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ABSTRACT 

We consider the problem of approximating integrals of the form 

~l/W where W may be a simple (e.g. polynomial) form in the integra­

tion variables. A variational expression is given which approximates 

this integral in terms of integrals of W with suitably chosen trial 

functions. The power of this method is compared with that of Gaussian 

quadrature in a few examples. Some generalizations of the method are 

discussed. 
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INTRODUCTION 

Calculations in quantum field theory are usually carried out in 

terms of the perturbation theory expansion, where each term is represented 

by a Feynman diagram. This diagram is a mnemonic for writing down a 

multidimensional integral over the momenta of the intermediate particles. 

While much attention in the literature has been given to deriving these 

rules and analysing the formal properties'of the integrals .involved, 

there has not been much study of how to ·get numbers out of this formalism~ 

beyond the lowest order terms. The problem is not trivial" for two 

reasons. First is the high dimensionality of the integrals: a three 

loop diagram may represent a Feynman-parametrized integral with eight· 

. variables. If our integration formula needs n points per dimension 

to get the required accuracy and we have d dimensions, then we need 

a total of . N = nd evaluations of the integrand. While in one, two, 

or even three dimensions the capacity of modern computing machines lets· 

us use standard methods with many points, as we go to higher dimension:­

ality it becomes imperative to have a small number n of points per 

dimension. 

High accuracy with a small number of integration points means 

we must have some sophisticated rule for numerical integration, and. 

this brings us to the second hurdle: For any cookbook rule of numerical 

integration (Simpson's rule, Gauss quadrature, etc., etc.) the adver­

tised accuracy depends on the assumed analytic smoothness;of the 

integrand. Thus consider an integral over the. unit interval: with 

Simpson's rule and n points we·a~e told the error goes as 

,':: 
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n-4 times the ~th derivative of the function, 

and for the n point Gaussian formula the error goes approximately as 

-2n . 
n times the 2nth derivative of the function. 

If the higher derivatives of the integrand are bounded these methods 

will produce results which improve rapidly in accuracy as the number 

of points increases. However, if the integrand has even some mild 

singularity, a higher derivative will be unbounded and the fancier 

integration formulas may work no better than cruder ones. Ultimately 

.the development of accurate numerical integration formulas for a given 

problem requires a careful study of the singularities of that particular 

function; so the practical problem of evaluating Feynman integrals will 

relate to the esoteric study of the singularities of these integrals 

which has been in vogue lately. 

What makes this problem complicated from a numerical analysis 

point of view is that the singularities are not associated with just 
, 

the individual coordinates but lie on various hypersurfaces in a many 

dimensional space. Take for example the integral 

1 1 

J ds ~ dt 1 
(s + t) 

0 

this is easy enough to do analytically, but I challenge anyone to show 

me a standard method which works at all efficiently. (A change of 

variables is not allowed since it is not part of a standard method but 
" 

) 
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part of the artist's skill, to be used differently with each new 

problem. ) In the present paper we present one new method which has 

been found in thinking about this general sort of problem. 
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THE VARIATIONAL METHOD 

The simplest type of integral to do is a polynomial form; the 

type we want to consider here involves a quotient of polynomial forms. 

For shorthand we will write the single variable x for whatever set 

of variables xl ,x2,··· we are given; and 

fdx 
for the multidimensional integral over some specified domain in the 

many variables. We study the integral 

I J dx w&t (1) 

and with a further simplifications of notation write 

J for J dx p(x) 

then 

I =J! . W (2) 

Variational principles have been used in the solution of 

algebraic, differential and integral equations; we will now write down 

a variational principle for the evaluation of the integral T. Define. 

the functional 

.,. , 
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Its variation with respect to the function ¢ is 

OJ == 2 ~O ¢[l - w¢J (4) 

which vanishes if ¢ == l/W at all points x within the integral. The 

stationary value of J is then 

J(¢ == ljw) == J l/W == I 

One can use this principle as follows. Choose a function ¢ 
which has some of the general features as l/W but simpler in detail 

so that the integrals J¢ and J¢ W ¢ can b~ evaluated. (Note that 

W instead of its inverse is involved here.) Then vary some parameters 

in ¢ to make J stationary. If ¢ differs from l/W by some small 

error of measure E, then J will differ from I in measure 
2 

E • 

1 
J(¢ == W + t:J I - Jt::.w t::. . (6) 

This shows that if the weight function p and Ware everywhere 

positive, the error has a definite sign: J is a lower bound to I. 

The most convenient way to vary constants is to make a linear 
'\ 

expansion of ¢ in some convenient set of basis functions u (x). 
n 

With 

¢ 
~ n 

we need for Jthe matrix elements 

Mnn' f'uw u, 
n n 

(8) 

, , 
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and the vector components 

r 
n 

,This giyes from the stationary conditions 

o 

the linear algebraic equations 

L Mnn' C n' - , r 
n' n 

and the answer 

I ~ L c r n n n 

This solution can be written in the vector and matrix language as 

I 

(10) 

(11) 

(12) 

Here we see the inverse of the matrix M giving us the inverse of the 

function W for the original integral. 

This method lOoks like a lot of work: In order to do one 

integral we must first evaluate many integrals - (8) and (9) - and then 

do some matrix algebra. The linear algebra is a standard computing 

machine function; the choic'e of the basis functions u 
n 

is up to the 

artist. One should choose functions u so that the required integrals 
n 

can be readily tabulated by the computer; however bear in mind that 

these functions un are trying to represent an expansion of the 

.. ' 

y 
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function .l/W, and one will want to have the general shape and some 

analytic properties of l/W represented in these basis functions if 

this expansion is to converge rapidly. In any calculation we will 

truncate the expansion at some size, say N, and the error· will then 

be something proportional to the square of the magnitude of the next 

neglected coefficient in the complete expansion. 

Before going into some examples it is interesting to make a 

comparison of this approach with the general Gaussian technique. l 

The integral 

!f(X) dx 

is represented by the sum 

\w. f(x.) L 1 1 

(14) 

The n points x. and the n 
1 

weights w. are to be chosen so that 
1 

the representation is exact for some chosen set of 2n functions 

vj(x). i. e., 

n 

JVj L w. v .(x.) j = 1,2n (16) 
1 J 1 

i:=:;l 

Here are 2n nonlinear equations to be solved for the 2n unknowns 

w. and x. before the method can be used to evaluate some integral of 
1 1 

interest; and in order to set up these equations we must first do the 

2n integrals of the chosen functions v.. If the given function f(x) 
J 

were expanded in an infinite series of the basis functions v., the 
J 



-8- UCRL-18469 

error in the use of the nth order formula (15) for the integral (14) 

would be proportional to the expansion coefficient for the first 

neglected function, of order 2n. 

We can see several similarities bet~een our method and the Gauss 

method, they may in general be considered to be fair competitors. The 

possible disadvantage of the variational method is the greater family 

of integrals which one must evaluate first to build the matrix; the 

possible disadvantage of·the Gauss method is the nonlinear search for 

the points x. 
1 

inEq.(16). (This nonlinear problem is not very 

j-l ) difficult to handle in the classical cases where Vj = Vo x . 

Aside from the question of labor, the accuracies are given by the 

smallness of the expansion coefficient C2n on the one hand, and the 

2 
square, (en)' on the other hand. For a geometric convergence 

(a < 1) 

. these two estimates are equal; for any faster convergence the Gaussian 

method looks better, for any slower convergence the variational metllOd 

looks better. Just what the convergence of the expansion will be in 

any given case may be found by a comparison of the analytic properties 
/ 

of the expansion functions, u or v, with the function they are 

trying to represent, l/W or f. 

Now w·e report some examples. 
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Example 1 

1 

[ s(2s - 1)/(1 
2 

(18) Il ds - s + s ) 

0 

We take W = (1 - s + s2), and absorb the numerator factor into the 

symbol ~. Within the region of integration l/W is analytic and 

so we take for ease of integration 

n-l 
u = s n n = 1,2,·····,N (19) 

The integrals for M (8) and for r (9) are trivial, and the final 

answers are shown in Table I for increasing orders of approximation. 

Also shown in this table for comparison are the results of Gaussian 

quadrature using the weights and points for the integral. 2 

1 

[ ds s f(s) 

o 
(20) 
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TABLE· I 
• 

Successive approximations to the integral 11 

N Variational approximation Gaussian approximation 

1 0.1851852 0.2142857 

2 0.1851852 0.1840796 

3 0.1861952 0.1863572 

4 0.1861952 0.1861892 

5 0.1862006 0.1862015 

6 0.1862006 0.1862006 

exact 2 - rr/-{3 = 0.18620064 

We observe that both methods work extremely well, there being 

nothing in Table I to prove. superiority of either method. 

Example 2 

<I> en 

fa dx fa dy 2/(x + y + 1)3 

We set 

W (22) 

and now must decide what basis of functions to use to expand l/W. 

Our first try is the following 



... -

Ii' 

u = run 
l/a 

(1 + x/a) 
m 
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l/a· 
(23) 

With this basis all the integrals factor into two one-dimensional 

integrals of the form 

100 

dx 
o 

.e x (24) 

which are easily tabulated. In accordance with the behavior of l/W 

as x or y goes to infinity (and to insure convergence of the integrals) 

we start the indices m and n at the value 3 and then systematically 
I 

increase the two-dimensional array of basis functions to get overall 

matrix sizes N = 1,4,9,16,etc. The results, shown in Table II under the 

heading "first try",converge very poorly. 

TABLE II 

Successive approximations to the integral 12 

N first try second try 

1 0.80843465 0.95552585 

4 0.91096467 0.99899305 

9 0.94608335 0.99998307 

16 0.96320503 0·99999976 

25 0.97320695 0·99999999 

36 0.98031977 

49 0.98144121 
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The reason for this poor result may be found in a careful study 

of the asymptotic behaviorof l/~ If we introduce polar variables 

x R cos 9 

y R sin 9 O~R< CD , 

then we see that as R goes to infinity the function l/W goes as 

R-3 while the expansion functions (23) go as -6 R . Actually one can 

sh9W that the expansion coefficients in this case must decay as 

> (26) 
N~ CD 

and this does explain the slow convergence seen in Table II. 

As a remedy we shall repeat the calculation using the following 

basis: 

where 

u nm 

n ~ 3 

- m f"I sJ.n \::>. 

or 

_ m-l 
sJ.n 9 cos 9 

m>O 

m>l 

All the required integrals are again easy; the results are shown in 

Table II under the heading "second try" and we see an extremely rapid 

convergence. This example emphasizes the importance of choosing 

appropriate basis functions, but exactly how to do this in each problem 

is something the analyst will have to discover for himself. 

-. 

v 
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1 

= J ds 
o J o 

1 

dt 

Example 3 

2 
st(l - s)/[l - t + ts(l - s)] . (28) 

This integral arises in calculating the fourth order self-energy term 

for spinless particles associated with the Feynman diagram having two 

overlapping bubbles when we set the external 4-momentum equal to zero 

and all the internal masses equal to one. 

First we apply the Gauss quadrature prescription2 for the 

product of the two one-dimensional integrals 

1 1 

~. sds f o 
tdt f(s,t) , 

and th~ results,shown under column "Gauss 1" in Table III, are seen 

! 
to converge very poorly. 
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TABLE III 

Successive approximations to the integral 13 

N Gauss 1 Gauss 2 Variational 

1 0!3594 0.67949 0·70880010 

4 0·5885 0.74665 0.77732984 

9 0.6795 0·77031 0.78107968 

16 0·7189 0·77735 0.78128913 

25 0·7389 0·77961 0·78130121 

36 0.7505 0.78045 0·78130228 

49 0·7579 0·78083 0.78130239 

64 0·7629 0·78101 
, 

The reason for this poor result lies in the fact that the denominator 

in (28) vanishes and makes the integrand singular at the two corners 

of the square: 

t = 1, s = 0 and t = 1, s = 1 

One standard remedy is to subtract off the singular part; and in the 

column "Gauss 2" of Table III we show the results of the same Gauss 

quadrature applied to the integral 13 after adding and subtracting .-

1 1 

~ ds J dt st(l - s)[ 
1 1 

s )2] 2 + 

0 
' (1 - t + s) (2 - t -

~(4.en 2 -1) 



,,' 
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These results are an improvement, but still not terribly good; to 

continue the process of subtracting off the singular parts seems a 

cumbersome program. 

Now we will try our~riational method for 1
3

. 

W 
2 

[1 ~ t + tS(l - s)] 

We take 

and ask, What is the most important feature that we want to build into 

the expansion functions? The answer is the singularities at the points 

(30) which are represented by the terms in (31) above. We can simplify 

by noting that the integrand is symmetric about s = 1/2, so we just 

integrate s from 0 to 1/2 and multiply the result by 2. We have 

now only the first singularity to worry about, and we choose for our 

basis 

u nm 
2n sn-l(l _ t)n-l 

(1 - t + s)2 
n,m;;;;: 1 

In order to do the integrals the follow·ing procedure is used: 

1 J .. dt 
o 

.1. 2s f ds ~ dt dt 

t/2 

~ 

(32 ) 

ds 

then introduce new variables t = 2sx in the first term and s = ty/2 

in the second. All the integrals then factor into products of one 

dimensional integrals which are straightforward to evaluate. (It must 

be admitted that rather a longwinded mess of algebra is involved here.) 
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The final results are shoWn in the last 'column of Table III and we see 

extremely good convergence: We gain a factor of ten in accuracy at 
f 

each step. (This calculation took six seconds on a fast computer.) 



• . ~.' ... 
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GENERALIZATIONS OF THE VARIATIONAL METHOD 

Our variational principle was for integrands of the special 

form l/W; now consider the integral 

where we would like to handle each Wi separately. We can construct 

the following variational e~ression 

J 

which depends on two sets of trial functions ¢(i) and XU). If we 

vary the X's we get equations for the ¢'s which are trivially solved 

to tell us that the exact solutions are 

1 

And conversely varying the ¢'s gives us equations for the X's which 

lead to the exact solutions 

1 

and then the stationary value of (35) is just the integral (34). If we 

now make linear expansions of the trial functions x(i) and ¢(i) 

(each can have a different set of basis functions) we come to a result 

in which the integral (34) is given by a generalization of (13) as follows: 
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-1 -1 -1 r 1\ Nk 1\-1 . N
k

_
l

' ..... 'N 
~ P 2 

(38) 

where M. is the matrix of W. between the functions x(i) and 
1. 1. 

¢(i), and N. is the matrix of overlap integrals between xU) and 
1. 

¢(i-l). Without going into more detail we will just report that we 

have used this technique on the integral 1
3

, Eq. (28), where we took 

[1 - t + tS(l - s)] 

the results were just as good as those shown for the original variational 

results in Table III, and the labor involved was somewhat less. 

Now let us just briefly mention an even greater generalization 

of this variational method. 3 start again by focusing on some simple 

expression W(x) but consider the general integral 

J F(W) 

for an arbitrary function F. Imagine that we take somE! complete 

(and for simplicity orthonormal) set of functions 

can have W(x) represented by its matrix elements 

W ron Ju W u m n 

u (x). n Then we 

(40) 

(41) 

If we assume that Uo = 1 (which can be arranged by appropriate choice 

of the volume element), then we see 

(42) 

',. 

.~ 

-, " 
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Jif L WOn WnO n 

Jw3 ~ W W W On nm mO nm 
(44) 

etc. 

where we have used the completeness property 

u (x) u (x') 
n n 

5(x - x') 

n 

Now we take the big step and say: To evaluate the integral (40) build 

the matrix (W) whose elements are given by (41), compute the matrix 

(F) F( (W)) (46) 

and take its 0-0 element for the answer. The approximation we make 

is to use a truncated (finite dimensional) matrix for (W), and the 

successive steps of approximation amount to increasing the size of the 

basis kept. In order tci evaluate (46) in general one can always 

transform (W) to diagonal form, put in the function F of its 

eigenvalues, and then transform back to the original representation. 

We have. not tried any examples of this general method, but it should 

be worth further study. 
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