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ABSTRACT 

We present a new method for deriving spectral:";;(" ',,\ 

function sum rules in a theory of currents. Applying 

this method to Sugawara's theory we obtain the Weinberg 

sum rules along with higher moment sum rules that may 

be used to test that theory. 

First we briefly discuss a methodl.for deriving spectral 

function sum rules. We center our considerations on the time ordered 

product: 

= -i d x e' (AIT[J a(x) J (O)]IB) , J 4 iq'x ' b 
I.l v 

(1) 
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In a theory of currents, where the Hamiltonian H .is known, M:~(q) 

can be expressed as a sum' of terms each of which is given by well-

specified equal time commutators. This is easily seen, by expanding 

the current J~a(x) in powers of the variable xo' to yield 

Mab ( .) ~y q = !o Jd3
X e-iq)t (AI [J~a(O,X), Jyb(O)] !:B) 

+ . > J d3x e -iq'x'(A! [[J~ "(0,1), H], J vb(O)] IB) 

o 

I f i-H + -E.:.... d3x e - qX(A ,.[ ... [J a(o,X), H],··· ,H], 
n+l . ~ ~ 

go n+l 

J b(O)J IB) 
y 

(The Bjorken limit2 is that where -+ wi th q fixed. In this 

(2) 

paper we do not go to this limit.) Clearly, if H is known all terms 

on the right-hand side of (2) can be calculated (althougL some terms 

are very singular) and one has an expansion for in powers of 

If we write now M in terms of integrals over higher order 
~v 

spectral functions we obtain sum rules for these functions by simply 

1 comparing terms of equal powers of -- on both sides of (2). 
qo 

This is most easily demonstrated for the two-point spectral 

functions .as we shall proceed to show. We cons'ider the vector (v ) 
~ 

and axial vector (A ) 
~ 

currents in the Sugawara theory.3 In this 

theory one has SU(3) ~ SU(3) currents obeying the equal-time commuta

tion relations of the algebra of fields4 with an energy-momentum- tensor 

e constructed as follows: 
~v 

0·, 

L 
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El = l2C([V a(x), Va(x)] - g [v a(x), v I-l(x)] + (v ~A)} . (3) 
I-lV I-l v + I-lV I-l a + 

Adopting 800 as the Hamiltonian density one obtains the followingo 

equations of motion: 

d v a(x) d V a(x) = l2Cf b ([V b(x),V C(x)] + [A b(x), A c(x)J } 
I-l .v v I-l a C I-l v + I-l v + 

dI-lAva(X) - dVAl-la(X) = ~cfabc([vl-lb(x), AvC(X)]+ + [Al-lb(X), Vvc(x)J+} 

(4) 

Following Weinberg5 we write 

1 f 4 8( ) e-ipx PV(p2)[g"v - Pf.l2V
] 3 cab d p " Po .... 

(2rr) p 

a b 1 J 4 ( ) -ipx 2 [ PI-lPV (OIA (x) A (0) 10 ) = --3 cab d P e Po e (PA(p) g"v - -2-J 
I-l v (2n) .... P 

It then follows, that 

- i J d 4 x e i q x (~I T [v I-l a ( x) V vb ( 0) J 10) 

= cab f dm
2 

pv (m
2

)E·gI-lV + q~~vJ~(q 2;m
2

) (6a) 

and 

(6b) 
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with 

2 2 
. ~(q ;m ) 

1 
2 2 

q - ill + iE 

From (6) we see that the only qo dependence is given in the factors 

and 2 2 
~(q ;m ), Thus expanding (6) in powers of ~ is 

. qo 

straightforward and the coefficients are integrals over the spectral 

functions Pv and PA, Through Eq, (2), with IA) and I B) taken 

as the vacuum states, the integrals are then given by the symrnetric part 

(in the internal sYnL.'Uetry space) of equal time cormnutators of the form 

[,' ,[J a(O ~ H] "'H] J b(x)], ~ ,X)" 'v 

We consider the case ~ = v = i and isolate in (6) the term 

proportional to Through Eq, (2) we get 

Using the Sugawara Hamiltonian we find that 

(8) 

which leads to the equality of the left-hand sides of (ia) and (7b). 

Since qi is an independent variable, this leads to the two Weinberg 

sum rules: 

, 
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, 

f 2 2 2 
dIn [py(m) .~. PA (m )] = o. 

, , , 

Obviously these a~e not the only sum rules6 that we can derive, for now, 

we can proceed further and isolate higher terms,. e.g. the \ term 
qo 

(we put here q:i::: 0. 7): From (6) we then have 

f 2 2 2 
- dm m py(m ) = (Sym.)Jd3

X e-i9X(OI[[[Yi
a

(O,30,H],H],H]'Yi
b

(O)J 10) , 

(lOa) 

( )f 3 -iVt( . a( ::\ b 
= sym. d xe ' 01[[[Ai O,x),HJ,H],H],Ai (O)J 10) . 

Again using the explicit form (4) of the equations of mc"",ion we get 

which implies of course the following sum rule: 

= 0 

As a matter of fact, due to the symmetric roles which Y and A 
Il Il 

play in the equations of motion and 

explicitly show that 

which leads to the result 

e it seems that one can 
Ilv' 

(lOb) 

(12) 

., 
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= 0 

Moreover Eq. (13) implies through Eq. (12), if- the expansion (2) 

converges, the result that for any state IA~ and IB): 

or 

= 

Discussion: 

(14) 

(15) -

(16) 

That we are able to derive Weinberg's first sum rule (9a) from 

Sugawara's theory is expected, since this is a consequence of the algebra 

of fields~,6:incorporated explicitly into the theory. The second and 

higher moment sum rules, however, are a consequence of our method and 
I 

the Sugawara Hamiltonian. As can be seen from (9a, 9b), (12) and (14) 

we obtain the following result: 

F == O· 
11: 

This is also to be expected since we are dealing with a theory of 

perfect symmetry. For a study of theories with symmetry breaking.our 

techniques apply as well but not as simply. For example, we find that 

at the SU(2) ~ SU(2) level, if we break the symmetry by introducing 

PCAC according to Bardakci, Frishman and Halpern,8 the right-hand side 

of (12) becomes proportional to singular vacuum expectation values of 

operators of the form [V. (0) V. (0) a(O) ] and [A. (0) A. (0) a(O)]. 
~ ~ ~ ~ 

Similar results are also obtained for sum rules derived independently 

for 1 PV and PA by a direct comparison of the same powers of 
qo 

\ 
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in Eqs. (2) and (6) .. In these cases one can use the sum rules to 

estimate the nature of the singularities of such expectation values 

if a knowledge of the high m2-behavior of the spectral functions is 

available. 

Since our higher moment sum rules are derived from a study of 

differences like [· .• [V,H],···,H],V] - [ .•. [A,H];··.,H],A], it is 

then hoped that, in some theory with broken symmetry, such differences 

could be expressed in manageable quantities leading to meaningful 

such sum rules. 

It would be interesting to study these higher moment sum rules· 

in the broken-symmetry theory recently proposed by Sugawara. 9 However, 

one will probably find the breaking also expressed in terms of singular 

functions that are vacuum expectation values of products of currents 

. at the same space.-time point. 

For sum rules obtained from the Bjorken limit of (2) we refer 

the reader to Ref. 10 and 11. We only mention in passing that a direct 

use of Sugawara's Hamiltonian in the sum rule derived by Bjorken2 for 

the process + e + e- ~hadrons leads to a quartic divergence for the 

00 2 4· 2 
integral ~o dq q atot(q), which is his result as well. 

The methods discussed above can be extended to the study of the 

higher n-point functions of the currents and of course also for other 

Hamiltonians than the Sugawara Hamiltonian, e.g. those derived from 

effective LagrangianB. 

,1 
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