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ABSTRACT 

, 
The Feynman-Dyson pertut'bation theory is applied to SchHinger's 

model of the monopole. The propac;ator .for photons between electric and 

magnetic charges j.s found to be 

n being the unit vector in the d:Lrection of the sing1J~ari ty line. Since 

the exact theory is independent of n, one might tr.I to obtain a manifestly 

covariant perturbation expansion l)y averaging over Etll directions of n. 

However, under such a procedure the Born term fails to reduce to the knOi-m 

nonrelativistic limit • 
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I. INTRODUCTION 
1 

Schwinger has constructed 'a field theory of magnetic monopoles 

and proved that it is Lorentz-invariant as a consequence of the charge 

quantization c'ondition eg/4rc = integer,. e being the electric charge 

and g the magnetic charge. But the problem of calculating the inter-

action between electric and magnetic charges has remained unsolved, since 

all the known approximation methods seem to break down. S-matrix 

techniques fail because the photon has zero mass, and a perturbation 

expansion is dubious in view of the large coupling constant. Furthermore, 

several authors
2

-5 have pointed out that tre .. interaction of charges with 

monopoles seems to violate Lorentz invariance, analyticity., and crossing 

symmetry. Since these authors demanded manifest Lorentz invariance of 

the,theory, while Schwinger permits the apparent asymmetry of the 

singularity line, one should reexamine their conclusions on the basis 

of Schwinger's formalism. In this paper we investigate to what extent 

the Feynman-Dyson perturbation method can be applied to Schwinger's 

monopole theory. 

After a brief summary of Schwinger's formalism'we calculate, in 

Section III., the propagator for photon exchange between electric and 

magnetic charges. We use the familiar 'method of ordinary quantum 

6', 
electrodynamics; that is, we choose a particular frame, analyze the 

transverse and the instantaneous (Coulomb) parts separately, and find 

that their sum becomes covariant if we. use current conservation. The 

resulting propagator is covariant, apart 

from a dependence on n, the unit vector in the direction of the 
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singularity line. Novl vre can show explicitly (in Section IIIc) why 

2 . 4 
Weinberg I sand Zwanz iger I s arg1l!l1.ents against the monopole do not hold 

in Schwip~er's theory. 

Now, we might expect to obtain a manifestly covariant perturbation 

expansion by averaging over all directions of the singularity line. 

However, . as ve see in Section V, such a procedure fails to reprcx:luce 

the correct nont'ela ti vistic limit. 5 The discrepancy comes from the 

azimuthal dependence of the amplitude. 

.. 
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II ~ SCHWINGER'S THEORY 

A. The Need for a Singularity Line 

We follow S-chwinger's theoryl because (i) it is a relativistically 

covariant field theory, (ii) it is a natural generalization of conventional 

quantum electrodynamics, and (iii) it maintains the complete symmetry 

between electricity and magnetism implied by Maxwell's equations 

d FIlV _ ·Il v - J , 

(2.1) 

where jll is the electric, *jll the magnetic current, both of which 

are, of course, conserved. Schwinger considered a model with spin 1/2 

magnetic charges, but it can be generalized to spin 0 and 1 particles. 7 

For the spin 1/2 model the Hamiltonian density is 

(2.2 ) 

with the fields 

.~ - JJT - :z ¢ and (2.3 ) 

the scalar potentials are 

¢(x) = Jd3Xf fJ(~_~f} jO(x f ) and *¢(x) = Jd3xf'lJ(~-;f;,tjO(x') 
(2.4) 
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where 

Cjj (x) 
'" 

1 = -
41(1~1 

, 

and the transverse vector potentials are defined by 

and 
'~ 

E = 
'" 

The spin 1/2 field for the electric charge is 'Ijr, for the magnetic 

charge it is X, and the electric and magnetic currents are 

I-l I-l *.I-l I-l j =e * i 'Ijr and J = g X i X respectively. The additional 

vector potentials 

, f 3 '* 0 ~g(x) =.' d x, ~(~_~1) j (x') and 

where 

, 117" A (1 ',ax - - xnxx ,; '" (J- 2 (J "', I I A , ,x + n·x 
'" '" 

1 ~ 
I~I - n.~) 

(2.6) 

( n = unit vector'in the direction of the singUlarity line) are needed 

to express the static interaction between a fixed monopole and a moving 

electric charge, and vice versa, as i·A and 
"" "'g 

We see that the 

interaction terms in Eq. (2.2) come from the free Hamiltonian via the 

familiar "minimal. SUbstitution" 

1f pl-l 'Ijr ..., -( hl e AI-l)'Ijr , 
T, 

'Ijr P - A=A +A , 
'" '" ' "'g 

, 
T X pl-l,X -+ X(pl-l _ gBI-l}X, B = B + B 

'" '" "'e 

.. 



-5-

The need for singularity line in the static vector potentials 

and B 
"'e 

is easy to see. If the potentials are to satisfy 

f f 

E 
. '1 x B and H 

. '1 x A -'" '" '" '" '" '" 

or 

ET '1¢ 
, 

BT r1* 
, 

AT . -'1 x '1 x B and --'Y_ .. -¢ ' . '1 x '1 )( A - - + 
'" '" '" '" '" "'e I"V 'f"V ,. .. '" '" '" "'g 

then we are faced with equations like 2 ¢ = '1 x B which cannot be 
'" ""e 

solvedexadly because after :i,ntegrati6nover-a closed surface the RHS 

would be zero while the LHS would yield the total charge inpide the 

surface. There are, however,solutions which are valid almost everywhere, 

that is they fail only on some line from the charge to infinity. 

Intuiti vely "one can think of the flux of field lines passing from the 

charge through the singularity line to infinity (or to another charge, 

which wouldccirrespond to an infinitely 'long and infini:tely thin dipole). 

This singuLarity line is the string that Dirac attached to his monopole; 

it destroys manifest rotational invariance of the formalism, but it is 

unobservable because the charge quantization condition restores the 

rotational invariance of the theory. 

In the following we use Schwinger's two-sided straight 

singularity line from -(l) to the particle t,o +00, and the 

corresponding singular function a(x) of Eq. (2.7). It satisfies 
'" '" 

-:''1 x a 
'" 

= -2 f) + .B , (~.8 ) 

where 



h = h.--.(x) = 
"'" ""n I"V 
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A n·x 
1 A '" 

- - n 
2 . Ixl 

'" 
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(2.9) 

and. is the tvo-dimensional D function in the plane orthogonal 

to . n. Now the exact relation between the fields and the potentials 

becomes 

(2.10 ) 

Schwinger has proved that his theory is Lorentz' invariant in spite of the 

singularity line provided that eg/41f. is quantized. The singularity 

line is necessary to formulate the theory and to carry out calculationsj 

the physically observ-able results, if calculated exactly, will be 

independent of the singularity line. 

B. Interactions 

NOIf let us examine the various terms in the Hamiltonian Eq. (2.2). 

It can be broken up into·· J! =}l + J! o I 

where 

is the free Hamiltonian, and 

.J! 1 Ct)2 1 Crf)2 - T 
= 2 + - e 1jr 1:~ 1jr I 2 

- T 
g XX·;§ X 

.-
- e 1jr X·A . "'g 1jr 

g X X.B X 
"'e 

(2.11) 

... 
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contains all the interactions (the and ffL.rr 
'" '" 

terms in the 

energy density have been neglected; they would drop out after integration 

over all space). 1 -1,2 1 ¢2 The - (~) = - (- 'i7 ) 
2 '" 2 '" 

term is the familiar static 

Coulomb energy of electric charges, and so is } (ffL)2 =} (~'i7*¢)2 for 

the monopoles~ These Coulomb terms cancel the noncovariant parts of the 

photon propagators (Aj..l(x) Av(Y)+ = (OlrCAj..l(x), Av{y)Jlo) between 

electric and (B (x) B (y) between magnetic charges. j..l v + 

The big problem is, of course, the interaction between charges 

and monopoles. To order eg there are two kinds of terms 

(i)' the exchange of transverse photons (Fig. la) 

* i· (A B) ·.i 
I<. '" '" + !c" 

(2.12 ) 

(11) the instantaneous interaction (F:ig .• lh) 

-e *' r' A 'if - g X I'·B 'X. • '" ",g . '" ",e 
(2.13 ) 

Now we have accounted for all the terms in ;WI' In the next section: we 

compute the terms (2.12) and (2.13) explicitly. Their sum gives us the 

propagator (A (x) B (y) for photon exchange .between electric and j..l v + 

magnetic charges (Fig. lc). While each of the interaction terms by 

itself is ugly and noncovariant, their sum, as a result of current 

conservation, turns out to be as simple and covariant as could be expected 

in Schwinger's theory, that is 

" tfB(k).= +j..lV . (2.14) 

in momentum sp;l.c'E~. This method is familiar from the quantization of 
'. 6 

ordinary electrodynamics. 
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3. THE COMPUTATION OF THE mOPAGATOR 

A. The Transverse Part 

To calculate (Am(X)Bn(y)+ (see Fig. la) we use Schwinger's 

8 '~ 
technique , first expressing the potentials in terms OL the fields and 

. , 

then writing the vacuum expectation values of field products in the most 

general form allowed by Lorentz invariance. Equation (2.10) can be 

written as 

2 X k(x) = A!(x) +J d3Xl B(~ - ~l) 21 )< A!(xl ) 

2 X (J d3xl Q(~' - ~l) X A!(xl )) , 

since Conforming With 

the gauge condition 9·A == 0 = 9·B this yields 
~ I"V "" '" 

~(X) (f a3xl !!(<\ - <\1»)( !J(X1)Y, 
and similarly (3.1) 

;§(x) =-(J d3xl B(~ - ~l) X ~(Xl)T 

We can forget about the selection of the transverse part for the moment 

and instead subtract the longitudinal part at the end of the whole 

calculation. With this proviso we can write 

h (x I - X I) E • 
S "'" ,"'1 nsr 

Choose a frame inwh:i.ch "" A In, ::: Z ; then and 

.. 
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x (H.(x,y,zl,t) E (X',y',Zl',t') • 
J r + 

, 
The integrals over dZl and, dZl are convolutions. Since we are really 

interested in.,.the Fourier transform of the propagator we can use the 

convolution theorem and conclude that 

F.T~ (A B) } -m n + 
1 2 = r. € 3' € 3 (2n) 
'+ m J. nr 

2 . 
·(F. T • ( € }) F • T. ( (H . E ) } • 

. J r + 
(3.3 ) 

To minimize the number of factors of 2n we have chosen the convention 

F(k) = F.T.(f} = 2~ ~ dx e
ikx 

f(x) and in four dimensions 

DAB T(k) = F.T. (AB '> } 
. +mn . m n'+ = ----.. . d x e (A (x) B(x") • I f 4 ike (x-x' ) 

(2nt m n + 

(This implies dropping the conventional (2n)-4 in the propagators.) The 

transform of '€(z) is 

= ~~I dz e froz e(z) = 
i P 
n ~ , 

where the P means principal values; after all, we are dealing with 

distributions. 

By Lorentz invariance the vacuum expectation value of the 

product of two fields must have the form 

. }4 -ike (X-X')[ (F (x)F (X!.» ,~.·k e , ..... " . . . 
JlV A.K + . •.• .' : .. 

o 

F (k) 
-d 2 .JlV, A.K . . , 

m . '2" 2 '. ' , 
. 'k ':'ni -I' i€ 
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with 

Here we need and E == F r or 

() ( k') (2) 2 "( 2) Fk.e, Or k == ~~g.er - .ekOgkr' A m -~.e 01:' m Am. 

Because of the photon pole at 
2 

m == 0 the spectral function A has the 

2 ' 2 2 
form A(m ) == AO oem ) + ~ (m). The propagator of perturbation theory 

is obtained when we keep only the one-photon contribution to the 

spectr1i1ll and set the charge renormalization constant (A )1/2 =:: 1, that o 
is we approximate A(m2 ) = o(m2 ) and m2A"(m2 ) =:: O. Another way of 

looking at it is this: up to now we have been working in the Heisenberg 

picture with the exact fields F 
IlV 

The Feynman-'Dyson perturbation 

expansion is carried out in the interaction picture. The approximation of 

keeping only the 2 m = 0 part of the spectrum is equivalent to replacing 

F by F' (or by the free fields F .,.' ~. 
Ilv H IlV I Ilv.;,lln 

Now the integration over am2 
in Eq. (3.5) is triVial and we 

obtain 

(H.(x)E (Xl) 
J r + 

and its transform 

== 

, J 4 -ike (x-xi) kg kk 
€J°kr ,d k e 2 

k+ i€ 

kO \: ' 
E;jkr k2 

+ i€, 

Finally we put (3.,7) and (3.4) into (3.3) 

' .. 

, j 
\0 



\., 

.. 

AB T( ) 
D+mn k 

Since we had chosen 

Therefore 

ABT 

= 

D (k) = 
+mn 

A A 

€ 
nr3 

-11-

2{i P 12 [ 
(21!) <;r ~ J . €jkr 

ko 

k
2 + i€ 

n = z , the k3 really means 
A 

k·n 
'" 

2 
k + i€ 

I­
€ fi 
mnl-

and 

UCRL-18485 

€ 3 means mn 

(3.8 ) 

Now we can face the gauge condition ~~~ = 0 = ~.~ as promised 

in the beginning. In momentum space this.requires 

kn DAB T(k). We subtract the longitudinal parts, maintaining the anti­
+mn 

symmetry in the indices m and n, and find 

·1 kO {';' . At .' Ailf~m 
= k2 .~ k. A~·€mn.t n~€rril- n ··· •. ··k2 -

+ ... n .. "'" '.' .' "'" . 

At this stage in ordinary quantum electrodynamics one generalizes such 

an expression to four-vector notation and finds that the noncovariant 

parts are canceled by the Coulomb term and by current conservation. As 

we shall see, the same things happens here. Current congervation 

11 . 11* 
k jll = 0 = k jll allows us to drop terms proportional to kll and 

and to write Eq. (3.9) as 

ABT 1 
D+

llv
(k)= 2 

k + i€ 

k , 
v 



.. ~ , 
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where E0123 = ,+1, n 

vector '1) = (1, 0) . 

A 

(O,n), and we have introduced the timelike unit 
'" 

'" 

B. The Instantaneous:Fart 

The instantaneous interaction (2.12) (Fig. lb), 

is due to the force between a static magnetic and a moving 131~ctr.ic 

charge, and vice versa. To first order in eg itscontributi'on to the 

S matrix between states Ip,s;q,t) and (fl = (p',S'jq',t'l 

,," J 4 4 = -i ~ d x d x' oCt - t') 
(2n:) ,,' : 

is 

x { -u(p', s' )r i u(p, s lei (p' -P ),x;;'Cq', t' )r a w(q, t lei (q '-q).x' 

+ w( q', t' )r i w(<j? t )ei(.q'-q)'x u(p', s' )r oU(p, s )ei(p' -P).x} 

X a.(x-x'), 
~'" '" 

, where we have inserted the explicit form of A and B from Eq. (2.6); 
"'g "'e 

u(p, s) 'and wC:fl, t) are the electric and magnetic spinors. This eqUation 

integrates :to 

u}~.(P -p') 
~"'''' 

(3.11) 

where the Fourier transform of a of Eq. (2.7) remains to be evaluated 
'" 

J
, 3 i~·~ 

~.(k)= 'dxe a.(x). 
~ '" ~ '" 

.. , 
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'" '" With the choice n = z , a(x) becomes 
'" '" 

, yz 
a l (~) = - '2 2 ' 

4n: Ixl (x + y ) 
'" 

xz 

and the-transforms are 

"'a (k) == 1 J 3 i~.~ yz 
1'" -'4r( dxe 2 2 Ix I (x + y ) 

'" 

1 -g- let) 

= 4; dk
z 
d~ , 

where 

e 
t . .1 , I 2 ,2 

x (x + y ) 
'" 

A 

The rotational in variance of the integrand about the z axis allows us 
, " 

to use coordinates in which 
, ", , 

k =O"ahd"k x y = ;S k' : 

I(k) 
'" 

, 

2 

L 
Q) 

izkz l OJ dICk} 2k iyk' 
'" x arctan ( ~ ) dk ak - k' dz e dy e 

z x 
y 

-00 
,.., 

8k i
OO 

L
OO 

x dz sin(zkz )" , dy sin(yk') arctan ( 
z ) \.,/ ]{T - . y 

. 0 ' 

Bateman9, p. 87, #8 does the y integral: 
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dk ak z x 

4n-k 
x 

== (k' )2 [ (, -Zk') dz sin(zkz)\l - e • 

Again we have to interpret the integrals as distributions, 

p 
= k' 

z 

and with Bateman, p. 72, #l,we get 

dk dk z x 
== 

4n- k 
x 

The result ~l (~) 

can be reexpressed in three-vector notation, 

. j Ak 
·€ •• k k n 

l..1 . ~. (k) 
l. '" 

== 

k x 

k k2 ' 
z '" 

== 

Inserting this into Eq. (3.11), we get the matrix element 

Leg 
. 2 
, (2n- ) 

4 
s(p' + q' - P - q) 

with k == p - p' == momentum transfer. To pass over to four-vector 

o 

./1. /I. ( ) notation we use the fact that k - 1') 1').k has no time component, and 

'Write Eq. (3~13) as 

v 



.( 

f. 
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Finally we leave off all the factors not belonging to the propagator and 

identify 

AB instant 
D .' ... . .. (k) = 

!.lv 

Note that it do.es not depend on kO' reflecting the fact that the inter­

action is instantaneous. 

C.The C.omplete Propagator 

The complete propagator is the sum of the transverse E~. (3.10) 

and the instantaneous E~s. (3.14) terms (see Fig. lC): 

ABT 
= D+!.lV (k) 

AB instant ( ) 
+ D k 

!.lv 

At first this sum looks rather bulky, 

i 

+ iE: 

1 1 
- . n.k k2 

'" 
but it boils down to something simple when we try various values of !.l and 

v: 

AB 
D+ij = 

1 
2 

k + i€ 



.. 
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is equal to '(k2 + ie) 
-1 [€ . nf.. kKjn.k] 

JlVf..K 
for Jl, v = 1, 2, 3 

DAB (k
2 -1 ' f.. Kj . and = + ie)[€O"f.. n k n.k] +OJ ,~. J K ' 

also ~grees with that form 

for Jl = 0, v = 1, 2 .• 3. Since DAB 
+Jlv 

is antisywaetric in Jl and v, 

we can conclude 

1 
= 

Actually we have proved' cen~lation of the noncovariantparts 

of the propagator only to first order in eg .' The extension to all 

orders follOlvs the method of ordinary quantum electrodynamic s. 
6 

,. 

( 6) ( 2 )-1 The pr op.3:gat or , 3.1 looks very reasonable. The 'k + ie 
" , 

factor represents the propagation of a massless pl::J.oton, while the 

polarization term f.. Kj e '\ n k n·k 
JlV,"K ' 

is the only second-rank tensor built 

out of the available four-vectors, that is nand k, which is of order 

(n)
O 

and contains a It should contain the latter 

in order for the theory to repr:oduce the nonrelativistic cross-product 

of three-vectors implied by the Lorentz. force law ~ == ::; X E .' 

weinberg2 calculated this propagator, using the most general 

representations of the Lorentz group, and found 

AB TI D ' 
+ v " , Jl Welnoerg 

, 
, j 

wher,e T) ~ (1, 0) in, the frame of quantization. This is hopelessly 
, ' '" 

noncovariant, i.e., there is no way of turning this into a covariant 

anSlver by using current conserv-ation or by adding some instantaneous 

interaction. This is because Weinberg insists on manifest Lorentz 

J 

t. 
).. 



\.1 

... 

-17- UCRL-18485 

invariance of the theory. In other words, a field theory of monopoles 

cannot possess manifest Lorentz invariance, a conclusion which has also 

been reached by other methods. 3 By cont~ast, with a singularity line we 

do find the appropriate cancellations and obtain a covariant answer when 

eg/4:rr = integer. 

With our propagator we can point out a loophole in another 

argument against the existence of monopoles, namely Zwanziger's claim
4 

that a magnetic charge would produce pathological singularities in the 

S matrix. When Zwanziger solves for the general form of a/charge-photon­

vertex he finds (his E~. 3) essentially the result implied by our 

propagator (3.16) if we identify the arbitrary four-vector a which he 
I-l 

had to introduce to solve his e~uations with Schwinger's singularity line 

n With a very special choice of a Lorentz frame and of a vector! a , 
I-l I-l 

zwanziger obtains a vertex which appears to be both independent of 

and Lorentz-invariant, but which has unacceptable singularities. 

a 
I-l 

The 

point is he implicitly assumed manifest Lorentz invariance for the vertex 

which really depends on a • This dependence on the singularity line has 
I-l 

to be kept in all vertices until the end of the whole calculation; it will 

disappea~ only in the exact result, that is, after summing over all 

possible diagrams. 

Incidentally we might wonder if our method reproduces the usual . 

photon propagator ( 
2 . -1 

k + iE) g 
I-lv 

when we consider photon exchange between 

electric charges alone. It is a straightforward matter to verify that this 

is indeed the case. 
- . ~-



IV. AVERAGING OVER SINGULARITY LINES 

Let us assume that we can calculate an observable quantity F 

via a Feynman-Pyson perturbation expansion, using the propagator (3.16). 

The complete sum 

CD 

F L: (4.1 ) 

1,m=O 

is covariant, while each perturbation term F(l,m)(n) depends on the 

singularity line. Since a meaningful approximation must not vary with 

n , we might try to remove the n-dependence of the individual perturbation 

terms by averaging over 
CX) 

operations 2 = and 
1,m=O 

covariant perturbation 

all directions of n. If we can interchange the 

~ d4
n 5(n

2
+l), then we obtain a manifestly 

expansion 
co 

F (F) - L (4.2 ) 

1,m=O 

The final answer must not depend on the Lorentz frame in which the 

quantization has been carried out, Le., the frame where n is pure 

spacelike. Therefore we must allow n to have a time component, and 

the averaging has to cover all n subject to n
2 

= -1. The noncompactness 

of the Lorentz group does 

integral J d4
n 5(n

2
+l) 

not present an obstance if. we restrict the 

to values of Inl < N and let N ~ 00 at the 
'" 

end. A suitable formula is 

(f) . . lim 
N .:..,: CX) 

in the prOpEl.gntors. 

1 
--2 
2rcN f (d

3
n/no)9(N - 1£ I) fen) I 2 1/2 

. nO=(Q -1) 

-j 

, 
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V. THE CLASSICAL LIMIT 

. Let us apply our propagator to the elastic scattering to order 

eg of electric and magnetic charges (Fig. lc) and take the limit of sma11 

velocities and momentum transfers. In this limit Goldhaber1s calculation5 

should be exact, and if perturbation theory is meaningful, its lowest-

order term should reproduce the classical result. 

Since Goldhaber considered spin zero particles, we shall do the 

same, assuming that the propagator (3.16) applies in this case as well. 

The S matrix for (fl = (pl,ql I and Ii) = Ip,q) to lowest order is 

(eg) 
Sfi 

with momentum transfer k = P - p'. In the center-of-mass frame it becomes 

.To simplify things take 2 
P -+ 0 
'" 

(eg) i e g 54(P - P.) Sfi -+ 

(2:n: )2 f ~ 

,Finally choose a frame where the 

and the monopole mass m -+ CD 
g 

1 n' (k X "'. '" ~) 

PO 2 
k (.B.~) 

A 

charge is incident along the z 

/p I~, and where the scattering takes place in the yz plane 
'" 

k 
'" 

IX! Ie y with e« 1. and 

axis 
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Since Po -

(eg) 
Sfi 

v 

n·(k X p) 
'" '" '" 

2 
k (n·k) 
'" '" '" 

with velocity v) we obtain in this limit 

On the other hand, the S matrix for Coulomb scattering of 

electric charges under the same conditions is 

, (ee) 
Sfi = 

1 
(p ~ p')V (q + q'J v 

If we forget about the factor' (n In ), then the eg cross section is x y , 

equal to the Coulomb cross section for two electric charges e and 

e' = g v. Thus far oUr result agrees with Goldhaber's: 

(eg) I 
Sfi GOldhabe~ = 

The only discrepancy lies in the factor 

exp[2i(eg/4rr)¢,J 

(5.4) 

(n /n) and the phase factor 
x y 

" 

... 

J 
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Now let us test whether our averaging prescription (4.2) can 

be applied to the S matrix. When we average the Born amplitude (5.2) 

we replace n In by x y (n In )} which is easily found to be x y 

1 12

:n: d¢ tan ¢ ::= o} 2:n: . 
o 

.-

obviously not the required answer.- Tf,-bfi the other hand we average the 

cross section corresponding to (5.2) we find 

2 . 
(n In) .~ 

x y 

l:.. J2:n: 
2:n: 

o 
m , 

a divergent result, alas! There does not seem to be any good reason 

for setting h In ~ 1 as the classical answer would require. 
x y 
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VI. CONCLUSIONS 

We should not be too surprised that our averaging prescription 

fails to yield the correct nonrelativistic limit. First of all, an 

expansion in terms of e and g may be doomed, since these parameters 

are not independent and since g is excessively large. Or the 

interchange of summation and integration in E~. (4.2) may be unjustified. 

The change from one sirigularity line rt to another one n' is 

a gauge transformation, I which mul tipliesthe fields by a phase factor of 

the form tn ~ *n' = exp[iega(n',n)J*n' thus scrambling all orders 

in ego This is reflected in the n-dependence of the propagator (3.16). 

The Born term~ for instance, can take any value between -00 and +00, 

while the higher-order terms adjust themselves in such a way as to render 

the exact cross section independent of n. All perturbation terms may 

be e~ually important, and there is hardly any hope that a finite subset 

will give a good approximation (an infinite subset like the ladder 

series in the Bethe-Salpeter e~uation might conceivably come close enough). 

Furthermore, if we average the S matrix we have to assume that 

all azimuthal direc~ions are e~uivalen~. Let us think about this in the 

U:,¢ 
context of the phase factor e of helicity flip amplitudes, 6. = A.i '~ A.f 

being the difference between in'i tial and final helici ties. Asnonrelati v­

istic calCUlations5,lO have shown, the S matrix for elastic charge monopole 

scattering has an azimuthal dependence ~exp[2i(eg/4~)¢] corresponding 

toa helicity reversal fromA.i = +(eg/4~) tOA.f = -(eg/4~) (due to 

the angular momentum 

s 
'" 

eg 
4r( 

x - X 
,"'g "'e 

Ix - x I 
""g "'e 

, 
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of the electromagnetic field). Obviously one must not average the 

helicity flip phase factors, for otherwise there would be no helicity 

flips in this world: 

1
21! 

d¢ 
o 

u,,¢ 
e = O. 

Therefore one should rather try to average the cross sections. 

But, as we have seen in Section VJ nonintegrable double poles spoil 

this approach, unless cancellations occur between different orders. 
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FIGURE LEGENDS 

Fig. 1. 
ABT 

D (k). 
+/-Lv 

(a) The exchange of transverse photons, 

AB instant 
(b) The instantaneous interaction, D (k). 

/-Lv 

(c) The complete photon propagator between electric and magnetic 

charges, 
AB 

D (k). 
+/-Lv 
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