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TRANSVERSE SPACE-CHARGE EFFECTS IN CIRCULAR ACCELERATORS

Frank James Sacherer
Lawrence Radiation Laboratory

University of California
Berkeley, California

October 30, 1968

ABSTRACT

The particles in an accelerator interact with one another by
electromagnetic forces and are held together by external focusing
forces. Such a many-body system has a large number of transverse modes
of oscillation (plasma oscillations) that can be excited at character-
istic frequencies by errors in the external guide field.

In Part I we examine one mode of oscillation in detail, namely'
the quadrupole mode that is excited in uniformly charged beams by
gradient errors. We derive self-consistent equations of motion for the
beam envelope and solve these equations for the case in which the space-
charge force is much less than the external focusing force, i.e., for
strong-focusing synchrotrons. We find that the resonance intensity is
shifted from the value predicted by the usual transverse incoherent
space-charge limit; moreover, because the space-;harge force depends on
the shape and size of the beam, the beam growth in aiﬁays limited. For
gradient errors of the magnitude normally present in strong-focusing

syneihrotrons, the increase in beam size is small provided the beam
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parameters are properly chosen; otherwise the growth may be large. Thus
gradient errors need not impose a limit on the number of particles that
can be accelerated.

In Part II we examine the other modes of collective cscillation
that are excited by machine imperfections. For simplicity we consider
only one-dimensional beams that are confined by harmonic potentials, and
only small-amplitude oscillations. The linearized Vlasov and Poisson
equations are used to find the twofold infinity of normal modes and
eigenfrequencies for the stafionary distribution that has uniform charge
density in real space. In practice, only the low-order modes (the
dipole, guadrupole, sextupcle, and one or two additional modes) will be
serious, and the resonant conditions for these modes are located on a
tune diagram. These results, which are valid for all beam intensities,
are compared with the known eigenfrequencies for the stationary distri-
bution that has uniform particle density in phase space, and are

extrapolated to the Gaussian distribution cbserved in the Brookhaven AGS.
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INTRODUCTION

The beam of particles in an accelerator is a many-body system of
charged particles interacting with one another by electromagnetic forces
and held together by external focusing forces. Such a many-body system
has a large number of modes of collective oscillations that can be
excited by machine imperfections at characteristic frequencies. 1In the
limit of low intensities, the interactions are negligible, and the
collective modes and eigenfrequencies are easy to find. Consider, for
example, a one-dimensional beam in an external harmonic potential; in

the absence of space charge, the individual particles obey the equation

L2+ vk =0 (2)
ag
. : ; ; ; ; 1l dx
and any distribution of particles rotates rigidly in the x - < Eﬁ

phase space with the frequencéy v. A distribution with circular
symmetry (Fig. la) is stationary, while a distribution with circular

symmetry, but displaced from the origin (Fig. 1b), oscillates with the

X x' x
” > i
4 ' /)
1 % N7 x 7 T
N |7 [ |/
e
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frequency v - in real space, the beam oscillates rigidly back and forth
at the frequency v. In fact, there is an infinite number of modes with
the circular form of Fig. lb, each with a different radial dependence,
but each oscillating at frequency v. Similarly, there is an infinite
number of modes with the elliptical symmetry of Fig. lc; in real space,
these modes expand and contract with frequency 2v. In general, there
is an infinite number of modes with a given n-fold symmetry of rotation,
and each mode oscillates with the frequency nv. Therefore, in the
absence of space charge, the eigenfrequencies for any distribution are
Just harmonics of the unperturbed betatron frequency, and each eigen-
frequency is infinitely degenerate.

Resonance can occur when an eigenfrequency is an integral
multiple of the rotation frequency in the accelerator, i.e., when
ny = m; this condition is of course identical with that obtained from
the single-particle approach, which is equivalent to the many-body
approach in the limit of zero intensity. Thus if a driving tern of the

form x cos k @ is added to Eq. (1), the various dipole modes (Fig. 1b)

will be excited if v =k and n = 0,2,4,---; the quadrupole modes
. . ’ k
(Fig. lc) are excited if v = 5 and n =1,%,5,"*"; the sextupole
: k
modes if v = 5 and n = 2,4,6,***, and so on for the higher-order

modes.

Space-charge interactions modify these results. For intensities
of interest in synchrotrons, and for small-amplitude oscillations, the
eigenfrequencies are shifted by small amounts proportional to the beam

intensity, and the degeneracy is removed so that the eigenfrequencies
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occur in clusters near the unperturbed, degenerate values nv. As a
result, each of the forbidden lines on a tune diagram that would occur
for an integer, half-integer, or subharmonic value of v in the absence
of space charge is split into an infinite number of closely spaced
lines. For example, the various dipole modes that are excited for the
same freguency v =k in the absence of space charge are excited in the
presence of space charge at different frequencies that are clustered
below the value v = k: there is one mode for which the beam oscillates
rigidly back and forth at the unperturbed frequency v, but there is
also an infinite number of nonrigid modes whose eigenfrequencies are
shifted below v = k by amounts proportional to the beam intensity.

The above remarks apply only to small-amplitude oscillations.
For larger-amplitude oscillations, space charge provides a very effective
mechanism for limiting beam growth through the nonlinear dependence of
the space-charge forces on the shape and size of the beam. A guantita-
tive study of this important effect is extremely difficult in the general
case; however, it was shown by Lloyd Smitﬁ'and by P. M. Lapostolleg
that the quadrupole mode excited by gradient errors in uniformly charged
beams can be analyzed even in the nonlinear regions.

In Part I of this paper we examine this case in detail. In
Section 1, self-consistent equations of motion for the beam boundary
are derived for uniformly charged beams with one and two degrees of
freedom. The derivation, which is more general than we need, is
applicable whenever the self-forces and external forces acting on the

individual particles within the beam are linear. 1In Section 2, the
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envelope equation for the one-dimensional (planar) beam is solved, and
in Section 3, various two-dimensional (cylindrical) beams are examined.
For either case, the nonlinear character of the space-charge force
causes the frequency of the quadrupole mode of oscillation to depend on
its amplitude. Thus the beam growth caused by gradient errors is always
bounded. We also investigate the process of resonance crossing that
results from slow variations in external focusing or effective space-
charge force and find, for gradient errors of the magnitude normally
encountered in AG synchrotrons, that resonances can be crossed in the
direction of increasing frequency with only a small increase in beam
size. However, if the resonance is crossed in the direction of decreasing
frequency, a substantial increase in beam size can occur. For example,
if the beam is caused to bunch in the synchrotron, the space-charge force
increases, and the beam size can grow quite large near the intensity
predicted by the bunched incoherent space-charge limit. However, a
prebunched beam whose intensity is considerably larger than the incoherent
space-charge 1limit may be successfully accelerated. In this case, the
resonance is crossed in the direction of decreasing space-charge force,
and very little beam growth occurs. Thus, the incoherent space-charge
limit, as usually defined, need not impose a limit on the beam intensity.
Similar results have been derived by 7. Sacherer,3 and by P. M. Lapostolle
and L. Thorndahl. .

In Part IT we investigate the other modes of collective oscilla-
tion that are excited by machine imperfections. For simplicity we

restrict our attention to one-dimensiocnal, planar beams, and consider
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only small-amplitude oscillations. In this case the twofold infinity

of normel modes (plasma oscillations) and eigenfrequencies can be found
by means of the linearized Vlasov equation and Maxwell's equations.
Harker5-has given a general prescription for reducing these equations

to an integral equation of the Fredholm type, but numerical methods are
usually required to extract the eigenfunctions and eigenvalues. However,
an important result of this paper is a direct method for finding all

the normal modes and eigenfrequencies for the stationary distribution
corresponding to a uniform charge distribution in real space.

In Section 1 of Part II, we find the eigenfunctions and eigen-
values for this case, and determine which modes are excited by a given
external driving force. Then, since the complete eigenvalue spectrum
is known, the resonant frequencies for the various dipole, quadrupole,
and higher-order modes can be located on a tune diagram. Besides being
useful in themselves, these results provide considerable insight into
the more difficult normal mode problem for nonuniform beams.

In Section 2, this mode structure is compared with that obtained
by Ehrman6 for the stationary distribution that has a uniform particle
distribution in phase space. In this case the charge density in real
space is approximately uniform, and we find that the eigenvalue spectra
for the two distributions are very similar. We also extend these
results to a distribution with Gaussian charge density similar to that

measured for the Brookhaven AGS.
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PART I. UNIFORMLY CHARGED BEAMS IN THE PRESENCE OF
GRADIENT ERRORS

1. Envelope Equations

In this section we find self-consistent envelope equations for
the case in which both external forces and self-forces acting on the
particles in a beam are linear. The requirement of linear forces
restricts us to uniformly charged beams and to linear machine imper-
fections, namely gradient errors, but allows us to study the effects
of space charge on large-amplitude oscillations of the beam.

| We first consider the simple case of a beam with only one
degree of freedom, then extend the derivation to two degrees of free-
dom, and finally show that the derivation can not be extended to three
degrees of freedom.

The One-Dimensional Beam

In the absence of space-charge forces, we take the equation of

motion for the individual particles to be

a°x
ds

+ K(s) x = 0., (1-1)

N

where K(s) is the external focusing function, s measures distance
along the equilibrium orbit, and all the particles are assumed to have
the same velocity %% = v?.
The self-forces acting on a particle arise from the internal

charges and currents within the beam,7 as well as from the charges

and currents induced in the vacuum chamber walls,B and also from
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collisions. between particles. Fortunately, the effect of collisions

is negligible for the times of interest, and for the low particle densi-

ties typical in accelerators.9
We incorporate the image force into the external focusing term

K(s) x, and neglect its nonlinear components and its weak dependence on

the beam size. Then the net effect of the image force is to shift the

tune by an amount that depends on intensity and energy but not on the

beam size,8 in contrast to the direct self-force.

We also neglect the magnetic field component that results from

the transverse particle velocities because is only a hundredth to

ax
at

a thousandth of the longitudinal velocity %% . The force from the
2

v

-

2
c

remaining magnetic field component is just times the electric

force, and need not be calculated explicitly. The complete self-force
is l/y2 times the electric force.'

The electric field calculation is simplified by neglecting the
curvature of the equilibrium orbit and by neglecting the variation of
the beam cross section with s. Actually the beam is modulated around
the orbit circumference, but the modulation length is approximately half
the betatron wavelength and is therefore negligible in comparison with
the transverse dimensions of the beam.

The beam geometry then has the rectilinear form shown in Fig. 2,

and in order that the self-forces be linear, the charge density must be

uniform between the boundary planes, x = #X(s). We assume for the
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e

Fig. 2.

moment that the particles can be arranged in the x - %g phase space

4

to produce the required uniform charge density, and that the charge
density remains uniform as the gystem evolves under the action of the
assumed linear forces. Then the equation of motion for the individual

particles is

2 2 N
by 1
Q;% + K(s)x - 5’6 e ¥ = (1-
ds” y'mv_~  2X(s)
i
eN
where %5 is the charge density and eNl is the total charge per
A

unit surface area. It is convenient to write (1-2) in the form of the

two first-order equations
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A5
]
g

2 N
- [-K(s) i ]x : (1-3)
7y 2X(s)

and to define X =(;) so that Egs. (1-3) can be written in the

compact matrix form

d)éssl = F(s) x(s) . (1-4)

We also introduce the transfer matrix T(s, so)

X(s) = (s, 5g) X(sy) (1-5)
and note that the elements of T(s, so) satisfy
dP(s; so)
-~
— = F(s) T(s, so) : (1-6)

Since we know the equations of motion for the individuwal particles,
we can determine the evolution of any distribution of particles in phase
space. In particular, if the distribution at any position Sy has the
elliptical boundary 3&4’1(50)}( = 1, where M(SO) is an arbitrary
symmetric matrix, then the boundary remains elliptical at other values

of s and has the form

MiG)x = 1, (1-7)
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where M(s) = T(s, SO) M(so) T(s, SO). We can use (1-6) to write the

equation of motion for M(s) in the differential form

d_lgéil = F(s) M(s) + M(s) F(s) |, (1-8)

which depends only on the known quantities F(s).
The relationship between the components of M and the boundary

€ellipse is shown in Fig. 3, where the area of the ellipse is = VDet M,

which we designate by xE. We are primarily interested in the beam half-

Fig. 3.

width- X(s) = V-Mll(s) ; and it is convenient to parameterize M(s)

in the form

o
i

M = 3 (1'9)

no

"ol
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2
where PE - iﬁ is the maximum extent of the distribution in the

p-direction. Then the equations of motion for the quantities X(s),

P(s), and E(s) follow immediately from (1-8):

ax
3 = mF * My s
dp g2
T = FoyX + FpoP + Flgx—5 3 (1-10)
dE £
& E(Fll < F22)E
For a Hamiltonian system, F., + F., = 0, and thus E is constant,

11 22

which is just Liouville's theorem. When the form of F(s) corresponding

to Eq. (1-3) is used, Egs. (1-10) reduce to

a°x o gﬂeaNl
=5 + K8)X = = - 335 < o ., (1-11)
ds X ¥ mv.

for the beam half-width X(s).

We now demdnstrate the Eq. (1-11) is self-consistent, i.e., that
the individual particles can be distributed in phase space to produce
the assumed uniform charge density within x = #X(s). We require that
the particle density in x-p space at s = 8y have the form
{x; p; so) = f[iM-l(so)X], where f(x, p, s)dxdp is the number of

particles at s within the ranges (x, x + dx) and (p, p + dp). Then
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gy
at arbitrary s the distribution has the form f£(x, p, s) = f[XM (s)%],

and the functional form of f is determined by the requirement

N S
- f £[XM " (s)Xldp - (1-12)

1
2X(s)
We solve this equation by introducing the new variables

-
1
v = (; :) = D(s)X, where the matrix D(s) satisfies
v
2

B(s) Dls) = M i(s) (1-13

2

=
Then the quadratic form XM ~(s)X is transformed into VTV, and

the elliptical distribution becomes circular, as shown in Fig. L.

P Vo 2
) /"p T/‘“\ | {/”T\
P NVZE N2
(a) (o) (c)
Fig. L.

Actually, the four components of D(s) are not uniquely specified by

(1-13) vecause M(s) depends on only three parameters; the ellipse is

-

mapped into a circle but the orientation of the circle is noﬁ specified
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We fix the form of D(s) by requiring that the vertical lines

x = constant be mapped into vertical lines in v (Fig. 4e). Then

D, =0, and D(s) is determined by (1-13) to be
1
3 0
D = (1-14)
2 £
E E

This is a convenient choice for D(s) because it maps the integration

over p in Eq. (1-12) into an integration over vy, with dv, = E%El dp.

The requirement of uniform charge density is then simply

Bl

2 2
- ff(vl + vy )dv, (1-15)

where the range of integration is restricted to v12 + v22 £ 1. DNote

that (1-15) is independent of s. In terms of the radius

12 22 , Eq. (1-15) becomes

j/ 2 2
ro-v

1

1
N 2
L f £ )rdr (T3
- 5
"1

This integral equation can be inverted by Abel's theoremlo to give

N N

. -—1 l

f(MTX) = = = =
oE V1 - 0ty 2n\/E12 - (Xx' - X’x)2 - (}E{E)

(1-17)




-1h- UCRL-18454

which is the unique solution of (1-12). This demonstrates that the
particle distribution required to produce a uniform charge density does
indeed exist. It occupies the interior of the boundary ellipse
%M-lx = 1, and the particle density approaches infinity at the boundary.
Equation (1-11) is then the envelope equation for this distribution.
Actually, this method for finding self-consistent envelope
equations is not restricted to uniformly charged beams, but is applic-
able whenever the external forces and self-forces are linear. For
example, it was used by H. G. Hereward and A. Sﬁrenssen to study longi-
tudinal beam effectsll where, due to the shielding of the vacuum
chamber, a parabolic charge density is required to prﬁduce linear self-
forces. For any case, the envelope equations are just equations (1-10)
where F(s) is specified by the equations of motion (1-4) for the indi-
vidual particles. The distribution f(“m'lx) that produces the
required charge density p(x),

(2]

plx) = ff(”m'lx)dp s (1-18)

-co

can be found by the same procedure that was used for the case of

X
uniform charge density. The condition ‘f. o(x)dx = Nl requires that
=X

N
p(x) have the form % g(%), and Eq. (1-18) can be transformed by

D(s) dinto the circular form

Fa) = [ oe? v, (1-19)
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a(v, )

which can be inverted by Abel's theorem provided -——— 1is continuous.

dvl

Thus, the self-consistency of the envelope equations is guaranteed
provided p(x) has a continuous first derivative.

The Two-Dimensional Beam

In principle this method can also be extended to beams with two
and three degrees of freedom. The matrix equations remain formally
valid when the vector X(s) is increased to four or six component, but
now the constants of the motion ?M-l(s)x describe hyperellipsoids in
the four- or six-dimensional phase spaces. The required distribution
function f(ﬁM-lX) that produces linear self-forces can be found by
transforming the defining equation for f into the circular form
analogous to (1-19), but now for four or six dimensions.

Consider first the case of a beam with two degrees of freedom.

_4s
&

and for the purpose of calculating the electric field, that the beam is

We again assume that all the particles have the same velocity v

in the form of a cylinder with an infinite extent in the s direction.
Then the condition of linear self-forces requires that the beam have an
elliptical cross section and a uniform charge density. However, the
axes of the elliptical cross section need not be aligned with the
coordinate axes, and the external focusing force may include linear

coupling between the two transverse directions. The evolution of the

10

2

distrivution is then determined by a four-by-four matrix F(s) (Eq. 1-4),

and the constants of the motion %ﬂ-lx describe hyperellipsoids in the

dx z
it —, Z, — hase space.
s Fs? % Fs b b
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We can immediately write the defining equation for f in the

form
constant = v 2 vl avavw )dv_av (1-20)
1 2 3 i ko 2
2 < p . 2 2 2 2
where the integration is restricted to vy + v2 + v5 + Wy £1l, and
12 .
where the constant can be determined by the normalization of f.7 This

shortcut avoids the specification of D(s). With a change of variatles,

Eq. (1-20) becones

I
e B [ 2a) 4 (1-21)
0

.

where Eg is the number of particles per unit length in the beam. The

required distribution function is the solution of (1-21):

N
~ -—.' -
(M X) = e 5(1 - XM lx) 5 (1-22)

ng VDet M}

where 8(x) 1is the usual delta function. The particles are distributed
with uniform density on the surface of the four-dimensional hyper-
elliﬁsoid X "X = 1, whose shape and orientation is specified by the
ten independent parameters of the four-by-four matrix M(s).

The self—fofces are determined by the projection of this distri-

bution onto the vhysical x-z oDplane. This projection is uniform and
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2

2 2
M35x - 2M13xz - Mllz = M11M33 - Mi5 ,  (1-23)

!
which describes an ellipse of area ﬁ\fMllmzi B Ml52 . In terms of

the major and minor axes and angle of rotation as shown in Fig. 5,

Z

rd
o
s
- o
i
sl

Fig. 5.
these matrix elements are
s
= a2 00329 + b~ singe B
7.
s
Mji < g sin29 £ b eos-o 5 (1-2L4)

1]

2 Sy
(b= - a”)sine cose >

"3

and the self-forces are easily determined.

The evolution of the distribution is then determined by
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) - w(s) m(s) + M(s) F(s) (1-25)

where F(s) contains the known external forces as well as the self-forces,
which depend on the matrix elements Mll’ ﬁl}’ and M55. In general all
ten equations of (1-25) are necessary to describe the evolution of the
system. However, if the equations of motion for the individual particles
do not involve coupling between the two transverse planes, and if the
hyperellipsoid is oriented so that the off-diagonal submatrix with
elements Miﬁ’ Mlh’ M25, Méh is zero, then the hyperellipsoid will
maintain this orientation and these matrix elements will remain gzero.

The remaining six equations (three for the x direction and three for the
z direction) can be parameterized in the form analogous to (1-9) for the
one-dimensional beam. The self-fields for this case are

heND Ley

p — —_— _— 2 T, i
“x XX T2 x and E; =IX T ) z, and the envelope equations

become

2
a>x > 2l E_ ) Le N, 1 o
2 2 B ?
ds & X5 75mv fen, e &
1-26
) r L2 ( )
ge + K (s)z - “z - i Ne " =
9 — = )
ds® o Z} 73mvpg X+ Z

where X(s) and Z(s) are the beam half-widths, and E. and E, are

; . _ . dx dz
the Leam emittances in the x - oL and =z - = phase spaces. These
e & I
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self-consistent envelope equations, which describe a cylindrical beam
oriented with © =0 in Fig. 5, were first obtained by I. M. Kapchinsky
and V. V. Vladimirsky.™

The Three-Dimensional Beam

Finally consider the case of a beam with three degrees of
freedom. The condition of linear self-forces requires that the beam
have an ellipsoidal shape in real space and a uniform charge density.
Then Eq. (1-8) will specify the beam envelope provided a distribution
of the form f(?M-lX) exists that produces the required uniform charge
density. 1In this case the defining equation for f has the form

2 2 2 2 2
constant = [f(vl Ty AV AT 4y

2
5 + ¥ )dvhdvidv6

(1-27)

This equation unfortunately has no solution that can be interpreted as
a distribution function. The forms of the one- and two-dimensional
distributions indeed suggest that the progression from

f e (1 - %t )-% in one dimension to f o 8(1 - %M-lX) in two
dimensions will have no extension to three or more dimensions. The
actual proof, due to Maurice Neuman (private communication), is

reproduced in Appendix A.
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2. The One-Dimensional Beam

We are now in a position to investigate the motion of the uni-
form one-dimensional beam in a self-consistent manner. We rewrite the
envelope equation (1-11),

2 2 27{@%1
S5 s KX - E - 3 -

4
ds~ X0 ¥~ mv,
D

o, (2-1)

where X(s) 1is the veam half-width, <E is the beam emittance, Ny
is the number of particles per unit surface area of the beam, and %

is the particle velocity. The external focusing term K(s) includes
both the ideal focusing forces and gradient errors. The nonlinear
emittance term arises from the conservation of the beam emittance, and
has the same form as the centrifugal force term that results from the
conservation of angular momentum in céntral force problems. It prevents
a beam with finite emittance from becoming arbitrarily small, but in the
absence of space charge, it does not limit the large-amplitude growth.llL
However, in the presence of space charge, the combination of the last
two terms in (2-1) will limit the resonant growth of the beam.

We first eliminate the rapidly varying part of X(s) from the
envelope equation by transforming to "smooth" variables. In the absence
of space charge, the periodic solution of (2-1), Xp(s) = Xp(s + C),
where C 1is the orbit circumference, can be found by standard methods

once K(s) is known. It is conventionally written in the form

X,(s) = VEs(s) , . ke=2)
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where g(s) is the familiar amplitude function of Courant and Snyder.lb
Then if we transform to the dimensionless variables
X(s) [ _
X X s ] Q - VB 2 (2 5)
D
the unperturbed envelope equation (in the absence of space charge and
gradient errors) becomes
2 2
R . (2-1)
ag ©

where v 1is the number of betatron oscillations per revolution and @
increases by 2x each revolution. The general solution of this equation
is

x> = 1+4° 4+ A sin(2v@ + @) , (2-5) -

where A and @ are arbitrary constants. The matched solution is

A =0 and x =1, and any other solution oscillates about this matched
solution with the frequency 2v. Thus the dimensionless variable x
measures the beam envelope in units of the unperturbed matched envelope.

In terms of the variables x and (¢ the complete envelope

equation becomes

2

™

2
d_ + (v2 + 2vAv_ cos ng)x - X - 2wawv,, = 0 , (2-6)
i x

[AV]
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where we have assumed an nth-harmonic gradient error with stopband width

v, and vhere the last ternm is actually a function of s (or @),

2
L2 5/2L31 . 2re Ny

_ . (2-7)
VE 75mv &
D

Qv&vsc

In what follows, we replace B(s) by its average value % and neglect
the high-frequency small-amplitude ripple components in the already

small space-charge term. Then &Vsc is independent of @ and has the

form
T bre R N1 (2-8)
= 3 =
sc 2v 75mv 2 2a
D
where a = = is the average amplitude of the unperturbed envelope.

v

The gquantity Avsc is the space-charge-induced frequency shift for a
beam whose envelope is constrained to the constant value a; it is a
convenient measure of the beam intensity and is in fact identical with
the expression conventionally used for predicting a space-charge limit.

Before solving the nonlinear envelope egquation, it is informa-
tive to examine its small-amplitude solutions. 1In the absence of

FANY;

gradient errors, Eq. (2-6) has the constant solution x =1 + DSC 4
2v

and for oscillations of small amplitude & about this constant value,

the equation becomes

[o?
cn

(¥

o (hvz - 6v&vsc)8 = -2vAv_ cos ng . (2-9)

&
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Thus the envelope oscillates with the natural frequency 2(v - % Avsc),

and resonance occurs for 2(v - % &vs ) =n. If v is larger than a

c

n
half-integer by the amount Av, i.e., v = 3 + Av, then resonance occurs

at a beam intensity corresponding to the wvalue

L =
L\.Vsc = '5' Av I} (:—lo)

which is one third larger than the value usually assumed. The fallacy
in ; e usual procedure for predicting space-charge limits lies in the
asééi;ﬁion of a constant beam size: if the envelope modulation is
neglected, resonance occurs when the individual particle freguency

v - &vsc falls within the stopband at %; in other words, for the
intensity vy, = Av. However, the moduiation of the envelope causes
the self-fields to exactly cancel the effect of the gradient error at
this intensity,l6 and the resonance is shifted to AV, = % Av. This
shift in resonant intensity is not restricted to uniform beams; it
occurs for any mode of collective oscillation and is discussed in detail
in Part II.

The amplitude of the periodic solutions of the linearized

equation (2-9) are shown in the form of a response diagram for fixed

Ay Ay
E;E in Fig. 6. The E;i = 0 asymptote represents the free envelope
oscillations, which are periodic for the intensity Avgo = % Av. The

remainder of this section is concerned with the distortion of these

curves in the large-amplitude region by the nonlinear terms in (2-6).
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Fig. 6. Response diagram for the linearized envelope equation:

Av Ay

s . sc
Koo = 1+ 55&/50 il where the quantity 5y

in

Av

the constant solution x =1 + has been neglected.
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General Solution of the Envelope Equation

Both the space-charge term and the gradient-error term are

Av
small for alternating-gradient synchrotrons--they are of order =

Ay
and —— compared with the remaining terms. Consequently we treat
v

these terms as perturbations and use in place of x and .S the

ag
variables A and o defined by
= = 1+4° + 4 sin(2vg + @) ,
(2-11)
dx

vA cos (2v@ + Q)

* %

In the absence of perturbations, both A and «a are constant, while
for small perturbations they change slowly in time, with small high-
frequency variations superimposed. If Eqs. (2-11) are inserted in the
envelope equation (2-6), the following first-order equations for A

and @ result:

%% = -av V1 + A% cos [(2v = n)@ +a] , (2-12)

2n
Av 1, 2 .
A-ﬁ%:&vs\fl+}\esin[(2v-n)¢+a]- ﬁscf et S0 U g
0 \”1+A2+Asinu

(2-13)

plus additional terms that vary with the frequencies 2y, Ly, ete.,

which are neglected.

Equations (2-12) and (2-13) may be combined and integrated to

ottain the constant of the motion,
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Ay -\f
2 )
constant = A sin Q + ;i—‘i—‘i w10 = B =t Lohuny (2-14)

Av k
s

where Q = (2v - n)@ + @ and E(k) is the complete elliptic integral of
= with modulus k2 = - . This egquation

A+ 1+ A2

the second king

specifies the phase trajectories in the A, § space, or alternatively
by means of (2-11), in the x - %% phase space at any point along the
orbit, i.e., for any azimuth @. In particular, Figs. (7a) and (7b)
show typical trajectories for azimuth ¢ = 0 and for two values of the
beam intensity, while Fig. (7c) shows the same trajectories as Fig. (7b),
but for azimuth ¢ = %. As expected, the phase trajectories are always
bounded and the beam size remains finite.

Of special interest are the fixed points, which have constant
values of A and Q. They are determined by Egs. (2-12) and (2-13) to

4 51
nhave @ = += and

g
2n
P S I AT +/_wsc-_];_[ a+ V14 4® sin u g, |
- 2 Ay Av 21
0 Vl + A2 + A sin u

(2-15)

&VS Avsc
which determines A as a function of 5—— and
v

The beam motion
Av

corresponding to these fixed points is described by

2 = Vi+24% + A cos ng

; (2-16)
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Fig. 7. Phase trajectories for —= = 0.04. TFigure (a) shows the trajectories at azimuth
Vse

= 1.40; (b) shows the trajectories at the same

¥ = 0 for the intensity

&vsc

azimuth but for the larger intensity = 1.45. The trajectories in (c¢) are the

same n:: those in (b) but now for ¢ = % . The separatrix is the trajectory that
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which represents a beam oscillating with the periodicity of the gradient
error. The amplitudes for these periodic oscillations or fixed points
are shown in Fig. 8 for several values of the stopband width éys. The
response curves are distorted from the linearized diagram Fig. 6 beéause
the nonlinearity causes the frequency of the envelope oscillations to

Av

depend on amplitude; the E;E = 0 curve shows directly the amplitude

dependence of the periodic free envelope oscillations. As a result, the

resonant amplitudes are always finite. Another consequence of this

Av
distortion is the existence of three fixed points for greater than
Av
the critical value (which depends on E;E) rather than the usual single

fixed point. The two labeled s* and S are stable whereas U+ is
unstable; it can be seen from Fig. 7 that configuration points near S+
and S oscillate with small amplitude about these points whereas

. + . .
points near U may follow the separatrix and make much larger excur-
Av

sions. As the quantity decreases, the phase trajectories of

Fig. 7b are transformed smoothly into those of Fig. Ta; the stable
. F : i 5

region around S  shrinks down to a point and then disappears for

FANY)

less than its critical value.

In the absence of both space charge and gradient errors, the
matched beam corresponds to the solution x = 1. In the presence of
space charge and gradient errors, the matched condition corresponds to
the lowest fixed point of Fig. 8. This solution is periodic, so that
the beam envelope remains stationary with respect to the accelerator,

but it is modulated n times around the orbit circumference, where n
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X max

AT
Av
XBL689 -39
1
Fig. 8. Response diagram: Xox = ( V1 + 4% + A:)z. The

Av
curves to the left of Z:E = 0 correspond to the upper

sign in Eqs. (2-15) and (2-16); those to the right
correspond to the lower sign. The points where the
slope is vertical (indicated by the dashed curve) are

referred to as critical points.
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is the periodicity of the gradient error. Any mismatch will lead to slow
oscillations in the envelope about this matched value just as in the more
familiar low-intensity case. The frequency of these oscillations depends
on which phase trajectory of Fig. 7 the beam is on, but near stable
fixed points it is approximately 2Av times per revolution. Note from
Fig. 8 that the matched condition for large intensities closely
approaches the low-intensity matched value x = 1, provided the gradient
errors are small and the intensity is not too near the resonant value

b

.rJ\ = == .
AV 4 5 FANY

Resonance Crossing

The foregoing considerations apply only to a coasting beam
whose parameters remain fixed. However, the parameters describing an
accelerated beam change with time, and the beam may cross the
Al & % Av resonance. We consider the worst case of a slow, adiabatic

crossing.

The envelope eguations can be derived from a Hamiltonian with

the canonical variables x and % , and therefore Liouville's theorem
applies to the =x - 95 phase space. Configuration points lying on

do

closed contours continue to lie on closed contours as the parameters

are varied adiabatically, and the area enclosed by these contours remains
constant. However, the adiabatic assumption breaks down near the
stagnation point U+, so that the area enclosed by the sepatrix changes.
Tor example, the stable phase area around s becomes smaller as

FARY

sC
FANY)

decreases.
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Consider first the case of a resonance crossing in the direction

Amsc

of decreasing A beam whose intensity is larger than the resonant
value and whose envelope was adjusted before injection to the matched
value x =~ 1 oscillates with small amplitude about s¥ in Fig. 8, and
corresponds to a point on one of the trajectories around S+ in Figs. 7b

Av
decreases and the stable

and 7c. As the beam is accelerated,
+ . . . s " .

area around S shrinks until the configuration point is forced onto

the sepatrix. At this point the beam suddenly oscillates with a larger

amplitude as its configuration point moves around the separatrix. The

maximum beam size can be read directly from Fig. 9, which shows the

maximum and minimum beam size for a point on the separatrix at the
A

v
critical value of SC. If the vacuum chamber is large enough to

accommodate this increase in beam size, then the resonance has been
Ay

safely passed and the oscillations become smaller as continues

to decrease.
On the other hand, it is possible for a beam to cross the
resonance in the opposite direction. For example, if the beam is

bunched after injection, Avsc increases. Also Av = v - % may
Av

change during acceleration and cause to increase. In this case

a nearly matched beam that oscillates around S  continues to lie on
Av

a contour enclosing S as

increases, and therefore the beam
Av K

scC
Av

size increases indefinitely as increases (Fig. 8).
Summary
This completes our analysis of the uniform one-dimensional beam.

In the presence of gradient errors, the beam envelope oscillates, and
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9. The maximum and minimum beam sizes are shown for a

point on the sevaratrix at the critiecal-value of

- L ] El oo + 2oy
the value for which the stable area arcund S shrinks

to a point.
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. . . L
resonance occurs for the beam intensity corresponding to &vsc = 3-éy;

this is one third larger than the usual space=-charge limit, which
assumes that the beam size is constant. Furthermore, because of the
nonlinear dependence of the space-charge force on the beam size, the

envelope is always bounded. The amount of beam growth caused by crossing
AN

sc
Ay
for nearly matched beams (Fig. 9), and is less than fifty percent for

the resonance in the direction of decreasing has been calculated
stopband widths Av &£ 0.01 Av. This resonant growth is minimized for
small gradient errors and for large values of Ay = v - %. On the
other hand, adiabatic resonance crossing in the direction of increasing

Ay
&ic would produce very large resonant growths, and should be avoided.
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B Twa—Dimensional Beams
The envelope equations for the two-dimensional cylindrical beam

can be written in terms of the dimensionless variables x and =z as

2 2
Tx, 2, 1] s s sy = b (5-1)
Vx 1';Inévsx oAk R 3 ax + bz " =
ag x
2 2
EEE L= smun cos n¢] - 'z - i = 0 (3-2)
d@g Yy VoV LR 25 ax + bz !

where again the ripple components have been neglected. The guantities

Vi and v, are the betatron frequencies in the absence of space

charge and gradient errors. As in the last section, x and =z _are
EXR EZR

the beam semi-axes measured in units of a = = and b = s
X z

respectively, where a and b are the semi-axes of the matched beam
in the absence of gradient errors and space charge. The quantity

r R

2 2 0 i
W = S ; where N 1is the number of particles in the beam,
P 7B ab 25
B ¥
2
Ty = E—§ the classical electrostatic particle radius, and B is the
me

bunching factor (the fraction of the circumference occupied by particles).

The space charge induced frequency shifts for a beam with the constant

2
(w
b P
envelope = = = o 2
P X l;, = 1l are Avscx T i and
5’4
2
3 mp
Ay = ; ‘53— - An nth-harmonic gradient error has been included

with stopband widths AV o and Avsz-
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The overall envelope motion described by (3-1) and (3-2) is
very simple: the envelope has two modes of oscillation, corresponding
to its two degrees of freedom, and the resonant growth of each mode is
limited by the nonlinear space charge terms just as for the one-
dimensional beam. However, the mathematical details are more complicated
now: whereas the motion of the one-dimensional beam depends on only

Av Av

and 5—5 and can be represented by a config-
v

the two parameters
uration point moving on a trajectory in a two-dimensional phase space,
the motion of the two-dimensional beam depends on six parameters and
requires a four-dimensional phase space.

Physically, the envelope motion can be characterized by the
degree of coupling between the x and 2z directions, which arises
from the space-charge terms in (3-1) and (3-2). Very loose coupling
occurs when the individual particle frequency Ve = Avs is very

cx

different from U is Ayscz' Then the envelope motion is nearly one-

dimensional and the solutions are similar to those found in the last

section. On the other hand, very tight coupling occurs when

T Avsc

X

x 1s approximately equal to vy = &vscz; in this case the

x and 2z amplitudes of envelope oscillations are approximately equal
and the envelope moticn is two-dimensional. In the following we
concentrate on a few special cases. In A the solution for the tightly
coupled case Ve = Yy and Ex = Ez is presented in detail; in 3B

several cases leading to the one-dimensional limit are briefly examined.
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A. Egual Frequencies and Emittances

In this case the envelope equations without gradient errors are

2 2 Lvav
2
_dg.va_%—ﬁ:O, (3_5)
4ag X
dgz 2 vg lW&vsc ( u)
- e S S =
ag z
2
W
where Vo=V, =V and &Vscx = Avscz = &vsc, with AV = E%* . If

we consider oscillations of small amplitude BK, 6Z about the constant
Av

|

solution x =2z = 1+

5, 0 Ve find a symmetric mode with circular

cross section (SX = BZ) that oscillates with the frequency

2(v - % Avsc}, and an antisymmetric mode with elliptical cross section
(5, = -BZ) that oscillates with the frequency 2(v - E‘A sc)'

Therefore, in the presence of gradient errors of frequency n, reson-

ances occur for the beam intensities corresponding to é”sc = 2Av and

L
to Av =3 Av where again Av = v - 2. Note that these resonant

sc 2
intensities differ from the usual space-charge limit &Vsc = Av that
is calculated for a static beam. Any collective mode of oscillation
produces similar frequency shifts, as will be seen in Part II.

We now examine these two modes in the nonlinear regime. The

symmetric mode is driven by the symmetric gradient error avs = Ay

x sz’

and the antisymmetric mode is driven by the antisymmetric gradient error

v = = Av__. When either gradient error is included in (%3-3) and
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(3-4), the equations can be solved by the same method that was used for
the one-dimensional envelope equation. The results are presented here,
while the calculations are outlined in Appendix B.

For the symmetric gradient error, we find symmetric solutions

of the form
xz = 2° = 1+ A2 + A cos(n¢ +Q) , (3-5)
where the slowly varying quantities A and Q satisfy the equation

- Av
constant = A cos @ + 22¥V1 + a2 -2 —SC g1 +\V1 +a%)
&vs &vs

(B13)

which specifies a trajectory in the two-dimensional A,Q space. The
corresponding trajectories in x - %% space or z = %% space have the
same form as those found for the one-dimensional beam (Fig. 7), but now

the fixed points occur for @ = O,x and for values of A that satisfy

Ay Av \[ 2
A = % % s 1+ A2 sc 1 +A -1 ) (B16)

Av Av A

These fixed points describe a circular beam that oscillates with the
periodicity of the gradient error. They are shown in the form of a
response diagram in Fig. 10, which is again distorted from the linearigzed
diagram so that only bounded solutions are possible. Note from (3-5)

)

remains symmetric even in the nonlinear regime, the only effect of the

that the symmetric character of the normal mode solution (6X = Bz

nonlinearity being to limit its resonant amplitude.
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. 10. The response curves for a symmetric gradient error, with

resonance near Avsc = 2Av, are superimposed on those for an

antisymmetric gradient error, with resonance near

N+
4 _ (. 2 )2
Av_ = S Av. For either case, X = =\ V1 +A +A :

mazx max
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For the case of an antisymmetric gradient error, there are

antisymmetric solutions of the form

2 2

X = 1+A + A cos(nd +Q) ,
(3-6)
2 2
z- = 1+A - Acos(ngd +Q) ,
which describe an elliptical beam. Now A and Q satisfy
A ) T 2 [K(x)
constant = Acos Q +2 —V1 +A -2 — [/n A -— dlz] 5
Avs Avs e k
(B13)

where K(k) is the complete elliptical integral of the first kind.l7
d .

The resulting trajectories in x - %% or z = E% space again have the

same form as those for the one-dimensional envelope, but now the fixed

points oceur for @ = O, and for values of A that satisfy

Dv Ly 2
1 7's 2 sc 1 2 k -
= ¥T=— + = - == 6
A 5 Vl A” +——2 1 w2 k()] , (B15)
where k = = . They describe a beam that oscillates antisym-
2
1 +A

metrically with the periodicity of the gradient error, i.e., x is
largest when 2z 1is smallest and vice versa, and are also shown in
Fig. 10. TFor either mode of envelope oscillation, the Aus = 0 curves
represent the free envelope oscillations that are periodic.

Note from (3-6) that the antisymmetric character of the normal-

mode solution (BY = -az) is approximately maintained in the nonlinear

,
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regime. Indeed, this is a general result: the character of the normal-

mode solutions determined by the linearized envelope equations (the

)
ratio 55) is approximately maintained in the nonlinear regime, the
z

mein effect of the nonlinearity being to limit the resonant amplitudes
of each mode.

The nonlinearity also produces an additional effect that is not
predicted by linear theory, namely, it produces a weak coupling between
a gradient error of one symmetry and a mode of envelope oscillation of
opposite symmetry. Thus the response curves for the symmetric mode of
oscillation in Fig. 10 are modified by the presence of an antisymmetric
gradient error, and vice versa. Although this effect is small, it has
been a source of confusion, so we briefly describe it here. We write

the fixed points in the form

2
le + A + A cos(nd + Q)

"
11

2

e (B18)
\/l + A% - g cos(nd - Q)

(]
1

E

where for the symmetric fixed points, Q = O,n, while for the anti-

symmetric fixed points, Q = %, %ﬂ . Figure 1lla shows the fixed-point
Ay

solutions in the absence of gradienterrors, in other words the ETE': 0
v

curves of Fig. 10. They specify the amplitude dependence of the free
envelope oscillations that are periodie. If now an antisymmetric

gradient error is present, the antisymmetric fixed points still occur

JANY)
in the Q = O,n planes, but contrary to linear theory, the — = B

FANY
curves for the symmetric fixed points are modified, as indicated in
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Fig. 11. The fixed points in the absence of gradient errors
is shown in (a); the transition from a purely antisymmetric
gradient error to a purely symmetric gradient error is

shown in (b), (e), (d), (e), and ().
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Fig. 11b. The analogous situation occurs for the symmetric gradient
error (Fig. 11f). This coupling between fixed points of one symmetry
and gradient errors of opposite symmetry insures that the transition
from a purely symmetric gradient error to a purely antisymmetric
gradient error occurs in a continuous fashion, as indicated in Figs. 11
(e¢), (4), and (e). However, only the small-amplitude fixed points are
affected, and in the following we neglect this weak nonlinear effect and
assume that a mode of a given symmetry is affected only by driving terms
of the same symmetry.

Resonance Crossing

If only one type of gradient error is present, the resonance
crossing is similar to that for the one-dimensional beam. A nearly
matched beam with x =1, 2z =~ 1 and whose intensity is larger than
the resonant value oscillates with small amplitude about a stable

Ay
fixed point. If

decreases, the stable phase area around the
fixed point shrinks and eventually the configuration point is forced
onto the separatrix. The beam then oscillates with a larger amplitude

that can be read directly from Fig. 12, which shows the maximum beam

Ay
sc

Vv

size for a point on the separatrix at the critical value of
Note from Fig. 12 that the resonant growth for either mode of the

two-dimensional beam is less than the rescnant growth of the one-dimen-
Ay

; s . .
sional beam for the same value of R This was to be expected, since
vV

the nonlinearity of the space-charge force is greater for the two-

dimensional beam than for the one-dimensional beam.
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Fig. 12. The maximum beam size for a point on the separatrix at
JANY

the ecritical wvalue of is shown for either mode of

envelope oscillation for the cylindrical beam with a =1

and Vi ¥ Vi For comparison, the maximum beam size for

the one-dimensicnal beam is also shown (from Fig. 9).
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If both types of gradient error are present, as is true in
practice, both resonances may be crossed. One might estimate the total
growth by adding the two separate growths from Fig. 12. However, an

initially matched beam that crosses the first resonance (Av = 2Av)

s

will no ldnger be matched when it crosses the second resonance. If

this mismatch is large, the total growth may be considerably larger

than the sum of the two growths. On the other hand, we have so far

neglected the adiabatic damping of the beam size due to the increase in
By , which may be large, depending on the acceleration program

employed.

B. General Beam Configurations

In the remainder of this section, the envelope motion for other
v

values of % and ;5 is briefly examined. Fortunately, the effect of
z

the nonlinearity can be largely separated from the linear effects,
i.e., the normal mode solutions determined by the linearized envelope
equations remain approximately valid in the nonlinear regime, the main
effect of the nonlinearity being to cause the frequency of each normal
mode to depend on its amplitude. Accordingly, we first examine the
normal-mode solutions of the linearized envelope equations for several
cases, before including the effect of nonlinearity.

We write the linearized envelope equations, omitting gradient

errors, in the form
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where M 1is the two-by-two matrix

2
hv2_2ab+3b2m2 b 5 B
o)
E  las+p)® ® (a +b)2 P
M =
P (5'8)
e )
a 5 £ i 2 2ab + 3a " 2
2 P Vg ( 2 ug
(a + D) (a + Db) |

B
and where B ::<\x’) is related to x and =z by

(&
Z
" 2
- 1+ 2 . D
o= L L{a + 1) Vo i "
(3-9)
% 2
PR | a . -D
T RO B
BX' Ll
The ncrmal-mode sclutions have the form™ B ::(ﬁ’:>ehb', where
zZ
Q B
2 X
[M—m](5> = 0 (3-10)
z

18

and where ® satisfies det(M - mg) = 0.
We have'previously distinguished two limiting types of envelope
motion, tightly coupled motion for which the x and z amplitudes are

equal, d_ =+ 3

5 2 and loosely coupled motion for which one amplitude

approaches zero while the other remains finite. We find frog Eq. (3-7)

W
that tightly coupled motion results if v - y = S.o P . EE_ or 4
Z X a + o Ly
& 2
vV.oo- v =2a-_b_1_“_:>_ where v:L(v + v_) The former conditi
z % a+b Ly ? oM\ x il = e
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produces a symmetric mode with 5x = BZ; the latter condition produces
an antisymmetric mede with BX = -EZ, and is identical to the condition

: AR : : : = - A
that the individual particle fregquencies Vi stcx and Vs Viaw

be equal. Both conditions are plotted in Fig. 1%. As the parameters

b

=5 wDE depart from the curves in Fig. 13, the envelope motion

)
Vx? V2?3

X

approaches the one-dimensional case.
It is informative to examine a few special cases in detail. For
a circular beam with a = b, the eigenfrequencies for either mode of

envelope oscillation are

mig - vae - 2"'22 - ;L_mpg i‘v(gvxg 2 2VZ2)2 + %‘g tUPh' s (3-11)
and there are two limiting cases to consider. If '[vag - QVZE[ < % mng,
the eigenfrequencies and normgl modes reduce to the tightly coupled '
case examined in (A),

1
:D+2=‘4v2-wp2 5 8+=<> ,

1

. (F-22)
UJ_2 = ‘}_”2 - -z-mpe 5 B_E (.ﬂ:\f ’

2
2 . . 1
where (o = by . This ecase requir - << 1
o u&vsc q es that [vx Vs [ iy &./SC.

On the other hand if ]vx - vzj >> % &vsc, the eigenfrequencies and

normal modes are
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XBL689-3910

Fig. 13. The beam parameters are shown for which the x and =z
amplitudes of envelope oscillation are equal. The plus
curve is the condition for the symmetric mode, the minus

curve for the antisymmetric mode.
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B _ g 8 5 @ g - ('l )
(DX = Ux ElJ_P ’ x = El
€
(3-13)
€
2 2 5 2
@, —llvz -Ewp s GZ—<),
31
A.vsc
where € = |v g << 1. For this case the frequency difference
z
!vx - uzi is sufficient to overcome the coupling due to the space-

charge force, and the normal modes are one-dimensional. In practice

-
<
{
=+

» So that the dividing line between tightly coupled motion and
loosely coupled motion occurs for a frequency difference of

1

v, = v_| = . Thus, due to the weakness of the space-charge coupling
z 16 s )

X
a relatively small departure from the curves of Fig. 13 suffices to
produce one-dimensional motion.

Now consider the limit 2 — 0, but keeping ab constant so that

the charge density remains constant. The beam approaches a planar

configuration, and

2 2 2
2 ., 2 _ 2 2 - by byt 3y
P =y A X 5 g
“p
. 0 (3-14)
Dy z s} 4 z 1

In this case the Bx mode can have either of the tightly coupled forms

1 s ;
(j )or ( > for suitable values of [v, = v | and w 2, in agreement
i i X Z P
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with Fig. 13. However, as g approaches zero, larger and larger

intensities are required to excite this mode. i.e., to shift w_ to

the integral frequency n of the gradient error. In the limit g = O
only the SZ mode can be excited, and this mode is identical to the
one-dimensional mode examined in Section 2. In fact, the complete
nonlinear envelope equations reduce to the one-dimensional form

dgx 1‘}:{2

— *+ E@x - 5 =0 , (3-15)

ag X

2 v < w =
L2+ 5@z - = - 2 -0 , (3-16)
ag z

in this limit. The space-charge forces affect only the =z motion, and
if v, is sufficiently far from a stopband that x =1, Eq. (3-16)
reduces to the one-dimensional envelope equation (2-6).

We conclude from these examples that the envelope motion will be
one-dimensional for a wide range of beam parameters; in fact, due to
the weakness of the space-charge coupling and because of the changing
environment within the beam, the envelope motion is more likely to be
one-dimensional than two-dimensional.

We now briefly examine the effect of the nonlinearity. We
consider cases for which a is larger than or equal to b, and for

which Yy is closer to a half-integer than Vs SO that

<

I
AN
[

Then the resonant amplitudes are larger in the

rofs [nofis
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z direction than in the x direction, and this is usually the more
serious case.

We construct simplified response diagrams for several values of

g and ). The usual linearized response diagrams have a vertiecal
asymptote (the &V"x = Avsz = 0 curve) at each of the two resonant
(=]

intensities, and the Bl =0, Bl +=0 response curves approach these
asymptotes as the beam intensity approaches the resonant values. The
main effect of the nonlinearity is to cause the frequency of each mode
of envelope osciliation to depend on its amplitude, which distorts these
linear response curves so that only bounded solutions are possible.

For simplicity we consider only the distortion of the &st = Avsz =0

asymptotes. We show in Appendix B that these curves are specified by

X = 1+ AE + A sin(n¢ + Q) ,
(B20)
2 2 .
z- = l1+B + B sin(ng + Q) ,
where A and B are determined by the integral equations
W = o A/ 21
_ D b A+ V1 +A sinau
A = i du 5
2. On . __x(ax + bz)
0
(B21)
2
W 2 .
B = D . e l + B sin u du
2v_Av 2r z(ax + bz) 2
Z  Z 0

n
where u = nd + Av. =v ==, and =y -
7 Q-) ® 2’ &Vz JZ

o]

These equations

were solved numerically, and the solutions are shown in Fig. 1.
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(a) A=y, k=1

I:_j

X8L689 - 3905

. 14, The OV e W, - Q0 asymptotes are shown for various
[~]
n
. Vs 2 b
values of the parameters M\ = = and Kk = T The
Yy T 3
ordinate is x or = ; the abscissa is

max max

&vscz (__];_&vscx>
sz KA ﬁvx
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Figure 1lba shows the familiar case of equal frequencies and

Av
equal emittances (the —=2 - 0 curves of Fig. 10). There are two

Ay
resonances, corresponding to the twc modes of envelope oscillation,
and for each mode, the amplitude of the x motien is equal to the ampli-
tude of the z motion. For the other cases, the two resonant intensities
are further apart, and the amplitudes of the x and 2z motions are no

b
longer equal. Because of the choice of parameters - & i, a < 1,

Avx

the largest amplitude occurs for the z direction and for the lower-
intensity mode. As the frequencies become different, but a 1is kept
equal to b, Fig. 14 (b) and (c¢) result, and the solutions approach

the limiting one-dimensional modes B&_ = (l) and &_ = (E) that
b'd € Z 1

were found before. In the other limit, g approaches zero and the
solutions also approach the one-dimensional case. In particular, the

curves of Fig. 14 (g), (n), and (i) are indistinguishable from the

Ay
E;E = 0 asymptote of the one-dimensional beam (Fig. 8). The inter-
mediate case of an aspect ratio g = % is shown in Fig. 14 (4), (e),

and (f). In this case the lower-intensity mode is also very similar to
that of the one-dimensional beam.
Summary

We have investigated the envelope motion for a uniformly charged
cylindrical beam. Because of its two degrees of freedom, the envelope
has two modes of oscillation that can be excited by gradient errors.
The sclutions for a beam with ViP5 Uy and EX = EZ were presented in

detail; it has a symmetric mode of oscillation that is excited near the
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intensity BV = 2Av, and an antisymmetric mode that is excited near
Avsc = % Av. TFor any type of beam, the process of resonance crossing

is similar to that for the one-dimensional beam. If the resonances are

JANY
crossed in the direction of decreasing cjc, the beam grows a finite

amount, whereas if the resonance is crossed in the opposite direction,
AN Ly

; b z
increases. As % or

the beam continues to grow as =
X

approaches zero, the resonances become further separated and the envelope

. . . . b 1
motion becomes one-dimensional. In fact for an aspect ratioc of 2 =37
sz 1
or for o < =, the resonance in the z direction dominates and the
i &
X

beam motion is essentially one-dimensicnal.
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4. Conclusion and Applications

We have considered the effect of gradient errors on a beam of
charged particles in an alternating gradient synchrotron. Usually,
gradient errors are assumed to limit the number of particles that can
be accelerated. This limit (the tranverse incoherent space charge
limit) is calculated by assuming that the beam size remains constant;
then the number of particles that can be accelerated is limited to that
number which Jjust lowers the effective betatron frequency tc an integer
or half-integer. Actually, the diameter of the beam depends.on the
oscillation amplitudes of the individual particles, and if a gradient
error causes these amplitudes to grow, the beam size also grows. Thus
the usual caléulation is not self-consistent.

In Section 1 self-consistent equations of motion for the beam
envelope are derived for beams with one and two degrees of freedom. We
assume that all the particles within the beam have the same azimuthal
velocity and execute betatron.oscillations about the same equilibrium
orbit, and that only linear forces act on the individual particles.

The last assumption requires that the charge density within the beam be
uniform and that the nonlinear components of the image force be
neglected. The resulting envelope equations are nonlinear because of
the nonlinear dependence of the space charge force on the shape and
size of the bean.

These envelope equations were solved in Sections 2 and 3. For
small amplitude oscillations of the one dimensional (planar) beam, the

beam oscillates with the frequency 2(v - % Ay"c), and resconance occurs
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for n = 2(y - % bysc), i.e., for the beam intensity corresponding to

L

&vsc - 3 Av. However, for larger amplitudes of oscillation, the

frequency of oscillation depends on amplitude as well as on intensity;
for fixed intensity, the frequency increases with amplitude. In

consequence, a slow traversal of the resonance in the direction of

Av
; : sc
increasing

will cause the beam to grow arbitrarily large: near
the resonant condition n = osecillation frequency, the amplitude
increases, which causes the oscillation frequency to increase until the
resonant condition is no longer satisfied; a further increase in Apsc,
or decrease in Ay, lowers the oscillation freguency and restores the

resonance condition, which causes the beam amplitude to again increase,

and so on. On the other hand, a slow traversal of the resocnance in the

AN
direction of decreasing 3¢ causes only a finite increase in beam
Av
size. The amount of beam growth depends only on the ratio :;E and
Av =

is less then 50% for 5‘“‘-4 0.01.

The resonant behavior of the two dimensional (cylindrical) beam
is very similar. In this case two resonances are possible, although for
a wide range of beam parameters, including most practical configurations,

only one resonance occurs. An adiabatic resonance crossing in the
Ay
S
Av

beam size, whereas a crossing in the direction of decreasing

direction of increasing

causes an arbitrarily large increase in
&vsc

Av

causes only a finite beam growth, which is less than the one-dimensional

Av
beam growth for the same value of .

AV

We conclude that gradient errors will not limit beam intensity

or cause particle loss, provided slow resonance crossings in the
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Lv
: % : : sc . e . . d e
direction of iIncreasing ~ are avoided, and provided the ratio
LV
Av e
o is sufficiently small at the resonant intensity.
v

Avplication to ACS

As an application of these results, we examine the two modes

of envelope oscillation for the Brockhaven AGS. The relevant parameters
o O Bt as’ 3! 19 e i 1 i

are obtained from van Steenbergen, who has measured the vertical vhasze

space emittance and density distribution in the energy range 50-LCO eV

First consider the situation immedistely after the injection,
L) ~ b 12 e i 3 P ] = .
wnen 7.7 x 1 varticles occupy most of the machine circumference

(B ~1). At this time, the betatron frequencies in the absence of space

charge are v_ = 8.35 and v, = 8.92 (as extrapolated from Fig. & of

%
van the vertical emitiance is tEZ = 11.6 cm-mrzad.
Thus = 2.3 em (R = 128 m), and assuming an aspect ratio
a ' - 5 .
= =2, we find Ay = 0.1k and Ay = 0.28 (from the eguations

; b
Jo] scx scz

following 3-2). These are the space-charge-induced frecuency shifts
for the individual particles within the matched beam, with the constant
size a =L.6 em and b = 2.3 em. Cradient errors cause the team to
oscillate,; and for small amplitudes, the two modes of envelope oscilla-

—_

il

tion are determined by Egs. (3-8) and (3-10). In this case, the modes

are nearly one-dimensional, and we find

7 1
" = 24 - K - -]
W B 2L <20 g a, ( ) s (L-1)

€
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l E) o
w, = 2V, =3 Moy 5, = (Ll ’ (4-2)
1 1
where € ~ 0.1. For the above parameters, 3w = 8.26 and 5o, = 8.73,
and these frequencies are well removed from the
1 1 ©
5 % Yx 2 F Tz
] I L i | 1 ! ! | 1 |
8.0 8.5 9.0

half-integral resonant values; an intensity of 17 x 1012 particles is

required to shift to the nearest wvalue, 8% . Therefore gradient

1
2 By
errors are not expected to cause particle loss in this region. (These
results are strictly wvalid only for uniformly charged beams, whereas
the AGS beam has a Gaussian charge distribution. We find in Part IT
that the frequency shifts for the Gaussian beam are approximately 1/5
larger than those for the uniform beam, and thus the lowest resonant
g 12 : 20
intensity is more nearly 13 x 10 particles.” )

During the first few synchrotron oscillations after injection
(during the capture process), about 60% of the injected beam is lost,
and smaller losses continue until 15 msec (By = 0.5). At this time,
1.9 % 1012 particles remain, and these are assumed to occupy l/h of the
machine circumference. After this time, small particle loss occurs in

two regions: the first near 20 msec (By = 0.6) is associated with a

20% increase in the normalized vertical emittance, while the second near
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20 msec (8y = 0.8) 1is associated with a 10% increase in the normalized

vertical emittance. The freguencies w, and ®, have been calculated
S ; 12
for these times, using N =1.9 x 10, B = 0.

Mo

5, and the measured

values of Ez, and they are included in Table

=

change during acceleration, the w_ = 17 resonance is- crossed near

UJ

By = 0.8, in agreement with the observed particle loss at 30 msec.

The resonance crossing is approximately adizbatic since &VSC‘/&V'

changes by 0.1 during £00 revolutions, and is in the direction of
Avsc /H~{. The obszsrved 10% increase in the normalized

-

vertical emittance is consistent with a stopband width of . = 0.002;

FANY
RN T s s = % .y T
in this case, — = 0.0k, and the veam grows 100% in the x directicn
LEV
end sbout 10% in the 2z direction (using Fig. 3-3 and assuming that

the & mode retains its one-dimensional form in the nonlinear regime).
"Purther experiments are necessary to confirm this connection
between the particle loss at 30 msec énd the w_ = 17 resonance
crossing. For example, if the stopband is enlarged by deliveratel
exciting a 17th harmonie gradient érror in the machine lattice, the

beam growth should exceed the available horizonial aperture and large

1

losses zhould occur

s

200Ut 30 msec after injection.
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Table I. AGS parameters near injection
: X 3
By a(cm) AV oy v, Ve 5 O 5o,
0.50 3.8 0.18 8.88 8.46 8.76 8.4
0.60 3,2 0.16 8.86 8.50 8.75 8.45
0.70 2.8 0.15 8.8k 8.53 8.74 8.49
0.80 2.6 0.13 8.83 8.55 8.75 8.51
0.90 2.4 0.10 8.83 8.57 8.76 8.5k
100 2.7 0.09 8.82 8.58 B.77 8.55




-60- UCRL-18454

PART II. COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL BEAMS
CONFINED BY HARMONIC POTENTIALS

In Part I we considered only one mode of collective oscillation
that occurs in only one type of beam, namely the gquadrupole mode that
is execited in uniformly charged beams by gradient errors. These restric-
tions enabled us to examine the large-amplitude nonlinear effects of
space charge. In this Part we examine the other modes of collective
oscillation that occur in both uniform and nonuniform beams. We restrict
our attention, however, to small-amplitude oscillations and for simpli-
city to one-dimensional beams.

In Section 1, we use the linearized Vlasov equation to find all
the normal modes and eigenfrequencies for the uniformly charged beam;
in Section 2, the resulting mode structure is co@pared with that found
by Ehrman6 for an approximately uniform beam, and with that found by
Weibel®l for a neutralized beam (plasma) with a Gaussian charge
distribution.

Before proceeding to these cases, it is informative to consider
the seemingly trivial case in which the Coulomb interasction is turned
off. .In the absence of space charge, the equation of motion for the

individual particles is

d2

ax o,
ng 0

where the symbol Vo will be used in the remainder of this paper to

designate the unperturbed betatron frequency. Any particle distribution
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rotates rigidly in the x - 3 B space with the frequency wv., and
Yo Eﬁ 0

has the form f = f(r, v0¢ +9), where r and O are defined in

Fig. 15. The normal modes are found by a double decomposition of f:

o
/

Nl ¥

.
b

Fig. 15.
the second'argument of f 1is expanded in a Fourier series

-in(v0¢+9)
E: gn(r)e where for each n, gn(r) is an arbitrary function
n

of r and may in turn be expanded in a complete set of functions,

gn(r) - :E: gmn(r). Thus there are a two-fold infinity of normal
m

modes of the form
-ine -iw @
fmn(r,e,Q) = gmn(r) e -
where the eigenfrequencies ®py = By are harmonics of the unperturbed

betatron frequency. Each eigenfrequency is infinitely degenerate.
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In the presence of space charge, but on the assumption that the
space-charge forces are small in comparison with the external focusing
forces, each eigenvalue is split into infinitely many different eigen-
values that are clustered near the value oV, and the new eigenfunctions
are mixtures of the unperturbed eigenfunctions. 8Since the unperturbed
eigenfunctions and the form of the space-charge interaction (Maxwell's
equations) are known, the perturbed eigenvalues and eigenfunctions can
be found by stationary perturbation rr:netl’:oufls..22 However, the unperturbed
eigenfunctions are infinitely degenerate, so that an infinite-order
matrix must first be diagonalized. In any event the form of the eigen-
value spectrum is clear: the eigenvalues are discrete and occur in
clusters near the value nvy..

0
1. Normal Modes for the Uniformly Charged Beam

‘Formulation of the Problem

The Vlasov and Pcisson equations can be written in the form

=Z + ¥ ==k [y x & @, E(x, 8)] %; = 0 . (1-1)
a _I_.-—‘F"
?3}[_8 = 2] f(__x_’ L QS) av , 4 (1-2)

/

where VvV = ax and x measures distance from the median plane in unit
E: 4 2 - E

of the half-width of the stationary beam, a. The distribution function

2.2 N
f(x, v, §) is normalized to unity, and the quantity mﬂe = Eﬂg—ﬁg . 3;
T - 5mvpx_ e

(the plasma frequency) has previously been defined as EvOﬁvéc

[Eq. (2-8), Part I].
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The stationary solution of (1-1) and (1-2) that has a uniform

charge density is

1
fo(x,V) = ’ EO(X) = X ’
2
2nv {1 x2 b
- = sy
Tom
W2 (1-3)
where vy = 02 - mPE = vy = g, will be used in the remainder of

this paper to designate the effective betatron frequency for the individual
particles within the stationary distribution. In the x - % space, the
particles move in circular orbits, and the stationary distribution

rotates rigidly with the frequency v.

[

<<

~ Fig. 16.

Oscillations of this distribution are described by the perturbed
distribution f(x, v, ¢) = fo(x, v) + fl(x, v, ¢), which gives rise to
a perturbed electric field, € (x, g) = Eo(x) + el(x, @). As in
Part I, we neglect the magnetic field components that arise from the
transverse particle velocities. The evolution of fl(x, v, g) is

governed by the Vlasov equation (1-1), which we linearize about fo(x, v):
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of of of of
1 1 2 1 2 0
e N C A P (1-1)

The left-hand side of (1-4) is the total derivative of f, along an

unperturbed orbit, and consequently we can invert (1-4) and write £y
in terms of an integral of the right-hand side over an unperturbed
orbit. =t We do this explictly by writing (1-4) in terms of the polar

coordinates defined in Fig. 16:

na

of, afl a) ¢ df
'5:@7— SV T —P—v l(r cos 8, @) sin © = (1-5)
an + _i(.Dg E 2 'i{_DG
For the normal mode solutions £ = f(r, 9)e 5 ; = &(r cos 8)e
(1-5) becomes
R(Y) LD | 2
-i=e i=e foom daf
v 4 v ; P . 0 -
e 35le f(r, ©)] = ;—_-2——~ €(r cos 8) sin o = - (1-6)

Sl
Since the function f(r, ©) must be periodic in @,
f(r, 6) = £f(r, © + 2r), the unique solution of (1-6) is
2 -8 9

Py CvaO e icf_)gl ;
£(r, 8) = -5 e f e’ £ (r coso') sin ' do',
8-2+

(1-7)

o

provided b is not an integer. The case of integer values of L s
L v
5
considered later. FEquation (1-T7) can be #ritten in terms of the

Cartesian variables x and v as
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2 2 LW
of ® i=u .
o (ot b D ® ') - du 1-8
LCNEEE v [ =" e T, (1-8)
V-1 70
w= -0 )4
where u =0' -8 and

X' = Xcosu-=--—3S8inu s

(1-9)
v = yx sinu +vVveosu

Equation (1-8) specifies f(x, v) as an integral over the unperturbed
orbit.

The perturbed electric field El(x, d) is related to
fl(x, v, #) by Poisson's Equation (1-2), or alternatively by Maxwell's

second equation,

€, =
W = =2 [ vf(x, V, g) dav s (l-lO)
-co
which follows immediately from Poisson's equation and the continuity
equation for charge and current density. Using (1-8) and (1-10), we

obtain a single integral equation for & (x):

2w 2 * afo an 10y v
wEx) = —2— [ a0 f ¢’ Ex e , (1)
. (D v v
21[1; L - 9
€ - ;"' ]
'j\‘r\ C-‘\ﬁ "
where x' and v' are given by (1-9). Ay
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General Solution

23

We solve (1-11) by performing two integrations by parts. First

integrate over v so that

o 2 ] 27 LD
f=i\) =11
i €(x) = —Be dv fof g Y
2ris 5
e bl &

-00

X [_ Coi 4 Oy 3 Si:;l u d€ (x') ] du , (1-12)

du
ag

where the integrated terms are zero at the limits Vv = £+ «. Then
integrate by parts over u to eliminate % H

o 2/ 2 oo 2 l(;{_)_u

£(x) = Pcn j av fof eV L€(x') sin u du
2xi=
e i T 7 (1-13)

2l
We eliminate the function f, = -é—:—[vg(l - x2) - v2] 2 from (1-13) by

2y
replacing v bys+v V1l - X~ cos 1, so that

2, 2 2 2
1 w. S 1—u
Ela) = B f d’]‘[ oV
. E“ff 0 0
e -1

v
L, W
£
x E(xcosu+ V1 -x" sinu cos 1)pdu.

(1-1L4)
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Finally replace x with cos £, so that

w 2 27{ 2“ i{éu-u vq‘W\l\'A‘
E(cos E) = =2 5 o j dn f e’ E(cos ¥) dau ,
2nv 27iS 0 0
Yzl (1-15)

where cos ¥ = cos £ cos u + sin £ sin u cos 7. The angle V¥ will be

recognized as the angle between two vectors with polar coordinates 17,

2L

E and O, u respectively, as shown in Fig. 17.

It is now easy to show that the solutions to (1-15) are just
Legendre polynomials. We use the addition theorem for spherical

harmonices to write

L ,
B (cos¥) = ZET Y YL, W) Yp(w,0) ,  (1-16)
m

where the integration over 71 in (1-15) insures that only the m = O
term Pn(cos ) Pn(cos u) contributes to the sum. Thus, if

Sm_l(x) = Pn(x), Eq. (1-15) is satisfied identically provided
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2,2 2x RO
P 1V - = .
Knﬂ(m) - —;:@——-—— f e Pn(co$ u) sin u du. = 1,
e V-1 ° (1-17)

which specifies the eigenfrequencies . A few of the functions Kh(m)
are included in Table II; the rest may be found by using the recursion
relation

s 2 2 2

¢ =1lpn =5

Kplw) = 555 Ko@) (1-18)

o =-nvy

The eigenfunctions for the perturbed electric field are therefore

the Legendre polynomials
gm(x) = Pm-l(x) s for m =1,2,3,""", (1-19)

and for each value of m, the corresponding eigenfrequencies are deter-

mined by
Km(wmn) = 1, = for n = m,m-2,m-4, -, (1-20)

In general, each eigenfunction E:m(x) Y i05e ThEa oae eigenfrequency:
as cen be seen from Table II, there is one eigenfrecuency each for

m=1 and m=2, but two for m = 3,4 and three for m = 5,6, and

so on. We label the various eigenfreguencies of (1-20) so that in the

limit of zero intensity, ©n approaches ny.

=iy

urnctions fmn(r, 8) corresponding to the eigen-

Eg. (1-7) to be
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Table II. The functions Kn(m) are listed for n < 7.
n Kn(a))
w, 3 )
'
g g Wtz Vg
2 2
w -y
- . ¥
w e ‘N\. 5,{;‘}_‘}/’3.,.*__1 "‘3"
2 S o) S
- 2 2 2
w =2y
w . 2
3 ¢ . w
2 e 2 2 2
w =3 w =y
w = 2 2
I D W -y
B IEE P.2P
w . 2 i 2
5 je) - 27y W
2 22 2 2P 2
w =5y = D W w - v2
2
w, 22 2 2
6 - D — i =5y w =y
w =67y m2~h2v2 m2-22v2
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2 ~
@ ar R (r) @
i 0 mk , mn .
fmn(r, 8) = —%— e N 2(1 S sin k9 - k cos ko) ,
Vv sl
EERs m’; [322] )
v

where the sum over k is finite and involves only even or only odd
numbers. The radial functions Rmn(r) are polynomials in r, and a
few are listed in Table III. For m > 2, the sum in (1-21) has more
than one term, and the simple n-fold rotational symmetry of the
unperturbed eigenfunctions is absent.

Low Intensities

2 2 i ; ;
For W, << Vo these eigenfuncticns and eigenvalues reduce

to the form predicted by perturbation theory. The eigenfrequencies

have the form

= + — =202
W nv nm“ Ave, s (1-22)
2 2
where v = v -w S e =00 and where a few of the constants
0] D 0] sc

St

are listed in Table IV. These eigenfrequencies are shown in

1
In

mn

Fig. 18a for the intensity corresponding to Avs =

o , but the eigen-

frequencies with m>n + 2 are clustered too near the values nv to
be resolved. Figure 18b shows an enlarged region of the spectrum near

ny: all the eigenfrequencies (except w

17 = vo) are shifted down from

the unperturbed values Dy, and as the radial mode number m increases,
the eigenfrequencies approach ny. It is also evident from Eq. (1-22)
or Fig. 18a that as the mode number n increases, the eigenfrequencies

become more tightly clustered around the frequencies nv.
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Table ITI. The radial functions Rmn(r) with

m< 7 are listed.
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Table IV. The coefficients x in Eq. (1-22)
are listed for m < 7.
n -
43 3 >
1 1
2
5 | = 2s = 0,005 2- = 1.125
23 2°
% 2= 2.7
5 - =z~ -0.0156 - 22 ~-0.350 2L ~1.365
2 pl 2
r
m . : -
2 1
A ” }5 = -0.250 2 -1.25
2 2
- 2
6 | -2%~-0039 -L~-o0u8 L1
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52/0-'-
ov
4y, + ny,
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~
q.J
m=n nAVSC
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e T NS0
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oT m=n+2
l=~——-_.__-=-.—2v
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v
o)
(a) (b)
XBL689-3904

Fig. 18. Eigenvalue spectrum for éysc = % ; (b) is an enlarged

region near ny. The eigenvalues occur in clusters near
nv and, as n increases, the clusters become more tightly

grouped around nv.
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The low-intensity eigenfunctions have the form

df :
— n ..]:. ......._O -ins E -2
£0(T:0) = =R (r) Ta—e " +0), (1-23)

and therefore the complete distribution f = fo + fmp becomes

1

Hy

2xv V1 - 4 eRmn(r) cos n(v@ + 9)

(1-24)

where the term proportional to mp2 involves mixtures of other zero-
order eigenfunctions. A few of the radial functions Rmn(r) are shown
in Fig. 19; note that the perturbation for the modes with m =n is
the largest near the surface r = 1, whereas the other modes are close
to zero there. For this reason, the m = n modes are referred to asg
surface modes. They produce relatively large displacements of the beam
surface, as opposed tc the m % n modes for which the perturbed motion
is largely confined to the interior of the distribution.

The distribution (1-24) rotates in an approximately rigid
fashion in the x - % space with the frequency ny, and has an approxi-

mate n-fold symmetry of rotation and radial variation with ——

nodes;
in real space, the perturbed charge density is proportional to

aB., - (x)

m- . .
= As m increases, the overall perturbed charge density tends
to cancel with itself, and thus it is not surprising that the eigen-

frequencies for the modes with large m approach ny; perturbations
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Fig. 19. The radial functions Rmn(r) are shown for even values

of m and n.

The vertical scale is not indicated, and

differs from figure to figure for clarity.
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that produce little net charge density will only slightly perturb the
stationary circular orbits, and cconsequently will be carried along
nearly intact with the frequency v of the stationary distribution.

The eigenfunctions f

mn(f’ 8) found so far do not form a

complete set.25 For example, among the zero-intensity eigenfunctions
(1-23), there are none with the form gmn(r) e uhere n =0 or,

in general, where n > m. For completeness, additional eigenfunctions
are required to fill in the blanks of Table III, as well as an additional
column at n = 0. It is shown in Appendix C that these additional
eigenfunctions exist and have the eigenvalues ny that were excluded by
the form of Eq. (1-7) and following. The new eigenfrequencies do not

change the form of the spectrum, but now the value nvy 1is degenerate.

High Intensities

In the opposite 1limit of wvery high intensities, the eigenfunctions
and eigenvalues also reduce to a characteristic form. The maximum

L, Yy and corresponds to that value of space-

intensity occurs for
charge force for which the repulsive self-force exactly cancels the
external focusing force -- no net force acts on the stationary distribu-
tion. In this case, the particles comprising the stationary distribution
have no veloeity (the beam emittance is zero), and fo is completely
characterized by its charge density eno(x). Any perturbation can
therefore be expanded in a single infinity of functions, rather than in
the two-fold infinity required before. Furthermore, any perturbation

of such a zero-temperature plasma (the external force is eguivalent to

a neutralizing background of immobile ions) must oscillate with the
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plasma frequency mp. Thus, in this limit, the eigenfunctions must
reduce to a single infinity of functions, and their eigenfrequencies
must all have the same value @, =(gp.
This is indeed the case. A few of the eigenfregquencies Bor
are plotted as a fuaction of intensity in Fig. 20 as the intensity
increases to its maximum value, the eigenfrequencies Wom for the sur-
face modes all approach the plasma frequency whereas the eigenfrequencies
for the other modes approach zero. The eigenfunctions for the electric
field €(x) [or equivalently the charge density en(x)] remain
Legendre polynomials, and since each eigenfunction E:m(x) now has only
one eigenfrequency, any perturbation is completely specified by the
single infinity of eigenfunctions Em(x).

The Dipole and Quadrupole Modes

‘The dipole mode with m =1 and n =1 is particularly simple.
The eigenfrequency @), specified by Kll(m) =1 1is found from

Table IT to be

@ = vo o+ @, = vy s (1-25)

so that this mode oscillates with the unperturbed betatron frequency
Vg independent of intensity. The perturbed electric field has the

: o)
form E&(x, ) =ce » and the complete particle distribution

f = fo + fll is given to first order in € by

£(r, 0, #) = e .

QnVW/l - 22 4 Dep cos(voﬁ + 8) 27y V1 - r'2

(1-26)
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XBL&89 - 39502

Fig. 20. The eigenvalues specified by Km(mmn) =1 are

shown for m = 9,7,5, and 3. As the intensity increases

to the maximum value corresponding to w the

p - Y0’

eigenvalues for the m # n modes approach zerc; those

for the m = n modes approach 'mp.
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where the variable r' 1is measured with respect to the moving
v ; ;
coordinates x = € cos(v0¢ +©) and —=e 31n(v0¢ + 8), as shown in

Fig. 21. Therefore the entire distribution is displaced in the circular

<<

Fig. 21.

path indicated, and in real space, the beam oscillates rigidly back and

forth at the frequency Vg*

In addition to this rigid dipole mode, there is an infinite
number of nonrigid dipole modes with n =1 and m = 3,5,7,--+ and

aByy (%)

with a charge density proportional to = . The charge density

for these modes oscillates in a nonrigid fashion, and the eigenfrequency

w , approaches (vo -Av_) as m increases.

sc
The quadrupole mode with m =2 and n =2 has the eigen-

frequency

2 2
Wy = v +tw = E(VO - % Av

’ . B (1-27)

which is the same frequency as was found for the small-amplitude

oscillations of the one-dimensional beam examined in Part I. In fact,
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it is straightforward to show that the complete distribution

b — fO + f22 is Jjust the small-amplitude 1imit.of the uniform one-
dimensional distribution, Eq. (1-17) in Part 1.26 Thus, this is the
"preathing mode" in which the beam expands and contracts, yet maintains
a uniform charge density.

The quadrupole modes with n =2 and m = 4,6,8,-+- have a

de_l(x

dx

freguencies ® s approach E(VO - Avsc) as m increases.

nonuniform charge density proportional to , and their eigen=-

Excitation by External Forces

Machine imperfections excite the various normal modes. In this

case, the linearized Vlasov equation has the form

: ; ; of
%% + v %§ - g% = = mp2[€(x, #) + E(x) e-lpg} 5;9 R (1-28)

where E(x) e—ipg is the known external driving term and p 1is an
integer. The forced solutions of (1-28) oscillate with the frequency
p, and can be found by the same methods thét were used to find the
normal mode solutions. In particular, the defining equation for E,(x)
is just Eq. (1-15), but &£ (cos ¥) on the right-hand side is replaced

by E(cos ¥) + E(cos ¥). The solution for the forced electric field is

Ex) = ) Bilaz () (1-29)
n

where the coefficlents a, are determined by
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K (@)
& 4 = T_:_E;TET J( Pn_l(x) E(x) d&x . (1-30)

-1

Thus an external driving term of the form E(x) = Pm_l(x) excites only
the enﬁzj modes, and resonances occur for p near any eigenfrequencies
® ~ where n = m,m-2,m=4, -+,

A magnetic field error has the form E(x) = €, and excites only

the rigid dipole mode (m =1 and n =1) with

€.

T~ 5 -5l

A gradient error has the form E(x) = ex, and excites only the uniform

quadrupole mode (m =2 and n = 2) with

2
€ X

ee(x) = ) = ] 2 (1'52)

P -ll-v02+§mp

in agreement with Part I. DNonlinear driving terms excite the higher-
order modes and cause resonances for integral values of On® In the
next section, we examine thesé resonances in more detail and compare
them with the resonant frequencies found by Ehrman for a nonuniform
beamn.

We conclude this section with a few general observations. For
intensities of interest in AG synchrotrons (&vsc << vo), the normal

modes fmn for the particle density in x - % space have an approximate
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m-n
5 nodes;

de~l(K)
dx

n-fold symmetry of rotation and radial variation with

in real space, the charge density is proporticnal to

The distribution oscillates with the frequency
O = n(vo = AVSC) P Avsc , which differs from t?e zero-intensity

value nv, by the two frequency shifts navsc and —EE Avsc. The
first frequency shift is a purely geometric effect: a perturbation that
produced no electric field would rotate rigidly with the frequency v

of the stationary distribution, giving rise to the eigenfrequency nv.
However, because the perturbation is charged, the circular orbits of the
stationary distribution are distorted, and this distortion gives rise to
the second frequency shift. This frequency shift is largest for the
lower-order, more coherent modes, and becomes progressively smaller
(Table IV) for the higher-order modes, since the perturbed charge
density tends to cancel with itself: the most coherent mode is the
rigid dipole mode for which w; = (vg - &vsc) + &v_,, whereas for the
uniform quadrupole mode w,, = 2(vO - Aysc) + % Av,,, and for the (3:3)
sextupole mode mﬁﬁ = S(vo - &vsc) + % &vsc' For the higher-order
modes, especially the nonsurface modes, the eigenfrequencies are

¥

Finally, because the eigenfrequencies are real and discrete,

shifted very little from the value n(vo - v,
s 25 : 27 i i

there can be no Landau damping. ' This type of damping requires a
continuous spectrum and discontinuous eigenfunctions, so that any
initial perturbation that is analytic consists of an infinite number

of eigenfunctions, each infinitesimally excited; in the course of time
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the phase relationships between the various modes is destroyed and the
perturbation damps exponentially to zero.28 For any system of charged
particles that are confined by a harmonic potential, the eigenvalue
spectrum is discrete and the eigenfunctions are continuous;29 however,
a very localized perturbation contains many modes and exhibits an
approximate exponential damping until the phases of the various modes

become randomized.
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2. Extension to Nonuniform Beams

Resonant Frequencies for the Uniform Beam

We have seen in the preceding section that an exfternal driving

term of the form Pm_l(x) e-lyg excites resonances if the integer p

is near any of the eigenfrequencies On where n = m,m—E,m—h,'-°. For
A
low intensities, Wy, =8BV + —Eﬁ Avsc, and therefore resonances occur
for p near my, (m-2)y, (m =4)y, --., as indicated below:
The external field causes resonances for p near
PO v
Pl 2v
P2 v 3v
P 2 L
3 v v
P v 3v 5v
E. 2v by, By
-
6= By
Dipole modes are excited by PO, P2’ Ph’ *++, quadrupole modes by
Pl’ P5, P5, -++ , sextupole modes by P2, Ph’ "+ , octupole modes by
Pﬁ’ P., ** , ete. In the 1limit of zero intensity, these resonances

reduce to those obtained from the single-particle approach; the eguation

of motion for the individual particles is

d x 2
Tty X = ¢ Pm_l(x) cos pd (2-2)

qa
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and if we consider only small departures &x from the stationary orbits
x=A cas(vog + ), where A and @ are constants, resonance occurs

for p = my (m -2)vo, (m - h)vo, ***, as indicated in (2-1).

O)
However, if nonlinear terms in 8&x are allowed in (2-2), the
resonant growth caused by the driving term x" cos pﬁ is usually
serious only for m < 2; for larger values of m the amplitude
dependence of Vgs which results from the nonlinearity of the driving
term, generally causes the resonant growth to be negligible.io
Presumably this 'is also true in the presence of space charge. Then,
since ¥ can be expressed in terms of Legendre polynomials of order

less than or equal to m, only the driving terms Pm_l(x) and resonant

frequencies W with m < 3 need be considered, namely W1y Wy,

3 :
T
Resonance occurs for integral values of these eigenfrequencies,

and frcom Table IV we find:

Driving term Resonant condition Mode (m,n)
Py Vg = 1 rigid dipole (1,1)
n . 3 .
2 Vo= gt T AV, uniform quadrupole (2,2)
V. =n + 2 Av nonrigid dipole (3,1)
0 8 “Vse ?
B
aitl 5 & By sextupole (3,3)
VO = 5 8 se P 3}3
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where n 1is any integer. These resonant values of are shown in

Yo

Fig. 22 for the beam intensity corresponding to Avsc = % ; additional
resonances are also included, and the dipole, quadrupole, and sextupole
modes are drawn separately for clarity. The rigid dipole mode is

excited by P, at integral values of whereas the nonrigid dipole

0 Yo’

modes are excited by PQ’ Ph’ s foi near n + Av_ . The uniform

Yo
gquadrupole mode that was examined in Part I is excited by Pl at

Vg = % + % AVgas whereas the quadrupcle modes that do not maintain a

uniform charge density are excited by P for near

5: P5) VO

% + &vsc. The sextupole, octupole, and higher-order modes are excited
for

n n : : .
Vo near ¢ + Av., where g are the zero-intensity subharmonic

frequencies.

Comparison with the Water-Bag Distribution
Fal]
Ehrman and dePa.ckhO have examined the oscillations of the

stationary distribution that has a uniform particle density in phase
space; the particles are confined by an external harmonic potential and
oscillate with the frequency Vo in the absence of space charge. Since
the volume occupied by any group of particles in phase space is incom-
pressible (neglecting collisions), this uniform particle distribution
acts as an incompressible homogeneous fluid, and hence the name water-
bag distribution.

a. The stationary distribution

We will examine the stationary distribution in more detail
before describing its small-amplitude oscillations. TFor low intensities,

the distribution has an approximately circular boundary in the
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A Vg
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n n+Ja- n+1
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Sextupole
l | 1 1 i 1 | | | i
|
i n+3 N+l
Z/O —
XBL6E89- 390!
Fig. 22. The resonant values of Vo for the beam intensity

corresponding to Awsc = % are shown for the dipole,

quadrupole, and sextupole modes excited by Pm(x) with

m<g 5.
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X - - gx space, and a nonuniform charge density in real space. As

Vv

o
the intensity increases, the charge density becomes more and more uniform,
until at the limiting intensity for which the space-charge force exactly
balances the focusing force (the plasma frequency equals vo), the charge

density is exactly uniform and the particles within the stationary distri-

bution are motionless (the beam emittance is zero).

The zero-order distribution fo(r) = ;£— ; 0% rgl1, ids
O‘ET
shown in Fig. 23b, where r 1is the radius of the individual particle
. . 1 dx . o
orbits in the x - T space in the absence of space charge, and Ty
0

is normalized so that ffodxdv =1 (v = %%). For AG synchrotrons the
space-charge forces are small in comparison with the external focusing
force, Aysc << vgs SO that the stationary distribution in the presence

of space charge differs from the zero-order distribution fo(r) by
Av
sc
Yo
difference is approximately 2%, which is negligible. The normalized

terms of order For &vsc typically % and Vg = 10, this

charge density go(x) - ffo(r)dv - % 3 x2 for the zero-order

distribution is also shown. Since the charge density is not uniform,
the self-forces are not linear, and the particles within the stationary
distribution oscillate with different frequencies. It is shown in

Appendix D that the revolution frequencies for the individual particles

Av
sc

0

within the stationary distribution are given to first order in
v

by

v(r) = v T Avg, g(r) 4 (2-4)
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(a)

20r

XBL689 -3300

Fig. 23. The uniformly charged beam (a), water-bag beam (b), and

Gaussian beam (c) are shown: fo(r) is the zero-order
stationary distribution, po(x) is the normalized charge
density for fo(r), and v(r) = v = Avg, g(r) is the

frequency of the individual particles within the stationary

FANY]
SC

0

distribution to first order in

14
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where

25
j po(r sin w) cos® w aw 5 (2-
0

Mo
i
o

glr) =

ajr

involves an integration over the unperturbed orbits. The quantity Avsc

has been defined before [Eq. (2-8), Part I]. It is proportional to the
average charge density within the beam, and is identical to the space-
charge-induced frequency shift for a beam with uniform charge density,

i.e., for the normalized charge density QO(X) = constant = - Eqs. (2-k)

E;
and (2-5) give v(r) = constant = Vo T Avsc. For comparison, the zero-
= )

order distribution for the uniformly charged beam (fo =
- 2
Qﬁvo 1l -r

is also shown (Fig. 23a), as well as the Gaussian distribution observed

5.2 -p,or2
= — @8

i
in the Brookhaven AGS > (Fig. 23c¢), namely Ty = >
o’

, with the

2
normalized charge density oo(x) = \fng e-g,gx . Note that the charge
I
distribution for the water-bag beam is intermediate between that of the
uniform beam and the Gaussian beam.

For the same total charge N., and the same beam size a, the

1’
water-bag and Gaussian beams have a higher central charge density than
the uniform beam. As a result, the space-charge-induced frequency
shifts stcg(r) are larger for the nonuniform beams, since the

c052 w term in Eq. (2-5) weights the integration over po(r sin w) in
the favor of small values of the argument r sin w. For the water-bag
"-I-

beam v(r) varies between v(0) = Vo = 7 Avg, and
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- i ke o= ; ; : _
v(1) = v, 5 Av,, ~ Vg - 1.08 Av_ ;3 for the Gaussian beam it varies

3

between v(0) =~ Yo - 1.67 Avsc and v(1) =~ vg - 1.09 Avsco

b. Small-amplitude oscillations

Ehrman has found the small-amplitude oscillations that perturb
the boundary of the stationary water-bag distribution while maintaining
the uniform particle density in phase space, namely the surface modes.
These modes, for which the perturbation is large only near the beam
boundary, are very similar to the m = n surface modes of the uniformly
charged beam. The additional nonsurface modes that perturb the uniform
particle density within the boundary were not found.

For low intensities, the surface modes have an approximate n-fold

rotational symmetry in the x - L dx space, and oscillate with the

v, d
51 ?
frequencies
8 n
W, = ny(l) + 3% 2 1 Ave, s (2-6)
S
where @ = 1,2,5,%. For m=.1, W = vy, and this is the rigid

dipole mode for which the beam oscillates rigidly back and forth at
the zero-intensity betatron frequency. For the first three surface

modes we find
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Water-bag Uniform beam
@ = ¥ s
@, = 2v(1) + 0.Usk Av__ Wy = 2v + % pv,,
@y = 3v(1) + 0.291 Av gz =3V E AV (aim)

For larger values of n, the frequency shift from nv(l) is very nearly

8 55 ; . nn
3;5 &Vsc’ which has the same form as the frequency shift : &Vsc for

the uniform beam, where khn is a number of order one that increases
slowly with n (Table IV). As n approaches infinity, the eigen-
frequencies «  approach ny(1l); the perturbed charge density tends to
cancel with itself, and the perturbation is carried along nearly intact
at the frequency of the boundary particles, v(1) =~ vg - 1.08 Av .

As the intensity increases to its limiting value, corresponding
to ub = Yy the eigenfrequencies @, approach the plasma freguency
@, in the same manner (Fig. 3 of Ehrmané) as do the eigenfrequencies
for the surface modes of the uniform beam (Fig. 20). We conclude that
the eigenfrequencies for the surface modes of both distributions are
very similar.

The low-intensity resonant conditions for the first three

surface modes of the two distributions are
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Water-bag Uniform beam
Vo =B vg =1
w0~ % € 02855 Av., Yo = % E % Ve
Yo = % + 0.983 T Yo = % - % BV, (2-8)

The driving terms that excite these water-bag modes have not been
determined, but it is reasonable to assume that they are similar to
those for the uniform beam. For example, we expect a gradient error to
excite primarily the n = 2 quadrupole mode, but also to excite weakly
the additional nonsurface quadrupole modes. In the same spirit, we
expect only the low-order water-bag resonances listed in (2-8), plus
perhaps one or two nonsurface modes, to be detected in accelerators;
the nonlinearity of the driving terms required to execite the higher-
order modes should prevent additional modes from being observed.

Gaussian Beam

The eigenfrequencies for the Gaussian beam have not been found,
but WEibelgl has solved a very similar problem. He considers a one-
dimensional system of electrons in an external harmonic potential, and
finds the eigenfrequencies for the small-amplitude oscillations about a
stationary Gaussian distribution. However, he considers only the case
for which the charge density of the stationary distribution is completely
neutralized by a background of immobile positive ions so that all the
particles within the stationary distribution oscillate with the same

frequency Vg In contrast, the charge within an accelerator is not
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neutralized and the individual particle frequencies for the Gaussian

distribution vary between v(0) = vy - 1. 6T Av,, and

v(l) = Vg T 1.09 A In any event, the eigenfrequencies found by
Weibel have a form very similar to those of the uniform beam and the

water-bag beam.

0.2 -p.2r°

For the neutralized Gaussian distribution fO(r) = ;j— e 5
e

Vialhed, Binfisd™

(L)ll = ‘I.}O + 1.22 AVSC ] U.)al = VO + O.lzl &VSC ]
weg = Evo + 0.350 &VSC 5 ahe = 2vo + 0.089 émsc "
Wy = 3vg * 0.222 Av_, ; (2-9)

~and it can be seen that the frequency shifts from nvo are very
similar to the frequency shifts from nvy(l) for the water-bag beam
(Bq. 2-7) and from n(vO - Avsc) for the uniform beam. In particular,

the frequency shifts for the surface modes are:

m=n Gaussian Water bag Uniform
Al .22 AV, 1.08 Avsc Avg,
> 0.356 0.45h -
» 350 &MSC U5 &Vsc 5 Aysc
202 .2 2
> fiza " WL &vge 8 &Vae . (2-10)

For the two nonsurface modes of (2-9),
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(.mzn) Gaussian Uniform
1
(3,1) 0.131 Avg, 0.125 Av_,
(4,2) 0.089 av_, 0.125 av, - (2-11)

These results for the neutralized beam can be extended to the
charged beam provided the effect of the frequency spread v(0) - v(1)
within the charged beam can be neglected: we assume that all the parti-
cles within the stationary distribution oscillate with the same frequency

v and replace in (2-9) by the effective frequency V. The value

Yo
of v 1s determined by the requirement that the rigid dipole mode,
which in this case is obviously the m =1, n =1 mode, oscillate with

the frequency Then v =~ vo = 1.22 Av_; this is near the mean

VO-
frequency [v(r) fO(r) dxdv =~ v - 1.28 Av,, within the stationary
distribution and is a reasonable extrapolation from the effective
frequencies Vo T Avsc and Vg 1.08 Avsc for the uniform and water-

bag beams. With this replacement in Egs. (2-9), the resonant conditions

for the Gaussian beam become

VO = n E] Vo = n + 1-09 AVSC I}
n n .
vg = 7 + 1.0k AV, s vg = 3+ LOTAv .,
n
VO = g =+ 1.15 &VSC 2 (2-12)

which are reasonable extrapolations from the known resonant conditions

for the uniform and water-bag beams (Eq. 2-8).
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3. Conclusion

We have investigated the small-amplitude oscillations of a one-
dimensional system of charged particles that interact with one another
by Coulomb forces and are held together by an external harmonic potential.
Because the large number of discrete particles (approximately lOlE),
each with two degrees of freedom, has been replaced by a continuous
distribution, the system has a twofold infinity of degrees of freedom
and therefore a twofold infinity of normel modes and eigenfrequencies.

In the limit of zero intensity, the eigenfrequencies for any
stationary distribution are Jjust harmonics of the zero-intensity

betatron freqguency and each eigenfrequency is infinitely degenerate.

vos
Resonances occur for integral wvalues of nvg, and these are just the
integral, half-integral, and subharmonic resonances that are familar from
single-particle theory. For intensities of interest in AG synchrotrons
(Avsc pC vo), the degeneracy is at least partially removed, and the
eigenfrequencies occur in clusters near the unperturbed eigenvalues
0y - For larger intensities, the charge density of the stationary
distributions becomes more and more uniform until at the limiting
intensity, for which (.op =—Vqs the charge density is exactly uniform.
Consequently, the eigenfrequencies for the surface modes approach the
plasma frequency, while the eigenfrequencies for the nonsurface modes
approach zero.

The eigenfrequencies and normal modes for the staticnary

distribution that has a uniform charge density in real space have been

investigated in detail. The eigenfunctions for the perturbed electric
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field are particularly simple, being Jjust Legendre polynomials. For low
intensities, the eigenfrequencies are ©n = ny + —_ Avsc’ where

vV =y T &vsc is the revolution frequency of the particles within the
A,

stationary distribution and —%E &vsc is the frequency shift induced by

the collective oscillation. In the x - é—

= space, the eigenfunctions
0

d

have an approximate n-fold rotational symmetry and a radial variation

with = ; L nodes; in real space the perturbed charge density is
dp
propertional to dz-l' The frequency shift from ny 1is relatively

large for the low-order, coherent modes, while it is very small for the
higher-order modes, for which the perturbed charge density tends to
cancel with itself.

External driving terms of the form Pk(x) cos pﬁ excite the
m=k+1l, n=k+1, k-1, k -3, *++ modes and cause resonances
for @, near the integer p. However, the resonances with m > L
will generally be suppressed by the nonlinearity of the driving term
required to excite them. Therefore, from the twofold infinity of
possible modes, only four are likely to be serious for the uniformly
charged beam: the rigid dipole mode (m =1, n = 1), which is excited
by magnetic field errors for integral values of Vs the quadrupole
mode (m =2, n =2), which is excited by gradient errors for

+ %-avsc; the sextupole mode (m = 3, n = 3), which is excited

o &

VO =
a7 . 5 :
by PE(X) for v, = 3 + g &v_,; and the nonrigid dipole mode (m = 3,
= l - i 1 = 9
n ), which is excited by Pg(x) for vy =1+ g v,
Two beams with nonuniform charge density were also examined, a

Gaussian beam similar to that observed in the Brookhaven AGS and the
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water-bag beam, which has a charge distribution intermediate between
that of the uniform Ybeam and the Gaussian beam. Despite the relatively
different charge distributions, the eigenfrequencies for the surface
modes of the water-bag and uniform beams have the same form and very
similar numerical values. The eigenfrequencies for the Gaussian beam
were extrapolated from the known eigenfrequencies for a neutralized
Gaussian distribution, and are also very similar in form and numerical
content to those for the uniform and water-bag beams. Because of this
similarity, it is reasonable to assume that corresponding modes in the
three distributions are excited by the same driving terms; for example,
a gradient error is expected to excite primarily the n = 2 surface
modes, causing a resonance for vy = % + E &Vsc in the uniform beam,

Vo = % + 0.853 &VSC in the water-bag beam, and for

for
Vo = % + 1.04 &VSC in the Gaussian beam. In the same spirit, only the
first three surface modes and one or two nonsurface modes are expected
to be observable in accelerators, in analcgy with the uniform beam.

For the future, it is possible that the exact eigenfrequencies

and normal modes for any distribution, at least to first order in

> » can be found by stationary perturbation methods, i.e., the
0]
methods that are used in quantum mechanics to compute perturbed eigen-
functions and energy levels. §Since only five or six modes need be
examined, the perturbation approach should converge without excessive

calculation. Perturbation methods might also be applied to two-

dimensional beams to examine the effects of space charge on sum and
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difference resonances, and to three-dimensional beams to examine the
space-charge coupling between longitudinal and transverse motions. Since
relatively few modes are involved, it might also be feasible to determine

the large-amplitude behavior of these modes by analytical methods.
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APPENDICES

A. The Nonexistence of Uniformly Charged

[ Three-Dimensional Beams

We are given an ensemble of three-dimensional harmonic

oscillators with the Hamiltonian
- 2 2
HE, T = p +4q°, OSHS1 . (A1)

Because of the inequality, the accessible region in phase space is a
 six-dimensional unit sphere; in configuration space it is a 3-sphere.
Does there exist a spherically symmetric distribution f(p2 + qe) that
has a uniform projection onto the 3-sphere? The following necessary
condition for.the existence of such a distribution has been found by
Maurice Neuman.

Theorem: The'spherically symmetriec distribution f(p2 + q2) does not
exist if its projection p(qe) = ff(p2 + qg)d5p violates any of the

following inequalities:

)y 3/2
sn—g(ﬁ;) ; oS TS,
p(T)
s S+, gl (a2)
n

The maximum permissible value of p(7T), which corresponds to the equal
sign, is shown in Fig. (Al). An immediate consequence of this theorem
is the nonexistence of a spherically symmetric distribution f(p2 + qg)

with a uniform projection, p(qg) = constant.
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2.0

T 1

P max

Fig. Al. The maximum value of p(T) from Eg. A2 is shown

as a function of .

(t)

T B e S e B

XBLE689-3915

Fig. A2. The function gT(t) specified by Eg. (A8) is

shown as a function of +t.
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Proof of Theorem: f 1is normalized by

ol
3
ff(p2 + qg)d39d3q = ﬁ— f f(tc)t2 dt s 1

(A3)
The mean of any function g(t) 1is
1
ﬂ5 2
mean g = 7~ f g(t) £(t) t- at , (AL)
0
and the resulting number can neither exceed the largest nor fall
beneath the smallest value of g(t) (0 t<1):
inf g mean g < sup g . (45)
The projection of f is
1
o(d®) = ff(pe +q®)& = 2 f £(t + q°)¢2 at
© (46)
or 1
1
o(t) = 2¢ f £(t) (¢t - T)2 dt ‘ (A7)
T
Consider the function
1
- 2
g_(t) =Lt_2‘r_) for 0T <1
t

= 0 for t <% (A8)
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which is shown in Fig. A2. TIts mean value is proportional to p(T),

2
o(T) = mean g < sweg_ . (A9)

o]
2

o b Lt i /3)
But for -3-T<l, sup gT:mang=gT(3_> oy Ig K“; , and

o[

L
or 3 >1, swpg_-= gT(l) =\y1-1 . Q.E.D.
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B. The Amplitude-Phase Equations for Two-Dimensional Beams

In the absence of space charge and gradient errors, the solu-
tions of the two-dimensional envelope Egs. (3-1) and (3-2) can be

written in the form

x = 1+A% +4sin (EQXQ +a) |,

v, A cos(nyQ +a) |,

i® = Y8 B sin(2vzg +8)

|l&

v, B cos(Evzﬁf +8) (B1)

€l

where A, B, &, and p are constant. When Egs. (Bl) are inserted into
the complete envelope equations with space charge and gradient errors,

we obtain the following first-order equations for A, B, Qx’ QZ:

dA
iy - ~5— V1 + A cos Q_ (B2)

I - Ay Vl + A2
X SX
2
w
dB 2
. I, - av V1 + B° cos o, , (33)
L |

4oy 8 1/
P - I 2
5 M, v ov VI + A" sinQ +28w . (BY)

=5
<
1
"

I3
]
1]
1
W
=
+
>
==
—~
+
[ws]
o

: ag TR sz sin Q, + 2By, , (B5)
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plus additional terms that vary with the frequencies EVK, Evz, kvx’

by , etc. We have defined Q = (2v, - n)f +a, Q, = (2v, - n)f + B,

n n
&vx = Y, = 55 sz = ¥, = 59 and
. o= i ey @ with u=nf+aQ
x = 2z x(ax + bz B s ’
& (26)
21
M b A+ Vl + AE sin u i (87)
X  2x x(ax + bz) ?
0

with similar definitions for IZ and Mz' The quantities IX and Iz

are related by

AT + BBI_ = 0 . (B8)
X Z

A. Equal Frequencies and Emittances

In general, Egs. (B2) - (B5) are very difficult to solve;
however, for the special case of equal frequencies (vx = vz) and equal

emittances (a = b), analytic solutions exist with the forms

2 2
x = 1+A° +Acos(ng +q) ,
2 2
z= = 1 +A +Acos(ng +q) , (B9)
where the plus sign occurs for a symmetric gradient error (Avsx = &vsz)
and the minus sign for an antisymmetric gradient error (Avsx = f&vsz).

For either gradient =1 = = 1
t gradient error, Ix I, 0 and Mx MZ’ so that

(B2) - (B5) reduce to
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%‘% s An NI 4ds sind (B10)
s
|
: 2
A %% = hﬁvsc M, + &vs 1 +A cos Q + 24 Ay , (B11)
where
V1 + A2 -1 ;
M, = Ty 3 for + in B9 (BL2a)
and
e Ik 2 k2
M = =1 -=-=K(k)] , for - in B9 (BL2b)
- 2k T A2

and K(k) is the complete elliptic integral of the first kind with

modulus k = A

1+A2

The phase trajectories in A, @ space are found by dividing
(B10) by (Bll) and integrating the result:
2Av

2 A'Vsc M+
constant = A cos Q + — V1 + A - L f - dA
&vs Av

where

[ i = %ﬂn(l + V1 + 4% ) (B1L4)

and
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[éna-ff%ﬁldk] . (315)

[a] N ol

Jf M_dA
2

1+ A

The fixed points %% -0, %% -0 satisfy

Ay . ) Av
qQ=0, A:--l-...;S_VlJrA“ +2 iCM

2 A A *
or (B16)
Av ANY
1 s 2 sc
50 RERET YRVE el e

and are shown in Fig. 10. For &vs = 0, these equations specify the
amplitude of the free envelope oscillations that are periodic.

Because of the nonlinearity in the envelope equations, a
gradient error of one symmetry also affects the normal mode solutions
of opposite symmetry. Thus the symmetric fixed points of (Bl&) are
modified by an antisymmetric gradient error, and vice versa. For |
example, in the absence of all gradient errors, the symmetric envelope

oscillation has the form

)
x~ = z= = 1+A +Acosnf |, (B17)

where

An antisymmetric gradient error transforms these fixed points into
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x- = 1+ A2 + A cos(nf +Q) ,

z ; V1 + Az - Acos(ng -Q) , (B18)

Av '
where for E;E << 1, Egs. (B2) - (B5) become

Ams
A cos g = AT. 3
2 Av
A - AS(\'.: . ( 319 )
2 v
1 +A -1
Av

For small values of E;E they approach very closely the form (Bl7), as
shown in Fig. 11. The symmetric gradient error modifies the antisym-
metric fixed points in an analogous manner.

B. General Beam Configurations

The response curves for v, 4 v, and a 4b can be obtained
from Eqs. (B2) - (B5) by numerical methods. However, for simplicity,
we consider only the Avsx =10, Avsz = 0 asymptotes, in other words,

the free envelope oscillations that are periodic. Equations (B2) and

(B3) then require that Ix =1 O, and this condition is satisfied

Z
if QK - QZ = O,n, so that

x2 — 1. +A2

.+.

A sin(ng +Q) ,
(B20)

&)
1}
+
vs]
14

+ B sin(ng + Q) .
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The quantities A and B are then determined by (B:) and (B5):

2 2
5 b A+V1+4% sinu
A = 8| du 3
2v_Av_  2x x(ax + bz)
0
(B21)
2 2‘,’{ o]
u% 8 B+ V1+ B sinu
B = ———— du
2v Av, 2z z(ax + bz)

“0

These integral equations were solved numerically, and the solutions are

shown in Fig. 1k,

- By | = \

B & 2 2

e ey S
\“n""'-‘_’.\_’_," B Y
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C. Normal Mcdes that Oscillate with the Frequencies nv

The uniformly charged beam (Section 1, Part II) has normal-mode
solutions that oscillate with the frequencies nvy, where n 1is an
integer and v = 02 - abe . The electric field for these modes has

the form E:m(x) = Pm_l(x), and the perturbed particle density is

determined by Eq. (1-6) to have the form

in

£(r, 8) = £ (r,0) +e g (r) (c1)

where fﬁn(r, @) is given by Eq. (1-21) with @ =nv. The function
gmn(r) is determined by the condition that f(r, ©) produce the

required electric field, Pm_l(x):

ap. . (x)
m_ai_.= 2[f‘(r,9)dv:. (c2)

If (Cl) is inserted into (C2), we obtain the following condition for

mn
de_l(x) L cos ne, gmn(r)
- 0] —— = f rdar |, (c3)
2 2
Ix| r° - x
where cos 6. = =. TFor even values of n, the right-hand side of (C3)

0 r

is an even function of x, and therefore m must be even; for odd values

of n, m must be odd.
There is an infinite number of solutions for n =0, i.e., an

infinite number of stationary distributions that differ from fo(r) by
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10 ;
an infinitesmal perturbation. Using Abel's theorem = to invert (c3),

we find

|
o H
'_l
+
N
Hy
o ]
—~
H
g

g50(7)

J

1+

1

o+

8,0(%) (157" - 11) g5m)

]
o
}_,_I
+

g6o(r) 5 (1!21'}"r + lllr2 -1) fo(r) s

16-16v

()
Consegquently, for m =2 and n = O,
moe dfO Eh - -
f(r, 8) = - ;E‘ T T cos 20 + 511+ ng £y 5 (G5)

and similarly for the higher values of m. Since these solutions all
have the same eigenvalue w = 0, any combination will also be a
solution.

For n greater than zero, Km(nv) is infinite if m > n.
Therefore the functions gmn(r) specified by (C3) exist only for m < n,
and these values correspond exactly to the blanks in Table ITI. For
example, for n =1 or n =2 there are no solutions. For n = 3

there is one solution, with the form
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f = flﬁ(r’ e) + e~139 gl3(r)

{In this case the left-hand side of (C3) is zero, and it is more

convenient to determine (r) by the equivalent relation

2 5

1
- Km(nv)] Pm..l(x) = - % f rdr sin n6 gmn(r) = 186)
||

Equation (C3) is the derivative of (C6) with respect to x.} For n = L
there is also one solution, whereas for n = 5,6 there are two solutions,

and so on for the higher values of n.
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D. Frequency Spread for Nonuniform Stationary Distributions

The Hamiltonian for the individual particles within a stationary

distribution f(p, Q) is

1; 2 8.2 2
H = 300 +vga) +a o) , (p1)
where
d2¢> .
— = -2 /[/¢@H) @ , (D2)
dg

1. We have chosen the units of gq so

and where [ f(p, q) dp dg
that the beam boundary is g = +1, and have defined @, as the plasma
frequency for the average charge density.

The revolution frequency of the individual particles is deter-
mined by (D1) and (D2). For AG snychrotrons, a 2 = yog, and it
suffices to find H to first order in (%ijg, namely H = HO + Hl,

. 1, 2 2.2 2 s
where Hy = E(p t vy a ) and H = @, @O(q) with

—5 = -2 [f(H) & = -204(a) - (D3)

In terms of the action and angle variables J,w given by

2 .
T "\f;f sin w W o= VOQ + constant, (D4)
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the zero-order Hamiltonian is HO e vOJ; the transformed first order

Hamiltonian Hl(J) is just the average of Hl(p, q) over the

unperturbed orbit,55

2 21
Hl(J) = ;D% f @O(-\ff% sin w) dw . (D5)
0

The frequency of revolution of the individual particles is then

If the differentiation is performed, followed by an integration by

parts, Eg. (D6) becomes

2x
vir) = v = Av 2 o (r sin w) cos® W aw (D7)
0 sC 1 e : ’
0
, 2J ; 7 ;
where r = by is the radius of the unperturbed orbits and
0
2
-1

Avsc T2yt
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2 2
&L vks)x - & -0,
ds X

is eguivalent to the two "Cartesian" equations

d2
""'é}:""K(S)Y:O ’
ds
2
2+ Ke)z = 0
ds
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dgxb 2vAv
Rl Klshr—===LS% = ©
dﬁj P X D
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o
Av, vAv, cos nd

2 2 2 ¢
L Lhy™ - QvAY el i
sc
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plus free oscillations. Combining the two equations, one cobtains

d2x

D 8 5 n
d¢2 + [v Ev&vsc + 2v&vs cos nf EvAvSC

X = 0 P

P

Eu&vs cos n¢
X 2
n

2
Lhy™ - 6u&vsc -
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to that in the AGS is % - 1.0k Avsc' The resonant condition

:VO

for the corresponding uniform beam is % = Vo " % Avsc’ and the

1.0
0.75

: L .
frequency shifts from Vo are in the ratio =~ g. Assuming

that the same ratio applies to the two-dimensional resonant condi-
tions (4-1) and (4-2), we conclude that the resonant conditions for

the corresponding Gaussian distribution are approximately

noj s
I
<
1
=
>
=
el

noj s
[
<
1
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>
<
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2
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3nx n 'E’ / n -]I
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" 2 n2 2 2
= %
mn o a% %
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) 20
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th are ovtained from Fiz. 2 of Weibel.

H. C. Corben and Philip Stehle, Classiczl Mechanics,

Y

=

o
=)
o

(John Wiley end Sons, Inc., New York, 1940), p. 2L5.



