
UCRL..-18454

TRANSVERSESPACE'CHARGEEFFECTSINCIRCuLARACCE:LERATORS

r.(

f\ t
~:H;;

, \

\
t'

FrankJ~mesBaoharer
(Ph.D.Thesis)

Qctobet\30f 1968

f\\ 1\ I"\J\..l) PY

I Iti5 is a Lit}r I.H'~i C ire u ,(1tin y Cop y

lUIf ic11 n/(UI II(!rr (Iwe<I for tUJ(1weeks.

For a SQiHdretentiofi C(lP~J,(all
Tech. InlQ niPI'"'!

;
~

, rI. f I: I I

c::()
~.......cP~(Jl~



UCRL-18454

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory

Berkeley, California

AEC Contract No. W-7405-eng-48

TRANSVERSESPACE-CHARGE EFFECTS IN CIRCULAR ACCELERATORS

Frank James Sacherer

(Ph.D. Thesis)

October 30, 1968

n_-



-iii-

TRANSVERSE SPACE CHARGE EFFECTS IN CIRCULAR ACCELERATORS

Contents

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction. . . . . . .

Part I.

- ----

Part II.

...............

Uniformly Charged Beams in the Presence of

Gradient Errors. . . . . . . . . . . . . . . . . . . . .

1. Envelope Equations. . . . . . .
. . . . .

The One-Dimensional Beam ... ... ...

The Two-Dimensional Beam. . . . . . . . . . . . . . .

The Three-Dimensional Beam. . . . . . . . . . . . . .

2. The One-Dimensional Beam. ........

General Solution of the Envelope Equation . . . . . .

Resonance Crossing .........

Summary ............. . . . .

3. Two-Dimensional Beams . . . . . . . '. . .

A. Equal Frequencies and Emittances

Resonance Crossing. . . . . . . . . . . . . . . .

B. General Beam Configurations ........

Summary ........ .......

4. Conclusion and Applications . . . . . . . . . .

Applicationto AGS . . . . . . . . . . . . . . . . . .

Collective Oscillations of One-Dimensional Beams

Confined by Harmonic Potentials. . . . . . . . . . . . .

1. Normal Modes for the Uniformly Charged Beams. . . . .

Formulation of the Problem. . . . . . . . . . . . . .

General Solution. . . . . . . . . . . . . . . . . . .

v

1

6

t)

6

15

19

20

25

30

31

34

36

42

44

52

54

--------.-----------

56

60

62

62

G6



Acknowledgments

Appendices.

- ~ -------

-iv-

Low Intensities ...................

High Intensities. . . . . . . . . .

The Dipole and Quadrupole Modes ...........

Excitation by External Forces ............

2. Extension to Nonuniform Beams .........

Resonant Frequencies for the Uniform Beam . . . . . .

Comparison with the Water-Bag Distribution. . . . . .

a. The stationary distribution

b. Small-amplitude oscillations. . . . . . . . .

Gaussian Beam ..............

3. Conclusion ...................

. . . . . . . . . . . . . . . . . . . . . . . . . . 100

. . . . . . . . . . . . . . . . . . . . . . 101

A. The Nonexistence of Uniformly Charged Three-

Dimensional Beams. . . . . . . . . . . . . . . 101

B. The Amplitude-Phase Equations for Two-

Dimensional Beams. . . . . . . . . . . . . . . . . . 105

A. Equal Frequenciesand Emittances . . . . . . . . . 106

B. General Beam Configurations . . . . . . . . 109
- ~ -~~--~---- u_~ --

C. Normal Modes that Oscillate with the

Frequencies nv . . . . . . . . . . . . . . . . III

D. Frequency Spread for Nonuniform Stationary

Distributions. . . . . . . . . . . . .

?ootnotes and References. . . . . . . . . . . . . . . . 116

70

76

77

80

84

84

80

36

91

93

96

. 114



-v-

TRANSVERSESPACE-CHARGE EFFECTS IN CIRCULAR ACCELERATORS

Frank James Sacherer

Lawrence Radiation Laboratory

University of California

Berkeley, California

October 30, 1968

ABSTRACT

The particles in an accelerator interact with one another by

electromagnetic forces and are held together by external focusing

forces. Such a many-body system has a large number of transverse modes

of oscillation (plasma oscillations) that can be excited at characte~-

istic frequencies by errors in the external guide field.

In Part I we examine one mode of oscillation in detail, namely

the quadrupole mode that is excited in uniformly charged beams by

gradient errors. We derive self-consistent equations of motion for the

beam envelope and solve these equations for the case in which the space-

charge force is much less than the external focusing force, i.e., for

- ----- --- --- -- ~--- -- - ------

strong-focusing synchrotrons. We find that the resonance intensity is

shifted from the value predicted by the usual transverse incoherent

space-charge limit; moreover, because the space-charge force depends on

the shape and size of the beam, the beam growth in always limited. For

gradient errors of the magnitude normally present in strong-focusing

synchrotrons, the increase in beam SiZE is small provided the beam
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parameters are properly chosen; otherwise the growth may be large. Thus

gradient errors need not impose a limit on the number of particles that

can be accelerated.

In Part II we examine the other modes of collective oscillation

that are excited by machine imperfections. For simplicity we consider

only one-dimensional beams that are confined by harmonic potentials, and

only small-amplitude oscillations. The linearized Vlasov and Poisson

equations are used to find the twofold infinity of normal modes and

eigenfrequencies for the stationary distribution that has uniform charge

density in real space. In practice, only the low-order modes (the

dipole, quadrupole, sextupole, and one or two additional modes) will be

serious, and the resonant conditions for these modes are located on a

tune diagram. These results, which are valid for all beam intensities,

are compared with the known eigenfrequencies for the stationary distri-

bution that has uniform particle density in phase space, and are

extrapolated to the Gaussian distribution observed in the Brookhaven AGS.

--- ----- -
n_- -
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INTRODUCTION

The beam of particles in an accelerator is a many-body system of

charged particles interacting with one another by electromagnetic forces

and held together by external focusing forces. Such a many~body_usystem

has a large number of modes of collective oscillations that can be

excited by machine imperfections at characteristic frequencies. In the

limit of low intensities, the interactions are negligible, and the

collective modes and eigenfrequencies are easy to find. Consider, for

example, a one-dimensional beam in an external harmonic potential; in

the absence of space charge, the individual particles obey the equation

d2x- +

d~2

2
v x = 0 , (1)

and any distribution of particles rotates rigidly in the
ldx

x - ~~
phase space with the frequenc~y v. A distribution with circular

symmetry (Fig. la) is stationary, while a distribution with circular

symmetry, but displaced from the origin (Fig. Ib), oscillates with the

I x'
i -

V

x

~--

n{_~' -----

fi--'--
I i )
\ I / x,-y

I
i

(6)

x

(a) (b)

Fig. 1.
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frequency v - in real space, the geam oscillates rigidly back and forth

at the frequency v. In fact, there is an infinite number of modes with

the circular form of Fig. lb, each w"ith a different radial dependence,

but each oscillating at frequency v. Similarly, there is an infinite

number of modes with the elliptical symmetry of Fig. lc; in real space,

these modes expand and contract with frequency 2v. In general, there

is an infinite number of modes with a given n-fold symmetry of rotation,

and each mode oscillates with the frequency nv. Therefore, in the

absence of space charge, the eigenfrequencies for any distribution are

just harmonics of the unperturbed betatron frequency, and each eigen-

frequency is infinitely degenerate.

Resonance can occur when an eigenfrequency is an integral

multiple of the rotation frequency in the accelerator, i.e., when

nv = m; this condition is of course identical with that obtained from

the single-particle approach, which is equivalent to the many-body

approach in the limit of zero intensity. Thus if a driving tern of the

form xn cos k ~ is added to Eq. (1), the various dipole modes (Fig. lb)

will be excited if v = k and n = 0,2,4,...; the quadrupole modes

(Fig. lc)_are-_€3xGij;e_cL_Jj'___v_--==u~na11d__n___==_:L,3,-S ~... ; - the sextlJP91€3-

modes if
k

v = 3
and n = 2,4,6,.", and so on for the higher-order

modes.

Space-charge interactions modify these results. For intensities

of interest in synchrotrons, and for small-amplitude oscillations, the

eigenfrequencies are shifted by small amounts proportional to the beam

intensity, and the degeneracy is removed so that the eigenfrequencies
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occur in clusters near the unperturbed, degenerate values nv. As a

result, each of the forbidden lines on a tune diagram that would occur

for an integer, half-integer, or subharmonic value of v in the absence

of space charge is split into an infinite number of closely spaced

lines. For example, the various dipole modes that are excited for the

same frequency v =k in the absence of space charge are excited in the

presence of space charge at different frequencies that are clustered

below the value v =k: there is one mode for which the beam oscillates

rigidly back and forth at the unperturbed frequency v, but there is

also an infinite number of nonrigid modes whose eigenfrequencies are

shifted below v = k by amounts proportional to the beam intensity.

The above remarks apply only to small-amplitude oscillations.

For larger-amplitude oscillations, space charge provides a very effective

mechanism for limiting beam growth through the nonlinear dependence of

the space-charge forces on the shape and size of the beam. A quantita-

tive study of this important effect is extremely difficult in the general

case; however, it was shown by Lloyd Smithland by P. M. Lapostolle2

that the quadrupole mode excited by gradient errors in uniformly charged

beams can be analyzed even in the nonlinear regions.
- - ---p --- -- -- -- .-.

In Part I of this paper we examine this case in detail. In

Section 1, self-consistent equations of motion for the beam boundary

are derived for uniformly charged beams with one and two degrees of

freedom. The derivation, which is more general than we need, is
J

applicable whenever the self-forces and external forces acting on the

individual particles within the beam are linear. In Section 2, the
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envelope equation for the one-dimensional (planar) beam is solved, and

in Section 3, various two-dimensional (cylindrical) beams are examined.

For either case, the nonlinear character of the space-charge force

causes the frequency of the quadrupole mode of oscillation to depend on

its amplitude. Thus the beam growth caused by gradient errors is always

bounded. We also investigate the process of resonance crossing that

results from slow. variations in external focusing or effective space-

charge force and find, for gradient errors of the magnitude normally

encountered in AG synchrotrons, that resonances can be crossed in the

direction of increasing frequency with only a small increase in beam

size. However, if the resonance is crossed in the direction of decreasing

frequency, a substantial increase in beam size can occur. For example,

if the beam is caused to bunch in the synchrotron, the space-charge force

increases, and the beam size can grow quite large near the intensity

predicted by the bunched incoherent space-c.harge limit. However, a

prebunched beam whose intensity is considerably larger than the incoherent

space-charge limit may be successfully accelerated. In this case, the

resonance is crossed in the direction of decreasing space-charge force,

--. --- ap_~_~~!y- Iittle beam growth occurs. Thus, the incoherent space-charge --------------

limit, as usually defined, need not impose a limit on the beam intensity.

Similar results have been derived by F. sacherer,3 and by P. M. Lapostolle

4
and L. Thorndahl.

In Part II we investigate the other modes of collective oscilla-

tion that are excited by machine imperfections. For simplicity we

restrict our attention to one-dimensional, planar beams, and consider
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only small-amplitude oscillations. In this case the twofold infinity

of normal modes (plasma oscillations) and eigenfrequencies can be found

by means of the linearized Vlasov equation and Maxwell's equations.

Harker5 has given a general prescription for reducing these equations

to an integral equation of the Fredholm type, but numerical methods are

usually required to extract the eigenfunctions and eigenvalues. However,

an important result of this paper is a direct method for finding all

the normal modes and eigenfrequencies for the stationary distribution

corresponding to a uniform charge distribution in real space.

In Section 1 of Part II, we find the eigenfunctions and eigen-

values for this case, and determine which modes are excited by a given

external driving force. Then, since the complete eigenvalue spectrum

is known, the resonant frequencies for the various dipole, quadrupole,

and higher-order modes can be located on a tune diagram. Besides being

useful in themselves, these results provide considerable insight into

the more difficult normal mode problem for nonuniform beams.

In Section 2, this mode structure is compared with that obtained

by Ehrman6 for the stationary distribution that has a uniform particle

distribution in phase space. In this ~asE:~ ~~~_~l!a~ge -deP,?Jt:Y---in _~_eal ~u -

space is approximately uniform, and we find that the eigenvalue spectra

for the two distributions are very similar. We also extend these

results to a distribution with Gaussian charge density similar to that

measured for the Brookhaven AGS.
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PARTI. UNIFORMLYCHARGEDBEAMB IN THE PRESENCE OF

GRADIENT ERRORS

1. Envelope Equations

In this section we find self-consistentenvelopeequationsfor

the case in which both external forces and self-forces acting on the

particles in a beam are linear. The requirement of linear forces

restricts us to uniformly charged beams and to linear machine imper-

fections, namely gradient errors, but allows us to study the effects

of space charge on large-amplitude oscillations of the beam.

We first consider the simple case of a beam with only one

degree of freedom, then extend the derivation to two degrees of free-

dam, and finally show that the derivation can not be extended to three

degrees of freedom.

The One-Dimensional Beam

In the absence of space-charge forces, we take the equation of

motion for the individual particles to be

d2x

ds2
+ K(s) x a (1-1)

n__- ------ - -- - --- ------

where K(s) is the external focusing function, s measures distance

along the equilibrium orbit, and all the particles are assumed to have

the same velocity
ds- = v .

dt P

The self-forces acting on a particle arise from the internal

charges and currents within the beam,7 as well as from the charges

and currents induced in the vacuum chamber walls,8 and also from



-7- UCRL-18454

collisions. between particles. Fortunately, the effect of collisions

is negligible for the times of interest, and for the low particle densi-

ties typical in accelerators.9

We incorporate the image force into the external focusing term

K(s) x, and neglect its nonlinear components and its weak dependence on

the beam size. Then the net effect of the image force is to shift the

tune by an amount that depends on intensity and energy but not on the

beam size,8 in contrast to the direct self-force.

We also neglect the magnetic field component that results from

remaining magnetic field component is just

dx
dt

ds
dt .

v 2
P
2c

The force from the

the transverse particle velocities because is only a hundredth to

a thousandth of the longitudinal velocity

times the electric

force, and need not be calculated explicitly. The complete self-force

is 1/y2 times the electric force.7

The electric field calculation is simplified by neglecting the

curvature of the equilibrium orbit and by neglecting the variation of

the beam cross section with s. Actually the beam is modulated around

- _n tRe:--orbit-circumference-,---but---themodulation.length is approximately half

the betatron wavelength and is therefore negligible in comparison with

the transverse dimensions of the beam.

The beam geometry then has the rectilinear form shown in Fig. 2,

and in order that the self-forces be linear, the charge density must be

uniform between the boundary planes, x=:tX(s). We assume for the
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moment that the particles can be arranged in the
dx

x - ds phase space

to produce the required uniform charge density, and that the charge

density remains uniform as the system evolves under the a.ction of the

assumed linear forces. Then the equation of motion for the individual

particles is

d2x
~
ds-

+ K(s)x
2

4ne

y3mv 2p

Nl

2X(s)

x 0 (1-2)

---..--.--..-.-..----

where
eNl

2XTST is the charge density and eNl is the total charge per

unit surface area. It is convenient to write (1-2) in the form of the

two first-order equations
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dx
ds = l' ,

dp =ds [-K(S)

4 2 Nl

]
+ 1(e. x

,3mv 2 2X(s)p

, (1-3)

and to define X =(;)
compact matrix form

so that Eqs. (1-3) can be written in the

dX(s) = F(s) Xes)ds (1-4)

We also introduce the transfer matrix T(s, sO)

Xes) = T(s, sO) X(so) (1-5 )

and note that the elements of T(s, sO) satisfy

dT(s, sO)
ds = F(s) T(s, sO) (1-6)

Since we know the equations of motion for the individual particles,

we can determine the evolution of any distribution of particles in phase

space. In particular, if the distribution at arty- p-osftiOn- -so- nas the

elliptical boundary XM-l(sO)X = 1, where M(sO) is an arbitrary

symmetric matrix, then the boundary remains elliptical at other values

--- - -- --

of s and has the form

'" -1
XM (s)X = 1 , (1-7)
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where M(s) = T(s, sO) M(SO) T(s, SO), We can use (1-6) to writethe

equationof motion for M(s) in the differentialform

dM(s) = F(s) M(s)ds + M(s) F(s) , (1-8)

which depends only on the known quantities F(s).

The relationship between the components of M and the boundary

ellipse is shown in Fig. 3, where the area of the ellipse is nl/Det M I ,

which we designate by nE. We are primarily interested in the beam ha1f-

x

Fig. 3.

~- width X(s } =---'Y- Mli-(-s-)-',-and-i t- -is convenient toparameterize M(s)

in the form

(1-9)

X2 XP

M = I

2 E2 I

,
XP P + -

X2
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where ~p2 + ~ ' is the maximum extent of the distribution in the

p-direction. Then the equations of motion for the quantities' Xes),

pes), and E(s) follow immediately from (1-8):

dX - F X + F12P- - 11ds
,

dP - F X + F22Pds - 21
E2

+ F12 3'X
, (1-10)

dE I
eds = 2' Fll + F 22 ) E

For a Hamiltonian system, Fll + F22 = 0,
and thus E is constant,

which is just Liouville's theorem. When the form of F(s) corresponding

to Eq. (1-3) is used, Eqs. (1-10) reduce to

d2X + K(s)X2ds
- E2

3 -X .

2:rle~1

/3mv 2
p

= a , (1-11)

for the beam half-width Xes).
-~-~ ~~. -_u...- n_- --------

We now demonstrate the Eq. (1-11) is self-consistent, i.e., that

the individual particles can be distributed in phase space to produce

the assumed uniform charge density within x = :!:X(s). We require that

the particle density in x-p

"'-'-1

f(x, p, sO) = f[XM (sO)X],

space at s = So have the form

where f(x, p, s )dxdp is the number of

particles at s within the ranges (x, x + <Lx) and (p, p + dp). Then
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at arbitrary s the distribution bas the form f(x, p, s)
rv -1

)f [XM (s X],

and the functional form of f is determined by the requirement

Nl
2XTSJ

00

J f[XM-l(S)X]dP (1-12)

-00

We solve this equation by introducing the new variables

v = (::)= D(s)X,

where the matrix D(s) satisfies

D(s) D(s) = M-l(s) (1-13)

Then the quadratic form XM-l(s)X is transformed into v12 + v22,

the elliptical distribution becomes circular, as shown in Fig. 4.

and

vI

I

! v2

I

~
\jY~

I

i

r -

(c)

------------

p

I v2

-- -------

(a) (b)

Fig. 4.

Actually, the four components of D(s) are not uniquely specified by

(1-13) because M(s) depends on only three parameters; the ellipse is

mapped into a circle but the orientation of the circle is not specified.



'"

-13- UCRL-18454

We fix the form of D(s) by requiring that the vertical lines

x = constant be mapped into vertical lines in v (Fig. 4c). Then

D12 = 0, and D(s) is determined by (1-13) to be

This is a convenient choice for D(s) because it maps the integration

over p in Eq. (1-12) into an integration over v2'
. X( s)

w~th dV2 = ~ dp.

The requirement of uniform charge density is then simply

Nl

J
2 2

2E = f(vl + v2 )dv2 , (1-15 )

where the range of integration is restricted to v12 + v22 ~ 1.

that (1-15) is independent of s. In terms of the radius

r = -Vv12 + v22', Eq. (1-15) becomes

Note

Nl =
2E

1 2

J f{r )rdr .
vr--- 1r2_~-"'~Vl ~ -

(1-16)
--- -----

This integral equation can be inverted by Abel's theoreml0 to give

f(YM-1X)
Nl Nl

2J(El/l - 31M-Ix''= 2J(..JE2- (Xx' - X,x)2 - (~x)2"
(1-17)

,

1
X

°

D = I

I

p X

(1-14)

E E
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which is the uniqu~ solution of (1~12). This demonstrates that the

particle distribution required to produce a uniform charge density does

indeed exist. It occupies the interior of the boundary ellipse

"-' -1
XM X = 1, and the particle density approaches infinity at the boundary.

Equation (1-11) is then the envelope equation for this distribution.

Actually, this method for finding self-consistent envelope

equations is not restricted to uniformly charged beams, but is applic-

able whenever the external forces and self-forces are linear. For

example, it was used by H. G. Hereward and A. S~renssen to study longi-

tudinal beam effectsll where, due to the shielding of the vacuum

chamber, a parabolic charge density is required to produce linear self-

forces. For any case, the envelope equations are just equations (1-10)

where F(s) is specified by the equations of motion (1-4) for the indi-

vidual particles. The distribution f(XM-IX) that produces the

required charge density p(x),

p (x)

00

J f(XM-1X)dp
-00

, (1-18)

--n~-can-be--found--by--the--game- procedure that was--used-for the case of

X

uniform charge density. The condition JC p(x)dx = Nl requiresthat
-X

p(x)
Nl

(
X

)have the form 2X g X ,and Eq. (1-18) can be transformed by

D(s) into the circular form

Nl
2E g(vl) J

2 2
= f(vl + v2 )dv2 (1-19)
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which can be inverted by Abel's theorem provided
d.g(Vl)

dV1

. t. 10
~s con .~nuous.

Thus, the self-consistency of the envelope equations is guaranteed

provided p(x) ,has a continuous first derivative.

The Two-Dimensional Beam

In principle this method can also be extended to beams with two

and three degrees of freedom. The matrix equations remain formally

valid when the vector xes) is increased to four or six component, but

now the constants of the motion XM-l(S)X describe hyperellipsoids in

the four- or six-dimensional phase spaces. The required distribution

function f(XM-IX) that produces linear self-forces can be found by

transforming the defining equation for f into the circular form

analogous to (1-19), but now for four or six dimensions.

Consider first the case of a beam with two degrees of freedom.

We again assume that all the particles have the same velocity v = ds
P dt

and for the purpose of calculating the electric field, that the beam is

in the form of a cylinder with an infinite extent in the s direction.

Then the condition of linear self-forces requires that the beam have an

elliptical cross section and a uniform charge density. However, the

- 'axes of the-elIIptical cross section need not be aligned with the

coordinate axes, and the external focusing force may include linear

coupling between the two transverse directions. The evolution of the

distribution is then determined by a four-by-four matrix F(s) (Eq. 1-4),

and the constants of the motion XM-lx describe hy~erellipsoids in the

d.x dz

ds' z, ds phase space.x,
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We can immediately vITite the defining equation for f in the

form

constant
J

2 222
= f(Vl + v2 + v3 + v4 )dv3dv4

(1-20)

where the integration is restricted to V12 + V22 + V32 + V42 ( 1,

where the constant can be ~etermined by the normalization of f.12

and

This

shortcut avoids the specification of D(s). With a change of varia~les,

Eq. (1-20) becomes

N2

n2~t M

1

1 f(q) dq
0

(1-21)

where H2 is the number of particles per unit length in the beam. The

required distribution function is the solution of (1-21):

, , -1
f(X!1 -X)

N2

2'1 - - )n Det M

5 (1 - Xl-1-1X) , (1-22)

v[here. 5(x) is the usual delta function. The particles are distributed
n-- .~-- -- --

wi th uniform density on the surface of the four-dimensional hy-per-

ellipsoid
"'-'-I,

XM X = 1, whose shape and orientation is specified by the

ten independent parameters of the four-by-four matrix 1.1(s).

The self-forces are de~ermined by the projection of this distri-

bution on~o the ~hysical x-z plane. This projection is uniform and

has the boundary
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2
~3x

+
~3xZ

2
+ ~lz = ~1~3

2

- ~3 , (1-23)

which describes an ellipse of area r 2'
JlY Mll~3 - ~3 .

In terms of

the major and minor axes and angle of rotation as shown in Fig. 5,

, z

"

'---
x

\.

Fig. 5.

these matrix elements are

~l
2 2 2. 2a cos 9 + b Sln 9 ,

~3
2 . 2 2 2

--~---~~~-~---~ _b- - ~~~__~__n___"u -- JJ-~24) -

1\3
= (b2 - a2)sin9 cose

and the self-forces are easily determined.

The evolution of the distribution is then determined by
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dM(s )
ds F(s) M(s) + M(s) F(s) (1-25)

where F(s) con.tains the knQwn external forces as w'ell as the self-forces,

which depend on the matrix elements MIl' rs.3' and ~3.
In general all

ten equations of (1-25) are necessary to describe the evolution of the

system. However, if the equations of motion for the individual particles

do not involve coupling betw'een the two transverse planes, and if the

hyperellipsoid is oriented so that the off-diagonal submatrix with

elements
l\3' M14' M23' M24 is zero, then the hyperellipsoid will

maintain this orientation and these matrix elements will remain zero.

The remaining six equations (three for the x direction and three for the

z direction) can be parameterized in the form analogous to (1-9) for the

one-dimensional beam. The self-fields for this case are

p 4eN-- - 2
x - X(X + z) x

and
(i 4eN
c:, - 2

z - f7(V I f7\ Z, and the envelope equations

become

d2X- +
2

ds
K (s)Xx 0 "

----.-------.-------- - --"._-

(1-26)

d2Z- +
2

-ds
K (s)Zz 0

where X(s) and Z(s) are the beam half-widths, and Ex and Ez are

the beam emi ttances in the x -
ddx and z - ~z phase spaces. Theses d.s

- J

E 2 4 2
x ,e N2 1-

2 .. X + zX3 y3mvp

E 2
2

4e N2 1z - .-
Z3 y3mv2

X + Z
P
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self-consistent envelope equations, which describe a cylindrical beam

oriented with 9 = 0 in Fig. 5, were first obtained by I. M. Kapchinsky

and V. V. VladimirSky.13

The Three-Dimensional Beam

Finally consider the case of a beam with three degrees of

freedom. The condition of linear self-forces requires that the beam

have an ellipsoidal shape in real space and a uniform charge density.

Then Eq. (1-8) will specify the beam envelope provided a distribution

of the form f(XM-IX) exists that produces the required uniform charge

density. In this case the defining equation for f has the form

constant J
222222

f(vl + v2 + v3 + v4 + Vs + v6 )dv4dv5dv6

(1-27)

This equation unfortunately has no solution that can be interpreted as

a distribution function. The forms of the one- and two-dimensional

distributions indeed suggest that the progression from

f cc (1 - XM-IX) ~ in one dimension to
"-' -1

f cc 5(1 - XM X) in two

dimensions will have no extension to three or more dimensions. The

actualproof-,- due to Maurice Neuman (private communication), is
-- -- - -

reproducedin AppendixA.
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2. The One-Dimensional Beam

We are now iR a position to investigate the motion of the uni-

form one-dimensional beam in a self-consistent manner. We rewrite the

envelope equation (1-11),

d2X

ds2
+ K(s)X

E2

X3

2J1e~ 1

y3mv 2p

a , (2-1)

where Xes) is the beam half-w'idth, J1E is the beam emittance, Nl

is the number of particles per unit surface area of the beam, and v
p

is the particle velocity. The external focusing term K(s) includes

both the ideal focusing forces and gradient errors. The nonlinear

emittance term arises from the conservation of the beam emittance, and

has the same form as the centrifugal force term that results from the

conservation of angular momentum in central force problems. It prevents

a beam w'ith finite emittance from becoming arbitrarily small, but in the

absence of space charge, it does not limit the large-amplitude growth.14

However, in the presence of space charge, the combination of the last

tWD terms in (2-1) will limit the resonant growth of the beam.

We first eliminate the rapidly varying part--of'-uK( s )--fromthe-- .~

envelope equation by transforming to "smooth" variables. In the absence

of space charge, the periodic solution of (2-1), x (s) = X (s + C),p P
where c is the orbit circumference, can be found by standard methods

once K( s) is known. It is conventionally written in the form

X (s)
p -v Ef3(s ) t (2-2)
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where t3(s) is the familiar amplitude function of Courant and Snyder.15

Then if we transform to the dimensionless variables

x = xi?J-x:TSJ
p

, ~ - Jds
- vB

, (2-3)

the unperturbed envelope equation (in the absence of space charge and

gradient errors) becomes

d2X- +

d~2

2
v x

2
v

;3
= 0 , (2-4)

where v is the number of betatron oscillations per revolution and ~
increases by 2n each revolution. The general solution of this equation

is

2
x = -VI +A2' + A sin(2v~ + a) , ( 2-5) -

where A and a are arbitrary constants. The matched solution is

A = 0 and x = 1, and any other solution oscillates about this matched

solution with the frequency 2v. Thus the dimensionless variable x

measures the beam envelope in units of the unperturbed matched envelope.
- - ----------------- -- ------

In terms of the variables x and ~ the complete envelope

equation becomes

d2x- +

d~2

2
(v + 2v~v cos n~)xs

2
v

x3 2v~vsc
= 0 , (2-6)
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where we have assumed an ~th-harmonic gradient error with stopband width

6vs' and where the last term is actually a function of s (or ~) ,

to.

2v6vsc
V2S3/2CS)

\[E.

2
2:n:e Nl

y3mvp2

(2-7)

In what follows, we replace l3(s) by its average value
R
- and neglectv

the high-frequency small-amplitude ripple components in the already

small space-charge term. Then 6v sc is independent of ~ and has the

form

6vsc
1 4:n:e2R2 Nl

2v 3 2 2a
f mvp

(2-8)

where
a:\ff is the average amplitude of the unperturbed envelope.

The quantity 6vsc is the space-charge-induced frequency shift for a

beam whose envelope is constrained to the constant value a; it is a

convenient measure of the beam intensity and is in fact identical with

the expression conventionally used for predicting a space-charge limit.

Before solving the nonlinear envelope equation, it is informa-
- ~ ~ - -.- - -

tive to examine its small-amplitude solutions. In the absence of
6v

gradienterrors,Eq. (2-6) has the constantsolution x = 1 + . 2~c

and for oscillations of small amplitude 5 about this constant value,

the equation becomes

d25

d~2

+
?

(4v- - 6v6v )5sc -2v6v cos n~s (2-9)
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Thus the envelope oscillates with the natural frequency 2(v - * 6VSC)'

and resonance occurs for 2(v - ~ 6v ) = n.~ sc If v is larger than a

half-integer by the amount 6v, i.e. ,
n

v = 2 + 6v, then resonance occurs

at a beam intensity corresponding to the value

6vsC
= 4

3' 6v , (2-10)

which is one third larger than the value usually assumed. The fallacy

in ~'
.

e'usual procedure for predicting space-charge limits lies in the

as~tion of a constant beam size: if the envelope modulation is

neglected, resonance occurs when the individual particle frequency

v - 6vsc falls within the stopband at ~; in other words, for the

intensity 6v = 6v.sc However, the modulation of the envelope causes

the self-fields to exactly cancel the effect of the gradient error at

this intensity,16 and the resonance is shifted to 6v = -346V. Thissc

shift in resonant intensity is not restricted to uniform beams; it

occurs for any mode of collective oscillation and is discussed in detail

in Part II.

The amplitude of the periodic solutions of the linearized

eqJlation (2-9) are shown in the form of a response diagram for fixed

6vs
6v in Fig. 6.

6v
The ~ = 0

6v asymptote represents the free envelope

oscillations, which are periodic for the intensity 6v = _3
4 6v.sc

remainder of this section is concerned with the distortion of these

The

curves in the large-amplituderegionby the nonlinearterms in (2-6).
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2.0
8v~

0 ~V
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X
1.4
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6 Vsc
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Fig. 6. Response diagram for the linearized envelope equation:

xmax

6v 6v

1 + -136 s r' where- the--quantity~_n-
2-_s_c~- in

v~- - 6v v

6vsc
the constant solution x = 1 + ~ has been neglected.
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General Solution of the Envelope Equation

Both the space-charge term and the gradient-error term are
.6.v

small for alternating-gradient synchrotrons--they are of order ~v
.6.v

and ~ compared with the remaining terms.v Consequently we treat

these terms as perturbations and use in place of x and ~ the

variables A and a defined by

2x = -V 1 + A2 ' + A sin(2v~ + a) ,

(2-11)
dx -

xcw; -
vA cos (2v~ + a)

In the absence of perturbations, both A and a are constant, while

for small perturbations they change slowly in time, with small high-

frequency variations superimposed. If Eqs. (2-11) are inserted in the

envelope equation (2-6), the following first-order equations for A

and a resul t :

dA V 2'~ = -.6.vs 1 + A cos [(2v - n)~ + a]
, (2-12)

cia - I . I .6.v 2n: " 2. '

A ~ = 0~ s~~-~ !\2_~in [(~~_:_-~1l- + a] - J( sc J y A +1, + A sin ~ du J
if 2-'0 1 + A + A sin u

(2-13)

plus additional terms that vary with the frequencies 2v, 4v, etc.,

which are neglected.

Equations (2-12) and (2-13) may be combined and integrated to

obtain the constant of the motion,
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constant = A sin Q + ~v 11 +~2' - 8 6v sc . -{2A E(k )
IWVs 6.v k

, (2-14)

specifies the phase trajectories in the A, Q space, or alternatively

by means of (2-11), in the x - ~ phase space at any point along the

orbit, i.e., for any azimuth ~. In particular, Figs. (7a) and (7b)

show typical trajectories for azimuth ~ = 0 and for two values of the

beam intensity,while Fig. (7C) shows the same trajectoriesas Fig. (7b),

but for azimuth
11

~ = n. As expected, the phase trajectories are always

bounded and the beam size remains finite.

Of special interest are the fixed points, which have constant

values of A and Q,. They are determinedby Eqs. (2-12) and (2-13) to

have
11

Q, = I2 and

A
211 -V 2 I- 1 6.vs -V 2 I 6.vs c 1 f

A
.

+ 1 + A sin U du-- l+A +-.-

+ 2 6 6v 2" -V y 2 'vOl + A + A sin U
- u_- --'U -.- -.

(2-15)

6.v 6.v
which determinesA as a functionof ~ and ~

6.v 6.v

corresponding to these fixed points is described by

The beam motion

2
x 'VI + A2' i: A cos n~ (2-16)

,.

where Q = (2v - n) + a and E(k) is the complete elliptic integral of

the second kind17 with modulus k2 = 2A
This equation

A + -V 1 + A2
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which represents a beam oscillating with the periodicity of the gradient

error. The amplitudes for these periodic oscillations or fixed points

are shown in Fig. 8 for several values of the stopband width ~Vs'
~e

response curves are distorted from the linearized diagram Fig. 6 because

the nonlinearity causes the frequency of the envelope oscillations to
~v

depend on amplitude; the ~vs = 0 curve shows directly the amplitude

dependence of the periodic free envelope oscillations. As a result, the

distortion is the existence of three fixed points for
~v

the criticalvalue (whichdependson ~) ratherthan the usual single~v

fixed point. The tWD labeled S+ and S

Another consequence of this
~vsc
~;- greater than

resonant amplitudes are always finite.

are stable whereas u+ is

unstable; it can be seen from Fig. 7 that configuration points near S+

and S oscillate with small amplitude about these points whereas

points near U+ may follow the separatrix and make much larger excur-
~v

sions. As the quantity ~ decreases,the phase trajectoriesof~v

Fig. 7b are transformed smoothly into those of Fig. 7a; the stable

region around S+ shrinks down to a point and then disappears for

~Vsc
6v less than its critical value .-- ------ -- - -..

In the absence of both space charge q.nd gradient errors, the

matched beam corresponds to the solution x = 1. In the presence of

space charge and gradient errors, the matched condition corresponds to

the lowest fixed point of Fig. 8~ This solution is periodic, so that

the beam envelope remains stationary with respect to the accelerator,

but it is modulated n times around the orbit circumference, where n
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~vs
~110

1.8
s-
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E
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1.4
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~vsc

~'V

2.0 2.4 2.8

XBL689..3911

Fig. 8. Response diagram: x = (-V1 + A2' + A ) t. Themax

~vs
--- = 0 correspond to the upper~v

curves to the left of

m_-- u-- ~sigI;1 iI;1J~:q§!--(2_-15) anci (2-16); those to the right

correspond to the lower sign. The points where the

slope is vertical (indicated by the dashed curve) are

referred to as critical points.
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is the periodicity Qf the gradient error. Any mismatch will lead to slow

oscillations in the envelope about this matched value just as in the more

familiar low-intensity case. The frequency of these oscillations depends

on which phase trajectory of Fig. 7 the beam is on, but near stable

fixed points it is approximately 26.v times per revolution. Note from

Fig. 8 that the matched condition for large intensities closely

approaches the low-intensity matched value x = 1, provided the gradient

errors are small and the intensity is not too near the resonant value

4
6v = - 6v.
sc 3

Resonance Crossing

The foregoing considerations apply only to a coasting beam

whose parameters remain fixed. However, the parameters describing an

accelerated beam change with time, and the beam may cross the

4
6v = - 6v
sc 3

resonance .. We consider the worst case of a slow, adiabatic

crossing.

the canonical variables

The envelope equations can be derived from a Hamiltonian with

and ~, and therefore Liouville's theorem
x

applies to the
dx

x - d0 phase space. Configuration points lying on

- cJosed contours-cop.tinueto lie on closed contours as the parameters

are varied adiabatically, and the area enclosed by these contours remains

constant. However, the adiabatic assumption breaks down near the

stagnation point u+, so that the area enclosed by the sepatrix changes.

For example, the stable phase area around s+ becomes smaller as

6vsc
.6.v

decreases.
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Consider first the case of a resonance crossing in the direction
.6.v

of decreasing ~. A beam whose intensity is larger than the resonant
.6.v

value and whose envelope was adjusted before injection to the matched

value x~l oscillates with small amplitude about s+ in Fig. 8, and

corresponds to a point on one of the trajectories around S+ in Figs. 7b
.6.v

and 7c. As the beam is accelerated, ~ decreasesand the stable6v

area around s+ shrinks until the configuration point is forced onto

the sepatrix. At this point the beam suddenly oscillates with a larger

amplitude as its configuration point moves around the separatrix. ~e

maximum beam size can be read directly from Fig. 9, which show'S the

maximum and minimum beam size for a point on the separatrix at the
6v

criticalvalue of ~. If the vacuum chamberis large enough to6v

accommodatethis increasein beam size, then the resonancehas been
6v

safely passed and the oscillations become smaller as ~ continues6v

to decrease.

On the other hand, it is possible for a beam to cross the

resonance in the opposite direction. For example, if the beam is

bunched after injection, 6v increases. Also 6v = v - !!.2 may
sc .6.v

change during acceleration and cause 6~c to increase. In this case

a nearly matched beam that oscillates around S
6v

a contourenclosing S- as ~ increases, and therefore the bea.m
6v 6v

~ increases (Fig. 8).6v

continues to lie on

size increases indefinitely as

Summary

This completes our analysis of the uniform one-dimensional beam.

In the presence of gradient errors, the beam envelope oscillates, and
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resonance occurs for the beam intensity corresponding to
4

.6v = - .6v.
sc 3 '

this is one third larger than the usual space-charge limit, which

assumes that the beam size is constant. Furthermore, because of the

nonlinear dependence of the space-charge force on the beam size, the

envelope is always bounded. The amount of beam growth caused by crossing
6v

the resonance in the direction of decreasing .6~c has been calculated

for nearly matched beams (Fig. 9), and is less than fifty percent for

stopband widths 6v ~ 0.01 .6v.s This resonant growth is minimized for

small gradient errors and for large values of .6v = v - ~.

other hand, adiabatic resonance crossing in the direction of increasing

On the

.6vsc
.6v would produce very large resonant growths, and should be avoided.

- n______-- n______---
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3. Two-Dimensional Beams

The envelope equations for the two-dimensional cylindrical beam

can b~ written in terms of the dimensionless variables x and z as

where again

v
zvx and

charge and gradient errors. As in the last S

~eC:i~n, x and Z~a~e
the beam semi-axes measured in units of a = VX and b = ~x z

respectively, where a and b are the semi-axes of the matched beam

in the absence of gradient errors and space charge. The quantity

2 2N rOR 1
CD =-----

P nB ab ~2y3'
where N is the number of particles in the beam,

2
e

r =2
0 me

the classical electrostatic particle radius, and B is the

bunching factor (the fraction of'the circumference occupied by particles).

The space charge induced frequency shifts for a beam with the constant
ill 2

envelope x = 1, Z = 1 are 6v = b b .2P and
scx a + vx

2
ill

a p6v = - . ---
scz a + b 2v z

An nth-harmonic gradient error has been included

with stopband widths 6vsx and 6vsz.

2 2 beD2
d X' 2 Vx P 0 (3-1)--- + [v + 2v 6v cos nO] - --- - =
d2 x x sx . x3 ax + b z

'

d2z
2 2

2 v am
z p 0 (3-2)--- + [v + 2v 6v cos nJ - --- - = ,

d2 z z sz ' 3 ax + bzz
li

the ripple components have been neglected. The quantities

are the betatron frequencies in the absence of space
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The overall envelope motion described by (3-1) and (3-2) is

very simple: the envelope has two modes of oscillation, corresponding

to its two degrees of freedom, and the resonant growth of each mode is

limited by the nonlinear space charge terms just as for the one-

dimensional beam. However, the mathematical details are more complicated

now: whereas the motion of the one-dimensional beam depends on only

6vsc 6v
the two parameters and ~ and can be represented by a config-

- 6v 6v

uration point moving on a trajectory in a two-dimensional phase space,

the motion of the two-dimensional beam depends on six parameters and

requires a four-dimensional phase space.

Physically, the envelope motion can be characterized by the

degree of coupling between the x and z directions, which arises

from the space-charge terms in (3-1) and (3-2). Very loose coupling

occurs when the individual particle frequency v - 6vx scx is very

different from
Vz - 6vscz. Then the envelope motion is nearly one-

dimensional and the solutions are similar to those found in the last

section. On the other hand, very tight coupling occurs when

Vx - 6vscx is approximately equal to v - 6v ; in this case thez scz

x Md z amplitudes of envelope oscillations are approximately equal

and the envelope motion is two-dimensional. In the following we

concentrate on a few special cases. In A the solution for the tightly

coupled case Vx = Vz Md E =Ex z is presented in detail; in B

several cases leading to the one-dimensional limit are briefly examined.
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A. Equal Frequencies and Emittanees

In this ease the envelope equations without gradient errors are

(3-3)

(3-4)

where v = v = vx z and 6v = 6.v = 6.v ,sex scz sc
with

2
CDp

6.vsc = 4;- .

If

we consider oscillations of small am~litude 5, 5 about the constant
'.to' x z

6.v

solution x = z = 1 + 2~c, we find a symmetric mode with circular

cross section (5 = 5 )x z that oscillates with the frequency

2(v - ~ 6.vsc)'
and an antisymmetric mode with elliptical cross section

( 5 = -5 )x z that oscillates with the frequency 2(v - f 6.v ) .LI- sc

Therefore, in the presence of gradient errors of frequency n, reson-

ances occur for the beam intensities corresponding to 6.v = 26.v
sc

and

to
4

6.v = - 6.v
sc 3 where again

n
6.v = v - 2'.

Note that these resonant

intensities differ from the usual space-charge limit 6.v = 6.v
sc

that

is calculated for a stati~be~. Any-collective mode of oscillation

produces similar frequency shifts, as will be seen in Part II.

We now examine these two modes in the nonlinear regime. The

symmetric mode is driven by the symmetric gradient error 6.v = 6.v ,sx sz

and the antisymmetric mode is driven by the antisymmetric gradient error

_::.v = -.6v .sx sz When either gradient error is included in (3-3) and

--

d2x 2
2 4v.6v

+ v x - v se

d2

-

x3
x + Z

= 0

d2z 2
2 4v6.v

+ v z - v se

d2
-

z3
x + z

= 0
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(3-4), the equations can be solved by the same method that was used for

the one-dimensional envelope equation. The results are presented here,

while the calculations are outlined in Appendix B.

For the symmetric gradient error, we find symmetric solutions

of the form

2
x = 2

z = VI +A2' + A cos(n~ + Q,) , (3-5 )

where the slowly varying quantities A and Q satisfy the equation

constant ~ -V ~'A cosQ + 6 v 1 + A~Vs
6V -V'2 ~ in(l + 1 + A2 )6v

s
,

(B13)

which specifies a trajectory in the two-dimensional A,Q space. The

di t . t .. dx dz h th
correspon ng raJec orles ln x - d9 space or z - d9 space ave. e

same form as those found for the one-dimensional beam (Fig. 7), but now

the fixed points occur for Q, = O,rr and for values of A that satisfy

A + A2J 6 -V 2'+ vsc 1 + A - 1
6v A (B16)

__m- These fix~<:l ]?o:i.nts describe a circular beam that oscillateswith the

periodicity of the gradient error. They are shown in the form of a

response diagram in Fig. 10, which is again distorted from the linearized

diagram so that only bounded solutions are possible. Note from (3-5)

that the symmetric character of the normal mode solution (6 = 6 )x z

remains symmetric even in the nonlinear regime, the only effect of the

nonlinearity being to limit its resonant amplitude.
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Fig. 10. The response curves for a symmetric gradient error, with

resonance near 6v = 26v, are superimposed on those for ansc

antisymmetric gradient error, with resonance near

4
6v = - 6v.
sc 3 For either case,

(~ ' )

1

X = Z - 2 2"
max max - \ 1 + A + A .
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For the case of an antisymmetric gradient error, there are

antisymmetric solutions of the form

2
x = ~l + A2 I + A cos(n~ + Q,)

2
z -v 2 '= 1 + A

(3-6)

A cos(n~ + Q) ,

which describe an elliptical beam. Now A and Q satisfy

constant -J. . 6v J= A cos Q + 2 6v 1 + A2 - 2 ~ [.enA - g K(k)dkJ6v 6v T( k '
s s

(B13)

where K(k) is the complete elliptical integral of the first kind.17

The resulting trajectories in x - ~ or z - ~ space again have the

same form as those for the one-dimensional envelope, but now the fixed

points occur for Q, = O,n: and for values of A that satisfy

A = 16vs -V 2' 6vsc 1 2 k2~ - - 1 + A + - - [1- - - K(k)]
2 6v 6v k n:A2

(B16)

where k=~

-Vl +A2'

They describe a beam that oscillates antisym-

metrically with the periodicity of the gradient error, i.e., x is

largest when z is smallest and vice versa, and are also shown in

Fig. 10. For either mode of envelope oscillation, the 6v = 0s curves

represent the free envelope oscillations that are periodic.

Note from (3-6) that the antisymmetric character of the normal-

mode solution (0 = -6 )x z is approximately maintained in the nonlinear
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regime. Indeed, this is a general result: the character of the normal-

mode solutions determined by the linearized envelope equations (the

6
~)6z

main effect of the nQnlinearity being to limit the resonant amplitudes

ratio is approximately maintained in the nonlinear regime, the

of each mode.

The nonlinearity also produces an additional effect that is not

predicted by linear theory, namely, it produces a weak coupling between

a gradient error of one symmetry and a mode of envelope oscillation of

opposite symmetry. Thus the response curves for the symmetric mode of

oscillation in Fig. 10 are modified by the presence of an antisymmetric

gradient error, and vice versa. Although this effect is small, it has

been a source of confusion, so we briefly describe it here. We write

the fixed points in the form

where for the symmetric fixed points, Q = O,n, while for the anti-

symmetric fixed points, Q, =~, -~Jl~-n Figure lla shows the fixed-point
6v

solutions in the absence of gradient errors, in other words the ~ = 06v

curves of Fig. 10. They specify the amplitude dependence of the free

envelope oscillations that are periodic. If now an antisymmetric

gradient error is present, the antisymmetric fixed points still occur
6v

in the Q = O,n planes, but contrary to linear theory, the 6Vs = 0

curves for the symmetric fixed points are modified, as indicated in

2
-VI + A2' + A cos(nO + Q)x =

(B18)
2 VI + A2' A cos(ncj - Q,)z = -



>

-41-

(0)

Q

(c)

Fig. 11.

UCRL-18454
(b)

~,c
All

(d)

(f)

XBL689-3907

The fixed points in the absence of gradient errors

is shown in (a); the transition from a purely antisymmetric

gradient error to a purely symmetric gradient error is

shown in (b), (c), (d), (e), and (f).
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Fig. lIb. The analogous situation occurs for the symmetric gradient

error (Fig. Ilf). This coupling between fixed points of one symmetry

and gradient errors of opposite symmetry insures that the transition

from a purely symmetric gradient error to a purely antisymmetric

gradient error occurs in a continuous fashion, as indicated in Figs. 11

(c), (d), and (e). However, only the small-amplitude fixed points are

affected, and in the following we neglect this weak nonlinear effect and

assume that a mode of a given symmetry is affected only by driving terms

of the same symmetry.

Resonance Crossing

If only one type of gradient error is present, the resonance

crossing is similar to that for the one-dimensional beam. A nearly

matched beam with x ~ 1, z ~ 1 and whose intensity is larger than

the resonant value oscillates with small amplitude about a stable
6v

fixed point. If ~ decreases, the stable phase area around the6v

fixed point shrinks and eventually the configuration point is forced

onto the separatrix. The beam then oscillates with a larger amplitude

that can be read directly from Fig. 12, which show'S the maximum beam
6v

size for a point on the separatrix at the critical value of 6~c.

Note from Fig. 12 that the resonant growth for either mode of the

two-dimensional beam is less than the resonant growth of the one-dimen-
6v

sional beam for the same value of 6Vs. This was to be expected, since

the nonlinearity of the space-charge force is greater for the two-

dimensional beam than for the one-dimensional beam.
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If both types of gradient error are present, as is true in

practice, both resonances may be crossed. One might estimate the total

growth by adding the two separate growths from Fig. 12. However, an

initially matched beam that crosses the first resonance (~v = 26v)sc

will no longer be matched when it crosses the second resonance. If

this mismatch is large, the total growth may be considerably larger

than the sum of the tWD growths. On the other hand, we have so far

neglected the adiabatic damping of the beam size due to the increase in

~, which may be large, depending on the acceleration program

employed.

B. General Beam Configurations

In the remainder of this section, the envelope motion for other

values of
a
b

v
and ..2E.

vz
is briefly examined. Fortunately, the effect of

the nonlinearity can be largely separated from the linear effects,

i.e., the normal mode solutions determined by the linearized envelope

equations remain approximately valid in the nonlinear regime, the main

effect of the nonlinearity being to cause the frequency of each normal

mode to depend on its amplitude. Accordingly, we first examine the

---~~---~ ~ normal~moden--3Qlu-tions -of--the--l-inea:vized envelope equations for several

cases, before including the effect of nonlinearity.

We write the linearized envelope equations, omitting gradient

errors, in the form

d20

d~2

+ M6 0 , (3-7)
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b2 2

(a + b)2 illp

1
! ,

2ab + 3a2 2 I

2 ill

J(a + b) P

(3-8)

2
~ 2

(a + b) 2 illp

4 2v -z

and where <5 =
(
<5x 1

<5 )z
is related to x and z by

x

2
CD

b P
1 + 4(a + b) . ~ + <5x 'x

2
CD

a 1J
1 + . --- + <5

4(a + b) v zz

(3-9)

z

<5. .

The normal-modesolutionshave the form' B =(BX~e~0, wherez

[M - ahC:X)z
0 (3-10)

and where ill satisfies det(M - ill2) = 0.18

-- -------.-.--------.----.------------- We have previouslydistinguishedtwo limitingtypes oI__ell.velop_e ------

motion, tightly coupled motion for which the x and z amplitudes are

equal, <5 = 1: <5 ,x z and loosely coupled motion for which one amplitude

approaches zero while the other remains finite. We find fro~ Eq. (3-7)
ill

that tightly coupled motion results if v - v = a - ~ . ;E- or ifz x a + ~v

v - v
z x

2
ill

a - b p2-' -
a+b ~, where 1

v = -( v + v ).2 x z The former condition

where M is the two-by-two matrix

2
4 2 2ab + 3b 2v - ill

X (a + b)2 P
I

M =
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produces a symmetric mode with 0 = 5 ; the latter condition producesx z

an antisymmetric mode with 5 = -5 , and is identical to the conditionx z

that the individual particle frequencies v - 6vx scx and v - 6vz scz

be equal. Both conditions are plotted in Fig. 13. As the parameters

b 2
v v - ill

x' z' a' p depart from the curves in Fig. 13, the envelope motion

approaches the one-dimensional case.

It is informative to examine a few special cases in detail. For

a circular beam with a = b, the eigenfrequencies for either mode of

envelope oscillation are

2
m.1:

2 2 5 2 -

y;::
2 2 l'w~

2v + 2v - rill f (2v - 2v ) + ~l m
x z Lj-p x Z 1.0 P

(3-11)

and there are two limiting cases to consider. If
2 212

/ 2v - 2v 1« rill,X Z Lj- P

the eigenfrequencies and normal modes reduce to the tightly coupled

case examined in (A),

2
m+

2 2
4v - ill

P ,

°+ ~ C:)
,

2
4v2 - L(!) 2 1 (3-12)

2 P '-~ ~~--- --. 5- = (
) ,

""l_L - ~- ~---~- - m_.____--

ill

2
where m = 4v6v .

P sc This case requires that
1

I v - v I « r 6v .x Z Lj- sc

On the other hand if Iv - v I » ~ 6v , the eigenfrequencies andx Z Lj- sc

normal modes are
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Fig. 13. The beam parameters are shown for which the x and z

amplitudes of envelope oscillation are equal. The plus

curve is the condition for the symmetric mode, the minus

curve for the antisymmetric mode.
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Iv - v Ix z is sufficient to overcome the coupling due to the space-

charge force, and the normal modes are one-dimensional. In practice

1
6vsc :=::::: 4" ' so that the dividing line between tightly coupled motion and

loosely coupled motion occurs for a frequency difference of

1
Ivx - Vz I ~ Ib . Thus, due to the weakness of the space-charge coupling,

a relatively small departure from the curves of Fig. 13 suffices to

produce one-dimensional motion.

Now consider the limit £. -? 0, but keepinga ab constant so that

the charge density remains constant. The beam approaches a planar

configuration, and

2 4 2 2b 2
v - - (1)

- - -- --x a-- p-- , °
x

C

4V 2 - 4v 2 + XQ 2

)= x z p
- - ,

2
(1)

P

(1)
u X -

2
(1)z

2 2
4v - ~z p , °z (°)1

(3-14)

In this case the 5x mode can have either of the tightly coupled forms

C )or C~)
for suitable values of Iv - v IX z and (1)2, in agreement

:p
--'-

1
2

4v
2 5 2

Ox = ( )(1) =
- 4"CDp

, ,x X
E

(3-13)

2
4v

2 5 2

°z = (:)(1) =
- 4" (j)p

, ,z z

LW
where

sc
For this case the frequency difference

E = Iil v - v r« 1.x z
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withFig. 13. However, as
b
- approaches zero, larger and largera

intensities are required to excite this mode. i.e., to shift CD tox

the integral frequency n of the gradient error. In the limit £ = 0 ,
- a

only the 6
z mode can be excited, and this mode is identical to the

one-dimensional mode examined in Section 2. In fact, the complete

nonlinear envelope equations reduce to the one-dimensional form

(3-15)

(3-16)

in this limit. The space-charge forces affect only the z motion, and

if
vx is sufficiently far from a stopband that x = 1, Eq. (3-16)

reduces to the one-dimensional envelope equation (2-6).

We conclude from these examples that the envelope motion will be

one-dimensional for a wide range of beam parameters; in fact, due to

the weakness of the space-charge coupling and because of the changing

environment within the beam, the envelope motion is more likely to be
- --- ---~-_u_-- n_- --------

- -------------------

one-dimensional than two-dimensional.

We now briefly examine the effect of the nonlinearity. We

consider cases for which a is larger than or equal to b, and for

which vz
n

vz - '2
A.= < 1.n

2

is closer to a half-integer than v , so thatx

Then the resonant amplitudes are larger in the

vx

d2x
2

v

df(;2

+
Kx(f(;)X

- x

x3
= 0

d2z
2 2

v CD

dy}2

+
KzeY})z

- z ....L

z3
- = 0

x '
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z direction than in the x direction, and this is usually the more

serious case.

We construct simplified response diagrams for several values of

b
a

and A,. The usual. linearized response diagrams have a vertical

asymptote (the 6v =6v = 0sx sz curve) at each of the two resonant

intensities, and the 6v -t-cO,sx T 6v =t=0sz response curves approach these

asymptotes as the beam intensity approaches the resonant values. The

main effect of the nonlinearity is to cause the frequency of each mode

of envelope oscillation to depend on its amplitude, which distorts these

linear response curves so that only bounded solutions are possible.

For simplicity we consider only the distortion of the 6v = 6v = 0sx sz

where A and B are determined by the integral equations

A
=. 2:P:L.~LJ~:__~_+_ic~x~tA~~j~~~U du J

0
- --------------

(B21)

B =
2

ill ap '-
2v 6v 211Z Z

211

~

r 2'
B :t VI + B sin u du

z(ax + bz)
,

where u = n~ + Q,
n

6v = v --,x x 2
n

and 6vz = Vz - 2 .
These equations

were solved numerically, and the solutions are shown in Fig. 14.

asymptotes. We show in Appendix B that these curves are specified by"

-VI +A2'
2

A sin(n + Q)x = +
,

y 2 I

(B20)
2

B sin(n + Q)z = 1 + B. :t
,
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v --x 2

ordinate is

.6v

~
.6v

)~ =!- scx .
6v KA.6Vz x

x or
max z ; the abscissa ismax
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Z5
A=l,K=1
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3

X
z I / X

I
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Figure l4a shows the familiar case of equal frequencies and
6v

equal emittances (the ~ = 0 curves of Fig. 10). There are two6v

resonances, corresponding to the two modes of envelope oscillation,

and for each mode, the amplitude of the x motiQn is equal to the ampli-

tude of the z motion. For the other cases, the two resonant intensities

are further apart, and the amplitudes of the x and z motions are no

6v b
longer equal. Because of the choice of parameters A z < 1, -~ 1,uV a

x

the largest amplitude occurs for the z direction and for the lower-

intensity mode. As the frequencies become different, but a is kept

equal to b, Fig. 14 (b) and (c) result, and the solutions approach

the limiting one-dimensional modes Ox = (~) and
°z = (~) that

were found before. In the other limit,
b
a approaches zero and the

solutions also approach the one-dimensional case. In particular, the

curves of Fig. 14 (g), (h), and (i) are indistinguishable from the

6vs
6v = 0 asymptote of the one-dimensional beam (Fig. 8). The inter-

mediate case of an aspect ratio
b 1
-a =:3 is shown in Fig. 14 (d), (e),

and (f). In this case the lower-intensity mode is also very similar to

~ ~ that.-of' -the--one-dimen-s-ional beam. .

Summary

We have investigated the envelope motion for a uniformly charged

cylindrical beam. Because of its two degrees of freedom, the envelope

has two modes of oscillation that can be excited by gradient errors.

The solutions for a beam with v = vx z and E = E
x z were presented in

detail; it has a symmetric mode of oscillation that is excited near the
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intensity 6v = 26v, and an antisymmetric mode that is excited nearsc
4

6v = - 6v.
sc 3

is similar to that for the one-d.imensional beam. If the resonances are

6v
crossedin the directionof decreasing ~, the beam grows a finite6v

amount, whereas if the resonance is crossed in the opposite direction,

6vsc b 6.v
the beam continues to grow as increases. As - or ~6v a 6vx
approaches zero, the resonances become further separated and the envelope

For any type of beam, the process of resonance crossing

motion becomes one-dimensional. In fact for an aspect ratio of

6vz 1or for - < -
6v 2'x

beam motion is essentially one-dimensional.

b 1
a = 3 '

the resonance in the z direction dominates and the

----- - -- --- ----
--~--
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4. Conclusion and Applications

We have considered the effect of gradient errors on a beam of

charged particles in an alternating gradient synchrotron. Usually,

gradient errors are assumed to limit the number of particles that can

be accelerated. This limit (the tranverse incoherent space charge

limit) is calculated by assuming that the beam size remains constant;

then the number of particles that can be accelerated is limited to that

number which just lowers the effective betatron frequency to an integer

or half-integer. Actually, the diameter of the beam depends-on the

oscillation amplitudes of the individual particles, and if a gradient

error causes these amplitudes to grow, the beam size also grows. Thus

the usual calculation is not self-consistent.

In Section I self-consistent equations of motion for the beam

envelope are derived for beams with one and two degrees of freedom. We

assume that all the particles within the beam have the same azimuthal

velocity and execute betatron oscillations about the same equilibrium

orbit, and that only linear forces act on the individual particles.

The last assumption requires that the charge density within the beam be

uniform anQ that _the_nonlinear-components--O-f--th€-image-force- be- ~_n_- ----

neglected. The resulting envelope equations are nonlinear because of

the nonlinear dependence of the space charge force on the shape and

size of the beam.

These envelope equations were solved in Sections 2 and 3. For

small amplitude oscillations of the one dimensional (planar) beam, the

beam oscillates with the frequency 2(v - t 6v ), and resonance occurs-,. sc
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for n = 2(v - f 6v ), i.e., for the beam intensity corresponding to~ sc

6V = _34 6V. However, for larger amplitudes of oscillation, thesc

frequency of oscillation depends on amplitude as well as on intensity;

for fixed intensity, the frequency increases with amplitude. In

consequence, a slow traversal of the resonance in the direction of
6v

increasing ~ will cause the beam to grow arbitrarilylarge: near6V

the resonant condition n = oscillation frequency, the amplitude

increases, which causes the oscillation frequency to increase until the

resonant condition is no longer satisfied; a further increase in 6VSC'

or decrease in 6v, lowers the oscillation frequency and restores the

resonance condition, which causes the beam amplitude to again increase,

and so on. On the other hand, a slow traversal of the resonance in the
6v

directionof decreasing ~ causesonly a finite increasein beam
6v 6Vs

- and
6.v

size. The amount of beam growth depends only on the ratio

6vs
is less than 50% for ---~ 0.01.

- 6v

The resonant behavior of the two dimensional (cylindrical) beam

is very similar. In this case two resonances are possible, although for

a wide range of beam parameters, including most practical configurations,

only one resonance occurs. An adiabatic resonance crossing in the
ZS-v - -- ---------

direction of increasing ~ causes an arbitrarily large increase in
6v 6vsc

6Vbeam size, whereas a crossing in the direction of decreasing

causes only a finite beam growth, which is less than the one-dimensional
6v

beam growth for the same value of ~.
6V

We conclude that gradient errors will not limit beam intensity

or cause particle loss, provided slow- resonance crossings in the



-56- UCRL-18.4S4

6.v

d
o .L' f

. . sc
lreCGlon 0 lncreaslng ~

. C:.v
are avoided, and prov~ded the ratio

6vs
6v

Application to AGS

is sufficiently small at the resonant intensity.

As an application of these results, lIre examine the two modes

of envelo~e oscillation for the Brookhaven AC~. The relevant parameters

are obtained from van Steenbergen,19 who has measured the vertical ~hase

space emittance and density distribution in the energy range 50-400 1.):eV.

First consider the situation iITmeQiately after the injection,

when 7.7 x 1012 ~articles occupy most of the machine circumference

(B ~ 1). At this time, the betatron frequencies in the absence of space

charge are v = 8.35 andx Vz = 8.92 (as extrapolated from Fig. 6 of

van Steenbergen), and the

~

~
- z

Thus b =--- = 2.3 cm
Vz

vertical emittance is ?:E = 11.6z cm-mrad.

(R = 128 m), and assuming an as~ect ratio

a 2 ~~. db = , We .1.lD

follovring 3-2).

6:,; = 0.14
scx

and 6v = 0.28 ( from the eouations
scz .

These are the space-charge-induced fre~uency shifts

for the individual particles within the matched beam, with the constant

size a = 4.6 cm and b = 2.3 cm. Gradient errors cause the beam to

---o-s-c-ilJ:at-e--,-a-nd-i'orsmall amplitudes, the t'T/IOmodes of envelope oscilla- H___-_-------

tion are determined by Eqs. (3-8) and (3-10). In this case, the modes

are nearly one-dimensional, and we find

ill
X

?"
-"'-x

7
'76v
0 scx

0
x C) ,

~

(4-1)
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(l)z

h
2v :..6v

z 3 scz
, 5

z c:) , (4-2)

where E ~ 0.1. For the above parameters,
1
2'(l)x = 8.26

1
and 2(l)z = 8.73,

and these frequencies are well removed fromthe

!.(l)

2 x '""

v

( ~~ lz

8.0 8.5 9.0

half-integral resonant values; an intensity of 17 x 1012 particles is

required to shift
1
2' (l)z

to the nearest value, ~. Therefore gradient

errors are not expected to cause particle loss in this region. (These

results are strictly valid only for uniformly charged beams, whereas

the AGS beam has a Gaussian charge distribution. We find in Part II

that the frequency shifts for the Gaussian beam are approximately 1/3

larger than those for the uniform beam, and thus the lowest resonant

intensity is more nearly 13 x 10 12 particles.20)

During the first few synchrotron oscillations after injection
- -- ---

(during the capture process), about 60% of the injected beam is lost,

and smaller losses continue until 15 msec (Sy = 0.5). At this time,

1.9 x 1012 particles remain, and these are assumed to occupy 1/4 of the

.machine circumference. After this time, small particle loss occurs in

two regions: the first near 20 msec (Sy = 0.6) is associated with a

2°% increase in the normalized vertical emittance, while the second near
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30 msec (Sy = 0.8) is associated with a lO~ increase in the normalized

vertical emittance. The freouencies (J) and (J) have been calculated
- x z

for these times, using N = 1.9 x 1012, B = 0.25, and the measured

values of ~E , and they are included in Table I.z

Because the zero intensity betatron frequencies vx
and vz

change during acceleration, the m = 1'7x -j
resonance is. crossed near

py = 0.8, in agreement with the observed particle loss at 30 msec.

The resonance crossing is a~proximately adiabatic since 6v /61/scx X

changes by 0.1 during 600 revolutions, and is in the direction of

- .
aecreaslDg 6v - /6v .sex. x The observed 10% increase in the normalized

6v
in this case, ~ = 0.04, and the ceam grows 100{ in the x direction

Ay I
'-- x

d - +- 10..1, t' d. J.. .
(

. -.
3 3 d " . '

8.11 aoouL' - i:J 1n .ne z 1recL,lon uSlng Ylg. - an assur!'llngt.naL:.

2.y = O.OO?
S -,vertical emittance is consistent with a stopband width of

the 6x d .L"J.. -. . 1'" '.L1.-, 1. .
)mo e re0alns 10S One-Qlmenslona- lorm ln 011enon_lnear reglme .

"Further e:cyeriments are necessary to confirm this connection

between the particle loss at 30 msec and the mx = 17 resonance

crossing. For exam~le, if the stopband is enlarged by deliberately

exciting a 17th harmonic gradient error in the machine lattice, the

b earn groilrth-sf1:oTJ.Td--e-:.;:c-ee-af.Ii-edavaiI"ablel1oirzC;"ntal naper"t-u~"e -~-~d.-iarg~

losses should occur about 30 msec after injection.
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Table I. AGS parameters near injection

~ u -- - -

a(cm)
1 1

f3'Y .6vscz
v v -(1) -ill
Z x 2 x 2 z

0.50 3.8 0.18 8.88 8.46 8.76 8.41

0.60 3.2 0.16 8.86 8.50 8.75 8.45

0.70 2.8 0.15 8.84 8.53 8.74 8.49

0.80 2.6 0.13 8..83 8.55 8.75 8.51

0.90 2.4 0.10 8.83 8.57 8.76 8.54

1.00 2.3 0.09 8.82 8.58 8.77 8.55
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PART II. COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL BEAMS

CONFINED BY HARMONICPOTENTIALS

In Part I we considered only one mode of collective oscillation

that occurs in only Qne type of beam, namely the quadrupolemode that

is excited in uniformly charged beams by ~radient errors. These restric-

tions enabled us to examine the large-amplitude nonlinear effects of

space charge. In this Part we examine the other modes of collective

oscillation that occur in both uniform and nonuniform beams. We restrict

our attention, however, to small-amplitude oscillations and for simpli-

city to one-dimensional beams.

In Section 1, we use the linearized Vlasov equation to find all

the normal modes and eigenfrequencies for the uniformly charged beam;

in Section 2, the resulting mode structure is compared with that found

by Ehrman6 for an approximately uniform beam, and with that found by

Weibel21 for a neutralized beam (plasma) with a Gaussian charge

distribution.

Before proceeding to these cases, it is informative to consider

the seemingly trivial case in which the Coulomb interaction is turned

--~ --~- -- --- ofi'.-,---IrLthe absence of space charge, the equation of motion for. the ~ ~_n___._--.---

individual particles is

d2x

d~2

+ 2
va x a

where the symbol Va will be used in the remainder of this paper to

designate the unperturbed betatron frequency. Any particle distribution
~
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rotates rigidly in the
x - ~O ~ space with the ~requency

Va'
and

has the form f = fer, va~ + 9),
where r and 9 are defined in

Fig. 15. The normal modes are found by a double decomposition of f:

1 d.x

va d1

x

Fig. 15.

the second argument of f is expanded in a Fourier series

[ gn (r ) e -in ( vO~+Q)
where for each n, ~(r) is an arbitrary function

n

of r and may in turn be expanded in a complete set of functions,

gn(r) [ gmn(r).
m

Thus the ren_ar_ena_two-_fold_infinity___Gf__normal-_nnn----

modes of the form

fmn(r,9,~) g ( )

-in9 -~ ~

mn r e mn)'-'e

where the eigenfrequencies illmn = nVa are harmonics of the unperturbed

betatron frequency. Each eigenfrequency is infinitely degenerate.
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In the presence of space charge, but on the assumption that the

space-charge forces are small in comparison with the external focusing

forces, each eigenvalue is split into infinitely many different eigen-

values that are clustered near the value
nvo' and the new eigenfunctions

are mixtures of the unperturbed eigenfunctions. Since the unperturbed

eigenfunctions and the form of the space-charge interaction (Maxwell's

equations) are known, the perturbed eigenvalues and eigenfunctions can

be found by stationary perturbation methods.22 However, the unperturbed

eigenfunctions are infinitely degenerate~ so that an infinite-order

matrix must first be diagonalized. In any event the form of the eigen-
\

\

value spectrum is clear: the eigenvalues are discrete and occur in

clusters near the value

, 1.

nvo.

Normal Modes for the Uniformly Charged Beam

\ Formulation of the Problem
I
1

The Vlasov and Poisson equations can be written in the form

of of 2 2 of
~ + v dx + [-vo x + illp £(x, ~) ] av =

0 (1-1)

o£ '

--- --E>X- -~ _2Lf'~J{1_V:'~)- dv- --1'1--

~

v =~, and x measures distance from the

(1-2)

where median plane in units

of the half-width of the stationa~y beam, a. The distribution function

2 4J1e2R2 Nl
ill - . -
p - 3 2 2a

)'mv
p

f(x, v, ~) is normalized to unity, and the quantity

(the plasma frequency) has previously been defined as 2v06VSC

[Eq. ( 2-8), Part I ] .



-63- UCRL-18454

The stationary solution of (1-1) and (1-2) that has a uniform

charge density is

fO<x,v)
I

, I - 2 v2

2nvVI - x - v2

, £O(x)
= x ,

(1-3)

where v = -VVO2 - (J)p 2 ' "" vo - 6vse' will be used in the remainder of'

this paper to designate the effective betatron frequency for the individual

particles within the stationary distribution. In the
v

x - - space, thev

particles move in circular orbits, and the stationary distribution

rotates rigidly with the frequency v.

v
v

x

- .- ---~~-g .~§.

Oscillations of this distribution are described by the perturbed

distribution
f(x, v,' ~) = fO(x, v) + fl(x, v, ~), which gives rise to

a perturbed electric field,
E (x, cj) = eo (x) + €l(x, cj).

As in

Part I, we neglect the magnetic field components that arise from the

transverse particle velocit~es. The evolution of
flex, v, ~)

is

governedby the Vlasov equation (1-1), whichwe linearize about fO(x, v):



-64- UCRL-184S4

Ofl dfl 2 Ofl
~+v~-vx~ =o~ dx QV

dfO

- CDp2 £1(x, ~),dV" (1-4)

The left-hand side of (1-4) is the total derivative of fl along an

unperturbed orbit, and consequently we can invert (1-4) and write fl

in terms 0f an integral of the right-hand side over an unperturbed

orbit.21 We do this explictly by writing (1-4) in terms of the polar

coordinates defined in Fig. 16:

dfl of 1
~ - v(j9 =

2 dfO
- (J)~ £1 (r cos 9, rf;) sin 9 dr ( l-S )

For the normal mode solutions
fl = fer, e)e-irn~ ,

(' . c!J
Cl = f.(r cos e)e -l~l) ,

(l-S) becomes

-i~ i~e
v d v

( )e de[e f r, e .

2 dfO
l £.(r cos e) sin 9 dr2
v

(1-6)

~.~

Since the function fer, e) must be periodic in 9,

fer, e) = fer, e + 2~), the unique solution of (1-6) is

fer, e)

2
CDp dfo
2'cl.r .
v

.CD

e-~;9 Ji;)
tr\

1 - e v o-2n

... - ~ n_- .- -- - ---.. - ~.---

is%'
eve (r cos e') sin e' de',

(1-7)

;0 jJj

provided ~ is not an integer:' The case of integer values of ~- v / V
i

considered later. Equation (1-7) can be ~itten in terms of the

is 'c,

Cartesian variables x and v as ..r"'\.
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f(x, v)
OfO1 .

= v'(jV

,...,

f
c::rr i~u

v v'
e£ (x') ~ du

0
(1-8)

"'~ ~j-~ \.-~1p
where u = 9' - 9 and

x' v .= x cos u - - Sln uv ,

(1-9)
v' = vX sin u + v cos u

Equation (1-8) specifies f(x, v) as an integral over the unperturbed

orbit.

The perturbed electric field E,l (x, ~) is related to

flex, v, ~) by Poisson's Equation (1-2), or alternatively by Maxwell's

second equation,

OEI
~ =

00

- 2 f vf (x, v, 9) dv (1-10)
-00

which follows immediately from Poisson's equation and the continuity

equation for charge and current density. Using (1-8) and (1-10), we
-- - - --- - --. ---... -- -

obtain a single integral equation for e (x):

iro £ (x) =
ao 2 00 of 2:rr i~u

P J dv ovO J e v t(x'):' du
-00 0

.L
"-",T-

, (1-11)

~r CI\r-
r;J-- (r \v .'

~~-JV

(/J':Y-"

where X' and v' are given by (1-9).



,-

-66- UCRL-184S4

General Solution

We solve (1-11) by performing two integrations by parts.23 First

integrate over v so that

x [- cos u £,(x') +- sin u dC(X')] du
. v v du J (1-12)

~) f?

where the integrated terms are zero at the limits v = :!:: 00. Then

integrate by parts over u to eliminate ~ue :

£.(x)
2:n:i~

e v - 1
J

oo

J
2:rr i<£u

- dv fOe v£;( x') sin u du
-00 0

( )1-13

We eliminate the function
1 2 2 2 -~

f = --[v (1 - x ) - v ] 2 from (1-13) by0 2:n:

replacing v by,.. vlh - X21 COS 11, so that

- ~ 2 2-- ---c..-(x )--- 1 (1) / v- - --' p
2n --

2ni<£
e v - 1

j2TI d~ ITI e i~u- .-------
0 0

y.
1L...A'tA

""/ ?' "'-"'q
t:(x cas u + Vl - x- sin u cas 11)~~u.

(1-14)

2m2
00 2:n: .(1)

ill £(x) f dv fa f
l-U

= P e v
2:n:iv - 1

-00 0
e

(\
'J \
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Finally replace x with cos ~, so that

where cos '" = cos ~ cos u + sin ~ sin u cos ~. The angle '" will be

recognized as the angle between two vectors with polar coordinates

~ and 0, u respectively, as shown in Fig. 17.24

~,

./

Fig. 17.

It is now easy to show that the solutions to (1-15) are just

Legendre polynomials. We use the addition theorem for spherical

harmonices to write
--- n ~ u.n --- ~-_._----

P (co s ",)n =4" Ly:n(~, 'I) Ymn(u, 0)
m

, (1-16)

where the integration over ~ in (1-15) insures that only the m = 0

term P (cos ~) P (cos u) contributes to the sum. Thus, ifn n

£n+l(X) = Pn(x), Eq. (1-15) is satisfied identically provided

2 2)"( 2J{ .ill
.0/""",l\

ro I 1 J dTj J
l-U

£(co s ) = ...lL- e v £(cos ",) du
2J{v2 2)"(i 0

'

e v-I 0
(1- 15 )
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K, ( )n+1 m

which specifies the eigenfrequencies m. A few of the funct ions K (w)n

are included-in Table II; the rest may be found by using the recursion

relation

Kn(w)

2 2 2
_w - Cn - 3) v K ( )- 2 2 2 n-2 mw - n v

(1-18)

The eigenfunctions for the perturbed electric field are therefore

the Legendre polYnomials

f: (x)ill
=

Pm-leX) , for m = 1,2,3,''', (1-19)

and for each value of m, the corresponding eigenfrequencies are deter-

mined by

Km(w~ ) 1, for n = m,m-2jm-4,.". (1- 20)

In general, each eigenfQDction £, (x)m
~ ~ ~ ~- --- - --~---~-

has more than one eigenfrequency:

as c~n be seen from Table II, there is one eigenfrequency each for

m = 1 and ill= 2, but two for m = 3,4 and three for m = 5,6, and

so on. We label the various eigenfrequencies of (1-20) so that in the

limit of zero intensity, mmn approaches nv.

The eigenfuRctions f (mn r, e) corresponding to the eigen-

fre~uencies 1)
r:1."'1

are determinedby Eq. - (1-7) to be
-

2 2 2n: ium Iv v P (cas u) sin u du = 1,P e- .m n -

(1-17)
2;rJ.-

v - 1e
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TableII. The functions K (ill)n are listed for n < 7.

n K (ill)n

1

2
ill
.J?...

2 2
ill - V

~ "
,,\) c. J6 .l.

2 \
\....-

2
CD-L-

2
2
2 2

ill - V

)., u... j'\,. ") t
W " L\VTj.. J vr,. ~

3

2
~

2
3

2 2
CD - v

2
CD

2- 2
ill - V

4
2

CD
-L

2 42 2
ill - V

2 2
CD - v
2

2
2 2

CD - v

5

6

- .---------.----

2
2 22 2 2illp ill - V ill. . -

2 - 52v2
2 - 32v2

2 2CD CD CD - v

2
2

- 32v2. 2 2ill
P .CD ill - v

2 62 2 2 42 2 2 22 2ill - V ill - V ill - V
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fmn(r, e)

2 ~

illp .!. df () \
2 r dr L

v k -.\. 2
-k

Rmk(r) -(i illmn sin kg - k cos kg)2 v ,
ill

mIl--
2

v
(1-21)

where the sum over k is finite and involves only even or only odd

numbers. The radial functions Rmn(r) are polynomials in r, and a

few are listed in Table III. For m > 2, the sum in (1-21) has more

than one term, and the simple n-fold rotational symmetry of the

unperturbed eigenfunctions is absent.

Low Intensities

2 2

For rup «vO'
these eigenfunctions and eigenvalues reduce

to the form predicted by perturbation theory. The eigenfrequencies

have the form

illmn
==

fmn
nv + - 6vn sc (1-22)

where -./2 2
v == Vv0 - illp :::::: V0 - 6v s c

and where a few of the constants

~ are listed in Table IV. These eigenfrequencies are shown in

Fig. 18a for the intensity corresponding to
1

6vsc == 4' ' but the eigen-
-- ~ -- -- - -- --- --- ------

frequencies with m>n+2 are clustered too near the values nv to

be resolved. Figure 18b shows an enlarged region of the spectrum near

nv: all the eigenfrequencies (except illll == vO)
are shifted down from

the unperturbed values nvo' and a.s the radial mode number m increases,

the eigenfrequencies approach nv. It is also evident from Eq. (1-22)

or Fig. 18a that as the mode number n increases, the eigenfrequencies

become more tightly clustered around the frequencies nv.
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Table III. The radial functions R (r) withmn

m < 7 are listed.

1 3 5

1 r

3
1
(3 3 )2' 4' r - r ~ r3

5 ! (5 .7 r5 - L:.2 r3 + 3r)882
3.5 (1 r5 - r3) 5 .7 r5Ib 8 s:Tb

2 4 6

2 1 2-r2

4 1
C

'5 4 2)4' 2' r - 3r
5 4
Ibr

6 5 (1:!l 6 4 2)Ib ---Ib=-- r - 7r + 3r
7 (9 6 4)32 '2 r - 5r

7'9 6
167I6 r-- u_u_-- uu_--
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Table IV. The cQefficients A in Eq. (1-22)mn

are listed fQr m < 7.

4
1

- 2' = -0.250
2

2- = 1.25
22

-~- ~ ~---- ~- - -~---~ -~ - ~-~
--- ------

6 5 "-J-0.039'
- 7 "-J2

- 7
-:4 ~ -0.438
2

2

L.:1. ~ 1.475
27

-

I
1 3 5

11

I

1 323
- 3" = -0.125 3" = 1.1252 2

1 U 2
5 I - -:b -0.0156 - -0.350 9 1.3652 27 2

2 4 6

1
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0

711

671

511
nvo

41/
m=n n ~lIsc

nll
~-m = CO

~ m= n +4
m=n+2

311

27/

11

( ) --

(
- b )

--- ----a - ---------

region near nv.

---- - - --

)(BL689-3904

Fig. 18. Eigenvalue spectrum for 6v = ~ ; (b) is an enlargedsc If

The eigenvalues occur in clusters near

nv and, as n increases, the clusters become more tightly

grouped around nv.
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The low-intensity eigenfunctions have the form

fmn(r, ~)

1
dfo .

n R ( )

- -ln8
o(

2
)- r --e + CD

~ mn r dr p ,mn
(1-23)

and therefore the complete distribution f - f + f
- 0 mn

becomes

f 1

2n:v\!1 - r2 + "-ER (or) cos nC v~ + 8)mn

2
+ O(CDp )

(1-24)

where the term proportional to
2

CDp
involves mixtures of other zero-

order eigenfunctions. A few of the radial functions Rmn(r) are shown

in Fig. 19; note that the perturbation for the modes w'ith m = n is

the largest near the surface r = 1, whereas the other modes are close

to zero there. For this reason, the m = n modes are referred to as

surface modes. They produce relatively large displacements of the beam

surface, as opposed to the m t n modes for which the perturbed motion

is largely confined to the interior of the distribution.

The distribution (1-24) rotates in an approximately rigid

fashionin the x-! space wi th___th_s;_i;rs;9.l1~Ilcy
-- - -- v - --m__- nv, and has an approxi-

mate n-fold symmetry of rotation and radial variation with
m - n-
2 nodes;

in real space, the perturbed charge density is proportional to

dPm-l(x)

cLx
As m increases, the overall perturbed charge density tends

to cance11vith itself, and thus it is not surprising that the eigen-

frequencies for the modes with large m approach nv; perturbations
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R22

r

~r

~r ~r FLr

~r p-r ~r ~r

R44
r

.

XBL689- 3903

Fig. 19. The radial functions R (r)
mIl

are shown for even values

of m and n. The vertical scale is not indicated~ and

differs from figure to figure for clarity. ~ -~ ~-------
--- -- - - - -- ~ ---
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that produce little net charge density will only slightly perturb the

stationary circular orbits, and consequently will be carried along

nearly intact with the frequency v of tbe stationary distribution.

The eigenfunctions f (f, 9)mn found so far do not form a

complete set.25 For example, among the zero-intensity eigenfunctions

(1-23), there are none with the form gmn(r) e-in9
where n = 0 or,

in general, where n > m. For completeness, additional eigenfunctions

are required to fill in the blanks of Table III, as w€ll as an additional

column at n = o. It is shown in Appendix C that these additional

eigenfunctions exist and have the eigenvalues nv that were excluded by

the form of Eq. (1-7) and following. The new eigenfrequencies do not

change the, form of the spectrum, but now the value nv is degenerate.

High Intensities

In the opposite limit of very high intensities, the eigenfunctions

and eigenvalues also reduce to a characteristic form. The maximum

intensity occurs for (1) = v
p 0

charge force for which the repulsive self-force exactly cancels the

and corresponds to that value of space-

external focusing force -- no net force acts on the stationary distribu-

tion. In this case, the particles comprising--the--stationary--di&tri-but-ien----

have no velocity (the beam emittance is zero), and fa is completely

characterized by its charge density eno(x).
Any perturbation can

therefore be expanded in a single infinity of functions, rather than in

the two-fold infinity required before. Furthermore, any perturbation

of such a zero-temperature plasma (the external force is equivalent to

a neutralizing background of immobile ions) must oscillate with the
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plasma frequency ro. Thus, in this limit, the eigenfunctions mustp

reduce to a single infinity of functions, and their eigenfrequencies

must all have the same value ill = ill .

n p

This is indeed the case. A few of the eigenfrequencies ill~

are plotted as a function of intensity in Fig. 20; as the intensity

increases to its maximum value, the eigenfrequencies rorom
for the sur-

face modes all approach the plasma frequency whereas the eigenfrequencies

for the other modes approach zero. The eigenfunctions for the electric

field £ (x) [or equivalently the charge density en(x)] remain

Legendre polynomials, and since each eigenfunction £ (x)m now has only

one eigenfrequency, any perturbation is completely specified by the

single infinity of eigenfunctions £ (x).m

The Dipole and Quadrupole Modes

The dipole mode with m = 1 and n = 1 is particularly simple.

The eigenfrequency illll

Table II to be

specified by
Kll (ill) = 1

is found from

illll 1/2 2'= v + illp
-

Vo , (1-25)

so that--thiB~mode-Qs-cillat es-wi th-the-llnperturbed--betatron-frequency-

vo' independent of intensity. The perturbed electric field has the
-iv ~

form Gl(X'~) = E eO, and the completeparticle distribution

f = fa + f11 is given to first order in E by

fer, 9, ~) = 1

.2rrvY1 - r2 + 2Er cas( vo~ + Iii)"'

- 1

2nvv; ;:2

,

(1-26)
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9
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7

6

5

0 0.4 0.8

-~ ~ - u - ~--------- -- - - --_u ---

Fig. 20. The eigenvalues specified by

shown for m = 9,7,5, and 3.

UCRL-184S4

7

6

5

4

3

2

0 0.4 0.8

(&I2/V2P 0

XBL689 - 3902

K (w ) = 1m mn are

As the intensity increases

eigenvalues for the m f n

to the maximum value corresponding to w -
p - vo' the

for the

modes approach zero; those

m = n modes approach 'w .
p

031O

51
m= 5.....

4'

33
3

22
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where the variable r' is measured with respect to the moving

coordinates x = E cos(VO~ + g) and ~ = E sin(vO~ + g), as shown in

Fig. 21. Therefore ~he entire distribution is displaced in the circular

v
v

x

Fig. 21.

path indicated, and in real space, the beam oscillates rigidly back and

forth at the frequency VO'

In addition to this rigid dipole mode, there is an infinite

number of nonrigid dipole modes with n = 1 and m = 3,5,7,'" and
dP (x)

with a charge density proportional to m~ . The charge density

for these modes oscillates in a nonrigid fashion, and the eigenfrequency

(l)ml approaches (va - 6vsc)
as m increases.

- ~- - ------- -- --- ----------------

The quadrupole mode with m = 2 and n = 2 has the eigen-

frequency

(1)22
J2 2

VV + (1)p ~ 2(va - t 6vsc) , (1-27)

which is the same frequency as was found for the small-amplitude

oscillations of the one-dimensional beam examined in Part I. In fact,
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it is straightforward to show that the complete distribution

f = fa + f22 is just the small-~mplitude limit of the uniform one-

dimensional distribution, Eq. (1-17) in Part 1.26 Thus, this is the

"breathing mode" in which the beam expands and contracts, yet maintains

a uniform charge density.

The quadrupole modes with n = 2 and m = 4,6,8,'" have a
dP (x)

nonuniform charge density proportional to m:: , and their eigen-

frequencies ~2 approach 2(vO- 6vsc) as m increases.

Excitation by External Forces

Machine imperfections excite the various normal modes. In this

case, the linearized Vlasov equation has the form

of -df 2 df

~+vdX-vx:dV =
2 . d. OfO

- illp [€(x, }6) + E(x) e-lPJ1] 7iV
, (1-28)

where E(x) e-ip}6 is the known ext'ernal driving term and p is an

integer. The forced solutions of (1-28) oscillate with the frequency
..,

p, and can be found by the same methods that w.ere used to find the

normal mode solutions. In particular, the defining equation for £(x)

is just Eq. (1-15), but £. (cos w) on- the- right--hand---side--is--repJ:aced-- --- --- -

by ~(cos ,) + E(cos w). The solution for the forced electric field is

£(x) \ 2n + 1 a P (x)
L.., 2 nn
n

(1-29)

where the coefficients an are determined by
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an-l
Kn(p)

= 1 - Kn(p )

1

J Pn-l (x) E(x) dx
-1

(1-30)

Thus an external driving term of the form E(x) = P l ex)m- excites only

the e (x)m modes, and resonances occur for p near any eigenfrequencies

(J) wheremn n = m,m-2,m-4,....

A magnetic field error has the form E(x) = E, and excites only

the rigid dipole mode (m = 1 and n = 1) with

£.1 (x)

2
Ern-L

2 2
P - Vo

(1-31)

A gradient error has the form E(x) = EX, and excites only the uniform

quadrupole mode (m = 2 and n = 2) with

€2(X)

2
Ern x

- p
- 2 2 2

p - 4va + 3rop

(1-32)

in agreement with Part I. Nonlinear driving terms excite the higher-

order modes and cause resonances for integral values of ill .mn In the
--_u- -~ - -~ ---~- -- ~ ~- n

~--- - -- ----

next section, we examine these resonances in more detail and compare

them with the resonant frequencies found by Ehrman for a nonuniform

beam.

We conclude this section with a few general observations. For

intensities of interest in AG synchrotrons (Lv «v a)' the normalsc

modes f
mn for the particle density in x-! v space have an approximate
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in real space, the charge density is proportional tQ

m.: !!. nodes;

dPm-l(x)

clx

n-fold symmetry of rotation and radial variatiQn with

The distribution oscillates with the frequency

m = n(vO - 6v ) + ~ 6v , which differs from the zero-intensitymn sc n sc
A.

value nvO by the two frequencyshifts n6v and ~ 6v . Thesc n sc

first frequency shift is a purely geometric effect: a perturbation tha.t

produced no electric field would rotate rigidly with the frequency v

of the stationary distribution, giving rise to the eigenfrequency nv.

However, because the perturbation is charged, the circular orbits of the

stationary distribution are distorted, and this distortion gives rise to

the second frequency shift. This frequency shift is largest for the

lower-order) more coherent modes, and becomes progressively smaller

(Table IV) for the higher-order modes, since the perturbed charge

density tends to cancel with itself: the most coherent mode is the

rigid di~ole mode for which ~ l = (vO - 6v ) + 6v ,whereas for the- ..L sc sc

uniform quadrupole mode m22 = 2(vO - 6vsc) + ~ 6vsc' and for the (3,3)

sextupole mode ~3 = 3(vO - 6vsc) + ~ 6vsc. For the higher-order

modes, especially the nonsurface modes, the eigenfrequencies are

n_~~~-- shif:fe-a.-verynti ttle- fr-om Ehevalue
n(vo - 6Vsc).

Finally, because the eigenfrequencies are real and discrete,

there can be no Landau damping.27 This type of damping requires a

continuous spectrum and discontinuous eigenfunctions, so that any

initial perturbation that is analytic consists of an infinite number

of eigenfunctions, each infinitesimally excited; in the course of time
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the phase relationships between the various modes is destroyed and the

perturbation damps exponentially to zero.28 For any system of charged

particles that are confined by a harmonic potential, the eigenvalue

spectrum is discrete and the eigenfunctions are continuous;29 however,

a very localized perturbation contains many modes and exhibits an

approximate exponential damping until the phases of the various modes

become randomized.

-- - -----------..-------- - - - -._-~._- ----
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2. Extension to Nonuniform Beams.

Resonant Frequencies for the Uniform Beam

We have seen in the preceding section that an external driving

term of the form P lex) e-ip~ excitesresonancesif the integer pm-

is near any of the eigenfrequenciesm where n = m,m-2,m-4, For
A mn

low intensities, m = nv + ~ 6v , and therefore resonances occurmn n sc

for p near mv, (m-2)v, (m-4)v, ..., as indicated below:

PI' P3' P5' ... , sextupole mo~~~__~~ ~~~--~~~~--~..-,---~_ct~~~-~~_~_~d~~-~y

P3' PS' ... , etc. In the limit of zero intensity, these resonances

reduce to those obtained from the single-particle approach; the equation

-----------------

of motion for the individual particles is

~
d-x '"'
~ + v '='x
d0' 0

~ Pm-lex) cos p~ , (2-2)

The external field causes resonances for p near

Po v

PI 2v

P2 v 3v

P3
2v 4v

P4 I

v 3v 5v

P5 2v 4v 6v

(2-1)

Dipole modes are excited by PO' P2' P4' ..', quadrupole modes by
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and if we consider only small departures ox from the stationary orbits

x = A cos(vo1 + a),
where A and a are constants, resonance occurs

for p = mvO' (m -2)vO' (m - 4)vO' ..., as indicated in (2-1).

However,if nonlinearterms in ox are allowed in (2-2), the

resonant growth caused by the driving term xm cos p0 is usually

serious only for m~ 2; for larger values of m the amplitude

dependence of vo, which results from the nonlinearity of the driving

term, generally causes the resonant growth to be negligible.30

Presumably this -is also true in the presence of space charge. Then,

since
m
x can be expressed in terms of Legendre polynomials of order

less than or equal to m, only the driving terms Pm-lex) and resonant

frequencies
(1)m.nwi th m ~ 3 need be considered, namely ~l' (1)22'

(1)31' ~3.

Resonance occurs for integral values of these eigenfrequencies,

and from Table IV we find:

Driving term Resonant condition Mode (m,n)

Po Vo = n rigid dipole (1,1)

n 3
-- - --Pr vo--==2'-+--4'-6.VsC ---uniform--quadrupole (2,2)

P2

9

<. va = n + 8 6v Be

n 7v = - + - 6.v
0 3 8 sc

nonrigid dipole (3,1)

sextupole (3,3)

(2-3)
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where n is any integer. These resonant values of Va are shown in

Fig. 22 for the beam intensity corresponding to 6v = ~ ; additionalsc Lf

resonances are also included, and the dipole, quadrupole, and sextupole

modes are drawn separately for clarity. The rigid dipole mode is

exci ted by P a at integral values of Va' whereas the nonrigid dipole

modes are excited by
P2' P4' ...

for Va near
n + 6vsc.

The uniform

quadrupole mode that was examined in Part I is excited by PI at

Va = ~ + t 6vsc' whereas the quadrupole modes that do not maintain a

uniform charge density are excited by
P3' PS' ...

for
Va near

~ + 6v sc .2 The sextupole, octupole, and higher-order modes are excited

for
Va near n-

k + 6v , wheresc
n
k are the zero-intensity subharmonic

frequencies.

Comparison wtth the Water-Bag Distribution

Ehrman and depackh6 have examined the oscillations of the

stationary distribution that has a uniform particle density in phase

space; the particles are confined by an external harmonic potential and

oscillate with the frequency Va in the absence of space charge. Since

the volume occupied by any group of particles in phase space is incom-

pTessible(n~gl-ectifig--C5ITisions), this uniform particle distribution

acts as an incompressible homogeneous fluid, and hence the name water-

bag distribution.

The stationary distributiona.

We will examine the stationary distribution in more detail

before describing its small-amplitude oscillations. For low intensities,

the distribution has an approximately circular boundary in the

->-;
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~

4 2

Dipole

n n+1

n

n

n+..L
2

e3 53

Quadrupole

n+1
2 4 2 4

Sextupole

~-----

In+-
2 n+1

11 --.0

XBL689- 3901

.- - --.-------------------

Fig. 22. The resonant values of va for the beam intensity

corresponding to 6V = ~ are shown for the dipole,sc L+

quadrupole, and sextupole modes excited by P (x) withm

m ~ 5.
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1 dx

x - va ~ space, and a nonuniform charge density in real space. As

the intensity increases, the charge density becomes more and more uniform,

until at the limiting intensity for which the space-charge force exactly

balances the focusing force (the plasma frequency equals vo)' the charge

density is exactly uniform and the particles within the stationary distri-

bution are motionless (the beam emittance is zero)".

The zero-order distribution fO(r) = ~, 0 ~ r ~ 1, is
VaT[

shown in Fig. 23b, where r is the radius of the individual particle

orbits in the x - ~ ~ space in the absence of space charge, and fO
V0 U-?

is normalized so that !fOdxdv = 1 (v = ~). For AG synchrotrons the

space-charge forces are small in comparison with the external focusing

force, 6v «v O' so that the stationary distribution in the presencesc

of space charge differs from the zero-order distribution fO(r) by
6v

terms of order ~. For 6v typically ~ and Vo ~ 10, this
va sc if

difference is approximately 2%, which is negligible. The normalized

charge density
Po (x) = J f0 ( r ) dv = g -Vl - x 2rr

for the zero-order

distribution is also shown. Since the charge density is not uniform,

the self-forces are not line8:I'-,___~~~--~_:=_J>~_r~_~cl~~__1iVJ._~_~in_th~_§~ai~iona.ry- -

distribution oscillate with different frequencies. It is shown in

Appendix D that the revolution frequencies for the individual particles
6v

within the stationarydistributionare given to first order in sc
Vo

by

vCr) Va - 6v g(r)sc (2-4)
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( b)

1'°6 I.ob 2Dt=
0 r 1.0 0 X 1.0 0 r 1.0

(c )

I'O~ I'O~ 2.oL
0 1.0 0r x 1.0 0

r 1.0

XBL689 -3900

- ~ -~-------------_._- --- ------

Fig. 23. The uniformly charged beam (a), water-bag beam (b), and

Gaussian beam (c) are shown: fO(r) is the zero-order

stationary distribution, Pa(X) is the normalized charge

density for fa(r), and vCr) = va - ~vsc g(r)
is the

frequency of the individual particles within the stationary

6v
distributionto first order in ~.

va

1.0 r lIof 0 (r)

:

I

1'°5

2'0

(0) r JI

0
r 1.0 0 1.0 0 r 1.0X
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where

g(r)

2n

; ~ po(r sin w) cos2 w dwa
(2-5)

involves an integration over the unperturbed orbits. The quantity 6vsc

has been defined before [Eq. (2-8), Part I]. It is proportional to the

average charge density within the beam, and is identical to the space-

charge-induced frequency shift for a beam with uniform charge density,

i.e., for the normalized charge density
1

Pa(x) = constant = 2' Eqs. (2-4)

and (2-5) give vCr) = constant = Va - 6v .
sc For comparison, the zero-

1
(fa =

--.r 2
2nva Vl - r

is also shown (Fig. 23a),as well as the Gaussian distribution observed

in the Brookhaven AGS19 (Fig. 23c), namely fa = 2.2 e-2.2r2, with the
Van

normalized charge density Po (x) ~ '12.2 e-2.2x2. Note that the chargen

order distribution for the uniformly charged beam

distribution for the water-bag beam is intermediate between that of the

uniform beam and the Gaussian beam.

For the same total charge
Nl' and the same beam size a, the

---n n-n- wat-er-bag-and-GausB"ianbeams have a higher central charge density than

the uniform beam. As a result, the space-charge-induced frequency

shifts 6v g(r) are larger for the nonuniform beams, since thesc

cos2 w term in Eq. (2-5) weights the integration over Pa(r sin w)
in

the favor of small values of the argument r sin w.

. 4
beam vCr) varles between v(a) = Va - - 6v and

J1 sc

For the water-bag

,,-,
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32
v(l) = Vo

- ---
2 6v ~ Vo - 1.08 6v ;

3n sc sc
for the Gaussian beam it varies

between v(o) ~ Vo - 1.67 6V
" sc

and v(l) ~ Vo - 1.09 6v .sc

b. Small-amplitude oscillations

Ehrman has found the small-amplitude oscillations that perturb

the boundary of the stationary water-bag distribution while maintaining

the uniform particle density in phase space, namely the surface modes.

These modes, for which the perturbation is large only near the beam

boundary, are very similar to the m = n surface modes of the uniformly

charged beam. The additional nonsurface modes that perturb the uniform

particle density within the boundary were not found.

For low intensities, the surface modes have an approximate n-fold

rotational symmetry in the x - ~0 ~
frequencies3l

space, and oscillate with the

(1)
n

= 8 n
nv(l) +

3n 2 1 6Vsc
n - 4'

(2-6)

where n=1,2,3,.". For n = 1, ~ = vo' and this is the rigid

dipole mode for which the beam oscillates rigidly back and forth at
-- . -- --- --

the zero-intensity betatron frequency. For the first three surface

modes we find
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Water-bag Uniform beam

~ = vo ro.tl = v0

ill2 = 2v(1) + 0.454 6v sc
1

ill22 = 2v + 26vsc

ill
3 = 3v(1) + 0.291 6v sc ~3 = 3v + g 6vsc (2-7)

For larger values of n, the frequency shift from nv(l) is very nearly

Ann
-6vn sc

for
8

-6v
3rrn sc' which has the same form as the frequency shift

the uniform beam, where Ann is a number of order one that increases

slowly with n (Table IV). As n approaches infinity, the eigen-

frequencies ill
n approach nv(l); the perturbed charge density tends to

cancel with itself, and the perturbation is carried along nearly intact

at the frequency of the boundary particles, v(l) ~ Va - 1.08 6v .sc

As the intensity increases to its limiting value, corresponding

to
illp = vo' the eigenfrequencies ~ approach the plasma frequency

in the same manner (Fig. 3 of Ehrman6) as do the eigenfrequenciesill
P

for the surface modes of the uniform beam (Fig. 20). We conclude that

the eigenfrequencies for the surface modes of both distributions are

very similar.
u - - - --- ~--------- - u ----

The low-intensity resonant conditions for the first three

surface modes of the two distributions are
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Water-bag Uniform beam

Vo = n Vo = n

n
Vo = _3 + 0.983 6v sc

n 3v = - + T.'" 6v0 2 L+ sc

n 7v = - + - 6v
0 3 8 sc (2-8)

n
Vo = 2 + 0.853 6vsc

The driving terms that excite these water-bag modes have not been

determined, but it is reasonable to assume that they are similar to

those for the uniform beam. For example, we expect a gradient error to

excite primarily the n = 2 quadrupole mode, but also to excite weakly

the additional nonsurface quadrupole modes. In the same spirit, we

expect only the low-order water-bag resonances listed in (2-8), plus

perhaps one or two nonsurface modes, to be detected in accelerators;

the nonlinearity of the driving terms required to excite the higher-

order modes should prevent additional modes from being observed.

Gaussian Beam

The eigenfrequencies for the Gaussian beam have not been found,

but Weibel21 has solved a very similar problem. He considers a one-

dimensional system of electrons in an external harmonic potential, and
- ~--- -- - - -- ----- - - -- - --------------

finds the eigenfrequencies for the small-amplitude oscillations about a

stationary Gaussian distribution. However, he considers only the case

for which the charge density of the stationary distribution is completely

neutralized by a background of immobile positive ions so that all the

particles within the stationary distribution oscillate with the same

frequency VO' In contrast, the charge within an accelerator is not
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neutralized and the individual particle frequencies for the Gaussian

distribution vary between v(o) ~ Vo - 1.67 6vsc and

v(l) ~ Vo - 1.09 6v .sc In any event, the eigenfrequencies found by

Weibel have a form very similar to those of the uniform beam and the

water-bag beam.

For the neutralized Gaussian distribution
fO(r) = 2.2 e-2.2r2nvO

Weibel finds32

~l Vo + 1.22 6v ,sc ill31
va + 0.131 6v ,sc

ill22 2vO + 0.356 6vsc ' ill42
2vO + 0.089 6v ,sc

~3 3vo + 0.222 6v ,sc (2-9)

and it can be seen that the frequency shifts from nvO are very

similar to the frequency shifts from nv(l) for the water-bag beam

(Eq. 2-7) and from n(vo - 6vsc)
for the uniform beam. In particular,

the frequency shifts for the surface modes are:

Water bag Uniformm = n Gaussian

~~~---~-l
1.22 6vsc 1.086VSC 6vsc

~ .-.-

2 0.356 6vsc 0.454 6vsc
1- 6v2 sc

3 0.222 6vsc 0.291 6vsc 2. 6v8 sc (2-10)

For the two nonsurface modes of (2-9),

I .~I
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These results for the neutralized beam can be extended to the

charged beam provided the effect of the frequency spread v(O) - vel)

within the charged beam can be neglected: we assume that all the parti-

cles within the stationary distribution oscillate with the same frequency

V and replace vo in (2-9) by the effective frequency v. The value

of v is determined by the requirement that the rigid dipole mode,

which in this case is obviously the m = 1, n = 1 mode, oscillate w'ith

the frequency vO' Then v ~ Vo - 1.22 6v ; this is near the meansc

frequency
Jv(r) fO(r) dxdv ~ Vo - 1.28 6vsc within the stationary

distribution and is a reasonable extrapolation from the effective

frequencies Vo - 6v and Vo - 1.08 6v for the uniform and water-sc sc

bag beams. With this replacement in Eqs. (2-9), the resonant conditions

for the Gaussian beam become

Vo n + 1.09 6v sc ,

vo

-

~ + 1.07 6vsc '= 2

(2-12)

which are reasonable extrapolations from the known resonant conditions

for the uniform and water-bag beams (Eq. 2-8).

-"

(m,n) Gaussian Uniform

(3,1) 0.131 6v 0.125 6vsc sc

(4,2) 0.089 6v 0.125 6v (2-11)sc sc

Vo
= n

n
Vo

=
2' + 1.04 6vsc '

n
Vo

=
3 + 1.15 6v sc '
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3. Conclusion

We have investigated the small-amplitude oscillations of a one-

dimensional system of charged particles that interact with one another

by Coulomb forces and are held together by an external harmonic potential.

Because the large number of discrete particles (approximately 1012),

each with two degrees of

distribution, the system

and therefore a twofold

freedom, has been replaced by a continuous

has a twofold infinity of degrees of freedom

infinity of normal modes and eigenfrequencies.

In the limit of zero intensity, the eigenfrequencies for any

stationary distribution are just harmonics of the zero-intensity

betatron frequency vo' and each eigenfrequency is infinitely degenerate.

Resonances occur for integral values of nvo' and these are just the

integral, half-integral, and subharmonic resonances that are familar from

single-particle theory. For intensities of interest in AG synchrotrons

(Lv «v O)' the degeneracy is at least partially removed, and thesc

eigenfrequencies occur in clusters near the unperturbed eigenvalues

nvo. For larger intensities, the charge density of the stationary

distributions becomes more and more uniform until at the limiting

intensity,--fOT--which (1) -~-v o,~the__charge_densitYisexactlY"_llnif6rm.p . -- .. .-

Consequently, the eigenfrequencies for the surface modes approach the

plasma frequency, while the eigenfrequencies for the nonsurface modes

approach zero.

The eigenfrequencies and normal modes for the stationary

distribution that has a uniform charge density in real space have been

investigated in detail. The eigenfunctions for the perturbed electric
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field are particularly simple, being just Legendre polynomials. For low
A

intensities, the eigenfrequencies are ill = nv + ~ ~v , wheremn n sc

v = Va - ~v is the revolution frequency of the particles within the
sc A

stationary distribution and ~ ~v is the frequency shift induced byn sc

the collective oscillation. In the 1 dx

x - va ~ space, the eigenfunctions

have an approximate n-fold rotational symmetry and a radial variation

with m; n nodes; in real space the perturbed charge density isdP

proportional to ~-l. The frequency shift from nv is relatively

large for the low-order, coherent modes, while it is very small for the

higher-order modes, for which the perturbed charge density tends to

cancel with itself.

External driving terms of the form Pk(x) cos p~
excite the

m = k + 1, n = k + 1, k - 1, k - 3, ... modes and cause resonances

for
(j)mn near the integer p. However, the resonances w'ith m~4

will generally be suppressed by the nonlinearity of the driving term

required to excite them. Therefore, from the twofold infinity of

possible modes, only four are likely to be serious for the uniformly

charged beam: the rigid dipole mode (m = 1, n = 1), which is excited

_m _m by-magrretic--f'ield-erro rs--for-integral-val ue s of
Va; the quadrupole

mode (m = 2, n = 2), which is excited by gradient errors for

va = ~ + t ~vsc; the sextupole mode (m = 3, n = 3), which is excited

by P2(x) for va = 5 + t ~vsc; and the nonrigid dipole mode (m = 3,

n = 1), which is excited by P2(x)
for 9

va = n + 8' 6vsc'

Two beams with nonuniform charge density were also examined, a

Gaussian beam similar to that observed in the Brookhaven AGS and the
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water-bag beam, which has a charge distribution intermediate betw'een

that of the uniform beam and the Gaussian beam. Despite the relatively

different charge distributions, the eigenfrequencies for the surface

modes of the water-bag and uniform beams have the same form and very

similar numerical values. The eigenfrequencies for the Gaussian beam

were extrapolated from the known eigenfrequencies for a neutralized

Gaussian distribution, and are also very similar in form and numerical

content to those for the uniform and water-bag beams. Because of this

similarity, it is reasonable to assume that corresponding modes in the

three distributions are excited by the same driving terms; for example,

a gradient error is expected to excite primarily the n = 2 surface

modes, causing a resonance for n 3v = - + i.'" 6v
0 2 Lf. sc in the uniform beam,

for Vo = ¥ + 0.853 6vsc in the water-bag beam, and for

Vo = % + 1.04 6vsc in the Gaussian beam. In the same spirit, only the

first three surface modes and one or two nonsurface modes are e]~ected

to be observable in accelerators, in analogy with the uniform beam.

For the future, it is possible that the exact eigenfrequencies

and normal modes for any distribution, at least to first order in

- - ,6v~-~--- n~

~, can be found by stationary perturbation methods, i.e., the
Vo

methods that are used in quantum mechanics to compute perturbed eigen-

~- - - _n ~ --

functions and energy levels. Since only five or six modes need be

examined, the perturbation approach should converge wtthout excessive

calculation. Perturbation methods might also be applied to two-

dimensional beams to examine the effects of space charge on sum and
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difference resonances, and to three-dimensional beams to examine the

space-charge coupling between longitudinal and transverse motions. Since

relatively few modes are involved, it might also be feasible to determine

the large-amplitude behavior of these modes by analytical methods.

--- --~-_.~--_._--
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APPENDICES

The Nonexistence of Uniformly ChargedA.

Three-Dimensional Beams

We are given an ensemble of three-dimensional harmonic

oscillators with the Hamiltonian

H(p, <1), =
2 2
P + q , O~H<l (Al)

Because of the inequality, the accessible region in phase space is a

six-dimensional unit sphere; in configuration space it is a 3-sphere.

Does there exist a spherically symmetric distribution
2 2

f(p + q ) that

has a uniform projection onto the 3-sphere? The following necessary

condition for the existence of such a distribution has been found by

Maurice Neuman.

Theorem: The spherically symmetric distribution
2 2

f(p + q ) does not

exist if its projection
2

p(q ) = 223
Jf(p + q )d P violates any of the

following inequalities:

~ 42(
3

)

3/2

:n: 4T '

3
0~T~4'

n_~ -----------

peT)

- 8
~--2-Vl - T'

:n:

,
3
4~T~1 (A2)

The maximum permissible value of peT), which corresponds to the equal

sign, is shown in Fig. (AI). An immediate consequence of this theorem

is the nonexistence of a spherically symmetric distribution
2 2

f(p + q )

with a uniform projection,
2

p(q ) = constant.
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The maximum value of peT) from Eq. A2 is shown

as a function of T.
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The function g (t)T specified by Eq. (AS) is

shown as a function of t.
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Proof of Theorem: f is normalized by

1

Jf(l !+ q2)d3pd3q = ;:3 J f(t)t2 dt = 1
0

The mean of any function get) is

3 1

meang = £- Jl g(t) f(t) t2 dt0
,

and the resulting number can neither exceed the largest nor fall

beneath the smallest value of get) (O~t<l):

inf g ~ mean g ~ sup g

The projection of f is

00

2

J
2 2 3

J
2 .1

p(q) = f(p + q )dp = 2n f(t + q )t2 dt

0

or
1

p(T) = 2~ J f(t) (t - T)~ dt
T

- - Od_--

Consider the function

1

gT(t) = (t - T)2
b2

for 0 ~ T ~ t ~ 1

= 0 for t < T ,

(A3)

(A4 )

(A5)

(A6)

(A7)

(A8)
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which is shown in Fig. A2. Its mean value is proportional to

4
But for 3 T < 1,

4
for '3 T > 1,

---- ------------

2
J(

'8" p( T)
= mean g ~ sup gT T

sup g = max g = g
(

4T

)T T T 3

sup g = g (1) = VI - T 1T T

u ---

3

= ~6 (~ ) 2 ,

Q.E.D.

- ------

UCRL-184S4

p(T),

(A9)

and
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The Amplitude-Phase Equations for Two-Dimensional BeamsB.

In the absence of space charge and gradient errors, the solu-

tions of the two-dimensional envelope Eqs. (3-1) and (3-2) can be

written in the form

2
x -v 2 I= 1 + A + A sin (2v J + a) ,

dx -
x~ - Vx A cos(2vJ + a)

2z V 2'
= 1 + B + B sin(2vz~ + ~) ,

dz -
z ~ -

v B cos(2v d + S)z z? , (Bl)

where A, B, a, and ~ are constant. WhenEqs. (Bl) are inserted into

the complete envelope equations with space charge and gradient errors,

we obtain the following first-order equations for A, B, Q , Q :x z

2

dA 0,), V . 2' ,; 2'~ =..L 1 + A I - 6.v 1 + A cos Qv x sx xx
, (B2)

-~-- -..-.-----------
2 ,

ill ,. 2
--dB-- =- :..L Vl + B2 I - ~v if 1 + B cos Qz~ - Vz Z sz

, (B3)

(B4)

(B5)

d 2
ill

-V 1 + A2
\

Aar = - -.:.E.-M + 6.v sin Q, + 2Mv
Vx

x sx x x

dQ
2

z
ill -V ?'Bar

= - -E- M + 6.v 1 + B sin Q + 2B.6vv z sz z zz
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plus additional terms that vary with the frequencies 2vx' 2vz' 4vx'

with similar definitions for Iz and M.z The quantities Ix and Iz

are related by

aAI + bBIx z 0 (B8)

Equal Frequencies and EmittancesA.

In general, Eqs. (B2) - (BS) are very difficult to solve;

however, for the special case of equal frequencies (vx = vz) and equal

emittances (a = b), analytic solutions exist with the forms

, u~ u -

, (B9)

where the plus sign occurs for a.symmetric gradient error (6.v = 6.v )sx sz

and the minus sign for an antisymmetric gradient error (6.v = -6.v ).sx sz

For either gradient error, I = I = 0x z and M = M ,x z so that

Eq s. ( B2 ) - ( B5) reduce to

4v , etc. We have defined Q = (2v - n) + a, Q = (2v - n) + ,z x x z z
n n

and6.v = v - - 6.v = v
- 2'x x 2' z z

2:n:

I
b

I
cos U d with U = ny1 + Q,=

2rr x(ax + bz) U
,x x

(B6)

2rr

.y 2'M
b

1
A + 1 + A sin u d (B7)=

x 2:n: x(ax + bz) u
,

2
"1 + A2' + A cos(n + Q)x =

-Vl + A2

'
2

:t A cos (n + Q,)z =
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dA ..I-~
~ = l>.vs Vl + A2 sin Q

, (BIO)

i I

dQ Y 21A
dii ==. - 4.6v M +.6v 1 + A cos Q + 2A .6v
v..y; s c::t s

, (Bll )

where

...1 2'
M ==. Vl + A - 1. + , for + in B9 (B12a)

and

M , 1

[
2 k2

]
- 1 - -. - K(k)
2k J1 A2

, for in B9 (B12b )

and K(k) is the complete elliptic integral of the first kind with

A

modulus k == -'- 2
"Vl+A

The phase trajectories in A, Q space are found by dividing

(BIO) by (Bll) and integrating the result:

constant = A cos Q + 2.6v ~ + A2.6v
s

M+.6vsc

J . - dA
4- 2- .6vs V 1 + A

,

'-..nn . -- -. .---.
. .( Bl})-.- .--......--..

where

MdA

Ji-:A2 = ~ £n(l + 1/1 + A2 ) (B14)

and
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MdA

J~A2
~[£nA-; fK~k) dk] (BlS)

The fixed points
dA

~ = 0,
dQ,
~ = 0

satisfy

Q = 0, A = - ~ .6vs _1
2 .6v VI + A2

.6v
+2~M

.6v ::t

or (B16)

Q, = n,
1 .6vs / 2

A = - --- Vl + A
2 .6v

.6v
+2~M

.6v ::t

and are shown in Fig. 10. For .6v = 0, these equations specify thes

amplitude of the free envelope oscillations that are periodic.

Because of the nonlinearity in the envelope equations, a

gradient error of one sJnnmetry also affects the normal mode solutions

of opposite symmetry. Thus the symmetric fixedpoints of (B16) are

modified by an antisymmetric gradient error, and vice versa. For

example, in the absence of all gradient errors, the symmetric envelope

oscillation has the form

= 2
z -VI + A2

2
x + A cos n9' (B17)- ~ - --------

where

A
.6v

2~M
.6v +

An antisymmetric gradient error transforms these fixedpoints into
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,

, (B18)

!:::.Vs I

where for !:::.v«1, Eqs., (B2) - (B5)
become

(B19)

!:::.v

For small values of!:::.vs they approach very closely the form (B17), as

shown in Fig. 11. The symmetric gradient error modifies the antisym-

metric fixed points in an analogous manner.

B. General Beam Configurations

The response curves for Vx =l= Vz and a =l= b can be obtained

from Eqs. (B2) - (B5) by numerical methods. However, for simplicity,

we consider only the!:::.v = 0,sx !:::.v = °sz asymptotes, in other words,

the free envelope oscillations that are periodic. Equations (B2) and

.---

--(B3)- then-recIuife that I = I = 0, and this condition is satisfiedx z

if Q - Q = O,n,'x z
so that

"
..

2
VI + A2 + A cos(n + Q)x =

:.vI + A2
2

- A cos(n9 - Q)z =

!:::.VsA cos = -
,

!:::.v

A2 !:::.vsc=
!:::.v

-V 1 + A2 - 1

2
-J 1 + A2 + A sin(n9 + Q)x = ,

(B20)
2 V1 + B2

1: B sin(n9 + Q)z =
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are then determined by (B4) and (B5):

A
2 2n " 2'

(l)p .~
J A + /1 + A ,sln u du

6v 2n
x x 0

B

2
(l) ap .-

2v 6v 2n
z z

2n -V 2 '

J B:t 1 + B sin u du
z (ax + bz )

0

,

(B2l)

shown in Fig. 14.

These integral equations were solved numerically, and the solutions are

1

~ 0 '-=,0

--- -- - -----

'2
./

~I ~

V \-,.;. J
t ~ r- j.. - '" l.
\J J\



-111- UCRL-18454

c. Normal Modes that Oscillate with the Frequencies nv

The uniformly charged beam (Section 1, Part II) has normal-mode

solutions that oscillate with the frequencies nv, where n is an

integerand v = ~o2 - ffip2. The electricfield for these modes has

the form e (x) = P lex), and the perturbed particle density ism m-

determined by Eq. (1-6) to have the form

fer, g) =
(

-ing
f r, g) + e g (r)mn mIl , (Cl)

where
fmn(r, g) is given by Eq. (1-21) with ill = nv.mIl The function

gmn(r) is determined by the condition that f(r, g) produce the

required electric field, Pm-lex):

dPm-l(x)

dx = 2 ~ fer, 9) dv , . (C2)

If (Cl) is inserted into (C2), we obtain the following condition for

gmn(r):

-- -- ----

, (C3)[l - Km(nv)] dPm-l(X)

where
x

cos go = r'
For even values of n, the right-hand side of (C3)

is an even function of x, and therefore m must be even; for odd values

of n, m must be odd.

There is an infinite number of solutions for n = 0, i.e., an

infinite number of stationary distributions that differ from fO(r) by

1
cos neO gmn(r)

{xl
rdr=

V 2 2'r - x
- -- -- --- --
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an infinitesmal perturbation. Using Abel's theoremlO to invert (C3),

we find

g20(r)
(

2

)

1 CDp

2 1 + 4v2 fO(r)

g40(r)
= !

(
l + (j)p2 \

2 64/ )

2
(lSr - 11) fO(r)

g60(r)
(

2

)

CD 4 2
= t 1 + p 2 (42r + l4r - 1) fo(r)

l6'16v

(c4)

Consequently, for m = 2 and n = 0,

f(r, 9) =
2

(

2

)

CD dfO 1 CDp
- -E- --- r cos29 + 2 1 + ~ fa

2 dr 4vv
,(CS)

and similarly for the higher values of m. Since these solutions all

~---~.~.~_.~ -have the same ~tg~nvalue CD = 0, any_combination will also be a

solution.

For n greater than zero, K (nv)m is infinite if m ~ n.

Therefore the functions
gmn(r) specified by (C3) exist only for m < n,

and these values correspond exactly to the blanks in Table III. For ,"

example, for n = 1 or n = 2 there are no solutions. For n = 3

there is one solution, with the form
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-i3e
f = f13(r, e) + e g13(r)

{In this case the left-hand side of (C3) is zero, and it is more

convenient to determine g13(r)
by the equivalent relation

[1 - K (nv)] P l ex)m m-

1

- ~ J rdr sin n90 gmn (r)

Ixl

(c6)

Equation (C3) is the derivative of (c6) with respect to x. } For n = 4

there is also one solution, whereas for n = 5,6 there are two solutions,

and so on for the higher values of n.

-~ ~--- -
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D. Frequency Spread for Nonuniform Stationary Distributions

The Hamiltonian for the individual particles within a stationary

distribution f(p, q) is

1 2 222
H = 2(P + va q ) + wp ~(q) (Dl)

where

d2q;

2 =
dq

- 2 f f(H) dp (D2)

and where f f(p, q) dp dq = 1. We have chosen the units of q so

that the beam boundary is q = £1, and have defined w
p as the plasma

frequency for the average charge density.

The revolution frequency of the individual particles is deter-

mined by (Dl) and (D2).' For AG snychrotrons,

suffices to find H to firstorderin (!)2,
1 2 222

where HO = 2(P + va q) and HI = wp q;O(q)

2 2 d "t
wp «vO' an l

namely H ~ HO + HI'

with

d2q;
a =~

dq
- 2 f f (Ha ) dp

-
- 2 po(q) (D3)

In terms of the action and angle variables J,w given by

q -. {2:J sin wV~ w =
Vo~ + constant, (D4) -'"
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the zero-order Hamiltonian is HO = vOJ; the transformed first order

Hamiltonian Hl(J) is just the average of Hl(P, q)

unperturbed orbit,33

over the

Hl(J)

2 2rr

= ;~. ~- ~o(-{fi-~~~1-~'"- .----
(D5 )

The frequency of revolution of the individual particles is then

v(J) =
2 2rr

( )
v + CDp ~

J
<P
o

~ (2i sinw dw
0 2rr dJ V ~

,0

(D6)

If the differentiation is performed, followed by an integration by

parts, Eq. (D6) becomes

v(r) =
2rr

V a -.6.v ~
J Po(r sin w) cos2 W' dw'

se :rT .

0

(D7)

where r =-' r:;;- is the radius of the unperturbed orbits and
V~

2
CD

.6.v =-Lsc 2 .
va

"

'-
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d2X

ds2
+ K(s)X

E2

X3

~

0
,

.. ...

is equivalent to the two ItCartesian!f equations

d2y
2
ds

ff

+ K(s)y 0

d2z

ds2
+ K(s)z 0 ,
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X = Y + Z dz dy

and E = Y ds - z ds .
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d~2 P x P

0
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p
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,"

x
6v

l+~
2v

2v6v cos n\;5s '

2 - 2
4v - 6v6v - nBC
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--R
d~2

+
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0
~~ ~----------
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2
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where ~ has beenx
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:rex, v, ~)
2~V [1 - x2

2
(

2

)
u:JjJ

]

-1-.

v 2.ill V v -i 2- + 2€
,
X - 1-x- - - e

2 v v 2
v v .

=

where now
is measuredin unitsOf-~

anddx
v =~'x

~.

E=~
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f22

df
€ a
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O 24 n
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2
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'4 va
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4
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The eigenfrequencies are not labeled according to Weibel's notation,

=

but according to the notation for the uniform beam.
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and

;'"42 are obtained from Fig. 2 of Weibel~
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