac wave function, respectively. 

Quantities appropriate to the point nucleus case will be distinguished 

by a prime. Then from Eq. (10) and the corresponding equations for 

fk' gk we obtain 

where ~V = V-V' and~E = E-E' = AE . . spherlcal· 

(11) 

We consider a point xl 

corresponding to a distance of the order of nuclear dimensions and such 

that xl is outside the volume occupied by the extended nuclear charge 
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distribution, i.e. such that ~V = 0 for x ~ xl. 

from x : xl to x = 00, we obtain 

Then integrating Eq. (11) 

(12) 

with 

(13) 

Using the normalization 

J: (f~ + g~) dx = 1 (14) 

N() 1 d ... 2ZAI/3 1 we may put xl = to a goo approxlffiatlOIl, Slnce xl ~ ex «, 

the corresponding relative error in N(xl ) , and hence ~Espherical' being 

considerably less than Xl. Then 

(15) 

Denoting the regular and irregular Coulomb functions appropriate to a 

Point charge Ze and an energy E by ap(r) aF(i) and G(r) G(i) for the 
k ' k' k' k 

small and large components respectively, we may write for x::?: xo ' where 

the potential is that due to a point charge, 

f = a(C Fer) + C p(i)) 
al k 2 k (16) 

g = C r.Jr) + C G (i) 
k 1-1<. 2 k 

for a point nucleus C2 = o. Thus CzlCl gives the amount of admixture 

of the irregular Coulomb solution due to the deviation of the charge 

distribution from a point charge. Por Xl corresponding to a distance 

of the order of nuclear radius the potential energy is very much larger 

in absolute value than the binding energy and it is a very good 
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approximation to neglect the latter in evaluating the functions F, G 

at the point xl. These may then be expressed in terms of Bessel functions, 

namely 

fk(x) = a[ClJzcr(Zxl/Z) + CzJ_zo(zxl/Z)] 
(17) 

gk (x) = C A (Zxl/Z) + C A (Zxl/2) 
1 Zo Z -20 

with 
_ l/Z A20 - (k-cr)JZo + x J Zo+l 

_ l/Z 
A_ 20 - (k+o)J_ Zo + x J- 20- l 

where 0 = '(k2:i) 1/2 . Since Xl « 1, it is in addition a very good 

. approximation to retain only the lowest power of Xl in the expansion of 

the Bessel functions and Eq. (IS) can then be shown to become 

2 2 (C2J Z 1 20 
llEspherical= -Za Cl ell me r(20)r(1-20) Xl (18) 

where r denotes the'gamna functions. Only the ratio CZ/Cl on the right­

hand side of Eq. (~8) depends on the nuclear charge distribution. 

Putting Kk = fk/gk , we obtain from Eq. (17) 

(19) 

r 
where Kk (Xl) is now assumed evaluated neglecting the binding energy and 

is detennined from the solution interior to Xl of the R~catti equation 

. dKk _ Zk.K + U-2 K2 U 
ax-x- k '2a k+7i (ZO) 
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which is obtained from Eq. (10) by differentiating Kk with respect to 

x and setting E = 1. If we rewrite Eq. (20) in the form 

dK U + U-2 K2 _ k 2k K 
2a 2a k - d3C - x k 

this may be transformed into an integral equation by multiplying by the 

-2k integrating factor x , 

where k < O .. If Kk « 1, this may be solved by successive iteration 

starting with Kk =0. 

Expanding the Bessel functions and keeping only the lowest power 

of Xl' Eq. (19) becomes 

C2 _ r(1-20) 
Cl - r(1+20) 

a-(k-o)Kk(Xl ) 

a- (k+o) ~ (Xl) 

As is evident from the derivation, CzlCl is then independent of Xl. 

Substituting Eq. (22) in Eq. (18), we have 

The value of Kk(xl ) depends on the nuclear charge distribution. The 

isotope shift is then 

o (6E) spherical 
222 1 

= 2a Clmc -r""""2 (-2-0-) 

If in the nuclear region it is permissible to write U/2a instead 

of (U-2)/2afor the factor multiplying K~, Eq. (20) becomes 

(21) 

(22) 

(23) 

(24) 
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dK 
k = 2k K + U (1+K2) ax x k Ii k (25) 

This approximation is equivalent to assumin2 xl /a2 « 1 for the factor 

multiplying K~ and is somewhat more stringent, especially for lighter 

elements, than the condition xl « 1 assumed previously. However, 

fork < 0 we see from the iteration procedure for obtaining Kk that the 

term neglected only affects Kk in the second iteration, the error 

involved in the additional term due to this being less than 10%. The 

only practically important case for the isotope shift is in fact that 

of an s electron, k = -1, and since, as we shall· see, the additional 

term due to the second iteration makes only a relatively small 

contribution, the error in K due to this approximation is very small. 

In what follows we shall consider only s electrons and write K_l simply 

as K. 

Consider the spherically synnnetric potential energy of the type 

v = n+l [1 
n 

Ze2 
V= -­r r > r o 

where r can be considered as the nuclear radius. n can vary from -1 o 

for a point charge throughn = 2 for a uniform charge distribution to 

--' n = 00 when all the charge is on the surface. For potentials of this 

form it is then seen by rewriting Eq. (25) that 

where x 
o 

2Zr o =-- From this it follows that 

(26) 

(27) 
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= 

and therefore, using Eq. (25), 

= 

2a2 
With xl outside the nuclear charge distribution where U = 

xl 

Substituting oK(xl ) 

=~ [a+(l+a)K(xl )] [a+(l-a)K(xl )] 
o 

aK(xl ) 
= ax oXo in Eq. (24), we obtain 

o 

2 2 2 1 a+(l+a)K(xl ) 
8 (6E) = 2a C mc spherical 1 2 a+(1-a)K(x1) r (2a) 

(28) 

(29) 

(30) 

Recalling that the only condition on xl is that Xl be outside the nuclear 

charge distribution and of the order of nuclear dimensions, we may set 

Xl = Xo in the above equation, obtaining 

2 ox 
X a~ 

o X o 

Assuming the validity of Eq. (25) for k = -1, we may write Eq. (21) as 

X 

K(x) = ~ J ¥a. [1+K2(X')]x,2 dx' 
X 0 

For the first iteration we have 

(31) 

(32) 

(33) 

'$.' 
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and for the second 

x [ 2 f U K(l) (x ') ] x,2 dx I 
o 

(34) 

Using this iteration process K(xo) can be found as a power series in a. 

Specifically for a uniform charge distribution we have 

(35) 

For the potential [Eq. (26)] the isotope shift then depends on the radius 

x only through x 20 in addition to the relative change of radius oXo/x . 
. 0 0 0 

Although it would appear from the above that the first iteration is 

not a very good approximation for K(xo) , nevertheless as far as the 

equivalence of two charge distributions is concerned it is sufficient to 

use only the first iteration. By integrating by parts twice and using 

Poisson's equation, the integral inEq. (33) may be expressed in terms of 

an integral over the charge density p, i.e. 

The upper limit in the integral on the right is actually T but may be 

replaced by 00, since for the calculation of K(x) r must be effectively 

outside the charge distribution and for the potential [Eq. (26)] p has 

the form 

n-2 
p = 4n+1 Ze (E) . r-r 'T . 

00 

p = 0 

r < r o 

r >- r o 

(36) 

(37) 
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Now let us look at the relation between the equivalent radii, Rs and 

Ru ' of a surface and a tmifonn char~e distribution, respectively, which 

give the same K(xo) , by equating the expressions (34) for n = 2 and 

n = 00 with x = x u' 

Rs 3 2 
( ~

2 

R ="5 (1-0.012a) . 

The first tenn is due to the first iteration and can immediately be 

obtained by equating 

4d Ze n+l ... 2 
Pr r - r - 4rr n+3 0 

for n = 2 and n = 00. The tenn from the second iteration makes only a 

very small contribution. Thus the use of the first iteration is a 

very good approximation when the equivalence between the two charge 

distributions and not the actual value of K(x ) is being considered. o 

(38) 

(39) 

Since the difference betWeen a tmifonn and a surface charge distribution 

can be considered as a extreme, the magnitude of the tenn in Eq. (38) 

due to the second iteration may be regarded as in the nature of an upper 

limi t to such a tenn in the expression for the radius of the tmifonn 

charge distribution equivalent to some actual distribution. We see 

then that for any charge distribution,p, the radius of the equivalent 

tmifonn charge distribution will be given with good accuracy by 

2 5 4n J 00 4 52 
~ ="3" re 0 pr dr = '3" (r ) 

From Eqs. (39) and '(40) it follows that 

(40) 
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Then the volume dependent isotope shift can be expressed in terms of Ru 

as 

o (6E) - 4 ZCZm Z 1 a+(l+a)K(a) 
spherical - a 1 c Zr2(2o) a+(l-a)K(a) 

( 41) 

In this way we have related the isotope shift to the root-mean-square 

radius of the nuclear charge distribution, which can be obtained from such 

experiments as the electron scattering, x-ray spectroscopy of muonic 

atoms, etc. The value of K(a) in Eq. (41) is that appropriate for a 

uniform charge distribution and is given by Eq. (35). C1
2 is determined 

from the normalization of the radial Dirac wave function by putting gk/r 

asymptotically equal to. the radial Schroedinger wave ftmction for large 

r. It has been shown by Rosenthal and Breit 3 that for an s electron 

(42) 

where Roo is the Rydberg constant and t/J(O) is the value of the Schroedinger 

wave function at the origin. The value of It/J(O) 12 can be obtained from 

optical spectroscopic data by means of the semi-empirical Permi-Segre 

formula 7 

(43) 

where Zi is the internal effective nuclear charge, usually taken as Z; 

Zo is the external atomic charge felt by the valence electron; n* = n-6 

is the effective quantum number obtained by equating the term value 

energy to -RooZo
2/(n*)2, and n is the principal quantum number while 6 

is the quantum defect. An alternative method for determining It/J(O) 12 

is the comparison of the atomic hfs constant A with the known nuclear 

moment, using the relation in Eq. (73). 
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2. Nuclear Deformation Effect 

Nuclei which are deformed to a non-spherical shape will, after 

averaging over all orientations, appear more extended radially than 

spherical nuclei of the same volume, thus ~iving rise to a change in 

Ru; if the shape changes as neutrons are added, this again will alter 

~ . This effect was introduced into the theory by Brix and Kopfennann 8 

in an attempt to account for the observed isotope shift of Nd, Sm, and 

Eu. The theory has been considered explicitly by Ford9 and by WHets 

et al., 1 0 and independently by Bodmer. 1 1 

For the consideration of the nuclear deformation a quadrupole 

deformation is generally assumed. In this case the surface of the 

nucleus can be represented by 

R((f) = a
o 

[1 +a.P
2 

(cbs a)] 

, 2 
where P2 (cos a) = 1/2(3 cos a-I) and (l is related to the Bohr defonnation 

parameter S by the relationship (l2 = k 132 • In order to isolate the 

deformation effect from other effects, it is further assumed that the 

nucleus has constant volume ¥ Ro 3 and unifonn density 

3Ze 
p = 47TR 3 

. 0 

p = 0 

r < R(a) 

r > R(a) • 

(45) 

The constant volUme assumption relates the parameter ao and Ro appearing 

in Eq. (44) andEq. (45), according to 

(46) 

; 



, 

-17-

Then for the deformed distribution we obtain from Eq. (40) 

2 51! 2-+ R = - ~ pr dr u 3 L.e 511 
' ao 5 

= ::-! [l+aP2(cos e)] 'd(cos 
2Ro -1 

8) . (47) 

Since a2 is Usually very small compared with unity, the above expression 

can accurat1ey be approximated by 

Hence we have the approximate result 

Substituting Eq. (49) in (23), the resulting expression then contains 

the information on both field effects and may be called .1Efield • 

Exp d " (1 12)20 d' k" " '2 " an lng +1' a an eeplng tenns up to a , we may WTl te 

obtaining 

2 
L1Ef" ld = L1E h " 1 (1 +oa ) = L1E h " I + L1Ed f . ' le sp enca , sp erlca e onnatlon 

( 48) 

(49) 

(50) 

(51) 
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Thus 

c(~E)f· d = c(~E) h· + o(~E)d £ . leI sp erlcal e~ormatlon 

oRo 
= DoE h' 2cr -sp erlcal' Ro 

3 
. ~ 

= TIJ\o -z-

2 
+ crc(a. ) (52) 

It is seen that c(~E)field can be expressed as a sum of two terms, one 

depending on changes in nuclear volume and one depending.on changes in 

nuclear shape. ~Edeformation is always very much smaller than 

~Espherical' but c(~E)deformation may be.of the same order of magnitude 

as c (~E) h . I since the nuclear deformation may change by a large sp erlca 

fraction of itself from one isotope to another. 

From a consideration of electron scattering results for about 

twenty nuclei, the deformations of which are mown to be small, EI tonl 2 , . 

has given a semi-empirical formula forRo ' 

Ro = 1.123AI/ 3 + 2.352A-I / 3 - 2.070A- l fin. (53) 

The' expression now universally adopted is ~ = 1.2AI / 3 fin. 

• 
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II I . HYPE~INE STRUCflJRE 

If the finite extension of the nucleus is taken into account, the 

electrostatic interaction between an electron and the nucleus must be 

expressed as an integral of volume elements of the electron and 

the nucleus, i.e. 

dTdT e n 
(54) 

wherePe is the electronic charge density and Pn the nuclear charge 

density. Assuming re > rn , we may expand 1/ I~e -~n I in tenus of Legendre 

polynomials and use the spherical harmonic addition theorem to obtain 

or 

(~~ = E l: (-1) q [ r 
k q JT . e 

~ = ~ Q(k) (e)_p(k) (n) 
k . 

(55) 

, 

(56) 

The tenus Q(k) and 1!(k) are spherical tensor operators of rank k operating 

,on the electronic and nuclear coordinates, respectively. It is evident 

from Eqs. (55) and (56) that they are given by 

and 

p(k) 
q 

~ yCk) (6
e

, tf, ) +1 q 't'e 
re 

= ( 4n. )~ k y (k) (6 tf,) 
IDT ern q n' 't'n 

(57a) 

(5Th) 
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Restricting consideration to stationary nuclear and electronic 

current distributions, for which v·j = 0, we may write 

-r ;:t; I ' + 
J =cyxm n n 

and 

-r ;:t; + J =cyxm . 
e e 

(58a) 

(58b) 

,Here ~ and ~ are; like the magnetic field intensity H, pseudovectors. en, 

Ramsey 1 3 has shown that under these conditions the magnetic interaction 

= - 1:. 1 j. A d = - 1:.1 j. A dT c' ne n c ene 
Tn le 

can be written as 

<l<M) = 1 'J 
l l e n 

(-v·~)(-v·m) e e n n 

Ir -r I e n 

Since this has the same fonn as Eq. (54) we obtain at once 

J<M ~ r M(k) (e) oN(k) (n) 
k 

(59) 

(60) 

(6la) 

(6lb) 
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Matrix elements of operators having the form of Eqs. (56) and (60) 

are easily taken in a representation where I and J couple to P [(IJFMp) 

representation]: 

L (IJFM 1~(k)oF(k) II'J'P'M') = L(-l)II+J+PoPP'~_-M' 
k PP k -MF -P 

The 6 - j symbol shows that the series breaks off for either J + J'< k 

or I + I' < k. 

The expectation value (1/.11011/.1) of any operator ° must have positive 

parity, since integrals over all space cannot depend on axis inversion. 

Por states with well-defined parity, 11/.112 has positive parity; ° must 

therefore have posi ti ve parity for (1/.1 1 ° 11/.1) to be non-zero. Operators 

Q(k) and p(k) both have the parity of y(k) , i.e. (_l)k. Therefore, only 

k even values are allowed in the electric case. Since me (~) is a 

pseudovector, Vome(Vo~) is a pseudoscalar having parity -1, and M(k) 

and N(k) have the parity (_l)y(k), or (_l)k+l. Therefore, only k odd 

values are allowed in the magnetic case. 

The first allowed electric interaction is Q(o) op Co) , which is just 

the Coulomb term. The second allowed term is Q(2) p(2), the electric 

quadrupole term. Defining 

Q = (~)( II 1~2) 1 II) 

q = -(~)(JJlp(2)IJJ) 
J e 0 

(63a) 

(63b) 
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and using Eq. (62) we obtain 

-e2qJQ[3K(K+l) - 41(I+l)J(J+1)] 
(IJIM ~(2) p(2) 1JIM > = (64) 

F F 81J(21-1) (2J-l) 

where K = F(F+l) - 1(1+1) - J(J+l). The term Q is the nuclear quadrupole 
) 

moment, and qJ is th~ gradient of the z-component of the electric field 

at the origin. The quantity -e2qJQ is called the electric quadrupole 

interaction constant and written as B. 

The first allowed magnetic interaction is t1(1) .~(l). Consideration 

of the classical interpretation of M(l) and'N(l) shows that 

J V·r:i. cos e 
(JJIM(l) IJJ) = e e e dT 

o . - 2 e 
Te re 

(65) 

and 

(66) 

Using Eqs. (62), (65), and (66) we can then write 

( 1JIM
F 

1M (1) • N (1) I IJfM-) = _ j.I-r< Bz> JJ i.j 
F' 1J (67) 
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whiCh serves to define the magnetic dipole interaction constant A as 

(68) 

The classical expression for the magnetic field at the nucleus due 

to a circulating electron with permanent magnetic dipole moment is 

13(0) 

-+ -+ 7 -+ -+ 
Wri ting that mrX\) = hx, and II = -211 s , the transi tion to the ql..lantum o 

meChanical form of this operator is made, 

211 -+ -+ 
*( ) 0 (7 -+ 3s-r -+r) .1)0 =---->7 x,-s+-

r..) i 

This operator can be further simplified into 14 

For the case of one valence electron in a non-s state it can easily be 

shown that 

(B(o}) JJ = -211(-b t(t+1) 
o S J+1 r 

(69) 

(70) 

(71) 

(72) 

So far we have restricted ourselves to the case of re > rn; however, 

s electrons have a non-vanishing density at the origin and thereby 

violate this restriction. This density at the origin does not affect the 

electric quadrupole moment, since s electrons have spherically symmetric 

densities. and therefore cannot contribute to the quadrupole interaction. 
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Fenni 15 has shown 'that there is a contact interaction between the 

the electron as a relativistic particle obeying the Dirac equation and 

the nucleus as a point dipole, Penni was able to obtain 

A = l6TI 2 1",( )1 2 
s 3 gl ~o 0/ 0 (73) 

where lJJ(o) is the value of the Schroedinger wave function at the origin. 

Because of the vanishing smallness of the contributions from the 

magnetic octupole moment and higher order electric and magnetic multipole 

moments, the hyperfine Hamiltonian is generally taken as 

:l<hfs = J<Ml + ~2 • (74) 

This Hamiltonian does not corrunute with either J or I, but does with their 

vector sum F. The (2J+1) degenerate fine structure levels are therefore 

split into 21+1 or 2J+l (whichever number is smaller) levels by the 

hyperfine structure interaction. The new levels are 2F+l degenerate in 

the absence of an external magnetic field. 

The interaction of the atom with an external magnetic field is given 

by 

x = -g ~ j.H - g ~ i·H. ext . J 0 I 0 
(75) 

This tenn does not corrunute with F, but F is an approximately good quantum 

number at low fields. Therefore, at low fields the effect of the external 

magnetic field is to remove the (2F+l)-fold degeneracy of the eigenvalues 

tllrough the interaction 
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(76) 

where 

_ F (F+ l)+J (J+ 1) - I (I +1) F (F+ 1)+ I (I + 1) -J (J+ 1) 
gF - gJ 2FCF+1) + gI 2FCF+l) 

In the high-field region (nuclear PasChen-BaCh), F is no longer a good 

quantum number and eigenstates are best labeled by I, MI ; J, MJ" 

.0 

'. 

) 
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IV. EXPERIMENTAL ME'IHOD AND APPARATUS 

A. Stark Effect 

Experimentally, the isoto~e shifts have almost exclusively been 

measured by conventional optical methods. l6 In 1965 Marrus and McColm 

developed a new atomic beam method for the study of the Stark effect 

in optical transitions. In the present work this method was employed 

to study the isotope shifts in six cesium isotopes. 

The perturbation of an energy level by an external electric field 

E is described, if the polarization of the nucleus is neglected, by the 

Hamiltonian 
. -+ ~ 

~st = -p • b 

where p is the induced dipole moment and is given by p = -e r Ti ' Ti 
i 

being the position vector of the i th electron. Applying to an alkali 

for which we neglect perturbation of electrons in closed shells, then 

p = -e~, T being the position vector of the valence electron. It is 

well known that for statesofwell~defined parity the HamiltonianKst 

gives no first order effect. The second order.perturbation gives for 

a state ~o characterized by the quantum numbers (n2LJ FMF) 
_1(~ole~.EI~) 12 

~W - ~ AE(~ $0) . 

(77) 

. (78) 

Neglecting the hyperfine energy of the states ~ in the denominator of 

Eq. (78), Marrus, McColm, and Yellinl7 have shown for an electric field 

directed along the z-axis that ~W is independent of the quantum numbers 

2 2 
F and MF, and obtained for the states Sl/2 and Pl/2 

.. 



:"1 . 

-Z7- . 

(79) 

and 

(80) 

respectively. 

The Stark shift can also be expressed in terms of the polarizability 

(a) of the state according to the usual relation 

Using the method of Bates and Damgard, Marrus et al. obtained from 

Eqs. (79) and (80) the following numerical values for ZSl/Z and ZPl / Z 

a(6 ZSl/Z ±l/Z) = 56 x 10-Z4 cm3 

and 

(6 Zp +l/Z) = 19Z·x 10-Z4 cm3 . a .. l/Z. - . 

Thlls the Stark shift in the Dl (6 ZPl / 2 ~ 6 ZSl/Z) line is given by 

Z 
6(~W) = - ~. x 136 x 10-Z4 

(81) 

(82) 
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Here the minus sign means a decrease of the transition frequency in the 

presence of an external electric field. 

It should be noted that since (). is independent of the sign of mJ 

the two components of the hyperfine doublet are shifted by the same 
2 2 amount, i.e., the hyperfine separation of the states P1/ 2 and Sl/2 

is not affected by a Stark field. 

B. Apparatus 

The apparatus employed is a conventional atomic beam machine with 

flop- in magnet geometryl 8, as shown schematically in Fig. 1. In this 

machine the two regions, A and B, of very large inhomogeneous magnetic 

field have their field gradients in the same direction. In these two 

regions, the atoms are acted on by a force given by 

(83) 

This relation is obtained by eva1uatingXext as defined in Eq. (75) in 

the Paschen-Back region and neglecting the tenn in gp which is about 

1/2000 of gJ. In order to be detected, an atom must have its deflection 

in the A region cancelled by its deflection in the B region; this 

cancellation can occur if 

This condition requires that the atom tmdergo a transition in the C 

region. The C region consists of a pair of electric field plates, with 

a gap of about 0.029 in. The plates consist of a heated-glass cathode 

and a stainless-steel anode (see Figs. 2 and 3), both of which are ground 

to within 10-4 in. The homogeneity of the electric field produced is 

estimated to be about 0.5% and is sufficiently good so that it does not 
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f33CS a bsorpt ion 
beam 

, 

133CS 

resona n ce 
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0t filter 

Atomic-beam apparatus 

XBL675-3192 

Fig. 1. Schematic diagram of apparatus. 
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XBB 685-3070 

Fig. 2. Assembled electric field plates, with 0.0 29 in. gap clearly 
shown. 
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XBB 685-3071 

Fig. 3. Another view of the electric field plates assembly. 
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contribute appreciably to the linewidth. The region between the plates 

is. illuminated with resonance radiation from a Varian X49-609 spectral 

lamp filled with l33Cs . The light is filtered so that only the Dl line 

2 2 ' 
(6 Pl / Z ~ 6 5l / Z) is seen by the beam atoms. In the lamp line, the 

Z hfs of the 6 Pl / Z state is not completely resolved and the lamp line 

consists of a dotiblet, the components of which are separated by the hfs 

of the ground state. With this apparatus, the precision is limited by 

the width of the lamp line, about 1500 MHz (SO mK). However, the 

precision may be substantially improved by passing the filtered light 

through an optically dense 133Cs absorption beam. As shown in Fig. 4, 

the absorption cell consists essentially of a source oven and a collimator 

kept at the temperature of liquid nitrogen so as to reduce the Doppler ,. 

veloci ty of the absorption beam. The effect of the absorption beam is 

to remove a doublet from each of the lamp lines. The two components of 

the doublet are separated by the hfs 
Z 133 of the 6 P

l/Z 
state of Cs. In 

our experiment the width of the absorption lines varies from 150 to Z50 MHz 

(3 to 8 mK). In principle, this width can be made as low as the natural 

linewidth, which for the cesium resonance line is about 10 MHz. However, 

such high precision W'ould demand an electric field that is homogeneous 

and reproducible to better than 0.5 x 10- 3 at field of almost 0.5 x 106 V/cm; 

this is presently beyond our capability. 

The narrow gap ,between the electric field plates is used as a state 

selector so that we can at will refocus atoms either with mJ(A) = liZ 

or with mJ(A) = -l/Z. For cesium isotopes with large nuclear spin and 

hence with the two hyperfine states, F = I + 1/2 and F = I - 1/2, about 

equally populated, this is essentially equivalent to refocusing atoms in 
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Fig. 4. Absorption cell assembly. 
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either of the two hyperfine states. 127 129 -However, for Cs and Cs Whlch 

have I = 1/2 all the atoms wi-d .. mJ(A) = 1/2 belong to the F = 1 state 

while atoms with mJ(A) = -1/2 are equally distributed between the two 

states, F = 1 and F = 0; therefore refocusin2 a mJ state is not equivalent 

to refocusing the hyperfine states. 

The Cs atomic beam is produced by heating the sample, in the form 

of a chloride or iodide, with calcium metal chips in the oven (see Fig. 5); 

calcium reduces cesium halides at temperatures of about 400 0 C, giving 

out cesium metal. 

Stable cesium can be detected with a rhenium hot wire. Since the 

ionization potential of cesium is less than the work function of rhenium, 

Cs atoms that hit the wire are boiled off as ions and accelerated to a 

collector plate where the resulting current is measured with an electro­

meter. The detector for the radioactive isotopes are freshly flamed 

platinum foils which are shown in Fig. 6 to~ether with the holders. The 

atoms that are refocused strike :md stick to the platim.nn foil. After 

exposure the foils are taken out of the beam machine and counted in a 

continuous flaw methane beta counter, shown in Fig. 7. 

C. Stark Tuning 

1. Without Absorption Beam 

C -d th - f l33C - h - b - d" d Onsl er e actlon 0 a s atom ln t e atomlc eam lrra late 

by the resonance radiation. At zero electric field the absorption lines 

of atoms in the beam coincide with the center of the emission lines in 

~1e lrunp. Consequently, resonance absorption of photons takes place. 

In the subsequent decay, half of the atoms will undergo spin-flip and 

will contribute to the flop-in signal at the detector. As the electric 
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Fig. 5. Oven and its loader. 

XBB 6 85 -3073 
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Fig. 6. Platinum foils (0.001 in. thick) shown with beam machine 
button holder and beta counter holder. 
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g. 7. Beta counters and associated electronics . 
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field is turned on, the Stark effect shifts the center of the absorption 

lines to lower frequencies until resonant absorption no 10n2er occurs 

and the flop- in signal goes to zero. However, when the electric field 

is sufficiently large so as to shift the absorption lines by an amount 

equal to the ground-state hyperfine structure, a new overlap of the 

absorption lines with the emission lines of the lamp occurs, and another 
\ 

flop-in signal is observed (see Fig. 8a). In this way the Stark shift 

can be measured in the Dl line; and from the V2 dependence characteristic 

of the Stark effect a calibration of frequency shift versus applied 

voltage squared is obtained. 

If the atomic beam consists of atoms of some other cesium isotope, 

then·because of the different ground-state hyperfine structure, the 

different nuclear spin and the isotope shift, there is in general no 

signal at zero electric fiel~. However, if the frequency of the absorption 

lines is displaced to the high-frequency side of either of the emission 

lines of the lamp, then the application of a sui table voltage brings 

the absorption lines into coincidence with the emission lines and a 

signal is observed at the detector. In Figs. 9 and 10 are shown the 
134 137 . observed signals for a Cs and a Cs beam, respectively. 

2. Wi thAbsorption Beam 

As mentioned above, the effect of' the absorption beam is to remove 

a doublet from each of the lamp lines; the two components df the doublet 
. ' . 2 133 . . 133 

are separated by the hfs of the 6 P 1/2 of Cs. The observed Cs 

intensi ty pattern in this case is shown in Fig. 8b and can be understood 

with reference to the energy-level diagrams shown in Fig. 11. At zero­

electric field the absorption lines of the l33Cs atomic beam overlap the 
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Fig. 9. Observed signal versus square of applied voltage for a Cs 
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Fig. 11. Labeling oft~e intensity lninima. (a) a_: coincidence of bea~­
absorption line 1 witl1 133CS absorption line A; S : coincidence of 
2 with A; 0 : coincidence of 1 with B; cS : coincidence of 2 with B. 
(b) a': coincidence of 1 with A f; B': coincidence of 2 with A'; 0': 
coincidence of 1 with Bf; cS': coincidence of 2 wi thB' . (c) a : -
coincidence of l' with A '; S +: coincidence of 2' with A'; 0+: toin­
cidence of l' with B'; c3 +: coincidence of 2' vii th B' . 
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absorption lines of the 133Cs absorption beam, and a minimum in the 

intensity curve is observed. However, as the electric field is turned 

on, the Stark effect decreases the frequency of the absorption lines 

of the atoms in the be.m apparatus, and the observed signal increases. 

However, when the electric field is sufficient to shift the frequency 

by an amount equal to the hfs of the excited (6 2Pl/ Z) state, a second 

intenSity minimum is observed. At higher electric fields when the 

frequency is shifted by an amount equal to the ground-state hfs, the 

beam absorption line is brought into resonance with the second lamp­

emission line. Here three intensity minima are observed. These thr~e 

minima are equally spaced and correspond to a shift by an amount equal 
. Z 

to the hfs of the 6 Pl / Z state. 

As can be seen from the energy-level diagram, the separation between 

the two minima labeled B _ + y _ and S ~ + y ~, in Fig. 8b, corresponds to 

a Stark shift of the energy levels equal to 9192 MHz, the approximate hfs . 

·133 d of the Cs groun state. Using this as a calibration and taking the 

separations between S_ + y_ and 0_, between a~ and S~ + y~, and between 

S~ + y ~ and 0 ~, as equal to the hfs of the 6 Zp l/Z state of 133cs , we 

obtain19 

This value is in good agreement with the value (1173 ±lO MHz) obtained 
20 

by conventional optical spectroscopy . 

. A similar situation pertains when the atomic beam consists of some· 

other cesium isotope, Xes. Whenever the Stark tuning brings about an 

overlap of the beam-absorption lines with the lamp-emission lines, there 

are, however, as can be seen from Fig. 11, four possible overlap positions 

of the Stark-shifted energy levels of XCs beam atoms with the unshifted 
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levels of l33Cs atoms in the absorption cell. These overlap positions 

correspond to minima in the observed intensity pattern. Fram Fig. 11 

it is also apparent that the separation between the minima a and y and 
2 X between 8 and cS corresponds to the hfs of the 6 Pl/2 state of Cs, 

while the separation between a and S and between y and cS corresponds to 

the hfs of the 6 2Pl/2 state of 133Cs . Thus from the position of the 
2 X intensity minima we can obtain the hfs of the 6 P 1/2 state of Cs, 

and further, with a knowledge of the grom.d-state hyperfine structure 

(see Table I), infer the XCs - l33Cs isotope shift. 
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Table I. Some Relevant Quantities of the Cesium Isotopes.* 

Cesium 
Isotope 

Half-life 
T1/2 

Nuclear 
Spin 

~I 

in n.m. 
I 

127 6.2 h 1/2 1.44(3) 8900(150) 

129 31 h 1/2 1.48(3) 9229 (30) 

133 7/2 2.574(13) ·9192.63177 

134 2.2 Y 4 2.9901(12) 10469(12) 

134m 2.9 h 8 1.0964(9) 3684.5(5) 

. 137 30 Y 7/2 2.8379 (9) 10115.527 (15) 

* All taken from Ref. 21 except the values for the nuclear magnetic 
moment of 127CS and 129CS that are taken from Ref. 22. 
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v. EXPER~AL RESULTS 

A. Sample Preperation 

The Isotopes l27Cs and l29Cs 

The isotopes l27Cs and l29Cs are made through the reactions l27I 

127 127 129 . " " 127 4n) Cs and I (a, 2n) Cs respect1vely, by bombard1ng I 

in the 88-inch Cyclotron at Berkeley with a-particles of the appropriate 

energies. For the production of l27Cs the energy of the bombarding 

a-particles is 70 Mev, and for tile production of l29Cs it is 45 Mev. In 

Fig. 12 is shown the cyclotron target. 

Th d " d d" "" (127C l29C )" d d" h e eS1re ra 10act1ve 1sotope s or s 1S pro uce 1n t e 

form of an iodide. In order to extract this from the bombarded target, 

the following chemical procedure is followed. The bombarded iodine 

target is boiled in a beaker with carbon tetrachloride, a good iodine 

solvent, and water to which has been added a suitable amount of the 

stable carrier to serve the purposes of field calibration and beam 

normalization. With a lower boiling temperature and smaller latent heat 

of vaporization than water, the carbon tetrachloride is quickly boiled 

away , together with almost all of the iodine by sublimation. Boiling 

the remaining solution to dryness leaves the radioactive cesium with the 

stable carrier in the form of halides on the walls of the beaker. The 

beaker is then washed with water to dissolve the cesium halides, and the 

activity is transferred to a test tube. The solution is boiled down to 

about one cc. This condensed solution is then finally transferred into 

the oven and slowly heated to dryness. 
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Fig. 12. Water-cooled cesium target assembly. 
\ 
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2. The Isotopes l34Cs and l34mCs 

!" These two isotopes' are made by the irradiation of the stable cesium 

,~ 

(in tile form of a chloride) in a nuclear reactor at the Lawrence Radiation 

Laboratory at Livermore at a flux of about 1013 neutrons cm- 2-sec- l for 

either six hours (to produce l34mCs ) or a week (to produce l34Cs). In 

the former case the long-lived l34Cs (2~2 y) is produced only in a 

negligible amount; in the latter case the quantity of l34mCs is, because 

of its much smaller half-life (2.9 h), sufficiently reduced a couple of 

weeks after the shutdown so as not to interfere experimentally. 

3. The Isotope 137 Cs 

The isotope 137 Cs can be purchased from the Oak Ridge National 

Laboratory as a fission product. It comes in the form' of a chloride. In 

order to get a homogeneous mixture, the sample is dissolved in water with 

a suitable amount of stable cesium chloride. The solution is filtered 

to get rid of any appreciable quantity of the daughter (Ba) isotope, and 

boiled down in a test tube to a few droplets. The concentrated solution 

is then transferred into the oven and slowly heated to qryness. 

B. Experimental Results 

2 _1_. __ HYP~.~er_f_i_n_e __ S_tru __ c_t_u_re __ o_f __ th_e __ 6 ___ Pl/2 State 

It can be shown from Eqs. (68) and, (73) that 

-.!¥- l10 11/1(0) 12 (B (~» 
, ,z, JJ 

(84) 

which is the same for all the cesiUm isotopes. Since all but l34mCs of 

the radioactive cesium isotopes concerned in this experiment have a 

ground-state hyperfine structure separation comparable to that of the 



-48-

stable isotope, we should from Eq. (84) expect for these isotopes a 

value of the excited (6 2Pl/2) state hyperfine structure separation 

comparable to 1173 MHz, the hyper fine structure of the 6 2Pl/2 state 

of l33Cs . Consequently, the two minima 13 and y, each having a width 

of 150-250 MHz, are not resolved. This is experimentally seen to be 
X 2 the case. In these cases the value of I1v (6 Pl/2) is detennined from 

X 2 the separation between the minima a and 0, which is equal to tw (6 Pl / 2) 

133 2 plus I1v (6 Pl / 2). 

In principle, the hfs of the 6 2Pl/2 state of a radioactive isotope 

can be detennined from the position of the intensity minima obtained in 
127 129 . any. of the three cases shown in Fig. 11. For Cs and Cs ,both 

having a nuclear spin equal to 1/2, the minima a_'s and 13_'s however do 

not exist. This is easily seen to be a consequence of the fact that the 

transition F = 0 (6 2Pl/2) + F = 0 (6 281/2) is forbidden, i.e. that the 

beam absorption line marked 1 is missing in Fig. lla and Fig. lIb. 
2 . 127 129 Therefore, the hfs of the 6 Pl / 2 state of Cs and Cs can only be 

obtained from the overlapping configuration shown in Fig. 11c. Although 

the beam atoms with mJ(A) = -1/2 are initially equally distributed 

between the two hyperfine states F = 1 and F = 0 of the ground state of 
127 129 Cs or Cs, when these atoms are refocused there may be, however, a 

partial overlap of the minimum 0+ with the minimum 0_, arisi.ng from the 

comparable magnitude of the ground-state hfs of these two isotopes with 

that of l33Cs . This partial overlap of the minima will broaden the 

width of the observed intensity minimum and add to the experimental error. 

Thus the minima a+ and 0+ are best located when the beam atoms with 

.. 
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mJ(A) = l/Z are refocused. In this latter case, ~v133(6 ZPl / Z) = 1173 MHz 

is used asa calibration. 

F 134mC " " "" "" f b th th b d f or s, 1ntens1 ty m1nl1lla ar1S1I12 rom 0 e cases :m c 0 

Fig. 11 are observed. For l34Cs and l37Cs only the case b 2ives a complete 

Z pattern; 0_ and 0+ are also observable. In fact, the nfs of the 6 Pl / Z 

state of l37Cs is determined from the separation between the minima o_ 
r . " " 133 Z 133 Z 137 Z and a_, Wh1ch 1S equal to ~v (6 Sl/Z) - ~v (6 Pl / Z) - ~v (6 Pl / Z). 

The minimum o~ for l37Cs is skipped just because of an " arcing problem of 
, 

the field-plates at high fields. 

Some typical observed intensity patterns are shown in Figs. 13-17 

for the radioactive cesium isotopes. The final results, as obtained 

from the data tabulated in Tables II-VI, are 

lZ7(6 Zp ) = 1160 ±45 MHz 
l/Z 

lZ9(6 Zp ) = lZ43 ±45 MHz 
l/Z 

l34m(6 ZPl / Z) = 541 ±36 MHz 

134(6 Zp ) = l3Z4 ±30 MHz 
l/Z 

l37{6 ZPl / Z) = lZ75 ±45 MHz 

The values are in good agree~nt with those as follows obtained from 

Eq. (84) by using the known values for the ground-state hfs of the 
Z 133 

isotopes and taking the value for the 6 Pl / Z state hfs of Csto be 

1173 MHz: 
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Table II . 127Cs Stark. Shift Data 

.. ~ Calibration Stark Shift 

Intensity Minimum MHz/(kV) 2 (kV) 2 MHz 

15.64 ±O.OS 34.0 ±l.S 532 ±25 

15.12 ±O.OS 36.0 ±1.S 544 ±2S 

15.36 ±O.OS 187.0 ±2.S 2872 ±48 

14.48 ±O.OS 37.0 ±2.0 543 ±31 
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Table III. 129Cs Stark Shift Data 

Calibration Stark Shift 

Intensi ty Mimimum MHz/(kV)2 (kV) 2 MHz .(' 

Ct+ 15.17 ±0.05 25.0 ±2.0 379 ±32 

0+ 15.64 ±0.05 181.0 ±2. 5 2831 ±48 

Ct+ 15.48 ±0.05 29.0 ±2.0 449 ±32 



Intensity Minimum 

a' 

B~ 

0' 

0' 

a+ 

a + 

0+ 

a+ 

0+ 

a+ 

a+ 

0+ 

-57-

Table IV. 134mCs Stark Shift Data 

Calibration 

MHz/(kV) 2 

15.40 ±0.05 

15.40 ±O .OS 

lS.40 ±O.OS 

15.40 ±O.OS 

lS.70 ±O.OS 

15.64 ±O.OS 

15.64 ±O.OS 

15.36 ±O.OS 

15.36 ±O.OS 

15.56 ±O.Os 

15.36 ±O.OS 

15.36 ±O.OS 

Stark Shift 
(kV) 2 MHz 

332.0 ±2.0 5113 ±47 

411.0 ±2.0 6329 ±sl 

365.0 ±2.0 S621 ±49 

443.0 ±2.0 6822 ±s3 

93.0 ±1.s 1460 ±28 

94.0 ±2.0 1470 ±36 

128.0 ±4.0 2002 ±69 

93.5 ±2.0 1436 ±3S 

130.0 ±4.0 1997 ±68 

90.0 ±3.0 1440 ±sl 

94.0 ±3.0 1444 ±sl 

131.0 ±3.0 2012 ±S3 
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Table V. 134Cs Stark Shift Data 

Calibration Stark Shift .. 
Inten~ity Minimum MHz/(kV) 2 (kV) 2 MHz 

0+ 14.48 ±0.04 44.0 ±4.0 637 ±60 

0+ 14.39 ±0.04 47.0 ±2.0 676 ±31 

0+ 14.48 ±0.04 45.0 ±1.5 652 ±24 

0 14.30 ±0.04 136.0 ±3.0 1945 ±48 

0 14.48 ±0.04 135.0 ±2.0 1955 ±34 

a' 14.76 ±0.01 585.0 ±3.0 8635 ±50 -
o ' 14.73 ±0.01 757.0 ±3.0 11151 ±52 

a' 14.76 ±0.01 '587.0 ±2.0 8664 ±35 

0' 14.73 ±0.01 757.0 ±3.0 11151 ±52 -

I~ 
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Table VI. 137Cs Stark Shift Data 

'1 Calibration Stark Shift 

Intensity Minimum MHz/(kV) 2 (kV) 2 MHz 

IS 14.39 ±0.03 109.0 ±3.0 1569 ±46 

(l' 14.42 ±0.03 575.0 ±3.0 8292 ±52 

(l' 14.45 ±0.04 574.0 ±3.0 8294 ±65 

IS 14.48 ±0.03 102.0 ±3.0 1549 ±46 

IS 14.48 ±0.03 108.0 ±2.0 1564 ±32 

(l' 14.59 ±0.04 570.0 ±4.0 8316 ±80 

(l' 14.54 ±0.04 572.0 ±3.0 83.7 ±66 

" 
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127 2 1136 MIz (6 P1/ 2) (calc) = 

129 Z 1178 Miz (6 P1/2) (calc) = 

134m 2 470 MHz (6 P1/Z) (calc) = 

134 2 (6 Pl/ 2)(ca1c) = 1336 M-Iz 

137 Z (6 Pl/2)(ca1c) = 1291 MHz • 

2. Isotope Shift in the Dl Line 
2 From the measured hyperfine structure of the 6 P1/ 2 state and 

the position of any of the intensity minima, the isotope shift relative 

to 133Cs of a radioactive cesium isotope can easily be determined as 

follows. With reference to Fig. 18, it is evident that 

IS(
lZ7

Cs - 133Cs) = [} IIv1Z7 
(6 ZSl/Z)+o+- } IIv1Z7 (6 ZPl/Z)] 

[
7 133 2 9 133 2 ] - 16 ~v (6 Sl/2)+ 16 .~v (6 P1/ 2) . 

= + 177 ±45 MHz 

-3 -1 = + 5.9(1.5) x 10 em . 

Similarly, we obtain 

IS(129Cs - 133Cs) = +2.8(1.5) x 10-3 cm-1 

/ IS(133es _134~s) = -2.2(1.2) x 10-3 em~l 

IS(133Cs 134Cs ) = +1.8(1.0) x 10~3 em-I 

IS(133es - 137es ) = -6.0(1.5) x 10-3 em-I 

f~ 
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Fig. 18. Schematic energy level di~gyam for the detennination of the 
127Cs _ 133Cs isotope shift. 
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Here a positive sign means that the wavenumber of the Dl line for the 
133 indicated isotope is greater than that for Cs. 

C. Calculation of Nuclear ;Defonnation from the Isotope Shift 

The total observed isotope shift is a sum of the contributions from 

the mass effects and the field effect, i.e. 

o(6E)total = o(~E)nor. mass + o(~E)sp. mass + o(~E)field(85) 

where it is now assumed that the values of o(~E) apply to the differences 

in the upper and lower levels involved. in the Dl transition. The nonnal 
3 -1 mass shift can be calculated from Eq. (9) and is found to be -0.34 x 10- em 

f th . . l33C ,134C All· b B ch 23 or e Isotope paIr s - s. recent reca cu atlon y au e 

shows that the specific mass shift, which is given to be +0.38 x .10- 3 em-I 

for the same pair, almost cancels the nonnal mass shift. Under this 

favorable condition the mass shifts may entirely be neglected and Eq. (85) 

maybe rewritten as 

(86) 

Fradkin24 has given an estimate of the ratio of the isotope shifts 

arising from s and Pl/2 electrons of the same principle quantum number; 

this is equal to a2/ (1 +0) 2 (where a and 0 are as defined in section lIB), 

assuming hydrogen-like Schroedinger wave function. Its numerical value 

for cesium is about 0.04. Huehnennann and Wagner25 have obtained for 

the l33Cs - ,134Cs isotope shift in the Dl and D2 lines the respective 

values of +1.17 (5) x 10-3 em-I and +1. 25 (6) x 10-3 em-I. If we assume a 

cancellation of the mass effects in the D2 line also, the difference 

between these two values can then be explained as tile isotope shift of 
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2 the 6 Pl/2 state. This corresponds to a ratio of 0.06. Therefore, the 

assumption of no isotope shift for the Pl/2 electron seems to be well 

justified, if we are interested in only getting somethin~ of a qualitative 

nature out of the isotope shift data. 
25 2 

Under this assumption we may then write, using Eq. (52) and ex = 4TI B ' 

oR 5 2 
o (llE) total = L\Esph [20 R 0 + 04TI 0 (B )] 

o 

h Ob () d- 1/3 -13 tho were llEsph is glven y Eq. 23 anRo = 1.2A x 10 an. 1S 

(87) 

relation permits us to calculate the squared nuclear deformation parameters 

of the isotopes from the isotope shift data. In Table VII are presented 

the results to date on the isotope shifts (measured with respect to 

133C ) f 0 h 0 0 0 th 1 d I th s 0 e1g t ces1um 1sotopes In. e nuc ear groun state. n e case 
l3r 132 0 of Cs and Cs, the 1sotope shifts are measured in the D2 line. 

2 Assuming no isotope shift for the 6 Pl / 2 state, they serve our purpose 

well; and no correction is made. 

Table VII gives also the spectroscopic quadrupole moments and the 

intrinsic quadrupole moments obtained from the formula 

Q = (1+1)(21+3) Q 
o I (21-1) 

where Qo is the intrinsic quadrupole moment and Q the spectroscopic 

quadrupole moment. 

In the evaluation of llE h' the value ofl1jJ(o) 12 'used is the sp 

average of the values obtained with the aid of Eq. (73) from the knoWn 

nuclear- magnetic moments and ground-state hfs of the isotopes. These 
." 

(88) 

values are given. in Table VI II, together wi th the As's. The normal volume 

effect is calculated to be 10.7 x 10- 3 an-I per addition of one neutron. 

.. " ~- .. 
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Table VII. Isotope Shift and Nuclear Quadrupo1e'Moments* 

Cesium IS in 10-3 on-I Q Qo 
( 1 '. . 133C ) ,)1 

Isotope re atlve to s barns barns 

127 +5.9 ±1.5 

129 +2.8 ±1.5 

131 -0.33 ±0.05 -0.59 ±0.01 -1. 596 

132 +1. 72 ±0.05 +0.46 ±0.01 + 1.610 

133 0 -0.003 ±0.002 -0.006 

134 +1.8 ±(1.0) +0.356 ±0.002 +0.699 

135 -1.23 ±0.11 +0.049 ±0.002 +0.105 

137 -6.0 ±1.5 +0~050 ±0.002 +0.107 

* Values not obtained in this experiment are taken from Refs. 26-31. 
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Table VIII. Vaiues of As and 1~(o)12 

As 
-20 10 erg 

5896.401 

6114.369 

1522.568 

1541.309 

287.185 

1675.427 

2.608 

2.632 

2.638 

2.627 

2 .. 670 

2.633 

Average 2.634 

t" , 
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The resulting 
, 2 

calculated values for (3 are 

132 (127Cs) 11.27 x 10- 2 + S2(137Cs) 

S2{129Cs ) = 8.55 x 10-2 + (32(137~s) 

132 (131CS) = 6.63 x 10-2 + 132 (137CS) 

132 (132CS) = 5.24 x 10- 2 + 132 (137Cs) (89) 

132 (133Cs) = 4.21 x 10-2 + 13 2 (137Cs) 

132 (134Cs) = 2.81 x 10-2 + 132 (137Cs) 

132 (135CS) = 1.85 x 10- 2 + S2(137CS) 

Here the value of l37Cs is chosen as the reference point, since l37Cs has 

a magic closed neutron shell with N = 82. 

The nuclear deformation parameters can also be calculated from the 

intrinsic quadrupole moments according to the formula 

Q = 3 1 ZR 2 (13 + 0.36 132) • 
o (5n)'2 0 

(90) 

2 137 ,. . -2 r 

Taking B ( Cs) = 0.01 x 10 as calculated from Eq. (90), numerical 

values can be obtained for the quantities in Eq. (89). These values are 

presented in Table IX and plotted against the mass number A in Fig. 19, 

together with the values obtained on the basis of Eq. (90). 

" .. 
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Table IX. Values of S2 

• Cesium Isotope From Isotope Shift From Quadrupole Moment 

127 11.28 

129 8.56 

131 6.64 1.07 

132 5.25 1.08 

133 4.22 0.00 

134 2.82 0.20 

135 1.86 0.01 

137 0.01 0.01 
( 
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Fig. 19. Square of nuclear deformation parameter versus mass 
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VI. DISCUSSION 

Both the presence of the finite though small isomeric shift 

134 134m . between Cs and Cs and the nearly complete cancellatlon of the 

mass effects seem to indicate that the observed isotope shifts arise 

essentially from the nuclear field effects. As is evident from Fig. 19, 

the nuclear deformation derived from the isotope shifts shows a steady 

increase with the increase of the number of neutron holes. This 

observation is in agreement with the theoretical prediction of the 

existence of a region of nuclear deformation among neutron deficient 

isotopes in the region SO ~ Z ~ 82 and SO ~ N ~ 82. 32 ,33 The experimental 

observation of deformed nuclei amo~g the neutron deficient even isotopes 

of Xe,34 Ba and Ce 35 also has a bearing on this point. Moreover, these 

defonred nuclei have ground-state bands characterized between rotational 

and vibrational, i.e. they are not permanently deformed. Since 

(S . b) = 0, the resulting hltrinsic quadrupole moment will be, as can 
Vl 

be seen from Eq. (90), much smaller than it would be if the nucleus 

were permanently deformed. 

The above evidence seems to be a convincing argument in favor of 

the interpreationthat the smallness· of the observed shifts in the 

cesium isotopes is a result of the counteraction of the two field 

effects. 
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