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ABSTRACT

The Feynman-Dyson perturbation theéry is applied to Schwinger’s:

model of the monopole. The propasator for photons between electric and

magnetic charges is found to be Dﬁf(k) = (k? +-i€)-l(€uvkk ™ x*Y/(n-x),

n  being the unit vector in the direction of the singularity line. Since
the exact theory is independent o7 n, one might try to obtain a manifestly
covariant pertuwrbation expansion by averaging over all directions of n.

However, under such a procedure the Born term fails to reduce to the known

nonrelativistic limit.
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I. INTRODUCTION

e 1
- Schwinger has constructed a field theory of magnetic monopoles

and proved that it is Lorentz-invariant as a consequence of the charge

quéntization condition eg/hﬂ = integer, e being the eleétric charge

and g the magnetic charge. But the problem of calculating the inter-

action between electric and magnetic charges has remained unsolved, since
all the known dpproximation methods seem to break down. S-matrix |
teéhniques fail because the photon has tero mass, and a perturbation
éxtansionFis dubious in viewvof the large coupling constant. Furthermore,

2-5

seteral authors have pointed out that the interaction of charges with
monopoles seems to violate Lorentz invariénce, analyticity, and crossing
symmetry. Since these authors demanded manifest”LorentZ invariance of
the .theory, while Schwinger permits the apparent asymmetry of the
singﬁiarity line, one shouwld reexamine their conclusions on the basis
of Schwinger's formalism. In this paper we investigate to what extent
the Feynman-Dyéon perturbation method can be applied to Schwinger's
monopole theory.

After a brief summary of Schwinger's formalism e calculate, in

Section‘III, the propagator for photon exchange between electric and :

maghet&g charges. We use the familisr method of ordinary quantum |

electrodynamics; +that is, we choose a particular frame, analyze the

transverse and the instantaneous (Coulomb) parts sebarateiy} and find -
that their sum becomes covariant if we. use current conservation. The

2 A=l
resulting propagator (k  + i€) [e o™ k*/(n-kx)] is covariant; apart

HYAK

from a dependence on n, the unit vector in the direction of the
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singularity line. Novw we.can show explicitly (in Section IIIc) why
vWeinberg'sg and Zwanziger'sh arguments against the monopole do not héld
in Schwinger's theory. |

Now, we might expect to oﬁtain a manifestly covariant pefturbaﬁion
' expénsion by averaging over all directions of the singularity'line.
waever;‘as we see in Section V, such a prrocedure fails to reproduce

5.

.. the correct nonrelativistic limit.”  The discrepancy comes from the

azimuthal dependence of the amplitude..
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II. SCHWINGER'S THEORY

‘ . A A. The Need for a Singularity Line
| We follow SCBWinger'é theoryl beéause (i) it is a relativistically |
covariant field theory, (ii) it is a natural generalization of conventional
quantum electrodynamics, and (iii) it maintains the completeisymmetry

between electricity and magnetism implied by Maxwell's equations

v’ .M ¥ v *.
BVF“ = J“,_ 3, A L
(2.1)
* v ‘
v L
¥ 5

*0

H J“> the magnetic current, both of which

where J is the electric,
are, of course, conserved. Schwinger considered a model with spin 1/2
magnetic charges, but it can be generalized to spin O and 1 particles.

For the spin 1/2 model the Hhmiltonidnfdensity is

}1 = -2]; (E:E + E‘Ie) + WZO(—i’Y - eéT r- e.’ég)llf -+ me\lf\lf

+X g (-iV - gB" - g8 X +m XX ,

with the‘fields

' ik
E = ET -y¢ and g = ,ET-,Y g ; _ (2.3)

< : the scalar potentials are

B - [ e By P mma o) = [Bxr B )
| | (2.4)
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where

D) = ——
-

and the transverse vector potentials are aefined by

Fo=yxat em F -y x A
| (2.5)
The s?in i/2 field for the electric.charge is ¥, for the magnetic
charge it is X , and the electric,and magnetie currents are |
=e W 7 ¢ ' *j“_= g X f“ X respectively.  The additional

vector potentlals

1l

(X) f x' a(x-x") 3 (x') and B, (x) deX",%(;yag":) =)

| (2.6)

Wheré  . : o .
- 1\ 1 ! B o

calx) = 5 Praxg (——m - —F— (2.7)
: - T\ gl + g x| - n-x |

( % = unit vector in the direction of the singularity line) are needed

to express the static interaction between a fixed monopole and a moving

c *
- electric charge, and vice versa, as Q‘ﬁg and j-ge. We see that the

interaction terms in Eq. (2.2) ceme'from,the free Hamiltonian via the

familiar "minimsl substitution"

&=
o
o
+
e

TV TP - e a)y, A,
. . ) 3 .
Xt x o X0 - e )X, B=EF +B, -

<
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The need for singularity line in the static vector potentials

Ag and Ee is easy to see. TIf the potentials are to satisfy

”.-

. ! v :
P and il XA
or )
t % t
E-yh 2 -gxp-yxp e F-36° yxaeyxa
then we are faced with equations like y¢ = V x 'Be which cannot be

solved-exactly because after integration over a closed surface the RHS

would be zero while the LES would yield the total charge inside the

surface, There are, however, solutions which are valid almosf everywhere,
thatkis they fail only on somé line from the charge to infinity.
Intuitively‘bne can think of the flux of field lines passing from the
charge through the singularity line to infinit& (or to another charge,
which would correspond to an infinitely»lohg and infiniteiy thin dipole).
This singularity line is the string that Dirac attached to his monopole;
it destroys manifest rotatiénal invariance of the formalism, but it is
unobservable because the charge quantization condition restores the
rotational invariance of the theory.

" In the following we use Schwinger's two-sided straight
singularity line from - to the particle tp +00, and the

corresponding singular function ga(x) of Eg. (2.7). It satisfies - |

Yxg = -YD+p, (2.8)

. where
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. 1 A ~ - : )
h = hA(X) = - =N —— SA(X) (2‘9)
~ . 2 n -~ ‘
and 6ﬁ(§) is the two-dimensional 'S function in tﬁe plane orthogonal

to i . Now the exact relation between the fields and the potentials

becomes

BG) - - xEG) - [ @ pts -5 060)

(2.10)

H(x) = ¥xA() - | fd3'x' nGx - x') FRCDE

" Bchwinger haélﬁroved.that his théory is Lorenti invariaht in-épite of the
singularity line provided that eg/hﬁ. is QuantiZea. The singularity
lihe is necessary to formulate the theory and-to carry out calculétions;
:_tﬁe pﬁysicaiiy.dbsérvable results,vif calpulated exaéﬁl&, wili.be

independent of the singularity line. .

B. Interaétions
Now let us examine the,jarious terms. in the Hémiltonian.Eq; (2.2).
It can be broken up into~ H = Ho'*l&

. Where

o

05 E)

£

Mo

1T = ol ooy
+5 (E) + w(-z-y +m )V +X (-2°V + rgg)x
is the free Hamiltonian,‘and

-gX 2B X -gX B % (2.11)
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contains all the interactions (the EFZET and EL-E: terms in the
eﬁergy density have been neglected; they would drop out after integration
over all space). The %-(EL)2.= % (;E’ﬁ)e term is the familiar static
Coulomb energy of electric charges, and so is %-(HL)2 = % (-V'*¢)2 for
the monopolesﬁ These Coulomb terms cancel the noncovariant parts of thev
photon propagators ‘(Au(x) Av(y))+ = (O’f[Au(X), Av(y)JIO) between
elgctric'and <BM(X) Bv(y))% between magnetic charges.

The big problem is, of course, the interaction between charges
and monopoles. To order eg there are two kinds of terms

(1) the exchange of transverse photons (Fig. la)
ACAB), " 3, , (2.12)
(ii) the instantaneous interaction (Fig. 1b)

e VA v - g¥X 7B % . (2.13)

Now we have accounted for all the terms in :HI'

compute the térms (2.12) and (2.13) explicitly. Their sum gives us the

In the next section we

propagator .(Au(x) Bv(y))+ for photon exchange between electric and
magnetic charges (Fig. lc)."While each of the interaction terms by
itself is ugly and noncovariant, their sum, as a result of current
consefvation, tufns out to be as simpie and. covariant aé could be‘expected

in Schwinger's theory, that is
) ALK

. ‘ € k : :
P k) = / e T F C(2.14)
Hwv K+ 4 Dok

in momentum spacée. - This method is familiar from the quantizétidn of’

ordinary’electrodynamics.6
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3. THE COMPUTATION OF THE PROPAGATOR

A. The Transverse Part

To calculate (Am(x)Bn(y))+ (see Fig. la) we use Schwinger's
teéhniqueB, first expressing the potentials in terms of thé fields and -
then wri@ing the vacuﬁm expectation values.bf field products in the’most
general form allowed by Lorentz invariance. Equétion (2.10) can be

written as
' Vx Alx) = E(x)+ fd3x1 h(x - 351) 31 x '.I;I(xl)
3y

. . .0 | ) | o
since E& g(gl) = J (Xl) and V-h(x ~“51) = -§(§.- 51)' Conforming Wi#h

. thé gauge condition V-4 = 0 = V.B this yields

([ nts - ) x )

'_(]aBXl (s - 51') x r@(xl}T .- .

We can forget about the selection of the transverse part for theimoment

Alx)

(3.1)

and similarly -

B(x)

and instead subtract the longitudinal part at the end of the whole

calculation. With this proviso we can write

gm0, = - [ e P g e - ) (G ),
n(x' - xi nsr

 Choose a frame in which & = 2 ; then hix) = - % 5(x)8(y)e(z)z and

.
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ENONCO N SN LR 2)) <(z' - 2))

X (HJ(X)Y)Zlyt) Er-(x";yt:lzj'_:t'))_{_ . (302)

The intégrals over dzl and 'dzi are convolutions. Since we are really
interested in the Fourier transform of the propagator we can use the

convolution theorem and conclude that

{(Am Bn)+} = %Femia 3 (En) (FT[e}) FT((HE) }( )
3.3)

To minimize the number of factors of 2x we have chosen the convention

F(k) = F.T.{f} = 5% erx LHx f(x) and in four dimensions

o2 ) —pr((a_B) ) - ?2_175 e e (et () B ("),
. T

" (This implies dropping the conventional (211:)-1L in the propagators.) ‘The

transform of -€(z) is

Al ik z .
F.r.(e) = i e 0 e(z) = = & (B

where the P means.principal values; after all, we are dealing with
distributions.
By Lorentz invariance the vacuum expectation valueé of the

product of two fields must have the form

| R (k)
] %k.eiikj(¥f¥ﬁ)- ‘ ‘dm?, 5 pv,;n — (3.5)
' B RS S R R

(8, (OR, (),
0



-10-" : . UCRL-18485
with

| ; R YAV - R ——
“y, (k) (kukgiR - kvkjguK + kaKguX#’Mkangh)Af?"zmmn7w_..b

- 2 w2y
* (gu?\gwq N un)m Al (m ) - pvm n” A" (w”)
Here w h d H. = £‘e F and E =F '
ere we neet fy = 5 Sjke “ke i
"
Py, o) - %%%zr; Kofy) A - S or Pl . (5.6)

Because of the photon pole at m2 = Ov-the spectral function A has the
form A(m?) = A, S(mg) + Al(m?). The .propagator of perturbation theory

is obtained when we keep only the one-photon contribution to. the

\1/2

spectrum and set the charge renormalizatlon constant (A ) =1, that

is we approximate A(m ) = B(m ) and m A"(m ) = 0. Another way of
lookiﬁg at it is this: up to now we havé been working in the Heisenberg
picture With the exact fields FQ& =‘Fuv H' The FeynmanJDyson pérturbation
expansion is carried out in the interaction;picture. The approximation of

keeping only the m2 = O part of the spectrum is equivalent to replacing

F_ . by ¥

W H (or vy ‘the free fields F R

pv T pviin

Now the 1ntegrat10n over’ dm 1n Ea. (5 5) is tr1v1al and we

obtain

.u ;ikf(X?Xi> kQ kk

(H,(x)E (x")), = €. d'k e
J r + Jkr.y k2'+_ie
{
and its transform
L - o K. ,
T. {HE) ) = €,  —me——m ., (3.7)
Jriet o Uk a2 e

Finally we put.(BMY) and'(B.h) into (3.3)
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, : . 2
AB T 1 el PAl ks
D+mn (k) = I m3Jj ean (&) 7 _~’ ejkr ;2
. 1 5) KT+ de
m3 ks R 4 e
Since we had chosen n-=12 , the k5 really means 5mﬁ and e
€ . Therefore
mé
£
AB T k - € zﬁ* o .
D, (k) = - 52 el .8
k™ + ie ken B

Now we can face thé gauge’conditioh‘ V-A = 0=V-B as promised
in the beginning. In momentum space this.requires K" DﬁinT(k) =0 =
K DﬁiﬁT(k) . We subtract the longitudinal parts, maintaining the anti-

symmetry in the indices m and ' n, and find

ABT, . o N TN
D on x) = CCung B Cras BT 7 Cpmg B 2 :
K |
(3.9)

At tﬁis stage in ordinary quantumvelectrodynamicsvqne generélizes such
van expression to four-vector notation andﬂf;nds that the noncovariant
parts-are'cgnéelédiby'fhé”Coﬁioﬁﬁ.térm andvby current conservation. As
we shall see, the same things happens here. Current congervation

"
and to write Eq. (3.9) as

. _ % ‘ o A
k“j =0 =x" ju allows us to drop terms proportional to ku and kv s

| o R . ¥ (ke
S = G SO N Sl N
H | K+ e n HVAK , OVAK | KT - (ken)
\ £, (ken)
- ecpkn n

K2 -'(k.q)2 _ (3.10)
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B. The Instantaneous Part |

.
‘The instantaneous interaction (2.12) (Fig. 1b),. -Q-ég-~ J°B

v o~e 7

is due to the force between a static magnetic and a moving electric
chargé, and vice versa. To first order in eg its contribution to- the

S matrix between states 1) = |p,s;q,t) and (f| = (p',s’;é',t' is

-i(r] fdux[-j?A - *j-B.]li) = -i -——e-g%-fdhx dl“x'.ts(t - t')
ve e (2n)” - ’

X { (0,5 )y ulm o)t (BT BIE Gig by ()t @)

: i Catma)ox o ot Yo
+-w( ql"ty-)yi W(q"t)el(.q CJ,) X a(p', s )Z'Ou(p’s)el(p D) X
Xai(5 - 5') ?

“where we have inserted the explicit form of ég ‘and ge from Eg. (2.6);
u(p,s) and w(g,t) are the electric and magnetic SPinors. mhis‘equafion

integrates ﬁoi

T e

~

b 1 Yoo = ' o ~og. 1
5(pt +al - p-a){Fy vy ST 7wy ura(p - p')
' (3.11)

where the Fourier transform of'.%_ of Eq. (2.7) remains to be evaluated

1

. ik
a, (k) = fdxe ai(;s) .
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' ~ A .
With the choice n =2z, a(x) becomes

L y= 5 - a(%)= XZ , a(x) =0,
bt I.}S'l(xe + YE) 2. b L}\g[(xg + yg) 3 %)

a,(x) =

and the: transforms are

ikex | 1 F i‘(g)

1 3 ~ ~ yZ
a, (k_) = - fd X e = e ———
1 Lt 5 2 L ’
!%’(X +y) akz aky .
. | ¥ 1) -
a (k) = a.. = 0
2 Ao EE 2 J
., ok, Ok, b
. ‘Where . v »
| K-x
) = [ —
b e )
- The rotational invariance of the integrand about the 2z axis allows us
to use coordinates in which k = 0 and -k = (k° + Kk 2)1/2 = k'
) _ _ x . ¥y % ¥y
ks (. ik'y e o
k) = faze fdye f B2 2 . od/E
| | " +y )& +y +27)
35T (1) ok @© izk 0 iyk!
SRR — : dz e 2 dy e arctan (2 )
%, ok iy - Y y
X -0 : - QD . :
o
\ = __kif. dz sin(ﬁzkz) ; dy sin(yk') arctan ( 52—[ ) .
: 0

40

Bateman9,'p. 87, #8 does the .y integral:
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FI(5) Mk,
Sk, Sk T 2

~zk!
dz sin(zkz)<i -e? ) .

Agaih we have to interpret the integrals as distributions,
0o
. P
dz s1n(zkz) =
0 Z

and with Bateman, p. 72,‘#l;jwe get

I(k) Lot kX, (—P_ B 1%) - Dot ke
3k dk (x')* K, ;= 7 K K
Z X ) ~ 7 ~
The result a (%) = L, a (k) = - — a. (k) = o
1 X k2 2 X k2 3
z ~ 7, ~
can be reexpfessed in three-vector notation,
~ e ¥ -
ai(;g) = e —— , (3.12)

(Bk) &

Inserting this into Eq. (3.11), we get the matrix eiement

J 4k
ie g K
& (P +q' -p-aq) ——1——-—5—— (=% 7V a7, u+ w Yo ¥ ) 75 u)
() Bx) K
(3.13)
“with k=p - p' = momentum transfer. To ﬁass over to.fourfvector’

notation we use the fact that ¥ - nx(nhk) has no time component, and

write Eq. (3.13) as



A;/

FAy

-15- - UCRL-18L85

[kx - ﬁ)‘(n-k)]nR ‘_

ieg ! L . ) épvxn TR
_"‘—“_2'5(P +g' -Dp-aq) %) S uy uwy w.
(2n) (nex)[K™ - (nek) 1

Finally we leave off all the factors not belonging to the propagator and

identify
AB instant € W nx tkk ; ﬂK(ﬂ;k)]
D (k) = -k 5 % . (3.14)
H (n-k)[%x" - (n.%)7] :

Note that it does not depend on 'kO , reflecting the fact that the inter-

-action is instantaneous.

C. The Complete Propagator

" The complete propagator is the sum of the transverse Eq. (3.10)

and the instantaneous Egqs. (3.14) terms (see Fig. lc):

AB AB T AB instant

D+uv +uv [Sh%

- At first this sum looks rather bulky,

, . N Y- R o
UV K° 4+ ie nek | HVAk gVNK k2 BN VN k2 ’

11 Aok A K
nk 2 e © ko- e &0 )

but if boils down to something simple when we try various vélues of u and

v _
DAB - 1 1{0 € | hh
+1ij — .2 nek i) Vo)

k™ + ie

(k) = D, (k) + D (x) . (3.15)
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is equal to ’(k? + ie)'l M x*/n-k] for wv =1, 2, 3
A , A HVAK :

and | DAB. = ;(k? + ie)-l €. .. n kK/n k] aleobagrees with that form
-0 : OjAk
for"p'= 0, v=1, 2, 3. Since Dﬁiv is antlsymmetrlc in p and v,

we can conclude

nk ke

AB 1 euVXK ’ : '
D+uv(k) = - - , (;.16)

X~ + ie n-k

“Actually we have proVed'cnﬁxilation of tﬁe noneovariaﬁt'tafts
‘of the propagator oﬁly to first order in eg .. The extension to 211
. orders follows the method of ordlnary quantum electrodynamlcs
The prop— gator " (3 16) lools very. reaboneble The (k + 1e)

factor represents the propagatlon of a massless photon, whlle the
A

polarlzatlon term € n kK/nyk is the only second-rank tensor built

MVAK ‘
out'ofkthe available four-vectors, that is .n' and k, which is of order
'(k)o and (n)o and contains a 'ethn . It should contain the latter
in order for the theory to reproduce the nonrelat1v1ctlc cross-product
of three-vectors implied by the Lorentz force law E x zl.i
Weinberge‘calculated thls propagator, using the most-éeneral

representations of the Lorentz group, and found

DA_B T - 1 'k.“r] e 1]}" Ko
. -= — ) ’ . ' k s
Y lyeinbere k2 +ie ¥ - (k-n)2 BV :

;where = (l, Q) 1in the frame of quaﬁtizatioh.l This is hopelessly
noncovariant, i.e., there is no way of turnlng this into a covariant
© . answer by using current conservation or by adding some instantaneous

interaction. This is because Weinberg insists- on manifest Lorentz

)
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inﬁariance_of the theory. In other words, a field theory of monbpoles :

cannot possess manifest Lorentz invarianée, a conclusion whic@ has also
been reached by other mefhbds.5 By contrast, with a singularity line»ﬁe
db find the appropriate cancellstions and obtain a covariant ahswer Wﬁen
eg/4n = integer.

With 6ur'propagétor we can péint out a.loophéle-in‘another
argument against the existence of monopoles, namely Zwanziger's claim
that a magnetic charge would produce pathological singularities in the
S matrix. When Zﬁanziger solves fér the general form of aJéhgrge-photon-v
vertex he finds (his Eq. 5) essentially the result impiigd by Sur
propagator_(3.16) if we identify the arbitrary_four-vector au-ﬁwhich he’
had to introduce to solve his equations with Schwinger's singulérity line
n“ . With a.vefy special choice of a’Lorentz frame and of avvégtor’ a;:,
Zwanziger ob?ains a vertex which appears to be both independentvof au
and Lorentz~-invariant, but whiéh has unécceptable singularities. The
point is he implicitly assumed manifest Loreﬂtz invariaﬁce for the vertex
which readlly depends on ag . This dependence on the siﬁgularity line has

to be kept in ail vertices until the end of theé whole calculation; it will

Vdisappear_only_in the exapt result, that is, after summing over all

possible diagrams.

Incidentall§,we might wondér'if-our.metﬁod reprOducés the usual .
photbn propagator (k?'+ ié)-l g“yv when we cbnsider photdn exéhange between
electric:charges alone. It isva straighﬁforward matter to verify that this

is indeed the case.
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IV. AVERAGING OVER SINGULARITY LINES
Let us assume that we can calculate an observable qpantlty F
via a Feynman-Dyson perturbatlon expansion, using the propagator (3. 16)

The complete sum

r- Y RILICR) P ()
' l,m—O. |
is covariant, while each perﬁurbatlon term F(l’m)(n) depends on the
singularity l;ne. Since a mean1ngful_approx1mat10n must not vary with
n , we might try to remove the n-dependence of the individual pefturbation
terms by averaging over all direetions of n. if we can interchange the
operations .jfo:; and dehn 6(n2+l), then we obtain a manifestly
covariant pei%ﬁggation expansion v |
@

Poe(E) - }___ e S ()
: 1,@:0 : . R
The finéi answer must not depend on the Lerentz:fréme in which the
quantizationrhas been earried out, i,e;, the frame where n is pure
spacelike. Therefore we must allow n to-have a time component, and
the averaging has to cover all n subject to.‘ng = =1. The noncompactness
of the Lorentz group does not present an obstance if we restriet the:
integral fdhn 8(n2+1) to values of lgl <N and let N~ oo at the

end. :A'SUitable formila is

(£) = 1i 1 d3n n.) o1 -. n n : L.
Ni:moo .- (@’n/ny) 6@ - [n]) £(n) 1/2

ho= (,1;12 -1 )

(k.3)

The principal value prescribtion applies to the poles at n<k = 0

‘in the propagators.
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V. THE CLASSICAT, LIMIT

‘Let us apply our propagator to the elastic scattering to A;der
eg of electric and magnetic charges (Fig. lc) and take the limit of small
velocities and momentum transfefs. Tn this limit Goldhaber’s calcu}‘ation5
should be exaét, andvif rerturbation theory is meaningful, its lowest-
order term should reproduce  the classical result. |

:Since Goldhaber conéidered spin zero particles, we shall do the
same, éséuming that the propagatdr (5.16) applies in this case as well.

The § matrix for (f| = {p',q']| and [i) = |p,q) to lowest order is

A oK

(eé) ie L v 1 € n" k :

g . ; . L TRVAK ; 1%
S . = . 6 (p' + q-' - p - q) p_’_p') — e (q + q-')
_f; (En)e \ ‘ _ Hﬁgaa ( RN ' e‘

5.1)

with momentum transfer k = p - p'. 1In the center-of-mass frame it becomes

(&) ieg (o +a) m s x B)

= =—= 3% (P, - P,) - —_
fi  (2x) f 17 Py 9 2 ,

To simplify things take p2 -0 | and'the monopole mass mg -> ®

| 1 Q(r%X )

S(eg) *v ieg 1
Po ¥ (gk)

t T e

8 (Pf‘- Pi)

’,Finally choose a frame where the charge is incident along the 2 axis

lglg, and where>the-scattering takes pléce in the yz plahe'

s
If

<2
i

lele with '@ << 1. Then p x k= ]"13[2 6% and
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vExX R 2
2 2 n
k(nk lple= "y
Since Py = l%i- with velocity v, we obtain in this limit

(eg) -ie v 1. \Wi 4
s.. = [2=e - Y X is(p.-p). (5.2)
fi ((27()2 ) 52’292) \ ny ( iy i |

\,

On the other hand, the S matrix for Coulomb scattering of

electric charges under the same conditions is

. : Loty TR
S(ee) _ - e? Sh(P op 1 (p + P )" (a + q‘)v
e 2 Ny R :
> [ 2= F—\s'@, - p) . 53)

x| \Iol” &)

If we forget about the factor (nx/ny); then the eg cross section is
equal to the Coulomb cross section for two electric charges e 'and

e' = g v. Thus far our result agrees with Goldhaber's:

S(eg) _ : -iegvw 1
1 lgolanaver ex) |\ IplF &

6u(Pf_f Pi)éxp_[Qi =g1.
6.4

The only discrepancy lies in the factor (nx/hy) and the phase faCtor
expl2i(eg/Un)g] . .
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‘Now let us test whether our averaging prescription. (4.2) can
be applied to the S matrix. When we average the Born amplitude (5.2)
we replace nx/h& by (nx/hy), which is easily found to be.
| 2% |
-

5= iftan g = 0O,

0
obviously not the required answer.““If;“bﬁ'%Eé70£Hér'hand we average the

cross section corresponding to (5.2) we find
2n

2 v 2 1 2
(n/n ) = ((0/n)) - i e’ f = @,
v “0
a divergent result, alas! There does not seem to be any good reason

for setting n#/hy - 1 aé the classical answer would require.
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ﬁ. CONCLUSIONS

We should not be too surprised that our averaging prescription
fails to yield the correct nonrelativistic limit. First of all, an
expansion in terms of e and g may be doomed, since these parameters
are not independent and since g isvexcessively large. Or the
interchange of summation and integration in Eq. (4.2) méy,be'unjustified.

" The change from one Singularitybiine n to another one n' is
a gauge transformation,l which multiplies the fields by a phase factor of
the form _Wn i Wn' = expliega(n', n)]W hus scrambllng all orders
in eg. This is reflected in the n-dependence of the propagator (3.16).
The Born term, for instance, can take any value between -oo and +00,
‘While the higher-order terms édjust themselves in such a way as fo render
the exact cross section independent of n . All pérturbation terms may
be equally important, and there is hardly any hope that a finite subset
will give a good approximétion (an infinite subset like the ladder
séries in the Bethe-Salpeter equation might conceivably come close enough).

Furthermore, if we average the S matrix we have to assume that
all azimuthal,directibns:are equivalenp. Let us think about this in the

, iA¢ ,

context of the phase factor e of helicity flip amplitudes, A = Xi‘J Xf

belng the difference between initial and flnal hellCltles. As nonrelativ-

5,10

istic calculations™’ have shown, the S matrix for elastic charge monopole
scattering has an azimuthal dependence a:eXp[Ei(eg/hﬁ)ﬁ] corresponding
to a helicity reversal from Xi-= +(eg/bzt) to Ap = -(eg/bn) (due to

thé angular momentum

eg g~ Re
X - X
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 of'the electromagnetic field). Obviously one must not average the

helicity flip phase factors, for otherwise there would be no helicity

flips. in this world:
’ 21

d¢ 'e:m[z5 = O,

Therefore one should rather try to average the cross sections.
But, as we have seen in Section V, nonintegrable double poles spoil

this approach, unless cancellations occur between different orders.
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FIGURE LEGENDS

AB
Fig. 1. (a) The exchange of transverse photons, D+“y (k).

AB instant
(b) The instantaneous interacticn, Dpv (k).

(¢) The complete photon propagator between electric and magnetic

ha 52 ()
charges, D, . .
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