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PHYSICAL-REGION DISCONTINUITY EQUATION
Joseph CosterT and Henry P. Stapp

Lawrence Radiation Laboratory’
University of California
Berkeley, California

October 10, 1968

ABSTRACT

A Cutkosky-type formula for the discontinuity

5

around an arbitrary'physical-regioh_singularity'is.

derived from precisely-formulated S-matrix principles.

This work wasbdone under the auspices of the U.S. Atomic Enefgy
Commission. - '

T Present address: Western Illihois'University,.Macomb, I1linois.
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I. INTRODUCTION

We -shall derive the following result: The discontinuity of S

around any physical-region singularity surface is given by.a Cutkosky-

‘type formula obtained by replacing each vertex of the corresponding

diagram D by the associated (physical-region) S matrix, replacing the
set of lines « Joining each pair of vertices of D 'by a function
Sa_l, and integrating over all the (topologically inequivalent) mass-

shell values of the variables corresponding to the intermediate lines.

) N . o -1 . '
The functlon Sa ] is defined by Sa'sa_ = Ia, where %1 is the

~restriction of § to the space corresponding‘to the set of lines q,

and I is the corresponding restriction of unity.

This rule gives.the discontinuity for S itself. The result

- for the connected part is obtained by retaining only c¢onnected graphs.

Then the S océurring at each vertex is generally ieduced to its
connected part. However, there are séme exceptions, so it is prudent
to use the general formula.

The discontinuity fdrmula state above is similar to the one
obtained by Cutkosky.l Héwever, his fofgulaur was incomplete because
important questions conce;ning the sheet structure)were ndt answered.
Also, his deriﬁationfdependea-on perturbation theory. The present

results are derived within the mass—shell S-matrix framewbrk and give .

. the discontinuity in terms of.fhe actual physical-region scattering

3,k

functions. This confirms earlier indications that the physical-region
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discontinuities are complétely determined by general S-matrix principles:5
‘they do not depend on the special properties (such as locality) exhibited

by the terms of perturbation theory.

In Section II the results needed from earlier works are
summarized. The discontinuity formula is derived in Section III‘by
using an infinite series (mass-shell) expansion for S. Some properties
of Sa_l are discussed in.Section IvV.

A derivation not based on the infinite series for § 1is given
in Section V, fof the case of "leading singularities”. A leading
singularity is one such that the set of particles correspbnding fo the
set of lines @ Jjoining any pair of vertices of D is a ‘

"leading set". A leading set of particles is a set fhat cannot make s
’transition to a set having a lower sum of rest masses. We hope to give
“later a derivation for the case of nonleading singularities that is not
based on the infinite series for S.

In the final section our work is compared with othei works in

the field.
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II. BASIC TOOLS

A. Cluster Decomposition

The § matrix is the transition matrix from "in" to "out'.

Linearity ensures that the transition matrix from "out" to "in" is §T.

We do not use unitarity (S—'l = st). [A1l that is used in S-matrix

derivations of diséoﬁtipuity equations are'thé cluster properties and
ie ' rules of 8§ and S‘l:' it is not important that 871 be st.]

The cluster decompositions of .S and S-l are conveniently

- represented by a diagram notation:3 A box with a plus [minus] sign

inside ‘represents S [S_l]; a bubble (i.e., éircle) with a plus [minus]
"1 The left side of
each box or bubble is the origin ofva set of leftward—directed lines,

and the right side is the termiﬁus of such a éet?' Each line Jj 1is’
associated with a physical-particle variable, which is a set (pj, by tj)
consisting of a particle-type index _tj? a spin (magnetic) quaﬁtum
number “j’ and a real positive-energy mass-shell fqur-vector pj.

The cluster decompbsition 6f S.[S_lj is represénted by writing
each plus [minus] box as a sum of columns of plus [minus] bubbles, the
sum being ovef all topologically distinct ways that the lines ofiginating
and terminating oh the‘box can be partitionéd among bubbles .of a column,

with each bubble having at least one incoming and one'outgoing line.

The connected parts of S8 and S_l divided by the overall

conservation delta function are the scattering functioﬁs SC and SC_

respectively.
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B. DBubble Diagram Functions

The cluster decompositions of § and S-l induce corresponding
decompositions of quantities like SS_l, SS-lS, etc. The rule. for
.computing such a product is to first draw all topologically distinct
bubble diagrams B composed of the appropriate number of columns of
the appropriately signed bubbles. The lines originating on ths bubbles
of one column terminats on those of the'colnmn standing to its left, if

here is one. TFor each such B one constructs a corresponding function
FB by summing over all physical values of. the variables (Pi’ by s ti)
for each internal line i, subject to the constraint that topologically
" equivalent contributions be counted only once. The function being “
calculated is precisely the sum of the functions FB defined in this
. w‘ay.5 [For fermions some signs must be considered.]

Two contributions to FB are topologically equivalent if and
only if the corresponding diagrams, with each line j identified by a
corresponding variable (pj, Uy tj), can be‘continuously distonted
into eaoh other with the external end points of the external lines held
fixed. Each bubble is identified as to its column, and the distortions '
must leave each bubble in its own column. (Alternatively, one must keep
~all the "trivial” bubbles having only one incoming and one outgoing

line. These bubbles are often omitted because they do not affect the

value of the integral, except.in this matter of counting.)
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C. Macrocausality

Macroscop1c partlcle phenomena has a characterlstlc space-tlme
structure If effects of long-range 1nteract10ns and massless partlcles

are 1gnored then partlcles move along stralght space—tlme traJectorles

‘except when they come close to other particles. A quantltatlve

description of the phenomena is provided by‘the Newton-Einstein laws of

motion. These laws a551gn to each particle j‘ a momentum -energy

vvector pJ that 1s dlrected along its space-tlme traJectory, and that

2 2

_ satlsfles the mass~ shell constralnt p; =m, . Momentum-energy is .

J Jd

v,conserved and is exchanged between partlcles only when they are close

to each other;.one imagines momentum—energy to be transmltted'by a

" : short-range interaction.

If one requires this space-time structure of macroscopic

' phenomena to emerge from S-matrix theory, in appropriate classical,

macroscopic limits, and demands also that classical estimates based on

short-range interactions should become valid in these limits; at least
to order of magnitude, then certain physicaleregion analyticity proper-

ties follow. These include the cluster decomposition property described o

above, and.also the properties described in the following two sections.

D. The Pos1t1ve—a Rule

The flrst 1mportant consequence of the macrocausallty condition -

" is that the physlcal—reglon 31ngular1t1es of the scattering functions

Sc# are confined to positive- Landau surfaces6 associated with

7

connected diagrams.
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Landau surfaces arevassociated with Landéu diagrams."‘A Landau

' diagram D isa diagram that represents‘a classical multiple¥scattering

 procesé with point interactions.' It consists of a set'df_léftwdrd

directéd line §egmenté J thét‘meef-at vertices 'v. Each line j is

~ associated with a real'mpmentum-energy.véctbr -Pj' that satisfies the

' maSs-sheli.éonstraint

P -m° -0, p, >0 , (2.1a)

where 'mj‘ is the mass qf‘the particlé’aSsOciated'withvline 3.

Momentum-energy is conserved at each vertex v:

p, = 0 . - . (2.1b)
~into v out of v o ' o
The vector'Ai from the space-time origin of internal line i of D
to its space-time terminus must be directed along ifs momentum-enéfgy:
i.e.,ifbf SOme scalar o, one has

A, = Q. D, .. A (2.1¢)
Finally, the sum of the space-time displacéments Ai"éround'any closed

; 1opp.6f internal lines of D must add to zero:

]
o
~

£

Here the + sign is plhs if the loop_'z ~is directed along Aﬁ

and mihus otherwise.

z t b = Z‘,t.aipi_ N - (2.18)
y/ . o : -
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These equations express the constraints on the multiple-
fy

scattering diagram D ,iﬁposed by classical relativistic particle

mechaﬁics. They are called the Landau equations. The Landau surface

L(D) is the set of external P = (pl,1--pn) 'thatvare compatible with
v the Landau equations associatéd with diagram' D. The trivial solution

with all Oﬁ = 0 1is not accepted. |
Physical particles carry ﬁositive.energy forward in time. The

: ai must therefore be positive:

a, > 0 . ' ' - (2.2)

The subset of L(D) that allows a solution of the Landau equations

(2.1) subjeét to the positive-q cOndition-(é.é) is denoted by L+(D),
and is called a posiﬁive-a Landau surface. The positive-o rulé sa&s
that the écattéring functions Sci(P) .é?e analytic at all physical

,poiﬂts not lying on the union 6f positive-¢ surfaces
+ + '
b= Ut . - o (2.3)

The scattering functions Sci 'aré defined only by the mass
shell» thL, which 1is dgfined by the mass-shell cqnstraints (2.la)vand'
" the overall momentum-energy consefvation law. Thus the ordinary
» definition of analyticity does not apply. . The appropriafe definition
“ is éiven in.Refs. 5, 7; and 8. _ _

Certain geﬁeral properties of the set L+ are used in formu-

iating the . ie ruLe. . These are described now.
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A,giVen surface ‘L+iD) generally-coincidgs wiﬁh the surfdces
Lf(ﬁ) of an infinite set of other diagrams D. Théée arise in.a ¢
trivial way: If a set of internal lines of D all ofiginate af fhe
same vertex v', and all terminate at the same vertex v", then:the
. Lahdéu equation requires them all tp be moving alqng together, relatively
r'at rest. Thus they can undergo trivial férward scatterings upon each
other without éffecting the kineﬁatic rglations; Any number: of these
trivial forward scatterings can occur. 'This leads to an-infinite set
of diagrams :D .sﬁch that L+(B)'='L+(D). |

Tt is convenient to introduce diagrams that do not have these
trivial’foward scattering vertices. A basic diagram DB is a Landau

B

diagram that has no part that (i) is connected to the rest of the

diagram at only two vertices, (ii) contains more than two vertices,

and (iii) contains no external lines. Every L+(D) is confined to

. the .L+(DB) of some corresponding basic diagram DB. Thus one can write
+ ‘ +, 0o+
s U de) - Uty o (2.3")

: Cniy a finite number of DB'vhave .L+(DB)"that éntér any.boﬁnded
"portion of the physical region.9 | |
. The representatiéh of L+ _is furthér siﬁplified by»introducing
"basic éurfaceS”,'defined as follows: LétvF?YLO ~represent the part ' b_f s
of the mass shell where tw5'or-more initial momentum-energy Vectofs
'pjv'are pgral;él, of.two or more’finél pj* §re parallel. Then fof.any
" Landau diagram D the set’ LO+(D) _is that part of L+(D) - ?rx%

“such that the Landau eguation for L+(D) have no solution with any .

o, = 0.
1 .
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. -

. , ‘ ‘ - A
It is clear that any point on L (D) - 6”70 that is not on

L0+(D) ‘must lié on the LO+(D’) of a contraction D" of D constfuc- |

"ﬂted by contracting to points and removing from D the lines‘corres-

ponding to o; = 0. Thus LY can be written as

+ *'  fyp o+ - ' S .

L’ = LJ.LO (DB) + OZ% - D (2.3")
"The importance ofvthisvrepresentafion lieé in the fact that
LO+(D5) is a real codimension 1 analytic submanifold of the mass-

shell 5%7.5 That is, each point P .of 'LO+(DB)"has a mass-shell

- neighborhood: N(P) such that inside N(P) the set LO+(DB) coincides
with the set f = 0, where f is a real analytic function of the
- local feal analytig'coordinates of thé mass shell a£ P (see ég.

. Refs. 7 orv8),_and ‘grad £ = Vf 1is nonzero in N(P).

The representation (é.}") shb&s that (L+‘- ﬁhyé) is the union
of a set of codimension 1 reai analytic submanifolds of 6”7, only a

finite number of which enter any bounded'portion of.the phySicél'region.

. Since ek%g ‘has codimension 3%, the set‘-L+ has codimension 1. [The
- codimension of ,af plus the'dimension:of'AEP'iS.the dimensioﬁ'of.

imbedding sbace;heré 3n + 4.]

The positive-a rule says, therefore, that SC(P)' is analytic

1

at almost all physical points, and that the remaining set L+ has,
apart from the small set ?770, a local representétion as the ieros of
‘a finite set of real analytic functions fi ‘each having nonzero

. gradient 'vfi;
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E. The ie Rules

Macrocausality implies also that the scattering function SC

. | o .
“ near any P of L - ﬁn?

o can be represented as the limit from any

directioﬁ in the intenséction of thé upper-half planes Im fi >0 éf
the (uniqué) analytic cOntinuation into this‘intersection of the
function S_(P) aefiﬁéq om 1T - ‘93%. The functions f, are the
functioﬁ; that define L'. near P, and their signs are fixed by the
requirement that a formal increase of thé masses associated with the
internal lines of 'D by a common scale factor shifts LO+(D) in the
- plus f direction. This sign is known to be independent of the
particular diagram' D that defines LO+(D): all locally coincident
surfaces Ld+(D) ‘can be defined by the same function £. (Theorem 7
of Ref. 8) |

HThis ie rule for Sc is known as the plus ie 7rule. The
function Scf obeys the minus ie iuléﬂ whiéh is tﬁe same
rule\éxéépt.that the upper-half planes Im fi'>v02 are replaced by
.ldwer—half planes Im fi <0. .

‘These rules haﬁe content only at those points P of L+ - %%Qé
for which the appropriate half planes have a nonempty intersection that
coﬁtains P on its boundary. This property is obvidusly éatisfied for
i any P that lies on only one LO+(DB) [or only on several LC+(DB>
that all Tocally coincide with one single ohej. Such bOints comprise ' .
 almost all bf Lt - 6”70,'sihée the restvhaVe codimension 2. Thus
~the ie rules have content at almost all points of 1V - 6}36.

It isfimportant that the. ie rules ha&e content also at a
o

certain of the remaining points of L+ - 'ﬁ&Z It is known (Theorem 13,
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Ref. 8)'that the intersection of the upper-half planes corresponding

S oLt N s T . ,
to P (on L -~ &b) is nonempty, and contain P on its boundary,
whenever all the DB with P e LO+(DB) are contractions of some single
D.

There are, however, some points P of L - n Such that the
intersectibné'of the various_upper-half planes associated with P are
empty near ?.v The scattefing function S; cannot be represented near
such a f' as the limit of a single anéiytic function. To cope with
such points we shall introduce in the next section an indepehdénce
property, which says, in effect, that singularities associated with
unrelated diagrams are independent. This will allow the ie rule to be
0"

. Full technical details concerning the ie rules are_givén'in
Refs. 7 and 8. The intersection of the upper-half planes at i3 ‘is
defined, in effect, as the set of mass shell variations ® that satisfy

Imd -V fi<§) > 0, where G is a set of local real analytic coordinates

~at P, and G = G(P). (See also Ref. '10)

~The basic tool in the analysis of physical-region singularities
is a theorem that extends the positive-o and ie rules té all bubble

diagram functions. This theorem is described next.

F. Fundamental Theoremll’12

1. Assumptions of Theorem

(a) Positive-a Rule, . The physical;region singularities of the

4

" scattering functions SC ~and 'SC* aré confined to fhe.union .L+ of

positive-o Landau surfaces.
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(v) Independence Property. Each.point Poor 17 - ‘2&;0 has

a real mass—shéll neighborhood N(F) such that Sci(P) in N(P) - . ©
decomposéS-into g finite sum of terms, oﬁe'for eaéh basic diagram DB °
for which L+(DB) containé P. The singularities of the term of -Sci

.associated with D are confined to

B | |
A : :
1*(p.) = Li(DB) ), [UL#(Dé)] (2.4)
where ,Dé is aﬁy contraction of DB. Eéch term obeys a corresponding

- ie rule, as is described next. [The justification of the independence

property is given in Section G.]

(¢c) The ie Rules. The individual terms of s, and SC-
described in the independence property obey the plus and minus ie
rules, respectively. The upper- and lower-half plaﬁes for each term

are specified by -the singularity surfaces occurring in that term alone.

(d) Technical Assumption. The singularities at 97Zb are
not too pathological. [This assumption is discussed in Subsection 3.

. 2. Conclusions of Theorem

Let B Dbe any connected bubble diagram. Let FB be the

corfesponding bubble diagram function. Define

F.CB(P') = FB(P)/%SL’( Z P - Z p) - ' (2.5)

out . >

Then ‘the following properties hold:

(a) Generalized Positive-o Rule. _Thekphysical-region singulari-

‘ties of FCB are confined to the union of the landau surfaces LO(DE).
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A DB is a Landau diagram constructed by'insertihg a connected basic

Landau diagram Db for each bubble b of B, with the incoming and

outgoing lines df—-DbJ'identified in a one-to-one fashion with the

. _ 5
incoming and outgoing lines of b, respectively. The surface L (DB)

is the part of L(DB) that is compatible with the Landau equations of

L(DB), subject to the constraint that each line i of D, that is an

B

internal line of some D, must have an ai

b ‘that satisfies

a, 0 20, o (2.6)

' where 0o_ is the sign of b. The (original) lines of B itself,

b

which are external lines of various Db’ have no sign constraint.

(b) Generalized Independence Property. Each point P of

ULO.(D‘E) - ‘)?70 has a real mass-shell neighborhood N(F) such that

= o, . v
.FCB decomposes on N(P) - Ut (DB) into a finite sum of terms one

for each’ DB for which. LO(DB) contains ‘§. The singularities of

the term associated with a given DB ‘are CQﬁfined to

1%

) = L“(D,B)u [U1%(})) S (2.7)

where the Dé are contractions of lines of DB that are internal lines

b’

(¢) Generalized ie Rule.  The functions FCB(P) obey a
rule that is completely analogdus to the plus , ie rulé; except that
the upper-half planes at P are now defined by using, instead of

f = £(P), the functions

o 3
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i

a5(P)

" ). o, (®) [p,(®) - p,(®)] . (2.8)

]
" There is one such function for'each solution at P of the Léndau
equations of LO(DB). The ai(f) and pi(ﬁ) are the parameters of
the internal lines of DB corresponding to the solution at P. The
pi(P) is any set of internal p, satisfying the conservation law
constraints of D at P. [The function dﬁ(P) will not depend on
the particular choice of the pi(P), because of the Landau loop
equation. ] |

The ofdinary ie rules connect the physical-region scattering

" functions in different sectors of ‘007 -1 Similarly, the generalized

ie rules connect the "physical-region” functions FCB in different

sectors of 5”? - U LU(DB). The physical-region functions FB are
defined as integrals over the physical-region scattering functions.
These are the functions FB that occur in the decomposition of the
functions s87F, ss7's, cte.

It may, of course, be possible to continue FcB from some
given sector of ﬂ“? - U LU(DB) by following different alternative
paths around some LG(DB) - €n7o', The generalized ie rule asserts
" that it definitely is possible to coﬁtinue through the intersection of
the upper planes defined by (2.8), provided the intersection of these
upper-half planes is nonempty arbitrarily close to 5, and that moreover
the function arrived at on the other side of LG(DB) ; 6”70 will then
be precisely the physical-region function ECB; Also, an integfal over

the physical-region function FCB can be represented by an integral
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ovér a contour distértéd'infinitesimally away'from P e (;} LG(DB)
and into the intérsection of the upper half plades ‘at P.

By 'FCB we shall, unless otherwise stated, always mean fhe
’ physicalcfegion”'FcB, not some analytic continuation of it; the only
céntinuaﬁiOns considered are the infinitesimal onés specifigd by the
general ie rules, unless otherwise stated. »

The generalized ie rﬁie hés-contént at P of LU(DB) - ‘7720
only if thé various upper-half planes at P have a nonemﬁty intersection
at“ §-'[i.e., only if'there'is a’ (3n - 4) dimensional Qariation 8
‘in 772 satisfying Im 8 - ? Gﬁ(f) >0 for all’ 0§(P) asSociated with
LG(DB).] If‘this interseétion'is empty.at P, then no continuation
pastv LG(DB) is assured at 57 |

There are scme important points P of LO(DB) for which the
~intersection of the‘upper half planes is obviously empty. In particular,
every point of: Lc<b(Bi> has this property.

The diagram D(B) is the particular D_ obtained by replacing

B
each bubble b of B 'by a point vertex. Since no line of D(B)
‘comes from iﬂéidé any bubble, there are né cénstraints on the‘signs of
the ai(ﬁ). Tﬁus the reversal of all these signs will give aﬁother
solution. Thié solution will have the Qigns of all the funqtions
G§(P) re?efsed. Thus the ppsitions of all upper-half planes will be
reversed. Thusvthe intersection of the upper half plances at P will
be em@ty,‘and the 1ie rule wili be without content there.

This failure of the ie analyticity property at points of

o , '
L <?(B)> plays a crucial role in what follows. It is related to the
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breakdown of the definition of FB at:these points. The function

FB is defined as an integral that contains, in effect, a conseryation—
law delta function fér eaqh bubble bb of B, and a maés-shell delta
function for éach internalrline i of> B. A product of delta functions
under an integrgl sign is defined as follows: one trénsforﬁs to a new
set of variables thét contaiqs the argument gj of each delta function
as an independent variable, and then omits the integrations on these
variables. This definition fails at P (i.e., the Jacobian becomes
infinite) if the gradients v gj are linearly dependenﬁ at P.

These linear dependence relations turn out to be precisely the
Landaﬁ loop equations corresponding to D(B). Sinqe the mass-shell'
and conservation-law constraints are also satisfied, the equafions that
define the points Vhere FB is ill-defined are just thelLandau equations
for D(B), and the corresponding set of points P is the Landau
surface L(b(Bi) =z Lc<b(B)>.

The function FB generally does not continue into itself
around points of L<§(B)). That is, FB in different sectors of
6”2 - L(b(BZ) near P of L<b(B)> are generally not parts of a single
analytic function. In fact, the function FB is obviously identicélly |
zero at points of 4}7? where it is ﬁét possible to satisfy simultaneously
the various mass-shell and conservatién-law constraints associated with
B. The boundary of this region lies in L(?(B)). Furthermore, every
point of L+<§(B)> lies on this boundary. Thus FB  can never con-

tinue into itself around L+<b(Bi>, unless it is identiéally Zero.
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The portion of ML where it is possible to satisfy all the

mass-shell and conservation-law constraints of B is called the

physical region of B. 'According'ﬁo‘the above remarks, the phySical- '
region FB .is nonzero only in phyéical regionlbf' B. »MbreoVér,
'.L+(§(Bi> lies on the boundary of this region. The sign conventions on
the functions fi are‘such that’the.physical_fegiOn of B near P
of LO+ D(Bi> is either confined to LO+<é(Bi> or lies on the positive-f
side of it.10
. +o -
side of L, <?(Bi>. |

The above—mentioned_fact is‘important in the: derivation of the

“That is, 'FB is identically zero on the hegativé-fr

discontinuity formila. It ensures that all the terms in the dlscontinuity
,qurmuléfvanish 6n the negative-f side of the singularity surface
‘Lof(DB) in qUesﬁion. The “principal term" of the discbntinuity formula,
which is the‘one such thaf‘each vértex v éf DB corrgsﬁondSIto_the
cbnnected part'ofnfhe'corresponding'_s, will havé ité'physical iegion
bounded by LO+(DB); Genefally speaking,thé'physical regidns of the
nonpriqcipal'terms will not‘exténd to .LO+(DB) 5ecause of fhe extra
 cpﬁstraints imposed by the éxtra conéervation laws. Thus the nénprincipéi
terms will generally nb# contribute to the discontinﬁity_éround LO+(DB).'
';But.if the phySical regiop of some nonprincipal term does reach LO+(DB)’
vvthen this.term will ?ont?ibufevtO“thé discontinuity aroundeO+(DB).

3. The ‘Technical Assumptioﬁ_

The macrocauéality condition does not rule out éingularities at
fkv(). The proof of the theorem requires, however, that the singularities

-at thO “be' not too pathological. It is knownvfrom the boundednéss
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~property S (g, @ 1 < ||g |]---||#]], whichfollows from linearity
and the probability‘interpretation,'that thevintegrals definiﬁg FB
do not diverge at 5770. An additional requirement is that the infegrels

defining the derivative of FB also be well defined at €h7%.

G. Maximal Analyticity

This principle is that Stl(P)_ has ohiy those singularities
"tﬁat are-requirea by generalvprinciples. ‘The full»content of this
principle, as it apﬁlies to physidaléregionfpoints,'is the independence
property (b): singularities violating this property are not required
to ﬁe pre;ent,‘pence they arevrequired to‘be absenfv

| The point is this. The positive—a.rule and;fhe ie _rules

impose_certain constraints.on'the allowed siﬁgularities. Bﬁtﬁthey do
nqt require any eingularity actﬁaliy to be bresent in Sc or..Sé-.
6n the 6ther haﬁd, the clustervpropefties of 8§ and Sfl, by themseives,
actually require the scattering functions to have.singularitiee.

These arise as foliows. Suppose oné expreeses identities such

1

. I, S - SS-lS, or S = SS-lSS- S etc. in the form of .

-as' ss”
. bubble diagram equations, : - . _
}E:, . zij. |

. F = FB ) X . (2'8)
Be B’ .~ Be@" g '

“where @' and (B" are classes of bubble diagrams. Then the
assumptien that the Sc and Sc- .are all singularity free gives.
contradictions: certain terms of (2.8) will have explicit singularities

that cannot be cancelled by any other singularities. .Thus the cluster
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' properties of S and sfl 'definitely require eome of the eeatteringv
fuhctiohs to have=Singulerities. . |
The.above argument does not, showbpre01sely whlch s1ngular1t1es
"are requlred 1n S and S . However, 1t ‘can- be extended to do Just
that. - In partlcular, the various identities (2.8), which follow'simply
 from thefcluster properties'of s jaﬁd S-l;xsﬁpplemented bj-the | |
conclusions of the fundamental theorem, permlt the derlvatlon of a -
formula for the dlscontlnulty around each phys1cal reglon 51ngular1ty
v allowed by the p051t1ve-a rule. ThlS formula shows that each‘allowed.
‘;singUierity is elso‘required: i.e.,hit has a nohzero aiscontinhity;.-
These requiredvsingularities are apparently_competible with the
independence property. Thue we have>an epparently self—consfstent_
sihgularity structUre that hasvno'sinéuiaritiee that violate the:
'ihdependence oroperty. Thus no s1ngular1ty that violates this property
) isvrequired.' Then max1mal analyt1c1ty says none is allowed Hence
the indepehdence,propertyvmust hold. | |
“We turn now to the derivation_of the discontinuity'formula.
»th‘Will‘be convenient to assigh to each internal.line .i of eech_
F.‘handau diagram D a sign Gi' that determinee the_sién of ai“in_the

corresponding Landau equations:

A‘diagram that has all o, = +1 is called a positiveed'diagram and is

derioted by D'. Thus

i
=
+
~~
e
S

10"
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S III. ITERATIVE SOLUTION

"A. Expansion of S

Sil -1, we‘obtainv

n

Introducing r*
R*+R"+RR =0 . o | o (3.1)
The formal iterative solution for R+ gives

T« o . - ; i

R = Z (-1 @) . o (3.2)
n=1 . ' L

Each factor R~ is representéd by a guﬁ of columnsiof ﬁinus bubbies,

;the‘sum being over all_topologicallyldiffefeht ﬁéys'of jdinihg a column

of bubbles to.the extérﬁal lines. However, ‘at least ohe ﬁubble of

-éach coluﬁn mustvbe Abntrivial. [TriVigl bﬁbbles are thoseAWith juét

~ one incoming line and just one outgoing liﬁé.] |

In-the assessment of.topological equivalgnce one cdnéiders the
Bubbles to bebconfined ﬁo particular columns;5 This means'fhat the

threé‘terms shown in Fig. 1 must all be counted.

L

Fig. 1. Thyee contributions to the expénsion of a four;iine'

S. The vertical lines show thevseparation into factors R~

Trivial'bubblés have been omittéd,sincebthey do not éltérAthe
: fUnqtion.b ' .
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The first two factors have coefficients _(-1)2 ; 1" in (3.2),
whereas the last has coefficient (-1). Thus thefé is a cénéeiiation
and only onebterm survives.

This result is general: In the expansion (3.2) one needs to
count'only one of any set of topologically equivalent contribufions?
| where in the assessment of topological equivalenée one nOW'disfégards
both trivial bubbles and the sepafation of bubbles into columns. The
sign of the singlevsurviving term is (-l)n, where n is thé number
of (nontriv}ai) minus.bubbles.of the term.

»The bubbles b of the origihal B are partially ordered_by
the ordéring of'thé columné ih,which‘they lie;‘ Ir the_colﬁmn:identifi—
éafion of the bubbles is removed then'thevbubblés are partially ofdéred
~only by‘the requirement that all lines be directed from right to left.
’;For each such partially drdered B~ there remains, after the cancella-

tions, precisely one term FB Thus if the unit contribution is added

“back to give § =1 + R+, one obtainst?

o S“; E: (-l)n FB— .. : - (3.2") ”
e _ B~ . , .

The sum is over all topologicallY'different partially ordered bubble

fdiagramsb B~ having only nontrivial minus bubbles, and n is the

L - l .
number of bubbles of B . ?n
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The expansion (3.2') contains in an iﬁpliCit form an expression
for the discohtinuities. As one méVes across a positiﬁe-a threshold,x
new terms appear in (3.2'). If mixed-q singularities (i.e.; singularities
corrésponding to soiutions of Landau equafions that fequiré a'é of
both signs) can be ignored (see Section VI bélow)and if only one
positivé—a surface 1s relevant, then the discontinuity is Jjust the sum
of these‘nGW’fefms. This is because any ferm-in_(j.E') that is‘present
belbwfthé threshold wiii, by virtue of the Fundamental Theorem,
continue around any singularity at threshold via the minus ie rule.
This leaves the new terms'as.the discontinqity. The problem of cal-
culating the discontinuity ié then to identify thebinfinite number of
terms that appear in (B.Bf) as one crosses the threshold, and}to
combine them into a uséfui form. .The following secfions are, in effect,

devoted to that end.

# o
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B. A Fundamental Identity

Let « be some sét of incoming iiﬁéS'OfA S. A minus Bubble
in the expansion (3.2") of S‘ will be called an o bubble if -and
only if all the incoming lineé of.that,bﬁﬁble belong to the.set o,
We define &% .to be the subset of the expahsion (5.2')1con$isting of

all terms having no « Dbubble. Thus for each term of Sav each line

in the set « either ends ét a minus bubble that has some incoming

‘line: not belonging to «, or it touches no minus bubble at all, and

"is thereforean "unscattered" line (i.e. it is both incoming and

outgoing).
It is convenient to represent Sa by the diagram shown in

Fig. 2.

‘ I oa
Y 7 ES /47 Aa - . .), ZZQ”+' Zgg ﬁg

Fig. 2. Diagrammatic representation of Sq; The shaded

strips répresent arbitrary sets of externgl lines.

'The diagram on the right of Fig. 2 is to be regarded as a

representation of a partial sum of terms of the expansion (3.2'). The

-missing section indicates'ﬁhe absence of ail terms havihg an O

bubble. :
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With this notation a fundamental identity is this:

g "
mtme [ @
A B

+ un

(3.3)

This equation expresses the fact thét if’one attaches to SB the set
obtained from the expansion éf the small plﬁs box, and sums over 5,\
‘then one obtains the full expansion (3.2'") of 8. In particular, all
the terms with 'O bubbles are reinstated, and each one only once.

To prdve (3.3) the concept of a cut is useful. The_iines'of
the . D(B ) .correS?onding to. any B are drawn running ffoﬁ right.ﬁo
left! A flow line is a continuous curve in D that runs from the
extreme right to the extreme left. .It consists of an ordered‘sequence
of line Segmeﬁts Lj of D. .A_EEE is a set of llnes that contains at

most one line Lj of any flow line. The set of flow lines deflned by

a cut is the set of all flow lines that contain a line contained in the

cut. Eguivalent cuts are cuts that define identical sets of flow lines.

A line 2, lies left of 4, if and only if 4, lies'left of £, on

~some flow line. A cut Cl lies left of a cut 02 if and only if Cl

is equiValent to C2,'at least one line of Ci lieé left of_some line
of."Cg, and no llne of (¢, Llies left'of-any line of C;. A leftmost

2 1
15,1u

cut is a cut such that no cut lles left of 1t
In (3 3) the cut 5 is the leftmost cut equlvalent to a.

That no cut lies le?t of 1t follows from tne deflnltlon of é% For '

-
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each fixed B the terms of (3.2') give, independently, all terms. of

sP on the left of B and all terms of the small plus box . S on the right,

R

Bo

Multiplication of (3.3) by a small minus box on the right gives

' Z&Q{_ . | .L‘v‘ : Zaz +

(3.3")

,'Ihe fact that the combination on.the right is equivalent to a sum of

. bubble diagram functions FB corresponding £O< B's having no «
bubbies was:shéwn earlier in Ref. 15 .- There oﬁly fiﬁité operations
were ﬁsed and the sum was over a finite number of'terms. [Both plus
and minus bubbles occurred in the B's representing the terms of that
finite expression.]

The véiidity of (5;3’)’can bé seen directly‘from the expansion

(3.2'). If this expansion.issubstitutedinto both terms of the right

side of

,'whére thé slashed box isR—; cne finds an exact cancellation of all terms

‘having an O bubble: Each bubble diagram B~ that has precisely one
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a 'bubblé appears ?reéiselyitwiqe on the righf,'and'these two terms
have bpposite signs. ;Each'férﬁ haVing pfecisely:two o “bubb;es
apP?éré four times, twicé with a plus éign-and twice with minus éigﬁ.v
Each term ha&ing preciSeiy n>0 « ‘bubbles appears oft - times, half
with plus and half with minus.signs;? H¢wévér;féagh term with no «
bubbleé‘appear only once, and'in thg first;terﬁ; This confirms. (3.3")

and gives an independent confirmation of (3.3).

C. leading Nofmal ThreShold Formula :

Using the identity just obtained, one easily derives the normal

15

thréshoid‘formula obtained earlier without using infinite-SEries.

In the .expansion (3.2’) of -

 é_'v r——-—-—.;"25, >.

 _ :E; | :;: , ~-}; bZZ' |
 ;5 | v ’—74___'}”2’3 o

(3.5)
some terms will.have a cut C such that all the flow lines thfough
this cut begin in 5 end end in 7, and such that the removal of the
lines §f this'éut separates 'S into two disjoint parté,’one containiné
€ and §,‘thé other:contaihing Y and B..:Let the éﬁm of térms_
having no such (empty or nonemﬁty) cut C be called R,- |

. A term having such a gut _C may haye_several;-'All these.must .
‘be equivalent, éince each defines precisély fhe set of all:flqa lines

that begin at‘16 and end at ‘r,i Let the leftmoét 6f these cuts be
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labelled «. Then the separation of the terms of the expansion of

(3.5) into terms having, or not having, a cut’ C gives.

e md C A+ md € 772} zzz 8
+ + Rn [
7Z B

Y ZZ 7. 3 ym__é.__—?mﬁ Y 7L
: : .
(3.6).
Each term in the expansion of the left side either has no cut C,
and hence belongs to Rn’ or has a leftmost cut @, and appears

precisely once in the first term on the #ight of .(3.6).

Insertion of (3.3') into (3.6) gives

eyl  m?d € & +
+ . .=‘mr__;1m—-'zz :
Y 7 ZR Y X —

This formula is.essentially‘the‘same as.that derived (laboriously)

in Ref. 15, by means of finite methods. There the plus béxes were the

actual S matrices (rather than their infinite-series expansion) and

Rn' was a qertain finite sgm ofAbubble diagram'functiong 'FB having

Just the propérty thgt defines Rn:  i.e.,.no B corresponding to.a
'tefm of the sum Rn has é Dé.'haying't point vertices fqrvall minus

bubbleS, that suppofts'a cut C of.the kind described.

The important propertj of Rn is that it coﬁtains no B

having a D that contracts to any'positiveﬂu normal threshold

B
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diagram. Dn+' of the form indicated in Fig. 3. [DB is defined in

 Section IT H.]

Fig. 3. The.posifive;q normal thresﬁold'diagram Dn+f The

+ sign indicates that the o, of all lines of the set of
, lines between the two vertices are plus one}.,The arrow
._iﬁdicatesfthat all lines have the direction indicated. Dn-

is defined by the same aiagram with minus_in plaéevof plus.

The boxes around the'vérticés indicate that it is not

necessary that the vertices Qithin them be single poihts;

a point within a box cén representvsevéral dichnnected

point vertices.

The First term. on the left of (3.6') yanishés below the leading
normal threshold associated with diagrams of the form ADﬁ+. The second
_term on fhe left has,hby construction, no positive-a.singularity corre-
spbnding to any diagram that contfacts to any diagram of the form .Dn+.
If mix¢d~arsingulari£ies'(i.e{;'sihgularities associated with solutions
of Landau equations that involves‘ o of'bqth sighs) can be ignored'
(seg Seétion VI) and.ifjthe.qnly'diagrams p* 'giving surfaces L(D+)

through a point ‘P -are those that contract to a .diagram of the.form
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'an+, then the onl& singularities of R, at ?_ are those.associéted
with diagrams that cont?act to an. The function .Rn mgst then, by
virtue of the -FundaMental-Thedfém;‘v sonpinue into itself via a EEEEE
ie rule around”the threshold. It is csnseqqently the continuation of
S from.the.region Just belowsthreshold to tpe region_underneafh the
cut starting at threshold. The first term on thsrigﬁt.qf (3.6?) is

thus' just the’discontinﬁity around the'normal threshold.

D. A Generalized Tdentity .

The'functisn % g the;set of te?ms of (3.2').suchvthat’no cut
" lies left of the cut a. ' |
| Let the mass Md of a set of lines o be the sum of rest masses
of the lines d. Let «' denote a cut that lies left of « and also
satisfies M&, > M. Let Sa' bevthe subset of (3.2') fhat has no «o'.
Let P(x)  be the projection function that is 2670 OT One accor-
dihg £5 whetherthe set of lines B 6n which'it acts satisfies 'MB < Md
or M s;,M . Let Sa = Pa 3 Pa. 'That is, S

B a

and outgoing lines have mass } Md, but it is zero otherwise. Then near

o is S8 if both incoming

_ "~ the « threshold one obtains the following generalization of (3.3):
for any S with a (sub) set of incoming lines «
s 8, =8 , T _ o (3.7)

:'ﬁhere, in .complete analogy to (3.3), Sa acts between the sets « dnd
a'.  [The proof isvessehtially the same as for (3;5); the nearness to

'threshola ensures that the leftmost cut «' is unique.l5]
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From (3.7) one obtains, as the generalization of (3.3')

-1 T L. .
where. Sa is the inverse of %I'

Sy, 5 _.='1>  . ' ' (3.9)

- [This definition of’sd-l’is slightly more general than the one given in
the introduction; it covers also the special case when two different

sets of communicating particles have the same sum of rest masses. ]

- E. Génerél'Normal Threshold Formula

CbnSider ﬁhé expansion (3.2') of § of (3.5). Let o bea
:cut of the type described below (3.5) with the addifioﬁal conditioﬁ that
'Md be equal to or greater thap somé‘fixed.sum of.rést‘masses., |

The arguments lgaaing to (jfé) are ﬁQW'rebeated, but now with'
' R, héonﬁainiﬁg the terms having nb.cut a{.‘Oné then oﬁtains for the

discontinuity around the « normal threshold the formula

T _ o, HASaE ]
T, af

(3.10)

' This result is the same as that obtained by finite methods in
‘Ref. 15, except that there M, was required to be less than the lowest

';:communicating'four-partiéle‘threshold. ‘This limitation is here removed.
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P. General Physical—Region Discontinuity Formula

Essentially the'same argument gives'the general discontinuity
' formula described in the introduction.

Consider some basic positiVe-a.diagram .Dﬁf' Let o label the
sets of linesfcoﬁhectihg the various pairs‘of vertices of DB+. Let the
mass of a set of lines Be the sum of the fgst masses of these 'lines, and .
lef Md be the mass of Q. |

A bubble diagram B is said to contain D * if and only if

, B
D(B) contains 'D3+. [D(B) is the diagram obtained by shrinking the -
" bubbles of B to poiﬁts.] A D contains D T if and only if it has

p

. a set of'mutualiy'disjoint cuts Ca’ one corresponding to each of ﬁhe
'~sets o of DB+. The ecut Ca, corresponding tq the set & must be a
cut that consists of positivel& signed‘lines having mass %1. ‘Moreover,
the cufting of éll the lines of all these sets Ca must divide D into
a set of N mutually disjoint parts, one cbrresponding to each of the

N - vertices of D The part of D corresponding to the nth vértex

.H"
B’ v v
of Dé+ must contain the appropriate end points (leading or trailing)

.of_the apbropriate lines of the appropriate sets, as prescribed by €on

. . ' + ..
[eml ;s the common sign of.the _ein of DB fqr i in . ] The

connectedness of the part n of D is irrelevant; as in Fig. 3 it can

be * either connected or disconnected.

A B excludes DBV+ if and only if no *DB' contains DB+. ND

is defined in Section II H. Notiée that "contain" and "exclude" are

B

opposites provided all the bubbles of B are minus bubbles. ]
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The important préperties of these two classes are these: First,
any sum T of FB{ over B's that contaln DB . must vanish outside
the phy51cal region of DB s and hence on the negatlve-f side of L(D )

[see Sectlon 1T F} Second, any sum R of F over B's that
exclude DB+ must, by virtue of the Tundamental Thecrem, have a

minus  ie continuation into itself past. P of L(Dﬁ+)’ provided P

"lies on no L(D') ‘except those such that D" " contains .Def, and

¥

A

'provided: R has no mixed-afsingu1arities.at B, It follows that a

~separation of S in two terms T and R that contain and exclude DB+’

respectively, exhibits T as the discontinuity around .any such P

N :
of L(D, ).

Consider any B~ that contains DB+. Then D(B"), which is the
-(dlagram obtalned by replacing each (mlnus) bubble of B by a point
vertex, must have some set of cuts 'Ca correspondlng to the sets a of

+

DB . A_cut strongly equivalent to -Ca is a cut that is equivalent to

C and has the same mass. Any Ca may be replaoed by any cut strongly

07

.
. ' B )
The result just stated is proved in Appendixvc.' It is assumed

equivalent to it without destroying its correspondence to « of D

there, and ‘in what follows, that the p01nt P under cons1deratlon lies

on L(D ), and lies on no L(D ) unless D+ ICOntalns DB+.

B

The Landau equationsvfor; DB+ at P require the momentum-energy
‘vectors of all tbe lioes‘in algiven'set av'of DB+ to heve'avcommon'
~-direction _qa.‘ It also is asSumed ih’Apﬁendix,C, and in whetlfoiloﬁs,
that theee”directions dd are;all different, for the P under

consideration.
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Considef now the structure T obtained by replacing each vertex
of DB+ bybthe expansion (3;2') of the S'.coiresﬁonding to that
vertex. ‘Delete from the exﬁansion of each 8 all terms corresponding
to diagramé hgving somglcut that is strongly ghuivalent to, and stands
-left of, thé cut ‘corresponding to any éet»‘a of inéoming‘lines of that
8. a |
This structﬁre T contaiﬁs every term B iﬁ‘the expansion

(3.2') of § that contains D T For any such term there must be a

B ,
" set of cuts Ca that correspohd to the various o of DB+. Consider
the leftmost cuts Ca. strongly equivalenﬁ.to these. These Cd'
separate B into parté‘that correspond to the vertices of DB+. The

faft corresponding to the nth vertex will be:soﬁe term in the expahsion
(3.2“) of the S corresponding to‘that Vertéx. And it will be gne of
ftheftermsithat is,refainéd‘in the_construction of T.
| : rThus any term in the expansion (3.2') of 8 that contains
DBf wiil be some term in théistructure T. .And any term in the -
L;structﬁre T"évideﬁtly contains DB+, and is a term of (3.2').

‘It remains to show that eéch term’of (3.2') that contains DB+
is contéined precisely once in -T. If this is true thén the remainder‘
;R will exclude’ DB+, and the.deSi;ed sépératioq of § will be
achieved:' |

B Each_term.in.(ﬁ,E') ﬁhat c$ntains D " will be contained S

B

precisely once in T provided any B~ thatYCOntains a set of leftmost

1

| fcﬁts, Ca corresponding to the o of DB+ contalns precisely one such
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set: for eﬁery such set of cuts Ca' in- B~ this term is contained

precisely once in T.13 Thus we must show that each B~ that has a set’

of'leftmosf‘ Ca'. correeponding.to.the o of DB+ has precisely one

such set.-

!

_Suppose»for’some B* there are two sets of leftmost cuts Ca

- that correspond to the o  of DB+, The fnnction FB " will vanish in

_an infinitesimal neighborhood of P unless the constraints of B allow

t

the p, 's ' corresponding to the lines of each of these. sets of C s

to assume the (unique) values D, (P) that solve the Landau equatlons
of D at P.-

B _ : S _
Consider a reduced diagram 5+ ’that contains only those lines
of D(B") that lie on one or the other of the two sets ,Cd'. Since the
'Landau equatlons at P must be . satlsfled for the lines comlng from each

of the ‘sets Cd"'separately, they must be satisfied for_the'wnole

. diagram D : P must lie on L(D ) if B is to contribufe near P.

The ccndltlons on D for there to be a D that contains

B

D *,'in two essentially different ways, as above, are very‘stringent."‘

B

" For example;.the leadiné vertex of _DB'+ 'fhet expends inﬁo more than a
Jsingle vertex of D must hevefa set-Qf'ou£going lines that repfesent
particlee that can decey‘intovthe partdcies_represented by another set
_of outg01ng llnes of that vertex “(See'Figfi7)';This places .strong
"condltlons on the momenta p ‘ associated‘with ﬁﬁése lines, and.hence
}*strlngent condltlons on P We call "redundancy condltlons” these
afconditlons on P that must be satlsfled if D is to be ccntalned

B

in qeveral essentlally dlfferent ways 1n sone p'.
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Our conclusion then is this: Suppose the following conditions
are satisfied:

N

1) P lies on L(D ™) and on no L(D+) unless D' contains DB+

B
2) The directions d, of the 23 df the various sets of lines «
of DS’ as defined by the Landad'eQuations of DB+' at v?, are
all different. |
3) The redundancy conditions on DB+ are not satisfied at §{
,.h)- The remainder ﬁ =S -T has'né mixed-q singularities at P
(see'SectiOn VI). | |
.Then'theidiséontinuity of 3 éround L(DB+) at P is given by the
rules described at the beginning of the paper, where the diagram D is“
Just DB+. Notice tha£ condition (i) ehsures that P lies on the E
codimensién 1 surface LO(bB+) .[seé Seqtion 1T Dj.'
~ The disconnected parts-of S  have, of course, conservation
law aelta function factors. . The discontinuities aésociated with these
parts aré calculated in the natural way, by taking the discontinﬁity
corresponding to a path that engircles thevsinguiarity surface LC(DB+)
while.remaining_inlthe manifold defined by fhe appropriate conservation
law delta functions.
We believe the disconfinuity formgla for S 1itself, rather
than.itsfébnnected part, will be the more uséful in practice, because
in any applicationsvbased on unitarifyv(or on other physical conditions)

' it is the full §, rather than»itsfconﬂected part, that 1s relevant.

One'lesson we have learned from our work is that general results for
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multiparticle processesvafe hard to derive froﬁ unitarity if one
separates éut the disconnected parts before the finé} stage.

The derivation given in this section is based on ﬁhe infinite
series_expansion for S; However§3all infinite series are‘elimihated
ffom the final-resuit, This suggesté thai the results should be deriv-

able directly from the eguation ss™t

= I that generated the infinite
-geries. This has been done‘in_many‘speciél cas‘:es.B’}:"’l5 Ih'Section v
we derive the feéult for all "leading" singularities, wifhout using
infinite series.

The expansion of (3.2') for § has an infinite number of terms,
one fof each diagram D+. An interesting finite expression is-obtained
by grouping together the contributions corresﬁonding to different
structures s. A structﬁfe ‘s corresponds to thé g;ggg bf basic
diagrams D5+ th;t differﬂonly:by the‘masSes associated With"thi
various sets of lines «. That ié, the maéses of'thé particles'téat
pass between fhe'two verticeé specified by o are not restricted; they .
are allowed to be anythiﬁg} | | |

This grouping of terms gives

s = Z s, - - (3.11)
The expression for Ss’vis obtainéd by:replacing each vertex of the
structure diagram by a minus bubblé, and each set of lines - by the

entire S matrix acting between the two corresponding minus bubbles.'

t
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This expansion (3.11) for 'S is something like
* » expansion,‘but with the following important differences:

1) Tt is strictly mass-shell and physical-region.

2) oOnly a finite number of terms contribute at any

%) ‘Bach propagator is the entire physical S-matrix.

L) Each vertex is a minus bubble.
This system of exact integral equations appears

but their exploitation is not our present aim.

UCRL-18512

a Feynman

finite energy.

to be interesting,
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IV. PROPERTIES OF S,

o -1, o ~
The function Sa is the inverse of Sa = Pa S'Pa’ where

Pa is ‘the projection on configurations of communicating particles

having a sum of rest masses greater than or equal to the mass Md

associated with the lines o of some Landau . rdiagram; The equation

for;SO[-l has a' formally Fredholm structure. In the case that M,

lies beIOW‘the lowest'fOur;particle threshold'(fdr commﬁnicating
particleé)_the équation for Sdfi has been converted to strict Fredholm
'férm.3x This has not yet been done in the general case.

The function Sd-l can be expressed in terms of § and Sf%

and their continuations. To obtain these expressions introduce first

the definitions

I T | C(ka)
and
Ry = Sy-I, ¢ S - (4-?)»
~These satisfy
R, + B, *R, R, = O. AR o ‘(h.j)”

Both Ra and R& are restriétéd to the épace allowed by Rx = Ia.
The function R& is the restriction to this space of the E;j;defined
-.by ?

R, * R + R, EZIR = AO R _,b ; (k)

[The projection of (4.4) on a is just (h;B).J :
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Define the quantity ﬁ; by

Ry +R +R Qalﬁg =0 o (3.5)

where Q + P, =1 and R™ = st - 1. The restriction of ﬁ; to the

.' N o+
space allowe@ by Qa is called %17
+ — '
= . . L,
It satisfies
+ - - ' ' ,
R, + Qa R Q,+Q,R R, =0, o (L.s5")

vBelOW'the fe threshola thé ‘Qaiﬁére irreievant énd ﬁ; can
bé identified with‘ Qa R Qaﬂv We showed in Ref; 3 that R; évaiuated
Just above the « 'threéhold cdincidés wiﬁh'the continuation of
Qu R Qa‘ from the physical fegiénvlying just ﬁelOW'ﬁhe q’ threshold,
. the continuation being via the minus ie rule. We also established a

 number of interesting relationéhips-between -ﬁ; and ﬁ&, such as

Ra .:: —RCX ' o IR (14-.8)
and
-1 R -} -1, -1+ -1
. S@ = Rd S Pa - Pd‘S %y S. Pa - Pa S Ra va R@ .
} S (4.9)
N v ‘_This latter equation (C.12 of Ref;rB) allows> Sa-l to be expressed in

terms of S_l and the continuation of Qa R Q, to underneath’the' o cut.
In Ref. 3 the iesultsujust described were derived only for ener-
gies lying below the lowesﬁffour—particle threshold of the channel in

~ question. However, they hold'also in general, at least in our iterative

.
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framework. To see this one can first consider R;, to be defined to
be the sum of all terms .. of the expansion (3.2) that contain no

direct channel o cut. That is, R;

.. is the sum of all terms of
ékpansibn (3.2) that exclude . the direct channelvnormal threshold
structure diagram D;, where (¢ specifies a certain sum of rest masses.

In this case our general expansion of S according to Q;'.gives

[see (5.10)]
s = sgt S + 3;\+ Q. - (k.10)

Multiplication on the left by S+ gives

» T . |
I =.8, St8 R, +87Q, . o (ka1
© Recalling that
8, = ;ax.sa  lPa o (hfle)

' 'andvnoting that
+ 4 ‘ £ P

Fa = QB % o (h'lB)
we obtain by left multiplication_of (L.11) by Qy the original
definition of (L.5') of R. | |

Left and right multiplication ofj(h.ll).by. Pa__gives the -

defining equation for S, 7". Left miltiplication of (4i1l) by B,
Tf and right multiplication by Sfl Pa‘ggives_(h.9). Equation (L4{8) can
be derived in the same way as in Ref. 3. [See (5.18) and Appéndix c

of Ref. 3.]
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The ahove argﬁment shows that the qUantity_ 3; ‘defined by
(k.5') is equal to thersum_of'all terms(but %&3 of the expansioh (3.2")
of 8 that exclude ”Da+’ '
tion of qu R Qu to underneath-the'cut startihg at the o threshold.

. and that it is accordingly, the continua-

It is suftrisihg“that.the R;- defined. by (h.5’> is the continua-
tidh of vgj R Qa to ﬁhderneath the « cut. For many terms of iterative
~solution to (k.5") do contaln D However,'aadetailed examination
‘shows that each such term of Qa R~ Q + Q R R is cancelled bylan
1dentlcal term w1th oppos1te 31gn

ThlS cancellatlon allows the results of Ref. 15 to be extended
without essential change to the regions above the lowest four—partlcle
channel threshold, except that the Justlflcatlon of some steps by
Fredholm theory is no longer supplled. We expect - . 1t eould be
supplied b& the same sort of argumehts that were given in Ref. 3 fer

the two-and three-particle intermediate states.
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V. . INDUCTIVE SOLUTION

" This section contains an altérnative derivationhofsfhévdis¢pn- :
tinuity:around "leadiﬁg"‘singuléritiésé; This.derivétiqn.doés néf rely
‘on the infinite'séries éxpansioﬁrfor S; bu£ is'baéed,ihstead_on the E
fésultévof'Ref. 15. >Thé pointb_ff ié as ébové.:'. v .>

The principal reéﬁlté of Ref. 15 are,ﬁhesei--(i) over any
bounded dgmain  S caﬁ be coﬁverted'by:a finite number‘of_applications
of 88 =T to the form (0] + R[D}], wheré“T[ﬁZ]v is.the_first |
‘Ferm on the right of (5.6'), and R[D;] is a certain finite sum of'
bubble diagram'anctiQnSQ EB, each corr¢5?onding tola :B that excludes
| the.nqrmal thféshbld.diagrém’ D;' of F%g;‘j. (ii)  Thé quantity .2
on the right va(5.3') can be?similarlylcanGrtéd to a finite sum i!

of FB's

, each correspondihg to a B that has no cut &' == that is
equivalent to a. .
The discontinuity around any leading singularityvcan'bé derived -

by repeated application of these two results. To do fhis, first select

a leading vertex V of D; [i.e., all incoming lines of Vv aré
incoming lines of D;]. Let D;(V) ‘be thé» D; obtainéd by contracting
, . n: .

all internal lines of D  but those that are outgoing lines of V.

_ B
Then any B that excludes D;(V)' will exclude also D;. Thus the

B second term on the right of
L+ +0q BT : :
s = T[D (V)] +R[D (V)] , . (5.1).

consists of terms that exclude'! D

.
B



5o ‘ © UCRL-18512

The first te?m on'the;righﬁ of (5.1) has.fhe’form of the first
“term on the right of (5.6‘); The part 5 of this term that isvthev
right-haﬁd side of (3.%3') can be conﬁerfed by'meéns of (ii) to a sum
X' of FB'S,,each'corresponding.to a B that has no o' & o equiva-

lent to «. This gives the alternative form
s =1 +R[D (V] . : : (5.2)

 ie% “D' be any Do that contains FD6+, with P on I(D').

Let C, be the sum of the leftmost cubs Cy of D' that
correspdhd to the sets o that begin at lVAVOf DB+; Property (ii),
‘ together with the requirement that the sets o be leading Seté, entailé_
that any CV in D' consist precisely of the gset of iines r ofrvT'
 that run out of the right-hand plus box and into ¥'. That is,
pfoperty (ii) requires aﬁj CVV to lie to the right of ', and the
‘cohdition that the various sets « be*léading sets rules out the

possibility that C,, lies inside the'pius box. (i.e., the kinematic

v

. constraints at P do not allow the particles in different leading sets
a to come together agaiﬁ.after leaving V. ' See Appendix c.)

'-Thus”any CV in D’ mustﬁconsist of preCisely-the lines F;
Let {pi(f)} be thé {pi] bfnthe‘uniqueS solution ofvthe Landau

equations of D * at ?. Tﬁenbthe only part of the'intégral over

B

" the lines of  P_ that conﬁributes"to the singularity at P associated

with DB+ comes from the region near the pdints where the 1 of T
assume the values pi(ﬁ): the other parts of the integral do not
+

5 to be satisfied at P..

~allow the Landau equations of D
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Let the lineé of T be divided into sets ‘Pa, one for each

of the sets ‘Ca' of C sﬁgh that near the poinﬁ P, = pi(f) the

V)
set T, contains the lines conﬁained'in Ca!}['Thenl T = T[Dﬁ+]- can

be separated into three terms:
T o= e’ et O (5.3)

The term Ta consists of those terms of T such that some minus bubble
'of T connects lines from different sets . qﬁf ;The remaining terms .
have no minus bubble connecting‘theSe.sets; and the séparation'into
sets Pa of the set I induces a corresponding ‘separation into sets
'Fa' of the set of lines ' that emerge from the minus box and enter

' ' . . - . S G A+
the left-hand plus box. ILet this plus box be written as. T‘[DB I+ R[DB 1,

A - ' . R ' -

where -DB+ is the diagram obtained by removing V from DB%. The. two
corresponding terms of T 'are called Tb and 'TC,‘respectively. Then
° is the desired T[DB+]f
' +
B -

A : , o
’T[DB+] is assumed to have the form described in the introduction, and

A ] . X ‘y . . . - .
R[DB+] is assumed. to have no singularities corresponding to diagrams

“We proceed by induction on the number of vertices of D Thus

. D+ that contain ﬁB+. The analogous property must then be derived for

+
DB .

In this section we shall’accegtsan;éxtéﬁdedj;independence

property‘thaifasserts that in any equation & = O derived from-unitarity-
“““—“l . . o

(or 88~ = I) the netvsingularity'cdfresponding to any basic diagram

P e s R oy ' ‘ c
_ Dﬁ“ is zero. That is, the various singularities corresponding to any

one - DB+ cancel among themselves: This is what one would naturally
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expect thé s1ngular1t1es correspondlng to dlfferent ba31é dlagrams

* should generally have dlfferent analytic characters and would not be

vexpected to cancel agalnst each other, even if they could coincide.
This assumptlon 31mnllf1es the present; proof but is not

‘actually necessary, as is dlscussed'ln Section VI.

The work of Ref. 15 that gives property (ii) can be extended to

'show that Tb = T[DB+] can be converted to a formv Tb that has the

v
' Consider, then, the identity

same property as T': any cut C. must lie in' L.

b'. . a b

T -T. . = T +T . | } ."-.(5-4)'v

sMultiplication on the right by the inverse 6f the.right-hand.piﬁs box
gives

FRo=F . o . L (5.5)
The equality of the two sides of this équation is a consequence of
unitarity (or sst - 1).

The function F' has the property of Z”:‘ any cut CV" must

“lie in . The function F ‘"has the oppbsite property: no cut 'Cv
can lie in TI. We conclude that F' has no.net singularity correspon-
“ding to CV in . But-then T' - Tb =T = Tb' can have no sihgu4

larity corresponding to D +. This property holds true also for

. B
S - T [see (5.1)]. Thus it must hold for their sum
s-1° =R - R(D)

This completes the induétionAprQéf.
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VI. DISCYSSION OF ASSUMPTIONS

-

The assumptibps used in our derivation of thé disébﬁtiﬁuity
formula'are'these: First, there are some éeheral éssumptions embodied
in the Clustér'decomposition prinéiple, the positive- ruie'(which says
‘that the singularities of Sc ‘and Sc- are.ﬁonfined_to positive-¢¢ Landau
sufface) and the‘ ie 'rule.‘ These general assumptions are consequences

of the macrocausality requiremeht, as was discussed in Section II. Second,
. ] :

there are the inaependence property‘and the technical assumptibn, which

are needed for the FUndamental Theorem. The iﬂdependence property is the

i

full content in this work of maximal analyfigity.“ We plan to discuss the
téchnicél éésumptioﬁ élseﬁhere.' | |

A third set of assumptions are special_éonditions on tﬁé point
P. In the first place, B is réQuired:to‘lie.on  L(Dﬁ+), but on no

. _ _ | o o
L(D") wunless p* ‘contains D 'Second, the directions 4, of the

+
B "
momentum-energy vectors corresponding to different sets « of internal

lines of DB+ at P are required to be all different. And third,' P

is required to be such that at P no 5+ contains DB+ in two

-essentially different ways. Thése conditionS'dn P are tovensure that
 positive- singularities associated with diagrams other than .DB+ do

not contribute at b, and that those associated with D T contribute

. , B
precisely once.

Tﬁe diséontinuitieé at pointév ? Lwhére‘these conditions.on P
fail can be calcﬁlated by making hsé'of thé ihdependence property.
'Subpose for example that 3  lies‘on -L(D+) -fofrsomé D" that doesn

+ T ) . v '
not contain D, . The diagram D  can be assumed to be basic. Then

B
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P must lie also on L(ﬁé+), where the basic diagram Bé+, is a contrac-
tion of D. (One contracts out the lines of D" that correspond to .

Q; = 0.) The independence property then ensures that the singularities

at P associated with the D5+ and 5é+ are independent (i.e.,
s

additive) unless there is some % " that contains both D5+ and DB

. B
. with P on L(ﬁg+). Since the Landau equations for L(DB+) and

L(ﬁé+) are both satisfied at P, this poinf’must lie also on L(BB+).

If P ~lies on L(D%) for no.other basic diagram D+, then one can
uclasgifyvall basic diagrams 5B+ such that ~§, lies on L(56+)

according to whether 55+ containg just DB+, Just Bé+, or both (and
~ hence also %B+). The terms corresponding to the lastAcase would be
counted in both T[DB+] and T[Eé+}. But'they.ére also the térms
included in T[SB+]. Thus the discontinuity is
r(n,*1 + 2(D,") - 2(B."1.

In this case P .l_i'e's“on:bot'h';:‘L(Dé*); dnd! ‘L(‘-ﬁé+)';‘and‘the' above

- discontinuity is the difference between the function in the physical

+ —_
d |
5 5 ) an L(Dﬁ. s

" where the continuation moves first through the plus 1€ region asscciated

+
~ region of D * and its continuation around both L(D

with ﬁB+,'and then thrqﬁgh the corresponding minus 'ie‘ region.

More general cases are treated similarly, by using the general
principle of incluéion and exclusion [see Appendix D of Ref. 15]. The
same sort of considgrationé'apply aléo to cases where one or both df
the”othervtwo conditions oﬁ P _féii: .agaih_one uses the independence
property together'with the principle of ineclusion and exclusion to

isolate the relevant set of terms.
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.”The fiual assumption‘is_that- R = é - T :has_no»uikedia
"s1ngular1t1es at P. _ |
We now argue that the sum on the rlght of S=R+T >should
have no net-mixed-a singular;tles. Slnce.the quantlty S on thetleft
.has singularities enly on:positiveea Landeu surfaces;vthe'only_possible
- net mi#edua singularities on the right are those that happeh to lie
‘exactly on top‘ef positive-a'surfaees. | | |
It is ceneeivable that these’particular mixedea.weuld.uot-caucel-
Qut; like all the:others.must,'but it seems'uulikeiy. In_thevfirst
.place the physieai:aréuments (maeroceusality) that imply that the
singularities of S are confined to'pesitivefavsurfaCes correlate these‘
singularities.to/positiveea diagrams; Thus it weuld be unnatural.for'
‘ethem to arise mathematically from other diagrams,'uhich'just heﬁpeu to
give the same Landauvsurfaces.l6'.ln therseCOnd'place; the mixed-a
's1ngular1t1es that happen to 11e on §051t1ve-a surfaces are 1nt1mately
related via hlerarchy effects to the mlxed-a s1ngular1t1es that do not
‘lie on pos1t1vefa surfaces. It seems unlikely that the latterrcould'all
vanish identiealiy without the former vanishing also. |
On_the‘basis of these arguments_we shall accept the proﬁosition

‘that in any equation of the form § =X derived from 58t =T the

mixed-0 singularities of the,bubbie diagram fUnctiohs that comprise
ethe right-hand side exactly cancel out‘(in the physical region).‘vThis
will be our basic assumption about miked-a sinouiarities It'may be
' poss1ble to derlve it by some inductive argument but we do not attempt

‘thls here



-L9- | UCRL-18512

On the basis of this assumption we can'éonfirm the absence of
the mixed-¢ singularities in R = S - T by confirming it rather for T.
. The only lines of T that can be minus lines are the lines of

the cuts C By virtue of energy conservation the momenta of all these

o
lines are fixed at precisely the value defined by.%he Landau equations
of D." at P. [The Landau equatioﬁs define the unique way of achieving

p

the boundary point of the physical region of DB+. See Section IT F.]

Any mixed-a Dj such that ? lies on L(DT) is a member of
a continuum of such D

solution of the Landau equations corresponding to P on L(D

This confinuum is generated by adding to the
T) a real

multiple of the solution corresponding to P on L(DB+). If the real

multiple is sufficiently large and positive, then the mixed-o DT is

converted to a DT+, because all the lines cofrespénding to the Ca are

eventually made positive.’ Thus any point F. on L(DB+> that lies on

the L(DT) of a mixed-u Dy mustilie also on L(DT+) for a continuum
, . L :

5 -

This shows that T can have no mixed- singularities at simple

e ot + + .,
of Do =$=DB » where D contalns D

points of L(DB+), which are points that correspond to just one DBo

At the nonsimple points P of .L(DB+) ~that lie on L(D "y for

o)
~+ the continuum of DT+ ¥ DB+. the meaning of our assumption about mixed-&

singularities must be clarified. For we have to consider diagrams that
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can be continuously shifted from mixed- to positive;a status. The
correspondence between.éjngﬁlarities and diagrams then becomes ambiguous.
At these points of 'L(DB+), where these'fleXible diagrams could give
mixed- singularities %o KT, werinterpret our assumption that all ﬁixed-a
siﬁgularities‘of T+ R céncel toﬁmeah that the only net mixéd-a singu-
larities of R are those assoéiéteﬁ with the same flexible diagrams that
give the pbssible miked-q'singularities of JT.H
Wiﬁh this interpretation-ﬁe can'shdw thatufhe mixed-¢ singularities
of R that might dccur at these special points would not, in any case,
upset our proof. The point_is,that contfibutions to R assoéiated'with’
these flexible diagrams must have minus ie continuationévpaét the
,:surface L(DB+). This is because the’coﬁstruction of ‘R ensureé that
chése contributions can occur'only if the minus lines of the (flexiblé)‘
diagram come from inside minus bubﬁles..'But then the proof of the
.Fundaméntal Theorem shows‘that the cOntinuation'past the surface
L(DB+) will follow the minus e rule, due to the presence‘bf these
necessarily minus lines. Bﬁt fhén the proof of the discontinuity
’formuiavwould go through even at these veryvspecial po£nts at which the
‘flexiblé'diagrams give singﬁlarities; |
In Section V ah exffa assﬁmption"Qextendéd.independence);”
was used to simplify the afgumént; .To avoid.the'assumption anrneed
modify the proof only slightly. Firsf‘the fgnétion"R[DB+]v‘is_considered
to be decomposed (using the ordinary independenée property) according
to basicrpositive—a diagrams f * | »

P

Theh the assumption of the induction argument is that all terms corre-

[this decomposition is unambiguous].

sponding to diagrams 5é+ that contain B +: Qanish from - R[ﬁB+];

. B
The analogous property must then be proved for R[DS+].



-51- UCRL-18512

The proof proceeds as before;.but>one nOW'decomposes also the
two sides of F' =F 'according to basic.pbsitivé-a'diagrams. Only
the terms that can contribute to the final D5+ need be considered
(see below); But the singularity surfaceé bounding the supports of these
térms aré'not the same on the two sides of F' = F. Thus théée terms

must vanish; But then T - Tb has no %erms,corresPonding to DB+. Nor
b b

~does 8 - T: Thus neither does their sum § - T° = R°.

[The condition that P lies on no L(D') for any D' not
containing DB+ implies that one‘need consider only terms that
contfibute to the final DB+. Eor if any other diagrams could exactly
compenséte.fof the missingrterm in F', then this term aiso‘would give
an unallowed p".] |

The argument given above in efféct justifies thevé#tended
independenée,property, in"the context in which it was used.

The present work generalized the resultsfobtained earlier by

3,13

burgelves “and by ‘l:he'C‘ea;mbridge_group.LL We now contrast our methods

,and results with theirs.

Regarding final results our discontinuity formula covers all

physical-region singularities whereas their general result covers only.

the ‘case of simple diagrams. (In simple diagrams each set « consists

of just one line.) They have obtained results also»for éertain special
nonéimple diagrams, and are working téward the general result.

Some‘thébréms in therearly paft of theii work are somewhat
similar to our Fundamental‘Théorem..ﬁoWéVer, the treétment 

of technical details is considerably.different in the two works .
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Qur basic procedure is quite different ffbm that of the Cambridge.
g?oup. " Their approach is in a Way more géneral, since théy first derive
general .- formulas for discontinuities of integrals-in terms of the
discontinﬁities of their integrands. Thenvthey use these results to
show that for'singularitiesiassdciated withvsimple diagrams the
Cutkosky discontinuity formula is consistent with unitarity. Finally
they show, by means of an inductiVe procedure, that no other solution
is possible: if the Cutkosky fbr@ula is'vélid for all simple diagrams
up to a certain order of‘complexity, then.if muét‘hold also for
diagrams of the;next order of complexity, provided singularities
.corresponding to nonsimple‘diagramS'can be igﬁored.

Their ?rqceduré, then, is first to.ﬁake a detailed générai'
‘analysis of'discontinuity'form#las and then to introduge these results
inﬁo unitarity, wﬁich is used in Oﬁly a limited way.

Qur procedure is the reversé.“ The méﬁipulations in&olved in
our appréaéh are purely foPOlogical and ianlve multiple applications
of unitarity (or more accurately the cluster properties of § and S-l).
Thése topologiéal ménipgiations give equations VS = R[DB%] + T[DB*]’
ﬁhere the topological,characteristiésvof-the terms on fhe right guarantee
that R[D6+} is the éontinuation of S aroupd L(Dﬁf) via the minus
ie ‘rule, and hence that I[D-

B

used only at the last stage,:and thus complications connected with

f]’ is theldiscontinuity. Anélyticity is
distortions of contours are avoidéd;
This procedure is more special, in that it refers to the parti-

cular problem at hand. But it yields.a variety of strict-identitiesl5



=53~ ’.  UCRL-18512

that can be ﬁéed in other contexts. These identities are conseguences
of the c¢luster properties alone and are purely topological in nature;
analyticity is not involved.

The assum@tiohs needed in the twe approaches are, with one
important éxcepfion, essentlally the same. 1In particular, the indepen-

dence énd boundedness properties are needed in both methods.ll' And the

' considerations involving the special conditions on P are essentially

vthe_same.

The one important difference is that the Cambridge group does
not assume that the singularities of § and S-l are confined to

positive~ surfaces: thelr aim is to derive this result. On the other

“hand, they do assume the 1e rules, for positive-u points, and also

certain similar rules at mixed-o points. Our viewpoint is that these

strong ie requirements should not be imposed ad hoc, but must be

justified.' We justify the ie rules,dn,the basis of macrocausality,

‘and get the positive-c ruie at the same time. Alternatively, one might‘

Justify the: ie rules on the basis of self'consistency, but one should

then also prove. unigueness.
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Appendix A. The Ihdependence Propertynend

‘the Eundamental Theorem

The Fundamental Thedrem quoted in»Seetion II H has slightly
_weaker assumptioos and-elightly stronger conclusions than ﬁhe theorems
-proVed in Ref. 12. 1In’this Appendix we discuss these assumptions, and
show how the proof of‘Ref..lQIoan be eXtehded'to give the theorem Quoted
| in Section iI F,
| One technicel detail should be menfibned first. Whet is proved

" in Ref. 7 is that sc (or sc‘) coneidered'as a distribution can be

represented as ﬁhe iimit of the ahalytic function. That is; this repre-~
sentation is shown to be valid when one is calculating the average of
Sé (or Sé') over a Schwartz test funetion. But what is needed t0
prove the strﬁeture theorems is‘something slightly different. One needs
. to evaluate products of different Sc’s and' Sc"s with one'another;
In the proof of the structure theorems each of these functions

S, and Sc- was considered to te a:limit of_the anelytic functions
described above, and their pfoducte were defined;.for cerfain fixedvreal
values of the external (unintegrated) momenta, b& performihg'the
‘appropriate integrationlover internal momenta along‘a multidimeﬁsional
contour that remains in the region of analyticity of all the relevent
functions ,Sc ~and S ", This contour is such that it can be'shifted ;
(staying in the analyt1c1ty domaln) to a pos1t10n arbltrarily close o
the real phys1ca1 reglon. By v1rtue of the (multldlmen51onal) Cauchy
'theorem such a shift does not alter the value of the integral.

For eny fixed real value of the (external) varlables K of

3. :
F(K) the integrations occurring in the deflnltlon of ¥ were assumed
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to be given by the above rule, provided the relevant domains of analyti-

city of the various functions Sq énd Sc- overlap in such a way that

the required contour through the intersection of the analyticity domains

~infinitesimally removed from the real ph&sical région exists. The

function FB(K) was shown to be analytic at such values of K, and the
rule for continuing the thus defined function 'FB(K) around any singu-
larity at real X wasvderivgd;

This rule defining the integrals in FB(K) was used to évaluate
the terms of SS-l,YESS_lSQ_etc. Ifréne considers the S matrix to be
defined basically inbterhs of limits of analyﬁic functions, thénvthis

L .

definition of the meaning of the 88" Y SSflS, etc., is the reasonable

- .one. However, if one starts with S and S"; considered to be operators

in a Hilbert space, then this rule for defining their products must be

justified. The required justification is given at the end of this appendix.
It was aséerted in Section II F that the independence properties

of Sc 'andb Sc- lead to analogous pfopertiesvof the bubble diagram

functions FB,* The point isrthat the proofs of the structure theorems

show that the singularities of FB corresponding to any basic diagrém

DB+ arise from singularities of the bubbles b of B that are
associated with the parts DBb+ of DB+ that lie in b, when 'Dﬁ+

B+’ These parts DBb+ must be basic diagrams, if D§+

is. Now by virﬁue.of'the independence property of SC the singularities

is

regarded as a D

of = b associated with different basic daigrams D

8b

+ .
are independent.

+ : -
. If any one specific D ~ 1s inserted into each b of B then one

Bb

+ . .
specific Dy is formed. This contracts to some unique basic DBﬁ+'

It thus follows that the singularities of FB corresponding to different
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bésic diagrams DB+ must arisé,from independent éingglarities of at
léast’ohé b of B, and must therefore be independent.

The independence pr0perfy can, altérnatiﬁely, belderived-froﬁ
ma.crocausality atvalmosf all pdints of the surface of singularities L+.
ﬁowever; there is then ﬁhe7problem of extendiﬁg-the property to those
rare (Type II) points at which this argument breaks down. |

The independenée:property is notviﬁcluded among'thé assumptions
mentiohed by the Cambridge group.ﬁ This omission is connected to their
. somewhat relaxed way of_specifying the‘prebise conditions under Which
‘their basic theorems are valid. :If one wishes to formulate their theorems

precisely,‘in forms strong. enough to do the Job, theﬁ the indepeﬁdence
property or somethiné similar seems'réquired. Following théir.bhilosophy
_one might try to justify the independence property by an'inductiQe
pfocedure: the indepehdence'pfoperty forbcdmplex basic diagfams &ight

be shown to follow from that of the simpler ones. Howevér, an inductive
;proéedure for proving iﬁdependence would involve an artificial assumption
that the;singulérities-can be "ordered', and that 6ﬁe can proceéa By
' stages, completely ignoriné,"highervorder"fsingularities at each staée.
But since the discontinuityvassociated with any D * is, in efféct, a

B

some of contfibutions.corresponding to diagrams that are more complex

than DB+’ a justification: of independence-based'on_"hierarchy" is
subject to question. In the‘pr0cedure‘we adopt no ordering is invoked,"
‘and there is never any ﬁtemporary neglecting" of certain singularitiés.

Also, the full content of maximal énalyticity is explicitly stated.
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The Second and Third Structure Theorems given in Ref. 12 are
specifically restrictgd to simple_points of the landau suffaces .L(Dé).
That is, it is assuﬁed tﬁét the poihﬁ 7 corresponds to a unigue
basic diagram. This assumpﬁion i8 needed because the‘arguments_cover
only the‘qase where there is only one constraint (3.7) (of Ref. 12).
.Now suppose there are many sﬁch constraihts, The question is whether
there is a éet of variations‘ 5hf of the Feynmén loop parameters that

~ keeps all the Bpjz = 0 and all the. 6&.>.O. (Such a set of vagiaﬁions
.wbuld»shift the contour simultaneously inﬁo the domain of analyticity
of all thé bubbie fUnctions, while maintaining all the:mass shell and
conservation law constraints.) |

To solve this problem consider the following lemma:

Lemma A -For any‘set of real numbers nbé the system of equations

has a solution Sa if an only if ﬁhe system of equations
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ZOLb Tpe = O OAD>OA ’ | (A2)

hés 1o sdlutipﬁ.

Proof Suppose (A.l) has a solution. Inseftion of this solution into

(A.2) gives a contradiéfion.' Thus (A.2) can haye'no'solution.,
Conversely, suppose (A.2) has no solution. Then the space X spanned
by positive linear combinations of the vectors ﬁ£ with compongpts
,nba ~is convex. Then therg_exists somé vector & that has positivg
inner product with every vector of .X. This vector solves (A.l), and
the lémma is proved. |

A slight generalization is

Lemma A' For any sets of real numbers and %ca the syétem of

nba

equations

O :Za Mg O  ~, o, >0, | | (A.3a)

:O='Z>\6,' -  (A.%D)
~ has a solution Sa if and only if the system of equations

“~ O Mg + &= By Mgy = O 5 o > 0 ;. , o {A.k)
' has'no.sblution.

 Proof If (A.3). has a solution then (A.h) can clearly have none.

Conversely, if (A.h) has no solution.then the space X of positive
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linear ¢ombinations of the .ﬁ£ mﬁét be éonvex and.must:contain no
vegtor in the lihear'space Y spanned by the AX&. Thus the érthogonal
complement X+ of X muét have dimension at least that of Y.
Moreover, X‘L -¢annot be_contaiﬁed in YL, forrthen‘ X wbuld contain .
vectors in Y. Thus if Y 1is non null then: there must be a nonzero

L. fThe%sﬁm of a multiple of

vector that lies in xt but not in Y
this vector with the vector in X -satisfying (A.Ba).<f0und in Lemms A)
solves (A.3), and the lemma is proved.

Lemma A° 1s precisely what is needed to extend the Second and
Third Structure Theorems to nonsimplevpoints.

It was mentidned.at the beginning of this appendix that:the
integrations occurring in the definitions of the bubbie diagfam functioﬁs
FB(K) were défined to be ;long contours-displaced infinitesimélly'from.
the physical region into the simultaneousbanalyticify domain of all the
occﬁrring'functions _ch and SC-, provided the real K was such that
such a contqur exists. The proofs of the structure theorems show that
such contours do éxist for most real K, that the FB(K) is analytic
B(K) continues analytically around the
remaining real point; K wvia paths defined by certain rules.

Tt is reasonable to define the integrations in the way

indicated. But if one begins with the idea that S and S_l are .

operators in a Hilbert. space then this rule must be justified. = The

problem is that macrocausality giveé the analytic representation for

SC and SC- considered as distributions, rather than as opérators.
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. It is not known whether this representation is Valid.for'operators.
iHowever, we now show that the functions FB considered as products
df opératofs restricted‘to the_épace of'Schwartzvtest functions ,can be
defined by,perfo;ming the integrationS‘along thevaistorted contours
described‘above;

k

Let H, H, and H
. P q _ ,
. functions of the multidimensional variables ©p, g, and k respectively.

“be three Hilbert spaces of square integrable

Let vA:Hq —aH? and B:Hp ~H_ be two bounded operators. - Let o(q),
X(p), and V(k) be Schwartz test functions of compact support. Suppose

for sufficiently small supports we krow that

(6 8 0) = 1m [ o a0 x"(p) Alo, 0) o)
€50 i ’ '
and
(Bv, ) - lim fd k d ¥ (k) B,(x, B) X(p)
. . €—)O ,
where = A (p, a) = A(p + e, q+ie) , and €= (e €) isa

vectdr_offfixed direction-hdng‘ih a certain open convex cone (which -can
,: depend on the small sgpports of X and @)) and simﬂarlyvfof Be(k’ P). -
The function A(p + igp?_q + ieq) fis suppose@ to be analytic when D
~and g ‘are in the suppqrts éf X and @, resﬁeqtivglyi and € ’ié_in
the cone, and similérly»fbf B.

| A[Thé functions A -aﬁd_ B. have ceftéin energy-ﬁqmentum_delta

functions as factors. The énalyticity discussed above is for the
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the factor that multiplies these delta fu;nctio'ns.-; as described in
detail in Réfs; 7 and 8. We shdll not explicitly write down the delta
function factors, but we:will:use the fact that the cbnservation laws
entail thatv Ap and By have compact supports if ¢ and ¥ doT
That is, the region of integration is a compaét "eycle'--it has no
boundaries. (See Ref. 12)

Consider fixed ® and W_'bf small compact supports. Let
Xi be a finite set of Schwartz test functions such that }:’Xi =1
on the compact\ P space; Suppose the Xi can be chosen so that the
corresponding aomains of analyticity of A andf B overlap, in the
sense that there is a contour  (21defiﬂed by e(?) such that
Ap + ;e(p),'q> is in the domain of analyticity cbrrespondiné to X,
and ¢_ ﬁhenever ie] and g are in the supports of Xi and o,

respectively, and similarly for B. We wish to show that

(BY, Ap) = fdp dq ak ¥ (k) B(k; D + ie(p))_x A<p +1e(p), ) o(a)

That is, we wish to show that the operator'pxoduct B*A, acting between

the Schwartz test functions V¥ and ¢© can be represented by an inte-
. ; CZ P . . ,

gral over the fixed contour (~. The contour C is displaced by a

finite amount from the real axis, but the assumption is that it can be

shifted fo arbitrarily close to the'réal region, staying always in the

coﬁes of analyticity.

It 1s sufficient for our purposes to consider only a special

class of functions  Xi.f These will be functions formed by taking
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products of functions.in the individual variables of p. Furthermore

. the functions in eachvindividual variable will be unity except at dis-
taﬂce less than. X\ > O. from the ends of its supports. The function in
fhe support and at disténce less than ) from the left end of the

support will be given by the- function

: -1/5 _1/5 . y-1/5 N\t -
‘e_X (} x0Ty é-(k-x) ‘ j)

]

£, (x)

e Nl
1 - e-(x—x)‘ 1/5 (e—x l/5 + ,e_o\‘_x> ]."/5 ) .

The right end will be given by the ahangOUS function. The viftue

of these funétions ié first'that they are easily combined to give
functions that add fo unity, and second that they are analytic except
at zero and A, and approach. their values at these points exponéntially
from any direction in -the cut (along their support) plane. .

Consider now the integral on the right of

O a9 = un [ ap x(0) Ao + 26, 0) 0l
€ 0 : : . y

/

E]

Because ofkthe analyticity properties of Xi one:can ferform the

7 lim € —aO“ by, instead of shifting the éﬁ%iré coﬁtbur dbwn to'the reél
: axiSz merel& exténding thé'cbnfou?‘in the surfaces Re 7 = X:Qjo and
x = )\ along the‘direction of € ihts € ; 0. This follows from a

distortion of the multidimension.cohtour, 
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Macrocausality guarantees that the functions corresponding to

A and B grow'no faster than some inverse power of ’e’ as € -0

'inside the cone of analyticity. The éxponential fall off of Xi at
"X = 0 then guarantees that,the limit € -0 can actually be taken;

_one can extend the contour right down to the physical region. At

X = A the contour aléo‘can be extended to € = 0, for the same
reason, provided one combines the parts coming from the two sides of
X = x.. [On one side one has the Xi of,the form of fx(x), while on
the other side one has Xi = 1. The difference falls of expon§ntially
as € -0 on the surface Re z = x.]'

One observes now that the contributions from these stfips at
Re z = x =0 and ) are exactly céncelied_by the contributiohs from
the neighboring Xi' Thus if one adds. contributions from many '
different neighboring Xi the contour of integration is free to movev

about in'the domain of analyticity excepf'for the parts corrésponding

to the outer boundary stripsvaSSOCiated with X =0 and X = A.

That is, in our original form the’ € were-reguired to be
constant over each doméin Xi‘ (and generaily a diffefent constant for
diffefent Xi) but we have noﬁ‘conferted this tova single conﬁinuous
contour Ci that varies.smoofhlyléver‘the unionvof ﬁhe supports.

In our case where the union of thé Xi cover the entire compact cycle

- in p space the contour éi néVerwdescendsito the real axis, but

remains always in the domain of analyticity.

blThe ébove results apply equally if all the Xi are replaced

by Xi elpu.- Thus the Fourier transform
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R - (P a9)
is'given_by :
F(u) = JLdp dg P Ap, a) o(a) -

- 8imilarly, one has

6(-w) = (BV, '-e‘?P“>'

L,dk ap ﬁ»_(k) B(k, p) e P

Becausév A and B ‘are'bounded operators these Fourier

transforms_are well definéd, and one‘can write-(up to factors of 2r)
(Bv, Ap) = fdu o(-u) F(a) .

The integrand in the exprcssions for F and G are.analytic
o'is p. That is, the integration region in p spoce can oe divided _
into small régions in which local coofdinates.can be introdﬁced. And
'1n each reglon the varilables correspondlng to conserved energy-momentum ‘
are 1ntroduced as coordlnates and then ellmlnated by the delta functlons,
leaving A and. B analytlc in the remalnlnc (local) coordlnates on
.the contour ' |
The functlon G(~u) F(u). is’infinitely:differentiable (because
.of the compact supports in p spacé) and_it falls off fapicly.(faster

than any polynomial) in all directions. The rapid fall off is due in
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part to the infinite diffefentiability of the o(a) énd (k) [which
are brought in by thg‘eliminaﬁion of delta functions] and in part to
thé analyticity properties of A and‘ B in the remaining (local).
coordinates. The A and B 'are analytic in some common cone C in
the local coordinates, and tﬁey grow novfaster than some inverse power
of ]e‘ on approach to.ﬁhe real physical‘région. Thus the argument of

Chapter IV C.a of Ref. 7 shows that F(u) and G(u) fall off rapidly

- uniformly in thevcomplement of the polar cone C+. The boﬁndedness of

F(u) and G(-u) follows from the boundedness of A and B  Because

“of the different sign of the arguments of F(u) and G(-u) the inter-

section of the complements of the two effective polar cones C+ is
empty. Thus G(-u) F(u) falls off rapidly in all directions.

This rapid fall off implies that

- | T by
(B¥, Ap) = lim jdu e l_l G(-u) F(u)

T]i—> 0

where the right-hand s;ge'is analytie in n, - Eecause éf the compact-
ness of the.p-space region df-integration the order of the integrations
can be in?erted, for sﬁfficiently large n; - The u integration then
gives.a sum of products of poles Qf thé form (Pi - pi' + ini)fl.
Taking the limit n;. — 0 then gives, after some élgebra, the desired
form. The main point is thatvas one lets»the .ni ;aO certain poles

4
cross the fixed contours C and /or C and effectively reduce them

to a single contour.



-66- ' UCRL-18512

Thé methods uéed above ‘can be'extended_to"show the,varioﬁs other
properties entailed by the asserfion that the analytic representation
exﬁends in the natural way ffom distributions to products of bounded -
operatorsvconsidered as distributions. In particular, the result
described above;carriee over to products of.many coperators, and to the
case where the g and k mﬁsf.also be shifted. In this latter case
one wants to-show that if (for sufficiently small supperts of © and
V) there is a cone C of analyticity in (q,ik)'lsuch that for each
point in thie cone one can find a contouTIOVer the internal variables
that remains,always'in the,domain.of analyticity [and hence that the
product pfvthe functions B'A = H is analytic in (q, k) = z]. .Then

(V,H ¢) can be represented as

lim J[ H(z + in) o(z) dz
N— O C '

wvhere Q =V O, and i7n is in the cohe C. The proof. goes precisely
as before with H and o replacing BV and Ap. The fall off of

((u) 1is now due-to the infinite differentiability of 0(z).
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- Appendix B. Supplementary Notes

t is. just minus one times the operator product of Fb with.this F

A proof of (3.2') by induction is easy. Sﬁppose’each'term of

,(3.2,) corresponding to a diagram B' having' n nontrivial bubbles
gives correctly the sum of the corresponding‘terms of (3.2). ‘Let B
~ be a diagram with n + 1 nontrivial bubbles. Select from among these

; a bubble b all incoming-lines of which are also incoming lines "of

B. Let the removal of b from B give B'. Let « be the ihcoming<

lines of B' 1identified with the outgoing lines of b. ~Consider the

' various terms t' in (3.2) that sum to give the term of (3.2') corre-

sponding to B'. From each such t' we construct 2m + 1 terms t

~of (3.2) that éofrespond to B, where m is the numbef of columns of

t' lying to the right of the first nontrivial bubble "b' of B

~reached by the incoming lines a of B'. 'Theée 2m + 1 terms are

constructed by placing b either in one of m' columns that lie to the

‘right of b', or in a new column (containing only b) that stands just

to the left of any of these COlumns,~or in a new column (containing‘

only b) that stands just to the right of the first column of t'. The

m+ 1 terms t involving a new column will all have one new-minus

-sign, whereas the m terms not involving a new column will not have an

extra minus sign  Aside from thése signs all the terms are equal, and
. = .

equal to the operator product of Fb with the §B corresponding to

 the particular term t' of (3ﬂ2), Thus the sum of the 2m + 1 terms

'

B

Summing over all terms t' of (3.2) corresponding to this B', one
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obtains all the terms t éf (3.2)‘corre$pOndin§ to“ B.  Sihce the
same operator -Fp is appliéd to each term Qné-obtains bj induction
vthe term of (3.2') corrésponding fo. B. |

- Aﬁ alternative proof of (3.2')‘tha¥'makeé uée of (3.1) is as
follows: Supposé (3;2’j‘ha$vbeen éhbwn to’hol@'fqr tefms corresponding
.~ to bubble diagfams having up to n -1 nontrivial minus Buﬁbles.
' Substitute (3.2') into the secoﬁd term'pf_fhe right-hénd side of the
equation R+.= -R- - R+R-; and consider thehcohéributio#s to the
fiéht-hand sidevcorresponding to ‘a bubble diagram Bn_’where the
subscript. n indicates the number of nontrivial'minuslEubbleé) .The:
éontributions to ;R+R-' carrgspond to SOﬁé Bn of the product.form
Bj+Bk-- (so that the outgoiné lines of ka- are identical with the.
ne " consists of‘a'CGIumnvofl k non-

ingoing lines of Bj+) where Bk

triﬁial'm%nus bubbles and of unscattered lines and where Jj + k = n,
with 'j“and k no less than 1. Let i be the number of initial
bubbles af an where_én initial bubble is a.ndntrivial bubbie whose
ihcoming lines érevallvexternal. All bubblesvof Bk- are initialv
bubbles; |

| . Suppose at first that Bn does not con;ists Qf a single
" column of nontrivial miﬁus bubbles and unscattered lines. Then all
contributions to  -R” - R'R” having n nontrivial.minﬁs bubblés
'come frph -R+R-. oniy and ﬁust corfespond.to bubblerdiagrams | v w
.',Bn =‘Bj+Bk-' where k = 1,2,"'?1_ witﬁ i < n, . There ére» Ei - ;_

different ways of constructing' Bn all of which give contributions
: . : N B _ .
+ - .
to -R R ~ having the value ¢F o These add up to.
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. ~ ':_FBn (_l)n"_1<l> . ‘(_i)n-2<_l> S ﬂ(_l)nfi(l) ) (_l)nFBn .
o | 1/ 2 i |

Suppose ﬁe#t that B doesvéons;st of a bﬁbblevdiagram
topologicélly equi?alent fo a éolumﬁ of‘ n nontrivial minus bubbles
and of unscattered lines so that'_iv= n. Tﬁen the reasqning justvgiven
still applies but'nﬁw the laét:ferm ip the above sum is missing because
k < nt= i,  and -alsa k-Rf‘ in -Rf‘- R'R” now gives a contribution

By By ) n-i { ) By
-F ©. Since -F is equal to -(-1) F when 1 =n, we
i N

‘get the same answer as before. Thus, expansion (3.2’).is verified.

Page 21, last line

"As an example of the meaning of topological equivalence conéider

the bubble diagram of Fig. L.

Fig. 4. A bubble diagram B.

Certain contributions to FB will correspond to the case where all
' o . 1’ the internal lines correspond to the same typé of particle. If one
‘ simply integrated without respecting the requirement of topological

" independence then one would get a contribution that would be too:large
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by a factor.of 2! 2l‘2"3"3"{vahe two. 'j'?S»EOme'from the triples

of llnes on the 1eft of the two 1ntermed1ate bubbles 'Two of.the"2f’sv,‘1 , 734?

come from the palrs of llnes on the rlght of these bubbles The ‘other
.
' 2! ‘comes . from the topologlcal equlvalence of the upper and lower
intermedlate bubbles
Page 21& last llne minus 2
The deflnltlons of equ1valent cuts and of left most cuts are
‘>J.1llustrated in Flg 5.
by
Fig. 5. The cuts C ;_ (Ll, L) and Cy o= (L5, Lh, L )
.‘ahe eouiveleht; vcg. is a leftmost cut 5':—_(L6,VL7)
not'eQuiValent'to 'Cl or C,.
Page 29’ last llne - _" : | R | : : : T o .: ".,

_ The unlqueness, near the o threshold of the leftmost cut

;fequlvalent to a cut C, plays an. 1mportant role in the arguments \xAtlb'

:;~some flnlte dlstance above threshold thls unlqueness may fall as the

L

i'follow1ng dlavram shows
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Fig. 6 A diagram with two leftmost cuts equivalent to. Cd.
We take Mé < Mb Throughout this work it is assumed. that
the mass values of the stable particles havé no accumulation

points. It is then easy to see that the leftmost cut is

unigque in some finite neighborhood of  the « threshold.

 Page 3L, line 2

1

For any set of leftmost cuts Ca in B-"corresponding to
"the sets o of DB+ there is a mapping I of D(B") onto DB+
Each such I defines a set of parts rt v of D(B") [and hence of

B ] corresponding to the V of D * Each such T defines, in fact,

B’

precisely one way that VBf is realized as a term-of T.

An example of a B that contains a D_  in tWQ distinct ways

+
B

" 1s shown in Fig. 7f
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Fig. 7. A bubble diagram B that contains a certain DB+

in two essentially different ways. This Dt s shown_in

Fig. 8.



Pl

_’75 -

Fig. 8. A ‘DB+ that is contained in two essentially

different ways in the B of Fig. 7.

UCRL-18512
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. " - . Appendix C. Strongly Equivalent Cuts

In this appendix we show that anyAcut' Ca corresponding to

a of D5+ can be replaced by the leftmost cut Ca' strongly equiva-
lent to it without destroying_itsvcdrrespondence'to a va DB+.
. The'condition that B~ contain D T s equivalent to the

T B , _
condition that there is a continuous mapping T & D(B7) ;>DB+ that

~maps D(B") onto D T, The external lines of D(B-) must map onto

B .
the external liﬁes of DB+ identified with them. The lines of the
cuts C, = r-l Q@ are in one té.ohe é6frespbﬁdence with fhe iine; of -
a. Thé iﬁ?erse image F-l v .of-vertex V of Dé+’ is the part of
D(B") that corresponds tov V; -

The point P is assuﬁedvto satisf&,the followiﬁg'cénditions:
(1)  P lies on L(Dé+).* | | |
. . ﬁ ..
(3) " The ;olution of the Landau equation of 'DB+ at P defings

momentum-energy vectors pj such that no line of any set .

(2) P lies on L(D") only if D" contains D'

of DB+ has.its- Pj paréllél to that of any_line of any other

set 'a of D
B

of DB+’ and $pe¢ifies the seﬁ‘of lines Lj runhing~between

+ ' N .. .
. As before, «a runs over pairs of vertices

that pair of vertices,
We make use of one important kinematic_résult: If D(B")

contains D * then the equations of energy-momentum end mess constaint alae

B',
require that if the external lines of D(B-) have the 55'3 defined

by f, then the unique values of the 7p,'s of the lines of C_ = P-l a
: A : Bl - v a ?
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subject to the conservation law and mass-shell constraints on these

lines, are those defined by the Landau equations of D * at P. This

B .
result is closely connected to the fact that L(DB+) lies on the
boundary of the physical region of EB+,'and ié proved in the éame
way.lo’3

Tﬁe arguments'in the text are purely topological. In this
appendix we make use also of ﬁhe kinematic réquirement Just desdribed.

That is, we shall require that the contribution to the integral corre-

sponding to B~ actually satisfy the'énergy—momentum conservation laws

. required at- P. By considering a'sufficiéntly small néighborhood of

P. the internal pj can be cbnfined to an arbitrarily smali neighborhood
of the values réquiredVat P. Thus we can éonsider the 'pj of the lines
of the various. sets Ca to be in a small neighborhood of the values
defined by the Landau equations. |

| At P the momentum—energy Vecfors of the various lines corre-
sponding ﬁo any single Ca are>all”paf§llel, by virtue of the Léndau

equations.' In some particulaf Lorentz frame they are all at rest.

. ] _? . . t
Consider any Ca strongly equivalent to Cq, Since Ca' rand Ca

defiﬂe the same set of flow lines their total energy momentum is the

same. Since the total rest masses are also equal, the lines of ‘Ca’

- must also all correspond to particles at rest, in this particular frame. 

We now prove the following resulf: If Ca' is"sfrongly equiva-

“lent to C,» and lies left of it, then Ca' lies in r_l V, where V

is the vertex of DB+ upon which the set o terminatéé.-
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Let B labél the various outgoing sets of lines of V and’
let Cg = g, The momentum-enérgy vectors of the lines of CB are,
by assumption, not parallel to those of Ca} Thus no line of Ca' _ n

can coincide with any line of any C Thus C_' must either lie

B a
completely within Pfl V, or there is a part of D(B") that consists

of a set of paths that begin with certain lines of the sets CB and

end with certain lines of Ca’. Let this part of D(B) be called Q.

We wish to show that Q is necessarily empty; i.e., that Ca' lies’

in v,

+
p

.‘conservation requirements at P can be satisfiéd,dnly'if the lines of

Cénsider PQ, the image éf Q in D The energy-momentum
.TQ, carry the momentumjenergy'préscribed by the Landau eguations, as
'already noted. But if the energy—momeﬁfum Qectors are as ﬁreséfibed by
chefLandéu equations then the vectors aipi = 4 X, can'Be interpreted
as spacetime displacements: these disblacements must fif togeﬁher to
give a_classical—multiple scattéiing prdcess. _But tﬁen‘the arguments
of Ref. 9 immediately rule'éut the possibility that @ is‘nongmpty.
-For the initial particles of FQ' all start at the common vertex V;
and they di;erge from that point. "It is then not‘poésible that they
transform by multiple scattering into a set of particles all relatively
at,rest, without allowing extra particles that come in from'outside n
(i.e., that do not Starﬁ at V). vBﬁt interactions with extra inéoming v “
particles fhat do not start at V-vis incompatiblé'ﬁith'the coﬁditién .

that Ca' ‘be strongly equivalent to Ca.
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Thus TI'Q must be empty and Ca’ must-thérefore'lie completely
in P_l V.
But if Ca’ lies complefely,in ‘F-l V then it can be used in

place of C, in making the correspondence of D(B") to DB+: the

topological structure is not altered by replacing Ca by ‘the leftmost

“eut Caﬂ that is strongly equivalent to it. This is the result that

we need. A slight alternation of the argument shows that Ca can be

- replaced by any cut strongly egquivalent to it without disrupting the

+

B

correspondence to o of D
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