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pairing in Nuclei 

Abstract 

Oliver Davis Johns 

Parts I and II of this thesis deal with the general 

problem of adapting the quasi~particle approximation to 

give satisfactory results in nuclear systems. Part I shows 

that the projection of correct particle number from the 

number non-conse'rving quasi-particle ground state vector 

can give excellent agreement with exact ground states, when 

the quasi-particle ground state is' first modified by an 

exponential four, eight, etc., quasi-particle operator. 

The similarity of this ground state exponent:i,al form 

to that predicted by the quasi-boson method leads to Part II, 

which considers the generalized problem of computing both 

ground and excited seniority zero 0+ states of nuclei. 

The results of Part II demonstrate that excellent overlap 

of boson and exact 0+ states is obtained if the following 

revisions are made in the quasi-boson method: 

(1) The zero energy boson used to help define the 

boson ground state should be a certain linear sum of the 

spurion and its conjugate, and not the spurion alone. 

(2) The first excited state for moderate to weak 

pairing potent;ial strength is a two. boson state consisting of 

one zero energy boson and one non-zero energy boson. 

(3) The striking failure of the method at subshell 

closures can be circumvented by slightly altering the 

average particle number. 
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Part III of the thesis illustrates the method of 

exact, number conserving diagonalization of the many body 

Hamiltonian matrix. This method, -which is practical only 

for non-deformed nuclear systems, is conceptually simpler 

than the quasi-particle method in which much effort must 

go into the isolation and correction of approximation 

produced inaccuracies. 
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In 1958, it wa.s suggested that the energy gap in the 

spectra of even-even nuclei could be predicted by using 

approximation methods from the theory of superconductivity 
1 

to treat a phenomenological nuclear pairing force). A 

pairing ferce in nuclei is here taken to be an attractive 

two body force acting most strongly between states of 

time reversed pairs of identical particles. (This thesis 

will consider only pairing of like particles, although 

many results presented here are also relevant to n-p 

pairing. ) 

This initial suggestion was pursued by others2 ,3). 

Impressive qualitative agreement with nuclear spectra, . 

moments of inertia, etc., was obtained. However, as the 

calculations were refined, doubts arose as to the accuracy 

of the methods being used. First, the state vectors from 

the superconductivity-approximation are not eigenstates of 

particle number. An approximate ground state of the Ni60 

neutron system, for example, contains large components with 

28, 30; 34, and 36 neutrons,- as well as the desired 32. 

Second, the approximation fails at closed subshells When 

the pairing potential strength is reduced below a certain 

value. Both of these problems reflect the difference 
22 . 

between a system of some 10 electrons per cubic centi-

meter in a metal lattice and a system of some hundred 

nucleons in a nucleus. 

This thesis is a study of methods of dealing with 

8 



pairing forces in nuclei. It is divided into three parts. 

In Part I, the quasi-particle formalism developed in the 

theory of superconductivity is outlined, and method.s of 

adapting the formalism briefly discussed. Part I concludes 

with a numerical investigation of what is, in a certain 

sense, the maximum accuracy obtainable from the quasi

particle approximation with projection of exact particle 

number. It can be considered a feasibility study leading 

to Pa.rt II, which is a theoretical and numerical study of 

the quasi-boson or·linearization method applied to the 

nuclear pairing force problem. Part 11 concludes that if 

certain precautions and limitations are observed, the 

method can predict well the ground and first excited seniority 

zero, 0+ states of nuclear systems. Part III is a departure 

from I and II in the it abandons the quasi-particle approxi

mation in favor of exact diagonalization of pairing potentials, 

in seniority truncated spaces. A method is developed which 

allows, for example, exact diagonalization of single closed 

shell nuclear systems far from shell closures. The utility 

of this method, which is similar to the quasi-spin formalism, 

is that the complexity and time cost of the computation are 

not much greater than those 6fsome of the more elaborate 

methods based on the quasi-particle approximation. The 

resul ts, however,· are exact within the space comsidered. The 

method· is illustrated by application to several single closed 

shell nuclei. 
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1. Brief Introduction to Nuclear Pairing, 

Most research into nuclear spectra is presently based,' 
1 . 

on the shell model.), in which individual nucleons are assumed 

to move independently in a single particle potential which 

is presumed to represent their average mutual -attraction. 

Techniques such as the. Hartree-Fock method exist_which can, 

in principle at least; extract an effective single particle 

potential from a known two body potential acting among many 
2 nUCleons). HoweVer, at the presE;!nt time most calculations 

of nuclear spectra take theassumeq. single particle energies 

either directly from experimental observation or from a pheno-

menological single particle potential well based on experi-

mental observation, or from a combination of both. 

It is found that the correct prediction of the energy 

levels, transition rates, etc., of nuclear spectra also 

requires the assumption of a residual two body potential in 

addition to the above single particle one3). Thus the model 

of an actual-nuclear system has state vectors which are 

superpositions of the various' configurations (arrangements) 

of pucleons among the single particle levels. 

In the many body formalism, the Hamiltoriian of nucleons 

in single particle orbits with configurations mixed by a two 

body residual potential, V, is 
... _-- "' - "' ... ~ 

(1) 

12 



The operator 

state labeled by ~ 

coUnts t.he number of particles in the 

+ ,and c~ and ccol,. create and annihilate 

. a particle, respectively, in the same state. The e..c" is the 

single particle energy of the state. The bar over V indicates 

that the two body matrix eleme~t is taken between anti-symme-

tric two body states. Since nucleons are fermions, 

+ "" Co{ C~ + C~ Cot 
(2) 

The exact form of the states labeled' by'.,thesubscr1pts 

depends on the transformation properties assumed for H, as 

well as the scheme chosen for coupling the particles in many 

particle states. For this thesis, most use will be made of 

systems in which H is assumed invariant under rotations and 

in which each single particle state is taken as a state of 

definite total (spin plus orbital) angular momentum. This 

is the j-j 'coupling model, in which subscript stands 

for nQ(., .tot.. , jcx.,"m",,; where n Dt is the number of radial nodes, 

~o{ is the orbital angular momentum, j 0<.. the total angular 

momentum, and mo<.. is the"z" component of total angular mo-

mentum of the single particle wave function. The subscript 

could also indicate that the particle.is a neutron or a pro-

ton. However, for the present purposes this is not necessary, 

since only like nucleon mixing will be treated. 

By a simple and well knm'ln algebraic identity, H can be 

13 
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rewritten, for any potential, V, in the form 

(3) 

where 

~ 
~ 

n· :: C· C j 1M JY\I\ J VIA 

and 

"- i <~,.iW\\SM> + t 
(J. .. (.JM) :; c i., CjW\ 

(4) <-J 'W\ 

The (iqjm I JM> are vector coupling coefficients. We 

have followed the usual practice of labeling state n,l,j,m 

simply by j,m (or i,q). The identity follows from the defi-

nitions by direct substitution, using the known symmetries 

of the vector coupling coefficients. The integer J is the 

total angular momentum of a pair of particles and M is its 

"z" component. 

A pure pairing potential is one for which 

J-/:o (5) 

14 



Then 

H~ Z ej If\j 
j 

where 

G~j ::. 

and 

Z Gt .' 
~/z - .a. Co(, 

'" -:j 
..., 

G(C:~jj 0) 
[('-'-+1) [(.:tjt1) 

1 -~ 
-r 

0... .. (00) 
JJ 

'1f1. + .n. ct' o..~ ,j , J 

In the m-basis, H for a pure pairing potential is 

j-'" 

(-1) C j -W' C; j \>-'1 • 

(6 ) 

(7) 

(8) 

A constant, pure pairing potential has Gij = G, a constant, 

for all i,j.This latter has been nuch used as a phenomeno-

logical potential of extreme ,simplicity, which is nonetheless, 

capable of introducing configuration mixtures known to exist 

in nuclear systems. 

It is obvious that any-potential, V, has a pure pairing 

potential as its J = 0 term. Moreover, for short range poten-

tials,such as the delta fUnction potential, the terms with 

J = a ~re systematically smaller that the J = 0 term. 

15 
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2. The Quasi-particle Approximation 

Assume a pure'pairing potential (as in eq~ (6) ) acting 

'among n nucleons in some single particle basis. First, 

assume n to be even. It follws simply from the' commutation 
. + . 

relations of aj and nj (see Part III of· this thesiS) that 

the exact spectrum of seniority zero (all pairs coupled to 

J = 0), 0+ states of the system,including the ground state, 

can be obtained by diagonalizing H in the space created by 

various products of the different aj operators. However, 

the dimension of the space may be impractically large in some 

cases. For example, for 2p particles in 2p levels each with 

( 1.pf) j = t, there are configurations. For p = 10, a fairly 

small number for actual calculations in the deformed region, 

( ~1 ~') v is greater than 105. For such cases, a simplified 

state vector is obviously necessary. The one discussed here 

was first introduced in the theory of superconductivity4). 

The formalism, which is well known, will be outlined here for 

reference. 

Instead of " the exact form 

£ Cp ,'" \9-:)p ((Aj)' ... \ 0) 
p, ... 

where-the sum is over all configurations satisfying; 

p + q + ... = n/2, an approximate ground state vector 

, 
(9) 

(10) 

16 
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is used, where 

is a normalization factor, and Uj , Vj are real and positive. 

In the m-basis, 

\ C;>" n (U j + Vj c..r '" t1 {"" C j - 1M) I ():> 
j 

~')o 

(11) 

I 0"'> The vector is called the quasi-particle vacuum stat.e. 

Normalization requires U} + V} = 1. Thus the approximate 

ground state vector has, instead of the large number of co-

efficients, Cpq ... ' ol'lly one independent paramenter, '1, per 

single particle level. 

Pa:rticle number conservation is violated by \ 0) . 

The average particle number is set equal to the correct value, 

Z 
t 

<::;0 I ..... 
\ ~) 2Vj ~i (12) v\:::. V\ :; 

J 

where 

V\ :: £ "'j 
J 

One can proceed to rri.inimize the expectation value of H, 

subject to the constraipt (12), 

17 
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~ (0) K -). V\ \ 0 > = 0 
(13) 

The La~ra.ng;e multiplier, 1.. ,is then the Fermi energy of 

the system, 

-rJ...V\ <'D\HI~> (14) 

An equivalent procedure5) is to make a canonical transformation 
+ 

from operators c jm to operators ~jW\ defined by 

o (15) 

It follows that 

.... + 
".,/ - U· c.. '""'jW\-\ - J j M (16) 

Then H-AV\ 

of o<.~ 
JM and 

to diagonalize 

, with Hfrom eq. (6), is rewritten in terms 

a<.jW\ ,and the Vj parameters are chosen 

li ,.. A \i\ ,except for terms containing products 

of four of the new operators. This reduces 1-\ - X·V\ to the 

form 

(17) 

18 



where termHo contains no operators. The result is 

with 

E = , 

J 

and 

D..' :: .(, 

1.;1 i-f:)., 
J 

4r;..;, U' V, .Q.J' Y \,;;(t-J . J J 
J , 

leading to the con"sistency condition 

Also, 

1 

- 1.. 

L;). • ..n.' 
. j J 

s-
J 

=-z ZV· z .1L. , J j 
J 

(18) 

(19) 

(20) 

(21) 

(22) 

The approximate ground state of an even system is then 

0) ,and the approximate excited states are of the fonn 

19 
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The approximate ground'state energy is .Ho+ A Y\ The 

excited states are. thus separated in energy from the. ground 

state by at least (Oi. i' Aj) , which is of the order of 1 MeV. 

They are separated from each other by 

which is of the order of KeV. This reproduces a striking 

regularity of the spectra of even.,..even nuclei. The ground 

state of an odd system.is 

and there is no energy gap b~tween the odd ground and excited 
+ . 

states. The operator o<.JM is a superposition of a particle 

operator and a hole operator; i t 'i~ :called a quasi-particle 
+ 

creation operator. The quasi-particle ~jV\l\ creates an ele-

mentary excitation of energy Ej,which is called the quasi

particle energy. 

20 



3. Proj ection of· Exact Particle Number·· 

Two immediate -shortcomings of the quasi-particle 

approximation just outlined are: (1) number non-conservation, 

and (2) the vanishing of non-trivial solutions for some values 

of parameters (weak pairing) . 

(1.). The ground. state vector, eq. (10), is a product 

of sums. Each sum has p of the a; operators in its pth term, 

with p running from 0 to JLj . Hence the product, when 

the factors are multiplied out, contains terms with every 

even number of particles from 0 to 2..n.. , where .n.. is the 

sum of all n' J That is, 

A. 

\0) - ?.1rlf'r> (23) 

where \ f'r"> denotes all those terms from \0) which obey 

V\ IFf) 2 r1rr) (24) 

(The operator n counts the total number of particles in 

all levels.) In realistic calculations, the distribution 

of I ~fl·~ I versus p is peaked about the correct average 

value determined by eq. (12). The rms spread of this dis

tribution may amount to some 10 or 12 particles. Thus the 

quasi-particle approximation results in the averaging of any 

calculated properties over a set of neighboring nuclei. In 

21 
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its unmodified form, it should not be expected todistin

guish those properties which vary sharply from one nucleus' 

to the next. 

(2). When the average particle number, n, is equal to 

a closed subshell of particles, the consistency equation (21) 

has only the trivial solution llj ~ 0 whenever the potential 

strength, Gij , is less than a certain critical value, Gc
6). 

(Set Gij = GXij and then decrease G. For G<Gc ' the only 

solution is 6" '::: 0 .) Wben D.J" =-0 , eqs. (18) show that .J 

1... 
1 VJtA.eV\ };. y. ~ e' < 

J l 

~ (25) 

V" - 0 oN lAeV\ e" ') " J J 

Since ? moves to a point between the last filled subshell 

and the first empty one, the result is a state 1 D> with 

only the one configuration giving the least single particle 

energy. This can be seen by substituting eqs. (25) into 

eq. (10). ,This vanishing of configuration mixture for non

zero values of Gij is a failure of the approximation method. 

It is not found in the exact solution to the pr~b~em. 

A number of methods13 ) designed to 'deal with failure (2) 

have been proposed. The methods retain the number non-conser-

vation implicit in eqs. (10), (11) but modify eqs. (18) - (22). 

We will concentrate here ona method for overcoming failures 

(1) and (2) by, essentially, abandoning eqs. (18) - (22), and 

22 



retaining only the form ofl 0> and the definition of a 
t 

quasi-particle, ol.j"" (See eqs. (10), (11), and (16).) 

Consider a projection operator Zk' defined by 

(26) 

. Then 

) (27) 

\ 
A.o > This operator picks out of those terms having k 

particles. It is found7) that if, in a nuclear system, one 

solves the quasi-particle equations (18) - (22) for an average 

n, and then operates on the ground state vector by Zn' the 

quantity 

< c: I z ht1Z ~ \ 0 ') 

<o\Z\(I.\o> 
(28) 

is closer to the exactly calculated ground state energy for 

the system than iSltheterm·~o+~\I\ iIi. eq. (17). Also, of 

course, the resultingeigen function 

23 
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(29) 

where ~ is a normalization factor, is an exact eigen state 

of particle number. In ref. 7), the authors also projected. 
+ ",. 

correct particle number from the seniority one states'~j~\O>, 

of odd isotopes of Ni and found, after normalization, better 

than 0.99 overlap with state vectors from an exact matrix. 

diagonalization. However, since eqs. (18) - (22) were first 

solved for the Vj , before Zn was applied, failure (2), above, 

still is present. 
8 Other workers) abandoned eqs. (18) ~ (22) entirely, 

and instead developed a formalism to minimize the energy 

2 directly as a function of variational parameters Vj . Using 

a saddle. pOint method, they prove that the minimum point in 
2 Vj space is always non-trivial for an attractive potential. 

Configuration mixing is present for all non-zero values of 

A later paper9) performed calculations using a·delta 

potential in deformed nuclei, using both the method of pro

jecting after using eqs~ (18) - (22), which the authors call 
8 PBCS, and the method of ref. ), which they, .. call FBCS. (PBCS 

and FBCS stand respectively for projected or fixed particle 

treatment of the superconductivity state vector first proposed 

by Bardeen, Cooper and Schrieffer.) The paper9) finds that, 

24 



as predicted, the FBCS method always leads to non-trivial 

solutions, and further, that it always predicts. "more confi

guration mixing than the PBeS method. The authors find that 

in regions of strong configuration mixing (large Gij ), the 

FBeS and PBeS methods give similar results. This similarity 

for large Gij is interesting when one considers that the 

region of NL. isot6~eSjtreated in ref. 7 ) by the PBeS method, 

is· a region of particularly strong mixing. The questlon of 

the overlap of PBCS or FBCSstate vectors with exact state 

vectors is left unresolved for the case when Gij is small. 

A comparison has been madelO ) of the exact and PBCS 

state vectors for a simple model system of two j = 9/2 levels 

containing. 10 particles. The authors of this study find that 

for large force strength ( Gij = G assumed constant), the 

exact and approximate state vectors are very close, a result 

similar to that obtained for the Ni isotopes7). Of course, 

since the systemlO) has a closed subshell, eqs. (18) - (22) 

give only a trivial solution for small G, and the PBeS method 

fails there. 

For small G values in a similar model system, another 

paperll) reports ·that the FBCS method, although it gives non-

trivial solutions for small G values, tends to underestimate 

the amount of configuration mixing, compared to exact solu-

tions. The authors found that this underestimation could be 

somewhat corrected by introducing a four quasi-particle term 

into the ground state. The results of this paper will be 

discussed in detail, and extended, in the next section. 

25 

; 

... I . ! 

J 

, 
I 



.. 

4 .. A Two Parameter Approximation 

Consider a model system of two single particle levels 

of equal total angular momentum, j, and containing ( 2j + 1 ) 

particles. Each level can contain up to .n.~ :.i(?j t,1) pairs 

of particles. Tpe system is thus half full. The symmetry of 

this system $implifies the theoretical treatment of it. Hqw-

ever, it is complex enough to show features of actual nuclear 

systems. Consider the Hamiltonian, eq. (6), acting in this 

system, with constant Gij =G, 

H= (30) 

Since both levels have the same j value, we have changed 

notation slightly to denote levels by integer subscripts. 

·When ~:::; G/ceZ.-e1) «1, the correct ground state vector 

for this system: can be written, to leading order in g 

..n1 

\<p> -= Z Cca 1..Q.1-' ,) (31) 
'1 

with 

( :') 
, 

~ - 4\ (i ~) 

and· 

26 



I 
where the ~ 5 are normalizing factors as before. This 

result follows from eq. (30) by the use of perturbation 

theory, keeping the leading order term for each Cq . 

The quasi-particle approximate ground state vector for 

this same system is (eq. (6) ) 

\5)::. (32) 

Operating with Zk' where k::.1..,.(l1' gives terms with fJ,~"'..Q1) 

Gt) (33) 

which can be rewritten in terms of a Single free parameter, 

X. 

x = (34) 

(No generality is lost by taking Ul = V2 and hence VI = U2 .) 

(Note that eq. (35) is normalized to unity only in the 

limit X = 0.) 

(35) 

For this system, the eqs. (18) - (22) have a solution 

in closed form, due to the symmetry of the half filled system. 

Since the number of particles is just sufficient to fill the 

27 
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lower subsBell, there is, a critical value ofG 

such that G <U implies c. (Since 

(36) 

is a constant 

when Gij are all equal, the subscript on llj is suppressed 

here.) Therefore, for small values ofG, we cannot expect 

the PBeS method to give good results. It will give simply 

the trivial solution. That is, 

Z.~.n1 \0> - \ SL 1 0) (37) 

when 

The form of eq. (35) shows that the FEeS method for 

28 

this system reduces simply to minimizing eq. (28) with V\::. ;2.n.1 ) 

-~O\~~.a.1 H Z:l..Q.1 \ 0 ) 

(~\ Z~n1 \ D) 
E.~n. (X) = 

1 
, (38) 

as a function of the single free parameter, X. Before per-

forming this minimization, it is,therefore, reasonable to 

ask if there is any value of X, no matter how arrived at, 

which will reproduce the,pertutbation result of eq. (31) in 

the g«l limit. Thus, we want to know if any value of X 



.-. 

.-

satisfies (eq . . (31) and eq. (35) ) 

,c" := C ~1) Xi ,::: OJ 1J 1..~ (39) 

where 

C" 
::. 

. 'I 

1! (~,) (i j) 

It is obvious that the: terms Co and Clcan be' matched to 

leading order in g i·f we set 

X 1 
j '::. - (40) I-

But then the right hand side of eq. (39) , which is the FBes 

result, will be smaller than Cq by a factor· of q! fo.r all 

values ofq. The minimization procedure based on the state 

vector of eq. (35) is inadequate to reproduce the coefficients 

.of q pairs promoted from the lower level to the upper level, 

whenever q is greater than one. 

Ref. ll ) noted that agreement between the coefficient 

C2and the FBCS result could be improved by introducing a 

four quasi-particle term into the trial function, eq. (35), 

giving 

(41) 
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'. 
where 

1 -[1. (42) 

and where ~iS a new variational parameter to be chosen. 

They noted tha t ~ and X could be chosen to improve the 

agreement with C2 while retaining the already exact (to 

leading order) correspondence with coefficients Co and Cl . 

This result suggests the following more general one12 ). 
I 

The operators Aj"which create a normalized pair of quasi-

particles coupled to zero angular momentum, are related to 

the operators a! by 

+1.. + 
A· ~ u· 0.. 

J J J 
v.'J.. CV + rn: tJ· v· (1-

~ J JJ j 

V\ j )' 
..n' j 

(43) 

as can be seen by substituting eq. (16) into eq. (42) directly, 

and using the corrunutation relations and definitions above. ' 

Then, if X == 0, it follows that 

,+ 
Al ~ a.. 1 

A; +' 
-') ~". 

and therefore that 

(44 ) 
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where only leading order terms for each q have been retained. 

Comparison with eq. (31) shows.that if the choice 

1 "'. 
~. ::; -. r~~1 ·5 

(45) 

is made, the state vector 

(46) 

reprodUces correctly the coefficients Cq to leading order 

for all values of q from zero to .tL1 ·. 

This small G result complements the success of the PBCS 

method for large G, and suggests that a superior approximate 

ground state vector can be obtained if one generalizes the 

FBCS method to a minimization of 

(47) 

as a function of the two parameters, (3 and X, for all 

values of G. One expects. that as G becomes large, the . (3 

parameter will become vanishingly small and the state vector, 

eq. (46), will go over to the form found to be correct in 

the large G limit. 

The energy function; eq. (47), was calculated for general 

and X, for a system of two levels with equal j = 9/2 

and ( 2j + 1 ) = 10 particles. The minimum point in the ~) 
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X plane wf3.s found for g values between 0.01 and 1.0, using 

an eleci:;ronic computer. (The value of (e2 - e l ) is taken as 

unity, so there is no distinction needed between g and G 

below. ) Figures 1 and 2 show contour maps of £2.A, l~Jx) for 

two different values of G~ It is seen that in each case a 

minimum exists for a smal::L negative value of ~ Three 

coefficient ratios Cq/CO are shown in Figures 3, 4, and 5 

for three different ,computational methods. The exact result 

(calculated by methods described in Part III of this thesis) 

is shown as a solid line. The one parameter minimization 

result,using eq. (38), is labeled FBCS. The two parameter 

result, using eq. (47), is labeled Exponential FBCS. One 

sees that the Exponential FBCS gives good agreement with the 

ratios over the whole range of G values., The FBCSmethod, 

however, underestimates the higher ratios badly. For example, 

C3/CO is underestimated by a factor of 2 at G = 0.1, which 

is the critical value, Gc ' for the parameters used. Since 

reaiistic nuclear calculations often involve force strengths 

just above critical; this underestimation could have a serious 

'effect on the calculated values of physical quantities, such 

as EO transition rates. Figure 6 shows the minimum energy 

values of (.3 and X for various values of G. It is seen 

that· (3 does become small for l~rge G, as antiCipated 

above. 

Thus a two parameter minimization correctly reproduces 

five coefficient ratios C/Co over a range of G values from 
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Fig. 2. Contour plot Of£4a.f(~>X), eq. (47), versus f3 
and X. The parameters are g = 0.l L ...n..1 :: Jl2, = 5, 

and (e2 - e l ) = 1.0 MeV. Contour heights are in MeV. 

Fig. 3. The coefficient ratio Cl/C
O 

for one pair promoted to 

the upper level is compared for exact, FECS (eq. 38),and 

exponential FECS (eq. 47) ground states. The G values -are 

in Me V . The (e - e 1) = 1. 0 Me V. _ 
2 
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£trig. 4 Fig. 5 

Fig. 4. The coefficient ratio C3/C
O 

for three pairs promoted 

to the upper level is compared as ·in Fig. 3· 

Fig. 5· The coefficient ratio G
5
/C

O 
for five pairs promoted 

to the upper level is compared as in Fig. 3· 
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0.01 to 1.0. It would appear that, while the two parameter 

fixed particle number variational form, eq (46), will not 

significantly lower the variational energy below the FECS 

method, eq. (35), nonetheless the smaller amplitudes in the 

state vector may be greatly improved over FECS in the range 

of pairing force strength encountered in calculations of 

real nuclear ~ystems., 
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". > 5. Possible Ger.eralizations> 

The approximate ground state vector in eq. (46) was 

arrived at above by comparison with perturbation theory in a 

particular model system. A similar form of ground state 

vector is predicted by the quasi-boson approximation applied 

to the pairing problem. It is 
. ,+ + 

.1...~IJ.··A· A· 1.. 4 FJ~J ~ j 
e. c..J \.jV\J> ==' I( \0>' (48) 

where ('~j . is a symmetric matrix, and K is a normalization 

factor. (The quasi-boson method is discussed extensively in 

Part II of this thesis, so result will~only be quoted here.) 

When the quasi-boson method is applied to the symmetric model 

sys tem above, (3 i..j becomes a 2x2 matrix with zero diagonal 

terms, which is exactly the form of eq. (46) if we put 

~~j ::. f3j i..,= f3 . It would therefore seem reasonable to generalize 

by projecting correct particle number from eq. (48) and using 

it as a variational form. However, it is shown in Part II 

that the PBCS method (solving. the quasi~particle equations, 

eqs. (18) - (22), and then projecting correct particle number) 

can.be extended by the quasi-boson technique to give good 

state vectors for ground and lowlying seniority zero, 0+ 

excited states. The critical behavior (trivial solution 

below G = Gc ) problem is largely overcome in Part II by 

setting the particle number at a slightly incorrect value, 
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~: 

away from aclosedsubshell.The,quasi.:-:-boson, PBCS method 

of using theq1lasi:-pa:rticle and quasi-boson equations followed· 

by number projection C(3,n be applied to any syst~rrh ahd has 
... ' .' . .. ' . .' ' 

·the advantage.ofalso·predi6ting'10wlying excited states with 
, • '. ,'. '. 4. • 

.. good acC~racy ... Becaul?e9f this success , and because of the 

_. complic'ationl? which' arise lnthe quasi-boson formalism when 

eqs. (i8) - (2?) are invalid" the combining of.FBCS and 

quasi-boson.methods is n~t pursued-f:urt;her·here. 

.. , ...... ' 
. . : . ." 

T ••••• ' • 

' ... : ,;. ...,' ." .< 
c, 

!.,," . ~-. . 
.1,. 

.", .. 

; , ..... '. 

': ... ' 

.i • 

1, 
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1"'" .6. Conclusions 

The results of Part I, then, can be considered as a 

test, in a model system, to determine the maximum accuracy 

which can be expected from ground state vectors of the form 

predicted by the quasi- boson method ... The quasi-boson method, 

of course, mak~s definite predictions of the values of (3 
and X for each value of G, but the numerical results just 

presented do not use those predictions. The results obtained 

show that in the system considered, very good. accuracy in 

the reproduction of ground state vectors is possible using 

trial vectors of the project quasi~boson exponential form. 

Failure of the quasi~boson method to give good ground state 

vectors in some regions is therefore probably due to errors 

in the method of predicting the parameters equivalent to f3 
and X, and not to the exponential form of the ground state 

used. 
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1. Introduction 

This is a theoretica.l a.nd numerical study of the quasi-boson 
• 

approximation to the 0+ spectrum of spherical nuclei, and to 

~-vibrations in deformed nuclei. 

In sections 2 and 3 the quasi-boson forma.lism is derived. 

These sections, included for comple-ceness ?nd reference, are 

similar to previously-published developments l ). 

Section 4 discusses the zero-energy boson solution which is 

characteristic of the theory. Two ideas are.developed which 

contrast with previous publications: 

(1) The correct zero-energy boson is not the spurion state 

alone (denoted Q (0) + in eq. (25)) but a certain linear- combination 

of it and its conjugate boson. 

(2) The zero-energy boson is not always deserving of the 

name "spurious tr
, but rather; for medium to low force strength 

becomes a legitimate part of the excitation spectrum - filling a 

gap in the spectrum that would otherwise exist. 

Section 5 shows how the zero-energy-bosons are related to 

number fluctuation states. A criterion is given fixing the 

particular linear combination of Q(O)+ and its conjugate to be 

used in (1), above. Also, a primitive pair vibration is postulated 

which connects quasi-particle vacuum states of slightly different 

force strength. 

Section 6 shows how an essential failure of the quasi-

particle method can be circumvented. 



Section 7 applies the theory above to a simple model system 

consisting of two j = 9/2 :'evels. Cases are considered with 

various force strengths a~d with eight and ten particles (closed 

subshell) . The predictions 0::"' the quasi-boson method are compared 

directly with the exa.ct states of various energy and particle 

number. 

Although the numerical work uses a constant pairing force, the 

formalism presented ;i-s applicable also to non-constant pairing 

forces. The formulas are presented for the case of spherical 

nuclei (j a good quantum number) .. However, this restriction is in 

no way essential. The results, in very similar form, a.pply also 

to deformed nuclei. 

The main conclusion of the paper is that the quasi-boson

approximation may be useful for many systems applicable to real 

nuclei, but that the methods must be used with care. Pa.rticular 

~ttention must be paid to the different choices of boson forms 

to be used for weak and strong pairing force strengths, and to 

circumventing the failure of the method at closed shells or 

subshells when the pairing-force is moderate to weak in strength. 

2. The Quasi-Boson Approximation 

The Hamiltonian, H, for a system of identical nucleons in 

spherical j~j coupling shell model orbitals, with configuration 

mixed by two-body potential, V, is 



~ ..... , 
," . 

',' 
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The indices i, j, if, j' Tun over the (half-integral) a.ngular 

momentum qua.ntum numbers of the va.rious orbita.ls. The index, j, 

thus sta.nds for the full set of quantum numbers necessary to 

specify the orbita.l. The indices, v, (1, are the "z" components of 

angular momentum for the orbits j a.rid i respectively .. The 

operators c + and c. create a.nd a.nnihilate a fermion in orbit J·v. 
jv JV . 

The e
j 

is the rela.tive shell-model energy of orbital j. 

The Hamiltonian, H, can be written in an equivalent form 

H -=- ~ ej <" Cjv + lC,., GtU' j' iF) f a.:'j,(-3M} lLij (.H'!) 
,J r.J L J 

.:r 
where 

\(lj)JM)= £ , t.V" j~) <i.~j» \ c: jS M) 
) 

\-IV" 

and 

£ 
+ 

i- \ Lj3.M) 
+ . 

(iv- j)) C,iT.Cj» 0.. .. (JM) - (1) - • I.J v-r 



The total angular momentwl1 of a. pai!', J, takes integer values. 

The liZ II component of the total angt:clar momentum of a. pair, M, 

takes integer values from -J to +J.Note that G(iljlij J) does 

not depend on M. 

If the values G(i'j'ij J) obey 

47 

for all J > 0 and alIi', j', i, j, and if V is attra.ctive, then 

the potential, V, is said to be a generalized pairing potentia12). 

The only effect of G(ilj'ij. J) for J > 0 on the quasi-boson 0+ 

spectrum comes through self-energy correGtions to the e j . These 

corrections may be included, if desired, by replacing each e. by J . 

e' + ~ . 

in the following (except that the correction should be multiplied 

by 1/2 in the case' of HO' eq. (6)). 

The quasi-boson formalism has previolislyl) been de,rived'with 

the approximation of constant pairing potential 

where G is a constant energy. 

The derivation outlined here will be :for the slightly more 

general (but not complete).,y general) case in which the pairing 

potential can be approximated 
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. ;,........ 

" '. 
(2.~4-1ft <"1.jt1Y?: G{iljjo)" -G"X.1Cj 

. With this a.pproximation, the pa,rtof Hamiltonian relevant to the 

quasi-boson 0+ spectrum becomes 

w~eV'e £ + n- .,. Cj)) C j» J » ) 

..,a.- ." (j + i:) ) j 

(3) 

-to -~ 0.+ .. (00) 0... ::. 2.. 
J jJ , 

The Hamiltonian is now re-writt~n in terms of quasi-particles 

(4) 

. ?wIG : 



and the new-vacuum state, I ~>, G:eI"':'ned a.s 

10>; 11 (Vj + Vj elv l-1).i'
Y
cj -lI) \ o} . 

j 'U~o 

Wri tingn j and a' j + ir.. terms of quasl'-particles 

• 1 ~ '1: ( + A) (J. V") n~:: 2. Vj -'1.. j + l U j V l .{l j A j + ..1 ... \ u.) - J N j 

·lA+ V· 1 A t VV (1- N ·/.o.,·) O-j ~ Vj .. j'" .1 .. j +.tlj j j j J 

eq. (2) becomes ... introducing parameter r." the Fermi-energy, 

where 

1-' i -= £. £ j N j ) 
J 

.. (5) 

~ i i .. 2..1' 1. (a 1. +) \-\c:-G~.a.i. Aj li."Xj tV;. A~ -Vi. Ai.) UjA j - Vj Aj J (6) 
~ . .' 

H .. =C:t~l;1'jUiVL.!l.jlNL(U;Aj-Vj·Aj) + (ujA; - V;Aj)Ni} J 

H)t : -G ?:, ~~ 1(j U~ViUj Vj Ni Nj • 
c.j 
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The following nota.tior:l has been introduced: 

-A~ 

Nj 2:s + 
~j\> ::. -<'jv 

'\} 

+ f + + 
A· - 1..- ;: £ (j V j - V \ i j 0 0 > .~jY Q( j -v -l V 

It is useful to ha.ve, also, the identities inverse to eqs. (5) . 

(5a) 

The quasi~boson approximation rests on the observation that, 

if the coefficients of quasi-particle terms in all state vectors 
" 

are small, then the A+' have boson commutation relations, approxi
J 

mately. 

(7 ) 

The approximate equa:lity sign, ~, will be used henceforward to 

denote equality except for terms of order <Nj>/D j compared to 1. 

The quasi-boso'n approximation consists in approximately 

linearizing H by finding operators 

lk) + ((k\ + lk)). 
Q. :: ~ 1'. A· - ~i Aj 

j J . j " 
k=o,1.2.1'" (8) 



which have the property 

l 
'k) + 1 . t"} lk\+ H) Q' . ~ vJ . Q .. + 

where Z(k) denotes te~ms outside of· the space spanned by the 

A
j
+ and A

j
. The original application of the quasi-boson method 

to pairingl ) assumed that 

since Hr and Hx contain operators Nj , and also are in ratio 
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(9) 

1/,(fl.j compared to Hc. However, for deformed nuclei, and for some 

levels in spherical nuclei, Q
j 

is equal to or near unity. Moreover, 

the terms Hc' Hr' and Hx are not normal-orderedj they have non-zero 

ground-state expectation values. Also the commutators of Hr and 

H with Q(k)+ are not outside of the space spanned by the A
J
.+ and x . 

Aj . The real utility of' writing the Hamiitonian in the form of 

eq. (6) and then ignoring Hr and Hx seems to be that one thus is 

guaranteed a complete set of real boson solutions Q(k)+. With this 

form, a zero-energy root is always present. The validity of this 

formalism must, however, ultimately be established by the direct 

numerical comparison of its results with exact results in simple 

soluble systems. Such.a comparison is made in section 7. 

Performing the commutation, (9), ignoring Z(k), Hr , and Hx 

gives 



where 

(k\ 1 £ .t. ( (Ie). (I\ (k\) e :~ Y . .i2.~ "¥. - ,\,i 
I- • nJ J . J \oJ. 

. J . 
Solving eqs. (l~) for 'l/tj(k) and CJ)j(k) and substituting in eqs. 

gives 

lk) 4 1 

~ ::- G La :r ..a. . J J J . 

2.(ej _~)2.f(k)+ W{k)Cej- >.) e (k) 

E . ( 4 e
J
· a - W (k) 'h ) 

j .. 
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(11) 

(11) 

) 

• 

For Li I 0, these linear, simultaneous equations in p(k) and e(k) 
, 

have a non-trivial solution only if 

( ... (Ie)) . (·k) 2. l~) ~ a I (Ie} ~. {k)2. (12) 
1 - k. Wd. + W j '" 0 



where 

Reserving the zero root for later consideration, if W(k} I 0, 

eq. (12) becomes 

The ratio, e(k)/p(k) at a root is 

elk) 

~ (k) 
--
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(13) 

(13a) 

If 'Xj = 1, all j, (consta.nt pairing force) secular equation 

(13) simplifies to 

(14) 

where the roots, y(k), are related to the positive-energy solutions, . 

w(k), by 

(15) 



r 
r 

~. 

,""" 

For consta.nt pa.iring 

--

(Eqs. (14), (15), (16) a.re true only in the case of a. constant 

pairing potentia.l). 
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(16) 

The case of a trivial solution to eqs. (4), l:" = 0, G I 0, is 

best treated sepa.rately. The secular equation is 

~ 'X.1.. .a . 
-1 z: 'X j ..tL.l z: ~ . j 

(17 ) - - (Wlkt 2';j) - «(..f.)(kl+ 2Ej) Q 
ej<'~ e·») J 

where the roots, o/k) , are related to the positive W(k) roots by 

VI (~) - \ VJ tk
\ \ -

t") ( (k)) 
and where e :. S~" W . rlk) 

• 

case, Q(k)+ becomes In the trivial (~ = 0) a sum of two real 

particles and two real holes. There is, in general, no zero-energy 

root. For l:" = 0, the first excited state is a two-boson state. 

The eigen-operators Q(k)+ (eq. (8)) are determined by 
j,. 

e lkl] . (/.) . (l') l- n.-~ ( e,.' -~ 4'. ~ l.E~ _ ~lk) . .\ t 
) l\C\ \ t:. J . J J ) 

t") t l e..} - ~ at")] (k) 
(18) 

X· 11-. 
<P j :: 

j ,J - ~t~) r 
l E' ... wl") E· 

l j • 



Since H is hermitian, W(k) I W(k') 

1 Q{k)} Q lk') +-] ~ l Q lk) ) 

The factorp(k) is chosen so tha,t 

1. ( 1'l~) 'f.lk') _ ("\ 
ce· . J J j 

J 

Also, from eq. (19) ; 

implies 

llo'l) <p. 
J 

i: l "\It' tpt) - lk\ l~ 'I) 
~J "t'j , 

j . 

3. The Ground State 

~o·' 
• 

- ~ \tok' -

- 0 -

The ground-state vector, denoted \gnd), is defined by 

lk\" " (0\ 
Q \, \'\c!) ~O j R \ ~ ~ rJ.. ) ~ 0 
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(19) 

(20) 

(21) 

(22) 

where k = 1,2, ... and R(O)+ is the zero-energy boson to be 

described later (section 4) . 'Consider 7/1 j (k) to be the kj th entry 

of the square matrix 7/1, a.nd similarly for q:>j (k) : 

, . l' '1 , lk) 
) '(Q k': <Qj . J 

The zero-energy root,R(O)+, is denOted by k = 0, i.e., W(O) = o. 

The index k runs from 0 to L-l, where L is the ,number of j-levels. 

Then ~q. (?l)' implies that 



.r· 
~. 
, 

is a symmetric matrix: ~ij = P>ji' 

Thus 

(23) 

(24) 

has property (22). The normalization factor" K" is given by 

From the form of eq. (24) it is clea.r tha.t the basic condition for 

validity of the quasi-boson approach" <Nj>/n«l" will be satisfied 

only if t3ij«I. If t3ij is not small" a. large four-quasi-particle· 

term t3. ~A. +A.+ will appear in the ground state. 
1.J 1. J 

Although" as mentioned" the zero-energy solution" k = 0, is 

in general required to make [1/1) and [cp 1 square;, it is, in certa.in 

cases, possible to do without it. Consider the set of quantities 

the signed minors of the first row of matrix [cpl. Remove the first 

rows (k = 0) from both [1f!j and [cp] and 

.- zeros respectively. Then if the cp. (k) 
J 

1f!. (k) the matrix 
J 

replace them by M . and 
. OJ 

are uniformly less than the 
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will be symmetric and sma.ll. (The modified matrices are denoted 

by primes.) The met,hod will not be reliab.1e for small G values 

when some- 7/J. (k) may be small compared to some q> .(k). The matrix 
--- J J 

f3 may then be symmetric and la.rge. 

4. Zero-energy Bosons 

To find the eigen-operator of the root w(O), notice that 

eqs. (1380) imply that p(O)/e(O) = 0 when W(O) = O. 

Thus, from (18) 

. t 
1· ..Cl.' J ,\ 

E· J 

(Aj + Aj) e (01 

It is instructive also to derive this,eigen-operator directly. 

Try' Q (0)+ :: 

-to) 

- 1'j 

where 7/J j(O) is an unknown 'coefficient to be determined. Then 
. .i 

(25) 

. - to) '~(C>\) ( A .. A ) 
[( Ht+ tic> J Q('\ +]%f (z Ej "Pj - Glj..<lj e \.i - j. (26) 

:y 



l '. 

(. 

. ~ 

will be zero if 

_ (0) 

.'f 1 :. 
G -l.. 

which is equivalent to (25). The consistency condition for S(O) 

to be non-zero, eq. (11), =-s then the same as the eq. (4) used to 

define A. and l. 

The·form of the operator on the right-hand-side in eq. (26) 

and the fact that Q(O)+ is hermitian, suggest that another boson, 

needed for completeness, can be found to be of the form 

= to) 
~l ': • 

By a process similar to that just used to derive Q(O)+, a 

skew-hermitian boson, p(O)+, can be found which satisfies 

and consistency condition peO) I O~ (Eq. (11)) 

It is defin~d by (27) with 

. i ( G )( . .a. -. 
-;;- j 1~ A 

,... £. J . 

= to) "p. :: 
J 

(27) 

(28) 

(29) 
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where $ xt ..(l.j A r - E~ - ,) 
J J 

~ -X; Aj 
e· - ~ 

Sc J .. 
1:. 3 

J l 

Eqs. ( s ), ( 19), and (28) a.re sufficient to imply 

llc)' QlO) -t ] t Q J. ~ 0 k+o 

l Qlk») p(O)+] ~ 0 
(30) 

. '(0)+ Hence, although Qis the actual solution to the quasi-:-boson 

equations, a symmetric f)-matrix (eq. (23)) and a.n orthonormal non

zero-energy boson spectrum (orthogonal to the ground-sta.te, to 

the spurious boson Q(O)+, and to p(O)+) will result if one uses as 

the zero..,energy boson a.ny linear sum of Q(O)+ and p(O)+; if 

instead of Q(O)+, one uses 

ie. J 

with (31) ,.r0! 

( 0) 

"Y-j --
. - (0) , ~ (oj 

~j T t 'j , ) 

- (0) 

~. J 

_ ;W (.0)' ,,~ .(0) 

fj +- T 'J o· 
--



/ 

/ 

The normalizing factor in eqs. (25) and (29)., e(O), should be 

chosen so that 

Although R(O)+ is orthogonal to the non-zero-energy spectrum, 

[
. lk) 
Q ) 

R(O)+ is not in general a valid eigen-operator of H: 

• 

As noted above~ the success of the theory in ~eneral does not 

require that the R(O)+ used in eq. (22) be an eigen-operator. 
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(32) 

(33) 

, However" for small values of 6" R(O)+ is approximately an 

eigen-operator of H. The coefficients of Q(O)+, eq. (25), are 

chosen to be at most of order unity for G small, (G'«l). t Since 

f will be chosen to be similarly bounded, (eq. 36 L the right hand 

t The G' is a dimensionless force parameter defined by , 

G' == GIG c 

where Gc is the critical G-value at the nearest closed j-shell. 

For non-closed-shell nucle'i" :Gc is defined as approximately the 

minimum point of the boson-energy versus G curve. See the 

discussion in section 7-7.10. 
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side of (33) will be approximately zero compared to the rest of the 

boson energies whenever ~/w(k)«l., (k -I 0), as is in general true 

for small G. This approximate property will a.llow R(O)+ to become 

part of the boson excitation spectrum in the case G'«l.-

The necessity for some boson of the form (31) to play a role 

in the excitation spectrum can be seen by considering the limit 

G' «1 in a case in which the average particle number" n, does not 

exactly fill the j-shell nearest the fermi-surface. In this case 

G -I 0 implies. E. -I 0, and as G' becomes small the fermi-energy, A, 

approaches infinitesimally close to one of the ej's. Denotethis 

e j by the subscript A, 

The secular equation for constant pairing, eq. (14), can be gra,phed, 

and in this limit is shown in fig. 1. For concreteness a case of 

four j-levels has been shown, with the second level as eA. The 

roots y(k) have been labeled by the value of 2(e j '- A) which they 

approach in the G'«l limit. (The previous notation has been 

changed somewhat to denote the j-levels 1,2,3,4 instead of 

3/2., 7/2 etc.) In the limit G'«l, .the boson operator Q(k)+ reduces·' 

to the quas~-particle creation operator cor:responding to the kth 

root 

,where j = k as explained above. 
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Schematic graph of the secular equation, eq. 14, for a 

four level system in the G'« 1 limit. 
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This corresponds to the fact that as G'«l, the excita.tion spectrum 

must reduce simply to particle and hole operators. However, A + 
2 

is missing, and its place must be filled by some combina.tion of the 

1 th "1 bl b Q(O)+ ~nd p(O)+.. H th ony 0 er aval a e osons~ ~ ence e zero-

energy boson must in certain cases be a legitimate member of the 

boson spectrUm. 

,Although fig. 1 shows a particular case, the result is 

general. The boson A~ willalwa,ys be missing from the non-zero

energy-boson spectrum in the G'«l limit; a.nd eq.(33) shows that, 

in that limit, any boson of the form (31) is an approximate eigen

operator of H. This paper will conclude that, if function "f" is 

defined properly, the zero-energy boson, R(O)+, will also be the 

missing member of the excitation spectrum. Thus the boson ground 

state will be defined by eq. (22) and, in the G'«l limit, the 

same R(O)+ as used there will obey 

~ (. RtO) + _ A + ) 0 
(/~< 1 . A 

where A~ is the missing boson. t 

However, the usual practice3 ,4) in beta-vibration calculations 

has been to use Q(O)+ as the zero-energy boson. This corresponds 

t The numerical section 7 (in particular figs . 11 'and 12) indicates 

that the boson R(O)+ may be useful for G' Mo.~ 1 and not only 

for G'«l as in the argument given here. 
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to f =.0 in the present nota.tion. Since Q (0)+ is hermitian, the 

missing boson in the. G'«l excitation spectrum must then be 

p(O)+. It is easy to see from eqs. (22), (25), a.nd (27) that 

when G'«l, 

which is indeed the missing boson. The difficulty with this 

practice is that Q(O)+, being hermitian, has a non-vanishing 

destruction-operator term for all values ofG'. This destruction 

part of Q(O)+ introduces correlations into the ground-state even 

in the limits G'»l a.nd G'«l. Thus, for example when all x. = 1, 
J . 

K e - 1 (tj~1 ;> ) .= 0 

o 

w~e.v-e ..0.. -:: t.n..· 
J j 

In the limit, G'«l, the effeci;; is to introduce large four, eight, 

etc. quasi-particle terms into the ground state in violation.of 

. the central assumption of the theory, eq. (7). In the limit, 

G'»l, the effect is more subtle. While .fni.fnj/n may be of order 

unity for some levels of spherical nuclei, it will usually be 

small for deformed nuclei. Instead of la.rge terms, t3 .. , the effect 
lJ 



here isa kind of complementarity between energy and particle 

number. As shown in the nex:t section (eq. (40)), use of Q (0) +as 

the zero-boson is equivalent to requiring particle number to be a .. 
i 

i 

good quantum number, in the quasi-boson sense. That is 

(n - n) \<jV\cLl·~ 0 (35) 

A one boson state'is in general a sum of the ground, first-excited, 

second-excited, etc., states of systems of n, n ± 2, n ± 4, etc. 

particles. The effect of eq. (35) is to restrict the spread of 

.the ground and boson states in n. Because of the limited number 

of degrees ·of freedom of the quasi-particle and quasi-boson 

approximations, this constriction in n is accompanied by a greater 

spreading in energy, resulting in a larger ground and second..,excited 

state component in the lowest one-boson state, etc. This effect 

can be seen numerically in the simple model-spherical system 

studied in section 7. Comparison of fig. 6a with fig. 6b shows 

the effect. It can be argued that this effect will be much less 

in deformed nuclei. However it is also true that in deformed 

nuclei the energy Jevels are more closely spaced and hence a smaller 

uncertainty in energy will still mix several neighboring exact 

0+ states into each boson. 

If, instead of f = 0, a function f is used having the 

following limitst 

t 
Eqs. (36b) and (37b) are approximate relations which are exact 

for the case of constant pairing force (all Xj = 1). Thus for 

these equations only, the approximate equality sign is used in 

a sense different from that of eq. (7). 



,r, 
r". 

~ + ~ i , .. 

G»)1 
then the ground state defined by eq. (22) will obey 

~. ( , ~",.l) -
G /« 1 

\ 8'» =- 0 

I 0») ~ 0 

and also the boson defined by eq. (31) will obey 

the missing boson. 

The form of function~ f, between these limits is suggested by 

arguments in the next section. It is 

c ; ~ b 

where £ . - (0) =(0) 
"-: . ~j ~j. 

J . 

and b-:. it~t)7. • 
J 
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(3~ 0..) 

'(31 b) 

(39) 

This function'fulfills conditions (36). The zero-frequency boson 

,f"""".. is then, not Q(O)+, bu~that given ineq. (31), and this same 

I""""'- boson, R(O)+, is part of the boson excitation spectrum for G'«l. 



5. T.~'le Spurious· states 

. The meaning of-zero-e.:1ergy boson, Q(O)+, is obtained by 

writing the first of eqs. (5) in the following form, using (4) and 

(25) : 

n - V\ -

(40) 

Or - Q to) to 

• 

Boson Q(O)+ is that operator which would be approximately zero if 

particle nUmber were a good quantum number. 

The meaning of boson p(O)+ is only slightly m,?re obscure. 

Eqs. (4) imply the following differential forms 

olG - i1-( -s J.f.. . t-: '(" J. c;.) . -

~V\ -:: 6( t J- A + S cLA} 
where r, s are the function defined earlier, in eqs~ (29), and 

t is def·ined 

£ -X~ 1l- . .~ 
t J !~ -

E.3 
J J 

(41) 

(42) 

Eqs. (41) can be inverted, allowing the calculation of the changes 

in various quantities as n is changed slightly, ·with G fixed. 
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, Thus 

w'-"elre (43) 

and where eqs. (5), (5a) have been used, and operators a.~ and n. 
J J 

have been considered constant in the differentiation. Coefficient 
:::: 0'-7/1. is the 

J 
same as that defining p(O)+ in eq. (29). 

is changed to n' = n + dn, 

and the original vacuum state, I(», defined-by 

A· 1 0) ~ 0 
J ) 

becomes, to first order in dn, _ 

where 10'>' is defined by' . , 

~/I . J ) 

",( I . 
J 

Thus,. if n 

(44) 

r- The creation operator part of 'operator p( 0)+ is thus the 

,"" primitive nUmber fluctuation which connects 1 ci> at n to 1 (», at 



n' = n + dn. t The word primitive is used to indicate tha.tJ so 

far J no use has been made of the pa.rts of the Hamiltonia.n beyond 

'( i . e. J Hc ha.s not beer.. used.) 

It is interesting to conjecture a,lso a primitive pairing 

vibration derived simila.rly from 

where 'f .(r) 
== j 

J. 'Yj : ~ G 
and 

-'\IJ .(p) 
d-l r J 

.i.. 

~.~. 
~ G-X· ..Q. 

.j ~ 

;2. £,.'l. 
J 

---- ol ~ ·olZ5.) 
d..G ~. 

(!'oj -;x) s 
-"'--

t 

Denoting by 10>" the vacuum sta:te at G" = G + dGJ 

"( 4' /\.If (P) . A +) /'v 

I ~> = 1 - ,,( 'Yj I'I j j .. \ 0 > 

(45) 

(46) 

as above. The two diffe~ential operators in (44) and (46) are not 

orthogonal. However the operator in (46) is orthogonal to Q(~)+. 

This primi ti ve pairing vibration .is calculated in the numerical 

section of the paper (see fig. 15). It might be expected that the 

primitive-pair-vibration would be spread over the one-boson states 

as a kind of strength function. However it appears numerically 

t A similar result was obtained by Bes4 ). 

.•. 
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that it is almost identical to tbetwo-boso,n state in the simple 

example calculated. ~ (See fig. 14) The general result would there

fore be that the primitive pair vib'ra.tion sprea.ds over the two-

boso~ states. This result, although interesting, seems not to be 

very useful, sinc.e the two-boson sta.te itself is spread over 

several levels of the a.ctual excitation spectrum. 

Now introduce H and the quasi-boson forma.lism and examine 
c 

the change in the boson ground state when n-+ n' = n + dn. Each 

boson Q(k)+ changes to Q(k)+' where 

Q lk) + I ::: Q tk) + + 
·X lk) rA ~kO cJ. C (k) 

where cL X (k) ~ i (+ (") (k\ ) (47) 
. A· J.. 1-' .. - A· J cflj . J J J 

J 

and 
J. COd;;c & ( AjJ.{k)_ 

. J 
. J 

(k)) -=:: to) 

({)j ~ j rfi., Y. 

Recalling that (eq. (24)) 

(24a. ) 

) 

-- a.nd eq. (44) , write 

(48 ) 

where 

~ y:: ;- ot
po 

R(olt 
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Determine the ctPk by the conditiQr.s 

(k) I I 

R(O}1 \ ~ ¥\cl )' Q 1 '4V\ot '/ ~o ~ 0 ) 

. The result is 

== (o~ 
I 
.(k) 

t J..p k - - J. 't "P. ep. k .:# () 
J J I j , (49a) 

rLpo ~ cL't-(+ b 0..) (49b) 

where a. and b are defined in eqs. (39). 

The factor multiplying d'Y in (49a) is small, compared to unity, in 

the large and small G '. limits. The equation (49b) can be made to 

vanish identically if 

t . ~ 
b 

(39a) 

Thus the effect of the change in Q(k)+ and R(O)+ on the ground 

state can be minimized. That is, if eq. (39a) holds, 

I (/;' tkh') + \ '" I l~ n cl > = 1 + 6 vl PI< O· B 0 > 
k40 

which is nearly equal to, simply, 

+ "" I B\o> 

In this deri va tion, ma:trix (3 has been assumed small enough that 

changes in B+ can be ignored. Also operators dX(k)+ have been 

ignored. 

.. 
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The function f in: eq. (39a) is the same as that defined by 

eq. (39) and discussed in section 4. Eq.(39) (or (39a)) is used 

to determine the function, f, which is then used to define the 

zero-energy boson 

The results of this definitibnare compared with the usual form 

of the theory (f = 0) in the numerical part, section 7. 

6. A Necessary Refinement 

It has been shown in the previous two sections that boson 

(0)+ ' R "the. zero-energy root, becomes part of the exc'i tat ion spectrum 

when is. I 0 and G'«l. This corresponds to the fact that, for 

G' = 0, the ground state is simply the shell-model state, and the 

lowest excited 0+ states are simply un-mixed, two-pa:rticle, two-hole 

configurations. The first excited state, for example, at G' = 0 

may be of the form 

where a; is defined ineq. (3). 

The quasi-particle.operators A; become particles or holes when they 

are well above or below the fermi-level respectively: 

A·t t 
e.j )"A "y a.j J 

e· « t 
1\ A·~ ~ - (}... 

j J J 
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This follows, of course, from eq. (Sa) and the vanishing of UjVj 

for these levels. 

However, it is an essential difficulty of the quasi-particle 

method that, for the level at the fermi surface in the G'«l limit 

(the partially-filled level, denoted e~ in section 4) 

~ UAV).-:/O 
Gr I « 1 

+ It then is impossible to represent either a~ or a~ in terms of 

quasi-particle operators A" + and A ~. Instead, eq. (5) shows 

.~ + 2- of 
+ "i 

Gt.}. 
;"oJ U~ A}. - V). A ~ 0\- ..0-}. V>. VA rv 

.L 
(50) 

-V; A: '2. 

U" A f, 
. ~ 

VA VA CC{'\ ~ t 0\- .tL~ 

As noted, this is an essential difficulty of the whole quasi-

particle approach. The quasi-boson extension of the quasi-particle 

theory does not solve it. 

Hbwever, it follows from eqs. (37) and (38) that, when one 

uses (31) and (39) to define R(O)+, the operators 

S (0) +::: R(O) + _ !- u). 
A). V 

~ 

(51) 

have limits 

., 



,..-.... 
/ .. ,. ..... 

/1""', , 

~ 
t. S (0) + VA ~ 0...>-(1'« 1 

~ U2. T(o)+ + 
~ O-A G'~< 1 

}. 

Since constants commute with every operator, the addition of a 

constant to R(O)+ does not invalidate it as a zero-energy boson 

(i.e., "the discussion of eq. (33) still holds true). 
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Thus after normalization, the proper first excited state 

operator in the G'«l limit consists of S(O)+ or T(O)+ multiplied 

by some non-zero-energy boson. The choice of S(O)+ or T(O)+, 

depends on the single-particle energy level spacings. 

Although this procedure has to be considered a piece of 

patchwork, it is nonetheless completely general - it can be 

applied to any system of levels. The numerical examples in 

section 7 (fig. llc and fig. 12c) show that the procedure gives 

good results. 
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7. Numerical Examples 

7.1 THE MODEL SYSTEM - The methods outlined in previous 

sections are here applied to a simple model systemf consisting of 

two j-levels, each with j = 9/2. '(Since the levels have equ~l j, 

they will be labeled by 1 and 2, rather than by j-value.) This 

system will be considered in the constant-pairing-pote~tial 

quasi-boson a,pproximation with n = 8 and n = 10 particles'. (To 

avoid confusion, the l,etter "n" will be reserved for the vacuum-

state expectation value of the number operator, as in eq. (4,).)"' 

For n = 10, the critical G value (below which t. = 0) is Gc =0.1. 

This corresponds to,G' = 1, where G' is a dimensionless force 

parameter defined, as discussed in section 7.10, by 

G,' t..n. 1 + .(L1.) G (52 ) -
el,. - e 1 

For n = 8, there is no non-zero critical G value. 

t This model system is used to study the accuracy of the quasi-
, 5 

particle vacuum (ground) state in reference). Boson and exact 

energies are computed for a series of similar model systr:;ms in 

referencel ) . 
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For this model system, there is only one non-zero-energy 

boson. It Will be d~noted 

) 

.There is a.lso a zero-energy boson R(O)+, a linea.r sum of Q(O)'+ 

. (0)+ and P ,as derived in sections 4, 5. The boson ground and 

excited states are computed for two different choices of R(O)+: 

First, R (0) t (f = 0) 

and second, 
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with function, f, given by eqs. (39). The first choice is that 

derived by H.-Feldmanl ) and used in published calculations of 

~-vibrations in deformed nuclei3 ,4). The second is that derived' 

in the present paper. The choice, of course, affects the matrix 

~ (here a 2 x 2 matrix) which defines the boson ground state,' 

eq. (22). 

7.2 DISPLAY OF RESULTS OF CALCULATIONS - The constant pairing 

force is also diagonalized exactly (for the four lowest-energy 

eigen-vectors) in the above model system - for the cases of every 

possible even number of particles, m = 0, 2, 4, ... , 20. These 

diCl,gonalizations are, of course, number conserving . However, the 

boson states calculated,as described above are not eigen-vectors 

of n , the number operator. They consist of sums of pieces with 

every even number of partic1es from m = 0 to m = 20. For a given 
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boson state above, the inner products of the m-particle piece with 

the four exact eigen-vectors of the m-particle system are calculated, 

for each even m between '0 and 20. These inner' products (s,quared) 

are displayed on a plot with particle number, m, running along the 

horizontal axis, and, the four excited states running up the vertical 

axis in ascending order of energy. Each squared-inner-product is 

followed by the sign of the inner-product before squaring. In 

this way the original products can be recOvered from the figures. 

For exa11lP'le, in fig. 6a, the inner product of the one-boson state 

with the exact second-excited 0+ state of the m = 10 system is 

+0.21 (= f..f.044). Contour lines are drawn at the 10%; 5% (dotted), 

and 1% contours. Note that one-percent is still a large coefficient 

(± 0.1);, due to the squaring. Each display is normalized to a 

summed squ8,red-intensi ty of unity. This is necessary even after 

the boson states are normalized in the quasi-boson sense, eq. (20), 

since eq. (7) is not exact. The sum of squared intensities before 

normalization is denoted K2 on each figure. This number, together 

with the signs, allows one to tell a real state from a spurious 

one, real states having a coherence of signs of large components 

and a total pre-normalization intensity of near unity. In all 

the diagrams, squared products less than 5 x 10-5 are replaced by 

zeros. Those between 5 x 10-5 and 9.5 x 10-4 are written to four 

decimal places (one significant); those between 9.5 x 10-4 and 1.0 

are written to three decimal places. 
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7.3 BOSON ENERGIES - Fig. 2 shows the exact excitation 

energies of the first excited 0+ states for m = 6, 8, and 10 

compared with the boson energies fo!' n = 8 and 10. This figure 

indicates, as do la.ter ones, that the quasi-boson method fails for 

medium to low force -strength ( O. e < q I <1. ~ ) at closed subshells 

(n = 10 in this case). In this region the boson energy for n = 8 

is closer to the m = 10 exa.ct energy than is the n = 10 boson 

energy. This result suggests the following rule-of-thumb: To 

calculate approximate energy levels at closed j-shells the average 

number, n, should be set slightly more or less than the number 

for shell-closure. This rule does not really introduce n as a 

new free parameter of the system, since, except for a sharp cusp 

for small G' at the shell closure, the boson energy is fairly 

insensitive to n. 

7.4 GROUND STATES - The ground states calculated by the 

various methods above all show a similar pattern. Therefore, the 

various ground states will be presented here only in one, typical, 

case: n = 10-, G' = 1.6. Fig. 3 shows the quasi-particle vacuum 

state, 1. e., no ground state correlation due to bosons. It is 

spread over the exact ground states of several adjacent systems-, 

mostly n = 8, 10-, and 12. Fig. 480 shows the correlated boson 

ground state when R(O)+ = Q(O)+. This is the first example of the 

general complementarity mentioned in section 4. The state vector 

is more concentrated in m, at the expense of a greater spread to 

the first and second ekact excited-states. Fig. 4bshows the 
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correlated boson ground sta.te when RCO)+ = QCO)+ + f pCO)+ (see 

eqs. (31) a.nd(39)). It is slightly more concentra.ted in both m 

and energy than fig. 3. For turiosity, fig. 5 shows the correlated 

boson ground sta.te when R(O)+ = p(O)+. It is seen tha.t all 

particle numbers a.re about equa.lly probable. This result is not 

surprising if one reca.lls that p( 0 )+ ta.kes 10'> a.t n into 10>' at 

n + dn. (See eq. (44) and discussion there.) The system makes 

itself insensitive to cha.nges in n by spreading equally over a.ll 

possible particle numbers. 

It is possible to consider fig. 4b as a compromise between 

fig. 4a and fig.. 5. 

7.5 STATES. OF ONE NON-ZERO BOSON - Figs. 6a through Sa 

display states of one non-zero boson for n = 10 and various G' 

values, in the case when R(O)+ = Q(O)+~ Figs. 6b through Sb do 

the same for the case when R(O)+ = Q(O)+ + f p(O)+. It is seen 

that the latter figures are less spread to ground and second-

excited exact states but are more spread in particle number. This 

behaviour shows again the complementarity seen in the ground states. 

For G' = 1.2 (figs. S), both choices of R(O)+ give a one-boson 

state well spread OVer ground and first-excited exact states, 

although the fig. Sb still exhibits smaller components of second 

and third excited exact states. Thus figs. S show, as does fig. 2 

for the energies, the failure of the quasi-boson method for G' 

near unity and n equal to a shell closure. 

Figs. 9 and 10 show the states of one non-zero-energy boson 

for the same two choices of R(O)+, but with a.verage particle 

number n = S. 



en 
(J) -o 

(f) 

+ 
o 
o 
~ 

(J) 

N 
I 

>--.... 
o 

) ) 

4th -

3rd -

2nd-

"T\ 

n=IO,G ' =1.6 
K2 = 1.01 

.001-

.004+ .004+ 

.019- .014-

')"') 

.0002- .0004+ .0002-

.001+ .001+ .001+ .004+ 

.007- .005- .007- .014:-

'.~~ 

') ) 

Boson ground state, 
I gn"d >, when 
R(O)+ = p(O)+ 

.004+ 

.019- .001-

r-------------------------"-------~---~------------, 

~ grOUnd-I, .039+ L.083 + ;083+ .091+ .094+" (.108+] .094+ " .091 + .083+ .083+! ___________ ---------~-------_-~-~----------~--J 
i I "I I I 

.039+ 

o 2 4 6 8 10 12 14 16 18 20 

F.~ 5 Po r tic I e ~ n u m be r (m) 

Fig. 5. For a system of two j = 9/2 levels, the entries show the squared amplitudes 

(and signs) of projections of the quasi-boson ground state onto exact states, when the 

zero energy boson, R(O)+, is chosen to be p(O)+. The average quasi-vacuum particle 

number, n, is 10. Potential strength, G', is 1.6. 

(X) 

+=-



(/) 
CI) 
.-
o -en 

4th-

+- ,3rd
o 
o .... 
Q) 

N 
I 
~ -
~ 

o 

2nd-

·n=IO,G' =4.0 
K2 = 0.82 

.0001- .0005+ .007+ 

.0002- .0004- .010+ .044+ 

.0005+ .000'-

.010+ .0004- .0002-

r-"- - - - - --- ---:---- --:-'\ 

lC 203 + .464+. .203+ )1 
\. -- -- J 

.0002- .001- .006+ .006+ .001-

One- boson state, 
Q(I)+ 'gnd·>, whe 
R(O)+ = Q(O)+ 

.0002-

c 
(1) ground-I 0 

(J) 
o .0009+ .010+ .0001- . . 018- .0001- .010+ .0009+ 0 o 

o 2 4 6 8 10 12 14 16 18 20 
F.~. <00-

Partie Ie-number (m) 

Fig. 6a. For a system of two j = 9/2 levels, the entries show the squared amplitudes 

(and signs) of projections of the.non-zero energy boson state onto exact states, when 
(0)+ . . (0)+ 

the zero energy boson, R ,lS chosen to be.Q . The average quasi-vacuum particle 

number, n, is 10. The potential strength, GI, is 4.0. 
co 
\J1 



') ) 
.-.. ~ 

<)) ) -). 

n = 10, G' = 4.0 One-boson state, 
K2 = 1.00 

VI 4th-I CI> 
0-

0 .... 
'f) 

+ 3rd-1 
::> 
0 
'-
IV 
N , 2nd-~ -
'-
0 .... 
c 
~ ground-I .0005+ 

o 
F i"J G,b 

Fig. 6b. 

0(1)+ 19nd >, when' 
0 0 '.0003+ 0 0 R(O)+ = 0(0)+ . 

... f P (0)+ 

.0001+ .0008+ .004+ .007+ ' .004+ .0008+ .0001+ 

r - - - - - - - - - - - - - - - -- - - - - - - ---"I 

:.100+' (.218+ .219+.218+) .IOO+! .005+ .025+ .025+ I .005+ 
'-- -: - - - - - - - - ---- - -,- - - - --'--- - - ~ 

.0002+ .003+ .0006+ .0006- .002,- .OOOS- .OOOS+ ,.003+ .0002+ .0005+ 

2 4 6 8 10 12 14 16 18 20 

Po r tic I e - n u m be r (m) 
, .,', (0)+ (0)+ (0)+ 
Same as fig. 6a but Wl th zero energy boson, R ,chosen to be Q, + f P .' 

OJ 
0\ 



') 
') 

:; 
) 

) 

) 

') 

'" ... 
. 
) 

4th-

3rd-

2nd-

) ground
) 

'" 

n = 10, G'= 2.0 
K2 = 0.81 

.0006-

o .0007-

o 2 

.0004- .00 I. -

.003- .004+ 

.OOJ+ 

·4 6 

.001+ .016+ .001 + 

.015+ .011+ .015+ .001-

r--~-------~----~--1 ! (.174+ .303+' .174+) 11.004+ 
\.-- - - -, r-.- --~--.1 

I I 
I I 

.,~--...... , I 1 r----' , 
I .076- 1 '- ____ ..;...1 

8 " 10 12 14 

.r;3· 70.. Particle-number (m) 

.0004-

.. 003-

.001+ 

16 

One-boson state, 
QCI)+lgnd >, when 

. R (0)+ :: '0(0)+. 

.0006-

.0007- O' 

18 20 

Fig. 7a. Same as fig. 6a but with potential strength, G', e'qual to 2.0. 

.. - .' .' 

ex> 
-..;] 



en 
~ -o -
+ o 
o 
~ 

<1> 
N 
I 
>. -~ 
o -

') ) "' 

3rd-

2nd- .003+ 

')') 

.0001+ .0002+ .0001+ 

o .0002+ .002 + .023+ .002+ .0002+ o 

r----------~---------------~ 
.010+ I! .062+ (.207+ .328+ .20}+] ;062+ !' .010+ 

~ ________________________ J 

) ') 

One-boson state, 
O( J)+ t gnd >, when 
R(O)+ = 0(0)+ " 

+fP(O)+. 

.003+ 
/ 

~ ground-I .0007+ .004+ .015+ .0 I 0+ .0006- .0006- .0 I 0+ .015+ 1 .004+ .0007+ 

6 8 10 20 

F;~" 7b Par tic I e-num ber (m) 

Fig.7b. Same as fig. "6b but with the force strength, G', equal to 2.0. 

" 

" 
(X) 
(X) 



4th-I 

'" CD -0 ... 
en 

3rd-1 
+ 

0 
0 

. '-
C!.> 

2nd-I N 
I 

~ -
I-

0 

c ground-I 
eD . 
en 

n = I 0 i G' = I. 2 
K2 = 0.79 

.0004 -

.0005- .003-

0 .002- .006-

o 2 4 
F'j.8a.. 

.001 + .011 + .001 + 

.0001- .011+ .036+ .011+ .0001-

,----------------~ I I 
.0004 : .062+ .195+ .062+ I .0004+ 

I I 
I I ------I : ____ __ 

r---- _..I '------" 

:.082+ .121+ .178- .121+ .082+: 
\. ______ ~ ____ .... _.':'" _ .... __ ~ __ . _________ _ J 

6 8 10 12 14 

Parti c Ie-number (m) 

One-boson state, 
0(1)+ 'I gnd>, when 
R(O)+ = 0(0)+ ~ 

.0004-

.003- .0005-

.006-. .002- 0 

16 18 20 

Fig. Sa.' Same a~ fig. 6a but with the force strength, G', equal to 1.2 .. 

0:> 
\0 



tn 
Q) -o 
+-

+ 

o 
~ 

11) 

N 
I 

>---
\

o 

) .. ) 

4th-I 

3rd-

2nd-

~ ground-

) ) 

n = 10, G'= 1.2 
K2 = 0.99 .0002+ .001+ .0002+ 

0 .0003+ .001+ .0001+ .001+ .0003+ 

r------i 

.0006+ .001+ .008+ .034+ : .421 + I .034+ .008+ 
I I 
I I 
I I 

r------":""--:--.J \..-------- " .020+ 1.055+ .097+ .138- .097+ .055+ I 
I I 

.0002+ .003 + 
'----------- - -------- ---~ 

o 2 4 6 8 10 12 14 

h3 ab Part i c le- number (m) 

,. 
) ) 

One-boson state, 
O(I}+ I gnd>, when 
R(O)+ = 0(0)+ + f P (0)+ . 

0 

.001+ .0006+ 

.020+ .003+ .0002+ 

16 18 20 

Fig.8b. Same as fig. 6b but with the potential strength, G', equal to 1.2.' 

\..0 
o 



II) 
Q) 
+-, 
o 
+-
CJ) 

+ 
o 
o 
~ 

Q) 

N 
I 
>. -
~ 

o 

4th-

3rd~ 

2nd-

n : 8 t G': 4.0 
K2 : 0.82 

o 

o .00 I ..,- .005 + o 

One-boson state, 
, Q( I) + I 9 n d >, w hen 

.0001- RCO)+: Q(O)+. 

.0003- .0006+ I .028+ .031+ .0003+ ,.002- .000/-

.001- o 
,-- - - - - -- ~ - - - - - - - -'" 

.00 I + II [ . i 0:3 + .43 I + .' .324 + H. 02 6 + 
"'- ____________ -____ J 

.004-

c ~ ground--'. ! 
I 

o .0005+ .006+ .0004+ ~:o2-·hd .002+ .0007 ~ .0001- '0 

4 6 8 10 12 14 16 18 20 
F,'':!. 5 .... 

Particle-number (m) 
Fig. 9a. For a system of two j = 9/2 levels, the entries show the squared amplitudes 

(and signs) of projections of the non-zero energy boson state onto exact states, when the 
. (0)+ (0)+ 

zero energy boson, R ,is chosen to be Q • ,The average quasi-vacuum particle 

number, n, is 8. The potential strength, GI, is 4.0. 

,. .. 

"-0 
f--' 



en 
Cl) -o -[I) 
+ o 
o ... 
Cl) 
N 
I 
>-... ... 
o ,-,-
c 
C> 

Cf) 

,0, 

) ) ') ) ') ') 

4th-

3rd-

2nd-

ground-I 

n= 8, G1
= 4.0 

K2= 1.00 

.015+ 

" 

o o .0002+ o o 

.0002+ .002+ .005+ .006+ .002+ .0003+ 

r---------------------"""\ 
1.077+ [ .201+ .284+ .235+ .. 119+ ) i .035+ l _____ . _____________ , ____ J 

.00/+ .0002 - , .0009+ .0003- .002- .0008- .0004+ .003+ 

0 2 4 G 8 10 ' 12 14 
F,.:I % Pa r tic I e - n u m be r (m) 

One-boson state, 
0(1)+ Ignd>, when 
R(O)+ =0(0)+ + f P (0)+ 

o 

.006+ .00,1+ 

.002+ .0002+ 0000 r + 

16 18 20 
'.. 

Fig. 9b. . , (0)+ . (0)+ (0)+ 
Same as fig. 9a but Wl th zero energy boson, R r, chosen to be Q + f P, . • 

\D 
I\) 



II) 

OJ 
t-

o 
0-

n 

+ 
:> 

4th_ 

3rd -

2nd-

ground-

'" ' 

n = 8, G
1 = 2.0 

K2 = 0.83 

.0003-

.0002-. .00 1+ 

o 2 
F;~ iot.-

.002+ .014+ .0003+ 

r----""\ 

.0008- o 1.037+ : .088+ l LOOI + 
I I 
I I 
I I 

,,---------.---' . I ........ _-..... 

,\.076+ (.336+ .257+]: .035+ 
-#----~ I \.-----,. r--------~ 

o 
I I 
I I 

.025+ ,-.. -------...! .053 -! r'--.0-0-2---1 .050 + 
'------~ 

4 6 8 10 12 

Po r t i. c I e - n u m be r (m) 

.002-

.005-

.. 002+ 

14 

One-boson state, 
OO}+ I gnd >, . when 
R(O)+ = 0(0)+ 

.0001-

.002- o 

.003- .0001-

16 18 

Fig. lOa. . Same as fig. 9a but with p·otential strengtn, G I, equal to 2.0. 

.. ' 

o 

20 

\0. 
W 



en 
Q) .... 
o -en 

+ 
o 
o 
\0-

4th 

3rd -

CI> 
N 2nd-
I 
~ -
\0-

o 

') ") 

n = 8, G' ~ 2.0 
K2 = 1.00 

.011+ 

~ ground-I .002 + 
en 

.002+ 

o 2 

-") ') 

.0001+ .0002+ o 

.0001+ .001+ .0054 + 1 .020+ .0009+ 

r---~---------------~ 

o 

'". "~, 

') ") 

One-boson state, 
Q(I)+ I gnd>, when 
R(O)+ = Q(O)+ + f p(O)+. 

o 

.048+ :(.164+ ~301+.272+) .098+: .015+ I .001+ .0004+ 
• ' , I '" ________________ _____ J 

.006+ o .009- .007- ;008+ 1' •• 020+ .009+ .00/+ .0001+ 

4 6 8 10 12 14 16 18 20 

F,~1ob Particle-number (m) 

Fig. lOb. Same as fig. 9b but with potential strength, G', equal to 2.0. 

\0 
+=-



95 

The question now arises as to which choice of R(O)+ gives the 

better approximation. Since the qua.si-pa.rticle approximation in 

generali~ inte~ded to be used to calculate those properties 

which do not'change sharply a.s particle number is va.ried, it seems 

that a better a.pproximation is one which, within reason, is 

sharper in energy and more diffuse in particle number. In this 

sense, the pictures (figs. 4 to 10) suggest strongly that, at 

least for spherical systems, and perhaps for deformed ones as well, 

the choice of·'R(O)+ = Q(O)+ + f p(O)+ gives a better approximation. 

7.6 STATES OF ONE ZERO-BOSON AND ONE NON-ZERO":BOSON - It is 

demonstrated in section 4 that 6. 1= 0, G '«1, the first excited 

state operator should consist of one zero-boson times one non-

zero-boson. This demonstration was refined in section 6 to correct 

an essential difficulty which occurs in all quasi-particle-type 

approximations in the G'«l limit. The result of the theory in 

these two sections is to predict a first excited boson state of 

the form~ eq. (51), 

t 1) t- . (0) + 
Q .·S I d V1ct > 

in the G'«l limit of the model system when n = 8. 

Figs. lla;b and 12a,b show the one non-zero boson states for 

G' = 1.2 and G' = .8 respectively, with the two choices of 

R(O)+ as before. Not~ that in these figures the center of the 

distribution in m is shifted from m = 8 to almost m = 10.'I'his 

indicates that G'issmall enough so that Q(l)+ is taking on the 
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character of a two-real~particle creation operator. In figs. llc 

and 12c the boson s(o)+ has been multiplied into the states of 

figs. lIb and 12b. The number distribution now centers on m = 8; 

and the spread to the ground state of the m = 6 system is much 

reduced. These figures corroborate the arguments of section 4 

that for G'< 1.2.; l. I 0, the first excited state is indeed a two 

boson state. 

7.7 THE DEGENERATE CASE - (.6.= 0, G' I 0) - When n = 10, 

and G'<l, the ,model system has .6. = O. In this case, secular 

equation, eq. (17), replaces eq. (14), and the model has two non

zero roots (and no zero roots). Fig. 13a shows the vacuum state 

for G' ::::: 0~8. This is just the shell model state with ten 

particles in level-one and no mixing of configurations. Fig. 13b 

shows.the correlated boson-ground state .. The correlations 

introduced by the bosons give a striking improvement over fig.13a. 

Fig. 13c shows the two-non-zero~boson state. . (The one-non-zero-

boson states are pure m = 8 OF m = 12 states.) 

Comparison of fig. 8b (G' = 1.2, n = 10) with fig. llc 

(G' = 1.2, n = 8) and· comparison of fig. 13c (G' ::::: 0.8, n::::: 10) 

with fig. 12c (G' = 0.8, n = 8)' will showtha~ at least for 

excited states, the failure of the quasi-boson method for n = 10, 

'G' around unity, is bad enough that one would expect the properties 

of the m = 10 exa.ct system to be better represented by n = 8 

than by n = 10. This is more evidence for the rule-of-thumb 

mentioned in sUb-section 7.3 when discussing bos,On energies. 
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7.8 THE TWO NON~ZERO-BOSON STATE - Fig. 14 displays the 

state of two non-zero bosons~ for G' = 2 and n = 10. Comparison 

with fig. 7b shows that the two-boson state is much more spread 

in energy over the various exact excited states than was the one 

non-zero boson state at the same G' and n. 

7.9 THE PRIMITIVE PAIR-VIBRATION STATE - Fig. 15 shows the 

state derived in eq. (45)~ and called the primitive pair vibration~ 

for reasons given there. This state turns out to be almost 

identical to the two-boson state above. (Compare figs. 14 and 

15.) This resul t~ which is also found at other nand G' values 

(not shown in figure)~ is discussed in section 5. 

7.10 MAGNITUDE OF FORCE-STRENGTH - To generalize the numerical 

results of this section to more complex systems~ such as actual 

spherical or deformed nuclei~ it is necessary to know which force 

strength~ G'~ of the present model system corresponds to the force 

strengths used in the complex systems. 

The failure of the quasi-boson method at the closed-shell 

(n = 10 in the model system) occurs in the vicinity of the critical 

G value~ Gc ' (G' = 1) This suggests that a useful parameter for 

comparison of various systems will be the ratio of G for each 

-- system to Gc for that system. This parameter 

I 
G=- (53) 

tells how strong the force is in a given system compared to the 

force at which the approximation fails for that system. The 
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I ~ , 

present calculations with the two-level model ~ystem suggest that., 

for systems with a partially filled stili-shell, Gc should be 

chosen by ,interpolation of the critical G values at the nearest 

sub-shell closures. For many systems, G will approximate the 
.. : ... , .. , .'. .. ' c....., ' " 

minlmum of the first excited state excitation energy versus G 

curve .. (~ee, eg., fig. 2 for m = 6 and m = 8.) 

For spherical systems, a useful estimateL Gc D,t sub-shell 

closures is given by 

/. 

(54) 

wher~ Irat! and "b" denote orbits just above and below the.fermi

energy at the sub-shell closure. This estimate is exa.ct for the 

model system described in section 7.1, and is used in eq. (52). 
~~~\> 

Fig. 16 shows .6. versus G' for the model system (dashed lines) 
;. f ,. 

and for a neutron system of 36 lev~l~ in the ~ra~e-earth deformed 

region. The latter system is that used in a published calculation 

of t3 and 'Y vibrations. t The two systems are shown both with n at 

a closed shell and with n one less than a shell closure. It is 

seen that, eg . ., at G' = 1.2., the fractional difference between the 

two solid curves is~about the same as the fractional difference 

between the two clashed curves. This supports the idea that G' is 

t Single particle levels for fig. 16 are taken frb~ Table I 

of reference3 ),. 

. ' 
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a useful parameter for compariso:;).. Exa.mina.tion of figs. 8 showing 

the one-boson ~tate for n = 10, G' = 1.2 shows that the boson 

approximation is beginning to fail badly at that force strength 

with n at a closed subshell. The force st~ength used in the cited 

paper3) seems to correspond to about G' = 1.23. In fact the 

author3 ) notes that he obtained better results in some ca.ses by 

replacing the equivalent of the last of eqs. (4)., 

t .. , 
< ~"cl I Q (k) 

by 

.' ., 
It is possible that this replacement may have the same effect as 

~, . 

a slight change in n.! It is worth noting, also,' that at G' = 1.2 
. I 

I 
I .' 

the present model system predicts a two. boson first excited state. 
! ---. 

(One zero-energy-bosoni times one non-zero-energy boson.) However, 

the great differences between the present model system and the 

system3 ) make direct comparison of results difficult. 

I A more direct comparison. can be made with published 
•• _ c ••• ~"" •• ' ." " ••• _ •••• __ •• _ •• _ 

calculations in spherical nuclei6,7). In ref. 7 ) the 

quasi-particle TDA method is used with a surface-delta force. The v. 

authors compare the energy levels with experiments and with exactly 

calculated values.' Some G' values used in their calculations' 

(taken from Table 1 of 7), using eq~~ (53) and (54) of the present 

paper) are shown in Table 1. The values shown are at closed 

subshells and should be interpolated between them as noted above. 
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Table 1 
(" 

Nucleus G Gc G' 

Ni60 0.48 0.16 -3.0 0,. ~ 

Sn 114 0.23 O.~ 1.1 

Sn116 0.23 0.14 1.6 

-pti206 0.15 0.14 1.1 
-- --

'Pb2OO 
i 0~14 0.07 2.0 

_Ce 140 0.20, 0.11 1.-8 
,-. "' 

r--
.,'", 

t." 
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o 114 206 The force strengths at Sn and Pb are seen to be very 
o 0 

weak. At these strengths the present calculation shows the 

uncorrelated quasi-particle ground state (TDA ground state) to 

contain more than a 4% component of first-excited-s.tate strength 

(value at Gt = 1.2." on = 10." figure not shown) as compared to less 

than 1% for the correla.tedboson ground state. At these same 

values of G' and n, the TDA one boson state ha.s a 40% component 

of ground-state strength and a 3% component of 2nd-excited state 
} 

strength (figure also riot shown). 0 Like the RPA' (fig. 8b)." at 

closed subshells for G'less than about 1.2 the TDA fails ,to 

predict correctly the seniority zero 0+ first excited state. 

At G' = 1.2 or l~s~, the present calculation al~~ predicts 

that the c?rrect first excited state for the partially-filled

shell case is a two boson state." one zero-energy boson and ohe 

non-zero energy. boson. A similar result should be' expected for 

the TDA method. 

i 
\, 
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r'- 8. Projection'of Correct Particle Number 

, . 

, As discussed ,in sect;ion T,;' the quasi-particle and 
• • .'., • I 

quasi.-boson methods produce state vectors which·, are sums 
~ 

114 

of terms with different particle number. The correct particle· 
I 

number can be selected 'from. quasi-boson states by means of 

the projection operator 

~.a. 

TT 
~ ... o 
"J:i>W\ 

,.i 

Y\-'l. 

'The projected terms must then be renprmalized. For example, 

in fig. 6b,projection of the m = 10 terms .from the one boson 

state wil~ give a state 

+ 

1-
.' ~ 

(o.oor) } 4~> +- ... 

where I 4\) are the exact eigen states of the m =10 system. 

After normalization, this state is 

1 

-(o.OO1")~ 110'> 4 

which indicates a 97% overlap between the projected one boson 

state and the corresponding exact state. 

Table 2 shows the overlap integrals between states 



obtained by projection from the quasi-boson method 'and the 

corresponding exact states. ,Asterisks,( *) denote the best 

approximations to the given, exact states. The entries in 

parentheses refer to the original quasi-boson method
l

), with 

function fin. eqs. (31)' equa.l to z'ero. The entries no in 

parentheses refer to the choice of 'f derived in this paper, 

eq. (39). Note that the latter choice gives greater overlap 

with exact states. The overlap betwen approximate and exact 

states is generally better for ground states than it is for 

115 

one boson states. For ground states, fig. 2 shows that mettlOds 

of this paper give overlap percentages greater than 99;9% 

for all values of Gr. The states of one quasi-particle (odd 

nuc~ei, not treated here) should have 'overlap percentages 

comparable to the ground state since they differ from the 

ground state only in the blocking of one pair. 

For G'<::1.2 and n == 8, the one boson state in some cases 

has a slightly greater overlap than does the correct two boson' 

state. Projection of particle number removes the components 

of incorrect states belonging to a different particle number. 

Note also that for even a fairly strong force, G' == 2.0, 

al~rger overlap. integral for the ill == 10 excited state is 

obtained when the average'number, n, is 8 instead of 10. 

This suggests that calculations which are to be followed by 

particle number projection should perhaps always be performed 

with n shifted slightly from subshell closures. 

, , , 
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Projecteq Average 
Exact Number, ' Number, 
state G' m n 

gnd. 4.0 10 10 

gnd. 2.0 10 10 

gnd. 1.6 10 10 

gnd. 1.6 10 10 

gnd. 1.2 10 10 

gnd. 1.2 10 8 

gnd. 0.8 10 8 

gnd. 0.8, 10 8 

gnd. 1.2 8 8 

gnd. 0.8 8 8 

gnd. 0.8 8 8 

first exc. 4.0 10 10 

first exc. 2.0 10 10 

first exc. 2.0 10 8 

first exc.' 1.2 10 10 

first exc. 1.2 10 8 

) ) 

Table 2 

Quasi-boson 
State 

I gnct> 

19nd> 

19nd> 

l~ 

Ignd> 

Ignd:> 

Ignd> 

I~ 

Ignd) 

Ignd> 

I~ 

Q(l)+lgnd> 

Q (1)+ 19.'1d> 

Q(l)+lgnd> 

Q(l)+lgnd> 

Q(l)+lg~d> 

Overlap 
(%)' 

* .. 
100 (98) 

100* (91) 

* 100 (87) 

99.2 

98 (86) 

* 100 (90) 

* 100 (98) 

99.9 

* 99.9(94) 

* 99.9 

98.5 

'* 97~87) 

88 (50) 

* 91 (71) 

75 (45) 

94 (84) 

Figure 
Reference 

Fig. 4b (4ca) 

Fig. :3 

. Fig. 6b (661.) 

Fig. 7b (7a) 

Fig. lOb (lOa) 

Fig. 8b (8a) 

Fig. llb (lla) 

" , 

, 

I-' 
I-' 
0\ 



Table 2 (continued) 

Projected Average 
Exact Number, Number Quasi-boson 
state G' m n State 

first exc. 1.2 10 8 Q(l)+S (0 )+ I gnd> 

first exc. 0.8 10 8 Q(l)+ I gnd> 

first exc. 0.8 10 8 Q( l)+S( 0)+ I gnd> 

first exc. 1..2 8 8 Q(l)+!gnd> 

first exc. 1.2 8 8 Q ( 1 )+ S ( 0 )+ ! gnd> 

first exc. 0~8 8 8 Q(l)+ Ignd> 

firstexc. 0.8 8 8 Q(l)+s(O)+lgnd> ' 

'1 
. Percentages above 99 • .95% are written 100%. 

" 

" 

.. ,-

Overlap 
(%) 

... 
95 

... 
(95) 99.3 

97 

... 
(85) 97 

95 

... 
(97.7) 98.9 

98.8 

Figure' 
Reference 

Fig. Hc 

Fig. 12b (12a) 

Fig. 12c 

Fig. Hb (Ha) 

Fig. Hc 

Fig. 12b (12a) 

Fig. 12c 
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I-' 
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9. Conclusions 

The main conclusion of Part II is that the numerical 

results in a simple model systeIr.. show. that the quasi-boson 

method!. can give useful approximations to the excitation : 

energies and- state v~c'tor~ ";f~"'a:t'least the ground and first 

excited 0+ states of nuclear systems in the case of pairing 

potentials, provided that certain precautions are obse~ved 

and certain revisions made in the method. The main precautions 

and revisions are: 

(;1-) The zero energy boson used to help define the 

boson ground state should be 

-

and not simply Q_(O)+. (The bosons R(O)+, Q(O)+, p(O)+, and 

the function f are defined in sections 4 and 5.) The use of 

R(O)+ gives state vectors~hichare more concentrated in 

energy (less spread over exact excited states) and somewhat 

less concentrated in particle number. 

(2) The first· eXCited state for G'<1.2 isla two boson 

stat'e. For C; +: 0 (and .this. is the interesting case for 

reasons given in (3.) belQw) the two bosons are one non-zero 
.' 

energy boson and one zero energy boson. (The arguments' 

showing that this must be the case are developed in section 

4.) The two boson nature of the first excited state may 

persist for G' at least as large as 1.2. 
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(3) The striking failure of the quasi-boson method 

for G' near 1 ,and average particle number, n, equal to a 

closed subshell, can ·be corrected by setting n slightly 

more or less than the closed subshell value. The resulting 

boson energies will be closer to the exact energies of the 

closed subshell system as. a result of this slight displace

ment in n. The state vectors, though having their largest 

c~mponents at slightly incorrect particle number, are still 

useful, since a spread in particle number is characteristic 

of the approximation. The exact value of the change in n 

is nota critical parameter. 

119 
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PART III 

EXACT DIAGONALIZATION IN SENIORITY TRUNCATED SPACES 
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1. Introduction 

Parts land II ~of this thesis are based on an approxi

mate form for the grounds state vector of an even nuclear 

system., As noted in Part I, this form has one variational 

parameter per j-level of the nuclear system, instead of 

one coefficient for each possible configuration of the par

ticles as in exact number conserving calculations. The use 

122 

of the approximate state vector is thus based on the suppo

sition, which is undoubtedly true for most deformed nuclear 

systems~ that the dimensions of the matrices to be diagonalized 

in an exact number conserving calculation are impractically 

large for systems of .more than a few particles 'outside of 

closed shells. (The dimensions of the matrices equal the 

numbers of configurations with given quantum numbers.) Also, 

the labor involved in claculating the many body matrix ele

ments of the Hamiltonian may become prohibitive. 

The development of computer technology, however, now 

allows matrices with dimension on the order of 200 or 300 

to be diagonalized in one or two minutes of running time . 

. Many calculations in sph~rical: nuclear systems use matrices 

of less than this dimension. 

The dimensions of matrices in exact calculations can 

be reduced by the method of seniority truncationl ). The 

word seniority is used here in the following sense: a 

state created by n fermion particle creation operators 



has seniority s of all,but s of them are coupled pairw,ise 

to zero angular momentum. Thus a state of seniority zero 

must have total angalar momentum zero. (The converse is 

not true. There are J = 0 stat~of seniority 4, 6, etc.) 

Seniority truncation is based on the observation that the 

dominant residual inter?-ction in nuclei can be represented 

as an attractive potential which, in the j-j coupling scheme, . 

acts most strongly in states of pairs of particles coupled 

to zero angular momentum. Therefore, configurations with 

more of the.se zero coupled. pairs will generally lie lower 

in energy than those with fewer of them ... Therefore, we 

will consider only the states of lowest seniority. When 

configurations are restricted to lowest seniority, it also 

becomes ,possible to obtain simple expressions for many body 

matrix el'ements of general two body operators. 

123 



2. Exact Diagonalization in Spaces of 

Seniority Zero and One 

As before (eqs. (1) - (4) of Part I), we wish to 

find eigen vectors for a system of particles in shell 

model orbitals with single 'particle energy e j , with con

figurations mixed by two body residual potential, V. As 

stated in Part I, the many body Hamiltonian operator is 

with 

and 

Y\' J 
- & 

) 

- , 

(2) 

(3) 

. t:-j +.:r .' 
G ( ~I Y ~ j .j):. « i.'j') .j ~ \ v 1 (lj)J M> + t-1) < (~:;')J M \ V Ilj ~ )..T M) ( 4 ) 

Eq. (1) can also be written in the form conventional in 

. pairing theory 

124 



where 

- G (~ijjO) 
(6) 

and 

1, + l \ I2 0.., jJ 00) (7) 

The states created by cjm are here specifically taken to 

be single particle levels in a certain harmonic oscillator 

potential well. The definition of the single particle wave 

fUnctions, with a discussion of phases, is given in Appendix 

III-A. The phases are chosen such that the matrix elements 

above are real numbers. 

Considering for the moment only a single level, labeled 

by j, the seniority zero (total J = 6) many particle state 

are denoted 

f . 
(ctj) \ 0) (8) 

where 

) , 

(9) 
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and where \ 0) is the state of no particles (vacuum state). 

The state Ip) is thus a normalized state of p pairs in level 

j. The normalization factor, ~j (~), and certain other use

ful quantities, are derived in Appendix I~I-C for states of 

seniority zero, one and two. 

Similarly, the states of seniority one (states' of odd particle 

number) are 

(10) 

where 

and 

. r ( +) r +-~ : (r\ ~ < 0 \Cj WI- (Ctj) a. j C j \<\A \ 0) (11 ) 

These are normalized states of 2p + 1 particles, p pairs 

plus one odd particle. 

A convenient notation for configurations of particles 

in several j-levels is then, e.g., for seniority zero states, 

\ f , V' 5 > (12) . 

where p is the number of pairs in the j~level with-least 

ej' q the number in the next least, etc. Thus, for' a four 



j-'leveltreatment of the valance protons -outside the Z = 28 

90 closed shell in closed neutron shell nucleus 40Zr50' some 

low lying configurations are 

\.3 'L 1 c) 

" :3 ""' 
0 1> 

{.3 1 1 1/ 
etc. 

where the configurations all have 6 pairs (12 protons) in 

the four levels. (The levels have j values- 5/2, 3/2, 1/2, 

9/2.) Similarly, some low lying-configurations contained 

in tlie seniority one 5/2:" state of 41Nb§6 are 

l i 1- 1 1 '> 
\ ~ ~ 0 ~> 

l :l. 1 1 1..) 

etc::.. 

The many hody matrix elements of H in states such as 

eq. (12) are of the form, 

< r I , I y- I - - - I Hlp .~ ~ -..) (13) 

They can be calculated by the method of fractional parentage 

coefficients l ,2) in which one begins with an unsymmetrized 

many particle state and then takes into account the compli-

cations introduced by anti-symmetrization. However, we have 
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defined Gur many particle states directly .in terms of opera

tors, c;m, which have fermion anti-conunutationrelations. 

We therefore choose to evaluate expressions such as eq. (13) 

directly in terms of the commutation relations of the opera

tors which define the potential and the states. These com-

mutation relations are g,i ven in full generality in Appendix 

III-B. We note here only that 

(14) 

has a constant termpl'usterms containing operators of the 

form 

V\i,j (K1) : - £ (.. ~, j ~ \ K·-'i) ·:~c 1 f-1}j-W\ c
J
" -W\ (15) 

'P~\ . 1 

for all 

\ j -.r' \ ~ K ~ 
-'-'-. 

and 

1~M-M' 

When K and", are zero, eq. (15) becomes 
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J 

where nj is defined in eq. (2). ,The corrunutation relation 

consists of terms with operators of the form 

wi th K '1 gi yen in terms of the J> M> J', M', just as above 

in eq. (15) ~ 

All of the many body matrix elements relevant, to a 

general potential acting in seniority zero and one, states 

are derivedand'listed in Appendix III-D. A few of them 

are listed'here to show their simplicity. 

:2r(p-1) 
Aj (.C2j -1) , 

r -~. 
:J 

(17) 

1~9 



Only the pairing term, the term with coefficient Gij in 

eq. (5), is effective in mixing configurations. 

The matrix elements of the J ~ 0 terms are independent 

of the J, M quantum .numbers. Therefore, defining 

(to) 
G '. ::. 

. t.j 
Z (:t.:r + 1)G {l. J" l jJ) 

J)o 

(18) 

we may write H in a form which is equivalent to eq. (5) in 
J. 

seniority zero and one' states, 

(19) 

130 

where the last term is·evaluated for each i, j by setting nonzero 

J to any value for which the operator atj(JO) is nonzero. 

A computer program which calculates and diagonalizes 

the matrix of H in seniority zero and one systems is listed 

in Appendix· III-E. 

i. 

. . - - . ~ .~ 
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3. QUasi-spin 

The matrix elements of general forces in senibrity 

zero and one many particle states have been derived using 

the. commutation relations of certain operators. We might 

wonder if the Hamiltonian, eqs. (5) or (19),can be written 

in terms of some set of operators which is closed under the 

operation of commutation. The difficulty is that ,the terms, 

eq. (15), that resuit from the commutation of a+ :and a have 

all valu~s, of angular momentum K from \J - JI\ to (J + JI). 
",'. 

Then the commutation of each of thein operators, eq. (16), 

yields still more K Values, and so on until all possible 

Jvalues have been reached. 

For a pure pairing force, however, there is only one 

value, J = O. We then have the Simple commutation relations 

.. 
'lV\' ,..J' t< (.;). ""'J J . 

which show that the set of operators a,1, a j , nj is indeed' 

closed under commutation. 
~) (-) 

the operators Sj' Sj' and 

t+) 
S· ~ . J 

In fact, it has been noted3) that 

S~) defined by 
J 
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,...,.....,., 

(- ) 

~ 
a.;-s· -J J 

(l) 
(20) 

1 
( V\j - SLj ) S· : -:z. J .. _" .-.~-- -_. 

obey the same commutation relations as the angular momentum 

operators <}+, <}_ , ~c. The pure pairing Hamiltonian 

can be written in terms of the ~operators 

The states we have labeled by \ ~) are then labeled 11;::" > 
"' .... where j m are quasi-spin quantum numbers 

.N 

...:L .£L . 
.J -:: /)... J 

'" .:L (;lr-S2.j) V\I\ ~ 

~ 

If Gij = G (constant pairing potential), and also e j = e for 

all j, 

G S (t) S (-) 
(22) 

where 

.' 
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t+) 
5 ::: 

(- ) 
S =-

(z) 
S =-

~ (t) 
GSo 

o J 
J 

~ .. <.-) 
<6 So 

o J 
J 

have the same conmrutation relations as those of the Sj opera-

tors in eqo (20) 0 ' 

If all; the ej are equal, the quasi~spinformalism can 
.. 

give eigen vectors ofH by the method of vector coupling 

of the quasi-spins of the ind:i,vidual j-levels 0 However, this 

result is not true when. the ej are unequal;. the formalism is 

then a somewhat inconvenient method of calculating the many 

body matrix elements,. eq~. (13) 0 For this reason, we do not 

use it for that purpose in this paper . 
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.4. The Delta-function Potential 

The delta-function two body residual potential, 

(23) 

unlike the pure pairing potential, has a· somewhat realistic 

spatial significance. It represents the limit of a short 

range attractive potential of great depth. Nonetheless, it 

has algebraic properties which are as simple as, or simpler 

than 4), those of the pure pairing potential. The well known 

derivationl ) of the identical particle t;wo body diagonal 

matrix elements of eq. (23) has b~~n generalized5) to give 

when (l~ + lj + J) is odd, and 

<"_ i. ... ~ (t~,-..e.i. +.R.j -.ij') 

:; -~ (-1) . )( 
(24) 

when (Ii + lj + J) is even, where 

and 
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(25) 

The radial wave functions and the integral, eq. (25), are 

treated in detail in Appendix III-A. A program to compute 

the integrals is listed in Appendix III-E. 

Let the delta-potential, eq. (23), act in seniority 

zero and one states. It follows tha~ the para~eters defined 

in eqs. (6) and (18) are 

The foll'owing identity4) ,. 

. --- 7-

i . (i i j - ~ \50) 
:r 

lc:+t,.; +s 
6l.ve.~ 

gives immediately 

or 

(26) 

--. e "e.~ _ 
- -'. 

1 
-- -A. (28) 

, (29) 
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(30) 

since I .... = I. ... from the definition, eq. (25). 
lJ1J llJJ. 

If we set all radial integrals Iiijj equal, we obtain 

what is called surface delta interaction. This name refers 

to arguments that if the attractive short range potential 

were mostly effective in the nuclear surface region, the 

effect would be a smoothing out of variations in the radial 

integrals. Setting 

(31) 

we obtain Gij = G in eq. (26). We see from eq. (5) that the 

J = 0 term of a surface, delta potential is a constant pairing 

potential. The relation, eq. (30), remains valid, of course. 

It has been demonstrated4) that the surface delta interaction 

can be expressed as·: the sum of a quasi-spin scalar and a term 

Which depends only on the total number of particles. For 

reasons given at the end of section 3, we do not use this 

result in calculations. However, the surface delta inter

action itself will be used in the following sections since 

it has only the one free parameter, G, and yet has spatial 

Significance as a short range attractive potential. 
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5. Nickel Isotopes 

The method of exact diagonalization in seniority zero 

and one spaces is here used to calculate the ground and 

excited 0+ states of even isotopes of nickel and the low 

lying half integral angular momentum states of odd isotopes 

of nickel. The nickel isotopes are treated as a system of 

valence neutrons outside of the closed neutron shell at 

N = 28. (The protons, with Z = 28, also form a closed shell, 

and are also assumed not to be excited.) 

Previous theoretical studies of th~ isotopes .of nickel, 
6 8. . 

e.g. refs. ,7, ), have generally taken the single particle 

137 

energies of the j-levels, e., from the experimental excitation 
J 

energies of 28Ni~~, which has one neutron outside the 28-28 
. . 8 

doubly closed shell. In ref. ), a least squares method is 

. used to determine the two body residual potential which best 

fits the energies of the low lying excitation spectra and 

the binding energies of Ni isotopes from Ni58 to Ni65 . In 

such a calculation, any changes in the single particle neutron 

energies, ej' as N varies from 29 to 37 (Ni57 to Ni65 ) are 

assumed to be included in the effective residual potential. 
8 

The best fit potential from ref. ) turns out to have repul-

si ve Gi~) parameters. In fact, the paramete;"s Gij and Gi~) 
(defined in eqs. (6) and (18) above) of the potential of 

ref. 8 ) are similar to those of a pure, constant pairing po- . 

tential with G = 0.9 MeV, added to a repulsive surface delta 



potential of strength G = -0; 5 MeV. (In our convention G ')0 

for attractive potentials.) 
.. 6 ... . 

The study), cinthe other hand, used'an attractive 

surface delta interaction and obtained qualitative agreement 

with the spectra of several Ni isotopes (including agreement 

with the first 2+ excitation energies in some even Ni iso-

topes) . 
6 

The qualitative success of this study·) seems'to 

raise the possibility that, if changes in the e j from isotope 

to isotope are explicitly included in the calculation, a 

reasonable fit to the Ni data might be obtained with a simpler 

potential than that of ref. 8) . 

The present study Uses an attractive surface delta 

force. It assumes that the 28-:28 core is inert in the sense 

that nucleons are not excited from ',it into valence states. 

But it assumes,that the. core:-valence binding"theej;~ may··' 

vary with neutron number,.N. We ma;y say that the core is 

inert bilt variable .. In order for the binding energies of 

the various ground states to have a simple significance., we 

assume also that the core-core contribution to the binding 

energy does not vary with neutron number, N. Then the quan-
8 

tity {see eqs .. (6), (7) of ref.} 

corresponds to the lowest eigen value of H in each isotope 

(model absolute ground state energy). For convenience, 
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we have chosen the zero of energy at the ground state of 
57 . 56 Ni which is bound'. by 10.26 MeV relative to Ni .. . . If the 

assumption of constant core-core binding is invalid, the 

result is that effects of changes in core-core binding energy 

are included in the e j parameters, and in the potential V. 

The present study attempts to fit the seniority z·ero 

and one spectra, and the. ground state· bindingenergies,l?(n), 

of the isotopes of Ni. But in order.to avoid a proliferation 

of adjustable parameters, we seek a fit with, a smooth varia

tion in the e j values as neutron number increases, preferably 

a variation that can be parameterized economicall~. The 

diagorialization is performed.in a ·system of three'single 

particle neutron valence states, 2P3/2' If5/2' 2P1/2' 

We first tested the effects of seniority truncation 
8 

by using the two body matrix elements of ref. ) to calculate 

the seniority zero and one energies. The energies obtained 

fit well with those obtained by the non-seniority-truncated 

tre?-trilent of ref. 8 ). (The rms theory-theory difference is 

80 KeV for 20 states.) Since the surface delta potential 

conserves seniority in single j-levelsl ) and conserves quasi

spin in systems of many j-leVels4, 18), we expect seniority 

truncation to be an even better approximation for a surface 

delta potential than it is for ·the potential of ref. 8 ). 

Therefore, the effects of seniority truncation of the energy 

spectra in the present study are probably less than the above 

80 KeV figure. 

139 



The results of the study are. shown in table 1. The 

ej levels are parameterized linearly, 

-
O{' t j 

t>j (A- S?-) (33) 

which requires two parameters for each of the. three j-levels. 

These five parameters ( 0<. 3/2 = 0 by assumption), plus the 

potential strength G, make six parameters to adjust in fitting 

23 experimental energies. The numbers in parentheses are 

the values of B(n) for the ground states. The experimental 

energies for each isotope are in the row immediately follow-

ing the calculated values. The fit obtained is somewhat 

crude. The 14 excitation energies have a 211 KeV rms differ- . 

ence from the experimental values. This compares to an rms 
8 

difference of 227 KeV obtained in ref.). Of course, the 

least squares fit of ref. 8) included many more states than 

the present work. The binding energies are not fit well. 

They have a 454 KeV rms difference with the experimental 

(based on the assumption of constant core) B(n) values. The 

errors in the even-A binding are systematically greater than 

those in the odd-A, which suggests that a stronger potential 

would improve the fit to the binding energies. The value 

G = 0.45 MeV was chosen to give about the right 0+ excitation 

energies in the even-A nuclei. It is probable that a systema-
, J'~ 

tic least squares fit, varying the ~j , ~j' anej G would 

give better agreement with experiment. 
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A 

64 

65 

66 

Table I (cont'd.) 

e3/ 2 e e E 
5/2 1/2 0+ 

1.68 1.97 2.06 (4.18) 

(4.33)e 

1·92 2.14 2.20 

2.16 2.31 . 2.34 (9.19) 

(9.76 )e 

G = 0.45 MeV 

Rms differences between calculation and experiment: . 

211KeV for 14 excitation energies. 

454KeV for 9 binding energies 

* E E 
0+ 3/2 

2.58 

2.8ge 

0.14 

0.32e 

2.62 

Experimental quai,ttities,:·{taken::·f~9m ref. 8) are marked with superscript e. 

All ehergies in table above are in MeV. 

} 

E 
5/2 

(7.78) 

($.46)e 

E 
1/2 

-0.01 

0.06e 

f-' 
.j:::
(\) 



--
-

--. 

. ---~ " 

The study demonstrates that reasonable agreement with 

the low lying spectra ,of ,the Ni isotopes can be obtained 

using seniority'truncation and a surface delta potential. 

'The study also illustrates the utility .of the method of 

exactdiagonalization in the study of,features of,nuclear' 

spectra. 'A particular advantage of the, method. used here 

is that the number of single particle levels can be increased 

from three to. inc,lude also.~he If7/2 and ,lg / levels .. This 
, ,9 2 

additio.n o.f j-levelsdoes no.t appreciably increase. the co.m-
" 

plexityo.f thecalcula:tion. 

'. ' .. 

•.. ' ... - " 

"' .:-'" 
-,: ',. 

, , 

') 
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6. Fifty Neutron Nuclei 

The method of exact diagonalization in seniority zero 

and one states is applied to nuclei with a closed, N = 50, 

neutron shell and with valence protons outside of the closed 

shell at Z = 28. The experimental spectra of the ·50 neutron 

nuclei are not so well kno~m as those of the Ni isotopes. 

Therefore, no fitting of energy levels using variable' e j 

values will be attempted here. Instead, the single particle 

energies will be chosen to fit reasonably the levels of 
. 89 91 

39Y50 and 41Nb50 
These levels' will then also be used in 

88·· .' 90 
the diagonalization of 38Sr50 and 40zr50' 

The single particle proton valence levels are If5/2' 

. 14h 

2P3/2' 2PI /2' and 19 / . '.. 9 2 
These are all of the single particle 

levels between the Z = 28 and Z = 50 shell closures. The 

single particle proton energies used 

e 5/ 2 = 0.00 MeV 

e3/2 = 0.25 

el/2 = 1.80 

e9/ 2 2·90 

are similar to those used in other calculations in these 

nuclei (e.g., see ref. 9 ). The diagonalizations are performed 

with both a pure, constant pairihgpotential, and a surface 

delta potential. The.potential strength, G, is taken to be 

the usua19 ) value determined by quasi~particle methods from 

the odd-even mass difference. In this case, it is G -;t.22/A ,MeV' 



(= 0.25 MeV when A = 90). ~The calculated excitation energies 
~ 

are compared with J:mown experimental values in table 2, for 

five of the 50 neutron nuclei, Sr, Y, Zr~ Nb, Mo. 

The (numberc'onser:Y~!lg) state vectors from the above 
-- :%. 

diagonaliza tion are used. -Co calculate--·the·_s... va~ues of 

the excited.O+ to ground 0+ electric monopole transitions 
:%. 

in Zr, Sr, and Mo. The,quantity.~ is defined by 

. . '~ 

5 "- ~\ <"xc. 0+ \ ~ 1 ~)'"- oq- (~) \ '" ~i \ ~"J. 0'>\ (34) 

where the, sum, i, runs over all protons ,_ and where 
./ 

1 
" -13 A3 R:: 1. 1... ~ 10 

3 
C~. 

(The parameter A is the at.ornic number of the nucleus.) The 
::t 

) value is a conventional measure, similar to the B(E2) 

value for electric quadrupole transitions, of the nuclear 

part of the expression for the rate of electric monopole 

transi tions. These transitions proceed "mainly by the exci ta

tion' of K-shell eiectrons. The parameter, ~ ,above, is 

determined from an assumed nuclear charge di$tribution. (See 

fig. 5 of ref.l~) For nuclei in the region of Zr, an average 

value of ~ is \J = 0.025. 

In a harmonlcoscillatorsingleparticle basis,such as 

the'one which we are using, the one body operator, r2, between' 



146 

--
-- Table 2 -. 

* ~~ El !2_ Nucleus EO+ EO E5/2- E3/2- E9/ 2+-- + 

38Sr 88 0 2.41 0.002 

89 -1.54 1.30 0 1.00 Y 
39 

1.74e 1.51
e 0 e- 0.91

e 

40Zr 90 0 J..76 0.023 

0 1.75 
e 0.0031e ( ~ :.;,. ~i 

41 Nb91 
1.69 1.45 0.12 0 

O.lle Oe 

92 
42Mo _ 0 2.41 0.017 

-, 

,.,... ... ~ 

Experimental energies (taken 
14 

from ref. ) 
-2, 

(taken and the experimental f value from 

ref. 15 ) are marked with superscr.ipt e. 

All energies are in MeV. 

.. -



-
orthogonal states (the ground and excited 0+' states,in 

, 
eq. (34) are orthogonal) is proportional to an operator 

which counts the number of particles in the j-levels with 

oscillator ra9ial quantum n~~ber one more or less than the 

oscillator radial quantum number of the majority of j-levels 

in the calculation. (In many calculations, there is only 

one j-level of different oscillator radial quantum number.) 

In the present calculation, the g9/2 level has radial quantum 

num~er,4, and the other three levels have radial quantum 
~ 

number 3. The f thus is sensitive to the occupancy of 

the g9/2 level, and to the rela ti've ground and excited 

state signs of the coefficients of configurations with the 
:2-

g9/2 level occupied. A program to compute f using matrix 

elements of r2 and r 4 from ref. ll ) is listed in Appendix 

III-D. 

There is a wide disagreement (see table 2) between the 
2-

one experimentally measured r value and the calculated 

value, in Zr90.The calculated value is seven times too 

large. Fig. I shows the values of 
~ 

rand 0+ excitation 

energies for a range of G values in zr90, using a constant, 

pure pairing potential. It is seen that agreement between 

the calculated and experimental values of both quantities is 

obtainedfor a low pairing potential,strength, G = 12.5/90 MeV. 

The excitation energies inNb and Y also agree will with 

experiment at this G value. ' 

The low value ofG, G = 12.5/90 MeV, seems to be ruled 
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out, however, by consideration of the odd-even binding eI}.ergy 

differences in 50 neutron nuclei. (The low. value also gtves 

poor agreement with nucleon transfer data shown in table 4.) 

The strong attractive pairing component in residual nuclear 

forces leads to a systemati'cally greater binding 'energy in 
, ." 90 ·88 

even-even nucl~i (N,·. Z both .even, e. g;. Zr ,. Sr , ... ) than 
q1 8"1 

in'· even-odd nuclei (here, N even, Z odd, e.g.· Nb, Y, ... ). 

This odd-even difference adds a discontinuous part to the 

smooth dependence of binding energy on Z.Thus the binding 

energy of N = 50 nuclei may be represented 

B( Z ) = g ( Z ) +. ~ (Z) 

where g(Z) is a smooth function and 

~ (Z) = 0 

= ~ 

(36) 

Z odd (37) 

Z even 

We wish to correlate the magnitude of ~ with the magnitude 

of the pairing potential inN = .50 nuclei .To do this" we 

note that, while the second derivative of g(Z) with respect 

to' Z for fixed N is large, the third and higher derivatives 

are small compared to the magnitude of S (The second 

derivative of the semi-empirical mass formula for fixed N 

is about :'900 KeV at zr90 .)·' We therefore form a three point 

approximation to the second derivative 
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(38 ) 

From eqs. (36) and (37) 

(39) 

d2~ / .... ::;.'7-
with the plus sign whenZ is odd. Since d,-' is 

large, we form the four point approximation17 ) to the 3rd 

derivative 

(40) 

which is" approximately" 

(41) 

Since is small, we are left with the term in 

$; To be safe" we can also compute 
., 

(42) 

which is, approximately, 

(43) 



,-

The terms in ~ ,being discontinuous, persist through 

this series of differences. 

Table 3 shows the above quantities computed for the 

50 neutron nuclei. The experimenta~ binding energies are 
, ,11) from ref. . 

, " 

Note that the P3 and P4 columns a~e of about 

the same magnitude. This indicates that the continuous part 

of the binding energy (g(Z) above) is already negligible in 

P3. Table 3 shows the same quantities calculated for minus 

the ground state absolute eigen energies, taken from the 

exact diagonalization, of a surface delta potential with 

G = 0.25,MeV. (These,numbers differ from binding energies 

by a linear term which'does not affect P2.) The calculated' 

quantities, table 3a, are about 2/3 of the experimental 

ones, table 3. This indicates that the pairing potential 

should be increased somewhat to obtain agreement. A decrease 

of G from 22/90 to 12·5/90 MeV to obtain agreement with f~ 
would, therefore, lead to strong disagreement with the experi-

mental odd-even binding energy difference. It is interesting 

that in both table 3 and table 3a, the closure of the Pl/2 

subshell at Zr90 leads to an increase in .~ as the g9/2 

151 

level is filled. This effect, due to the increased g9/2 pairing 

self-energy, is supporting evidence for the correctness of 

the model being used. 

The incorrect prediction for 
'1-f above can perhaps 

be explained by saying that all electric transition rate 

calculations are subject to errors introduced by what are 
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Table 3 

50 Nuclei H.E. P2(Z) P3(Z) P4 (Z) 

Br85 
35 . 737 440 

Kr86 749 213 ~1573 
36 · 2565 

Rb87 757 840 992 -2566 37 -2567 88 
38Sr 768 450 -1575 2286 

89 2005 
·.39Y 775 910. 430 -2090 . 

~2175 
'Zr9O 784 230 . -1745 2730 40 3285 

. Nb91 789'060 1540 -3413 ·41 -3540 
42M092 796 970 -2000 

43Tc 93 800 880 

All energies are in. KeV. 
12 Experimental binding energies are taken from ref. ). 

",' . 



Table. 3a 

N = 50 Nuclei -EO P2 (Z) ____ . . P (z) 
_ .. -.. ,'" ... -' .-3 

Br85 :3755 
_0'. ," ._, .- .' ., 

35 
. , 

. Kr86 5098. -833 36 1617 
Rb87 ' 4736 ·.784 37 -1787 
Sr88 5941 ... 1003' 38 1468 y89 5141 465 39 -1358 

4 Zr90 5271 '-893 . 0 1840 
Nb91 '3615 947 41 

~1919 92 
42Mo 3852 -:-972.· 

Tc93 2145 . . 43 ... . , ._·t_ .... 

J.' 

All energies are in KeV. 
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called effective charge effects., The assumptions of inert

ness for the neutrori system and theZ == 28 proton core may 
.". 

be too stringent to allmAf correct prediction of r This 
2. ' 

is particularly likely since ther value is seen to 

depend on small components of the state vectors. It is also 

possible that the assumption of harmonic oscill~tor single 
2 

particle wave functions is incorrect. The form of the r 

matrix ,element may, therefore, properly, include terms other 

than the ones used'Irt'--the calculation above. 

Another kind of experimental quantity which we can 

calculate using the exact"number conserving state ,vectors, 

is spectroscopic factors of one proton stripping and pick-up 

reactions. These spectroscopic factors, the,nucle~r state 

vector parts of the stripping and pick-up cross sections, are 

defined 

.2. (CL~ b) ~ 
1 

\ 
.( Jb W\, \ c j W\ \ j~ tt'\~ '> f .tjbt1 -
(j \M jc.. VIf\" \ j b Wlb ') 

(44) 
j 

where the forward arrow refers to stripping (adding one parti

cleto the nucleus) and the backw~rd arrow to pick-up' (taking 

one particle out of the nucleus). Note that the names were 
, " 

coined by particle physicists-,-not by nuclear structure 

physicists. 
, 13 

Recent experimental measurements ) have 'been performed 

for the pick-up reactions 

) 



f't ( . 11 3) S", & i 1 rAJ e ' 

which have spectroscopic factors, for Zr and Sr in 0+ states, 

(.A.~ol 
(45) 

(5"') \ it; \ Cy+z....;.. .... , s. y-ii> \.:t ~ : ~ <. "I, i/ .. ) .r-A%... \. _ 

respectively. The fac;tors in eq. (45) have the following 

swn rule' 

, 
:2.jt1 

<2 ~ C;o 1 V\j.\ ~ v- CJO). 

;z.. j +1 
(46) 

where the nwnber on the right hand side of eq. 

fractional occupation nwnber of the level j in 

ground state. The swn k is over all states of 

(46) is the 
" 90 

the Zr . 

y89 with the 

same'quantwn nwnbers as the lowest state of given j. The 

spectroscopic facto~s obtained by calculation, using constant, 
• ~ < 
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pure.pairingpotent1al of magnitudes G = 12.5/90·and G = 21.5/90 

'MeV are shown in table 4, along with experimental values from 

ref. 13 ). The calculations are done using a computer program 

(Appendix III-E) based on the easily derivable expressions 



---

j 

1/2-

1/2-* 

9/2+ 

9/2+ * 

3/2-

3/2-* 

5/2-
* .. 

5/2-

" J 

0+ 

" 0+* 
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Table 4 

12.5/90 MeV 21.5/90 MeV' 
13 

G = G= Expt. (ref ) 

0·950 9·775 0·57 

0.000 0.005 

0.012 0.065 0.051 

0.004 0.011 

0·993 0.962 0.55 

0.000 0.002 

o. 99.4'-~ 
,."," 

0.969 
, 

0.33 

0.000 0.001 

8 ' , 3 88 
y(i/2-) (d, He ) sr(J) 

G = 12.5/90 MeV G = 21.5/90 MeV 
, 13 

Expt. (ref. ) 

0.983 0.915 1.000 t 

0.016 0.079 . 0.000 

t Defined as unity in ref. 13) to normalize data. 

Entries'. are reduced ,spectroscopic factors ~j/(1..j +-1) 



(47) 

13 ,The authors of the paper ) suggest that the'experimental 

numbers are' reliable to about 20% of their magnitudes, except, 
89 

for the pick-up factor to the 5/2- level of Y ,which they 

consider less reliable. The experimental factor for the sr88 , 
13 ground state is defined by the authors ) to be 1.00. They 

88 
assume no configuration mixing in Sr . While our calcula-

tion disagrees with this assumption, we do not renormalize 

th,e other spectroscopic factors because of the fairly large 

error inherent in them anyway. We note from 'table 4 that 

the calculation with G =21.5/90 MeV is in fairly good agree-' 
89 

ment', ,wi th experiment. for the 1/2- and 9/2+ levels in Y , 
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while the calculation with,G = 12.5/90 MeV is not in agreement. 

The disagreement between calculate,d and experimental pick-up 

factors to the 3/2- level in y89 may indicate ,that a much 

stronger potential is needed to reduce the occupancy of the 

states of lower e. in Zr 90 . 
'J 

In summary,thep, the calculations of N = 50 nuclei 

using pairing and surface delta potentials of,~strength 

G~22/90 = 0.25 MeV give sat:tsfactory agreement with 



;;, 

," 

i· 

," 

experimental excitation energies, 0d.d-even.binding energy 

differences, and spectroscopic fact~rs of pick-up reactions 
90 89 from Zr to the lowest excited states of Y . The agreement ,.. 

with the 1 value of the EOtransi tio'n 

factory, but may be due to the effect of 

not i!).cluded in the calculations . 

.~' .' 

'.; (: 

.. ";:" 

.... ' 
. ..-r.) ". ' ...• ' .. : 

, , 

. . , .. ;: ....... " --

',' .. , 

. " " 

. ".' .~ . 
,·f,·· 

;":; ".' ",; 
;.;( 

in 
. :90 
Zr is unsatis-

core excitations 

", ,. 
! .. 

':,1' .;-.-' 

,..1;.-

.\.~ . 
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7.·Eighty-two Neutron Nuclei 

A study similar to that of section 6 preceeding has 

also been made for nuclei with a closed neutron shell at 

N = 82 neutrons. The seniority zero and one states of 
.. 

valence protons outside of the Z =. 50 closed proton shell 

are treated, using a surface delta potential. The single 

particle valence proton states used are 19'-(/2' 2d
5
/ 2 , Ih

ll
/

2 
with energies similar to those 'of ref'. 9), 

== 0.00 MeV 

= 0.60 

ell/ 2 = ~.oo 

The surface delta potential strength is taken to be G = 0.18 

MeV. The tables 5 and 5a show the same quantities, P2' P
3

, 

P4' as. in section 6, eqs. (38) - (43), for the experimental 

and calculated binding energiesi~s-pective:ly. Comparison of 

the two tables shows that the choice of G = 0 . .18 MeV gives 

approximate agreement with experimental odd-even binding 

energy differences, 

The calculated excitation energies of nuclei from 

Z = 54 to Z = 62 are shown and comP1lred with experimental 

values in table 6. Reasonable agreement with the few 

measured values is obtained. Note·that.the calculation 

predicts the existence of two closely spaced excited 0+ 

states in Sm .. 

159' 
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Table 5 

N = 82 Nuclei B(Z) P (Z) 
2 'p 3(Z) P4(Z) 

54 Xe136 1 141 854 

C 137 1 149 520 652 55 s . 
, Ba138 1 158 490 

-1977 
,-1325 ' 2071 56 2165 ., 

L 139 1 164 810 840 -2170·' 57, a 
140 -2175 

58Ce 1 172 810 -1335 2225 

P 141 1 178 140 940 
2275 

59 r -2363 
-2450 

. Nd142- 1 185 350 -1510 2558 60 2665 Pm143 1· 189 540 1155 61 ' 

62 Sm 
144 1 196 040 

,"-"" 

All energies are in KeV. 

Experimental binding energies are taken -from ref .12) .. 
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. \. 

Table 5a 

N = 82 Nuclei -EO P2(Z) P3(Z) P4(Z) 

X 136 54 e 3012 

Cs137 2817 879 55 -1834 
Ba138 4379 -955 1879 56 . 

139' 1925 
57La . 4031 970 -1958 

Ce140 5623 
. -:1992 

-1022;-~ 2005 58 2018 . 
. Pr141 5172 997 -2012 59 '. 

Nd142 6714 
-2025' 

-1028 2012 60 2000 "
Prn143 

6200 972 61 

62 Sm144 7629 

All energies are in KeV. 

• 
-------

.-



Nucleus 

"'':'1''37 ; ·cs 55 

L 139 
57 a 

P 
141 

59 r 

Prn143 
61 . 

S 
144 

62 m 

o 

o 

Table 6 

* E' 
0+ 

2.18 

2.01 
-4 1.7 x 10 

o 

E 
5/2+ 

162 ' 

E 
11/2-

0.09 1.24 

o 

o 

o 

o 

o 

1.89 

1.90e 

2.12 

2.21e 

2.46, 2.51 

"0 6 e '4 e L 7 , 2 .. 4 

-4 
2.7 x 10 

0.017e 

-4 
4.9 XI0 

0.11 

0.15e 

0.17e 

o 

14 
Experimental energy values (taken from ref. ), and 

. , 16 
the experimental ,~1., value (taken from ref. ), are 

marked with superscript e. 

0.98 

0.77 



~ 

The 5. parameter discussed in section 6, -eq ~ (34); 

is also calculated for even nuclei. The agreement with the 
140 

one measured value, in Ce ,is poor. The small value 

calculated is due to an incoherence in signs of the state 

vector coefficients between the ground 0+ and excited 0+ 

states, which leads to cancellation of the larger c~ntri-· 

butions to 5:1.. Here, even more than in the case of Zr90 

in section 6, we would expect core excitations to playa 

. significant role. Also, as in section 6, the ass~ption , 

of harmonic .oscillator· single particle wave functions may 

be overly restrictive. 

The calculation gives· good qualitative agreement with 

the measured excitation energies and binding energy.differences; 



8.. Conclusion 

In Part III of this thesis, we have developed a method 

of exact number conserving diagonalizations of the many body 

Hamiltonian matrix, in seniority truncated configuration 

spaces. This method has been developed in a form which can 

.be used with general two body residual forces. 

The method of exact diagonalization hEl,s beyn illustrated 

by studies of the Ni,.:isotopes, .50 neutron isotopes, and 82 

neutron·isotopes.·- -The_Ni study, in particular ,·.illustrates 
'"-- . 

that the exact method can be used to investigate alternative 

interpretations of the ·shell model, without the uncertain 

effects of quasi-particle approximations on the results 

obtained. The method of exact diagonalizations outlined 

here is conceptually simple and yet no more complicated 

computationally than alternate,·quasi-particle methods. 
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GENERAL CONCLUSIONS 
. , 



Parts I and II of this thesis dealt with the general 

problem of adapting the quasi-particle approximation t,o 

give satisfactory results in nuclear- systems. Part I showed 

that the projection of correct particle number from the 

number non-conserving quasi~particle ground state vector 

can give excellent agreement with exact ground states, when 

the quasi-particle "ground state is first modified by an 

exponential four, eight, etc , qua'si-particle operator. 

The similarity of this ground state exponential form 

to that predicted by the quasi-boson method led to Part II, 

which considers the generalized problem of computing both 

ground and excited seniority zero 0+ states.ofnuclei. 

The results of Part II demonstrate that, with the,modifi

cations di~cussed in the conclusiori of Pari II (section (9), 

exce,lient overlap of boson and exact 0+ states is obtained, 

especial~y if the number non-conservation problem is overcome 

by projection of exact particle number from the quasi-boson 

states. 

One of, the consequences of the modifications of the quasi

boson method and precautions for its use developed in Part II 

is: that, for deformed nuclei, the (3 vibrational states 

can now be .caJc::ulated,even for weak pairing, with greater 

confidence that the energies and state vectors obtained are 

·valid. This result is important in deformed systems where 

the dimension of configuration space is so great as to require 
, 

an approximation such as the quasi-particle,quasi~boson one. 



-, 

--

For nuclear systems in which j-j coupling is 

appropriate (non-deformed systems), the r~sults of Part II 
. .. . 

serve to complete the quasi-boson (RPA,) program, which 

is generally accepted already to __ gi ve good approximate 

energies for J = 0 states of seniority two in even nuclei. 
. ' -

The results of Part II demonstrate that, when applJ-ed with 

the suggested modifications, the quasi-boson (RPA) method 

also is a valid approximation for first excited seniority 

zero 0+ states. In general, of course, all of the quasi-

particle methods are number non-conserving, and should 

properly be followed by number projection. 

The fact that the solution of the quasi ..... particle 

equations, plus solution of the quasi-boson equations, 

plus projection of correct particle number, plus re-calcu

lation of energies with the projected state vectors, is a 

fairly complex computer problem, leads to the suggestion 

made in Part III of this thesis. We suggest there that 

for non-deformed nuclear systems, the method of exact, 

number conserving diagonalization of the many body Hamil

tonian matrix has much to recommend it. The exact method 

is conceptually simpler than the quasi-particle ,method. 

The results obtained are linked directly to the physical 

assumptions made (single particle energies, form of residual 

potential~ etc.). This simpliCity is a contrast to the 

quasi-particle method, in which a great deal of effort must 

go into the isolation and correction of approximation 



-.. 

produced inaccuracies. 

To illustrate, the study in section 5 of Part III ' 

of the isotopes of Ni shows that a certain single particle 

energy parameterization with a certain residual potential 

gives a reasonable fit to seniority zero and one excitation 

energies. If we had used the quasi-particle method in 

this study, however, the problem of number non-conservation 

would have introduced into our results an averaging of 

properties over several neighboring isotopes. The exact 

meaning of quasi-particle energies, for example, .. is."therefore 

not so clea.r as the ,meaning of the energies which we obtained. 

Methods, such as the inverse gap equations, etc., which 

identify ~he experimental· energies as quasi-particle energies 

seem to involve this difficulty of interpretation. 

On the other hand, suppose that we had projected 

correct particle number from the quasi-particle states. 

We would then have needed to calculate the many body 

Hamiltonian matrix in order to re-calculate the excitation 

energies. It seemsj however, that if we are going to' 

calculate this Hamiltonian, we may as well diagonalize it 

directly, unless it is too large. 

We conclude that the quasi-particle,method is really 

only appropriate for those systems which have too large a 

number of configurations to allow direct diagonalization 

of the many body Hamiltonian. For most j-j coupled systems, 

direct diagonalization in seniority truncated spaces seems 

170 



the most direct and practical way to proceed. This is so 

certainly for states of seniority zero and one, since the 

calculation of the many body Hamiltonian is quite simple 

and easy to automate in these cases. Progress in computer 

technology, allowing larger matrices to be diagonalized :in 

short times, and the development of simple methods for 

seniority two states, similar to the ones used her~for 

seniority zero and one, should eventually cause exact, 

number conservirig methods to replace quasi-particle methods 

for shell model cal"culations __ ih non-deformed nuclear systems . 
. '~.---"" . 
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APPENDICES 
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Appendix III'-A 

Wave Functions and Radial Integrals 

Single particle f- j coupling wave function: 

where 

1\ 
r. = 

'. 

1/;4. . 

The Pauli spin vector, -X s ,has azimuthal spin . component, 

\J t. " s. The spherical 'harmonics . 1, (r) hav:e the standard phases 
. 19 

(see, e.g., ref. ). The RnQ.{r) is the radial wave function 

defined below (eq. (9)). 

Symmetries: 

.. ~ 

P cQ \1 J. j ~ (~) -:;. ( -1) <Q \1tj ~ (~) 

.': 
". 

(2 ) 

References in these Appendices are found in: References 

to Part III~ 
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, - -'-, - ~ ~ , 

(?v ) 

4 
where P, T, and Rn are, respectively, parity, time reversal, 

and rotation by 180 0 about the y-axis. Then R~l T is anti

uni tary operator w·i th 

(3) 

Reality of matrix elements: 
·-1 -'P 

LQ; Rtf T] ~ 0 + . , and Q = Q, then If 

<j'w/IQ \j W\) _ (j/""I'(R~1T)-1Q'( R;1~) \jV\'\>, 

~) 

-1 
Also, if Q anti-commutes with R~ T, then the matrix element 

is pure imaginary~ 

Relation to usual.convention (e.g., as given by de'Shalit 

and Talmi
l

) and labeled fiST" below): 

:1 (ST) 

(, <0 V\ .R. j VI\ (s) 
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I~' 

(J) 

""- . 

If all 
I » s 

. .., .. , r vk , are even, 

~r1 2.P2.. . P1R.1tP:z.R~"··. ~r1 :4.1"_ (ST) 

Ij1 jz. ... ) ~ (-1). . \j1 j~ ." > 
(~) 

" '5 If all the yare even, plus one particle in state 

s, the right hand side of the previous equation (eq. (8) ) 
L$ nl . 

should be multiplied by (i) . If all J(,. 5 but La... are 

even, 

Pa. 
(-1) . 

,: 

If all J..5 but J;, c;\. are odd 

where p is the total number of pairs. 

Radial wave function (harmonic oscillator'): 

-1. .1.-
_ 1\1 ~} t+1 
- 1")11. e . r 

, 
where 

) 
The parameter 



e_ 

~~ is chosen to give roughly the correct rIDS nuclear 

d ' 11) ra lUS 0 ., 

The parameter, M, is the nucleon mass. 
1/ 

$" .~(h-1)! ?;t 
N "t -:.. l b l [' (v\ '" t + YJ.)]:1 J (1 0 ) 0 

The notation for the associated Laguerre polynomial, L, is 
21 

that of ref ). Thus 

..e+1 

f 

where 

. 5 
Eqs. (11) agree with those of ref. ). 

Radial integrals of delta potential: 
o. #Q 

I 
_..2-. ( -4 1 R ~: I). tV')l 1. l R. Y\ . D • t r )1 :t 

i.ji.j - 4lf J ('L "~1. j 0 J-'-.) 'J 
o 

can be expressed as a sum of integrals of a standard form 
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with 

Then 

gives 

and 

+1 
?.l~+1 ( cl(~e11.) p~~.{~ e11 ) V(-I f.-V-;a ,) 
~ ) .-

-1 

o 

~ (\1'\ -V'~l 
Vi V-,.. 

:., . . '" . 

which does not depend on index k, and which is an easily 
. '. " '- - "' . 

. evaluated stand?-rd integral. A computer program which 

evaluates eq. (12) uping eqs. (11) and (16) is listed in 

Appendix III-E. 
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Appendix III-'-B 

Commutation Relations of Operators 

Definitions: 

Symmetries: 

( _ 1') i.-j + J 0-.:' J' (,~ M) 0.:,+ .. (J M) -:::. \. .. ...J 
J t. . . . 

Commutation relations: 

i.-j +J 

.~i,y-(-1) 
5" J j ~ 7 
L 5 ..)"' k ) 

179 . 

t. 

(7-) 



Ii' 

.-' 

. i.r~j1 ~.t-S;.V" , 
. J ,5 S' k 

( _ 1) Y'"- 5 + :s I 
+ ~js 

$'.Tj l.( 
LV'" J 'K S 

S3 i j( 
l r JI K S 

t- ' 
0..-•. (1< ~) 

SL.. 

v\Y'1. (K A-f) 

') 
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The above relations are derived using the anti-corrimutation 
+ .. 

relations of the Cjm operators 

c. " I" + + c. +J" """ C. L.q . =- . ~ ~J" ~'1 W\ , Co; v j VV\ YT" I 

c.~~ cj"" TClvn c..:~ ::: 0 

(5) 

· . ., 
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and the relations for vector coupling coefficients and for 

6-j symbols (curly brackets above) given on pp. 40-42 and 
19 

pp. 95-98 of ref. ). The value of ~ above is in each 

case determined from the conservation of total azimuthal 

quantum number implicit in the definition of the vector 

coupling coefficients. 

Simple ,speCial cases: 

Suppose i = j = r = sand JI = 0 in eqs. (1)-(7). Then 

\" (A" (J/'vt) Ov+' .(00)1 
L JJ ) JJ :J 

4 :r-M ) 
=- Z $'JD - .{(1-j +1) C- 1) Y\jj (3 - M . 

r V\ . . (J M ) Ov ~. (00) =-
L JJ ) Jj 

Cc t,. (JM) 
JJ 

If, also, J = 0, define 

0\-
{)..... -= 

J 

and note that 

.-1- (.(. t. . (0 0 \ 
ft. JJ ) 

V\' j 05) 



where 11 

Y\' ~ i j 
(1 ~) 

'l'hen 

) 

where 
'1 . ..' - Y-{~J +1) 

.\." 

,,;,i:' . 
':.:',' , . 

" ..... 
""'-" 
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Appendix III-C 

Many Particle states Defined 

Seniority zero states: p pairs. 

+ 1. + ) 
(N. -::. - cv ···l 0 0 . J .[~. JJ 

Seniority bnestates: p pairs plus one particle. 

2-
( p!) (4').fL· -f j . J _ 

-'2.~r • .QJ' 
J 

.y 
o..~ \-p' > ~ I (pt1)(4j -r-1

)] 1.. \ (pt1). > 
J J . .Q.J 

. J 



Seniority two states: 

= 

Seniority two states: 

q pairs plus one particle. 

p pairs plus two particles. 

p pairs plus one particle and 

\ 

...-. ,.., -1 . +) P ( .r), t () . f > 
pc:. ~j '): 1tl~j (p 1) (o..i.C(J a.~j J f'I\ 0 
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-K ~ (p '1 ) -" (orc..~~iJ"'){a. j-)'( ".)p(c. t)P f ae' a. !J(JM) 10) 

: lp ~~ L (A") (~~r ( ~ j) ~~-:. -$L'~?~ 
!l.~ \p JI J 



Appen"dix III-D 

Many Particle Matrix Elements for Seniority Zero and One 

Using notation from Appendix III~C preceeding: 

< r 5 \ u J C<j 1 pj > : 

P l-~l.j - P t 1) 

nj 

= r (rt1)l~<l~-P-1~ 
L 4i, 

. . . 

(1 ) 

(sJ 
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.-

. .-. 

(1-) 

r ~ 
.n: 

J 
(r: ) 

Eqs. (i)-(8) above are derived from commutation relations in 

Appendix III-B and the states defined in Appendix III-C. Use 
19 is made of the relations on pp. 40-42 and pp. 95-98 of ref. ). 

Eqs. (1), (3), (6), and (7) above, when inserted in eq. (19) 

of Part III, 'agree with the interaction energies in states 
. 1 

with lowest seniority given on p. 533 of ref.). (Note that 
·1 the two body matrix elements in ref. ) are one-half times 

our G(ijijJ) expressions.J 
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Appendix III-E 

Computer Programs 

1. PROGRAM TET computes and diagonalizes the many body 

Hamiltonian matrix of a general potential in seniority zero 

and one spaces. 

2. SUBROUTINE CONFIG is called by TET to compute the 

configurations of NPR pairs in LEVELS number of j-levels, 

with the pair multiplicitie~ MULT(J) and seniorities ISEN(J). 

3. FORTRAN IV SUBROUTINE MEERA-ORTHO computes the 'first 

four eigen vectors and eigen values o~ the many body 

Hamiltonian matrix of' dimension LEV. This program was 

written by K. Kumar23 ) and provided by him to the nuclear 

structure group at Berkeley. 

4. SUBROUTINE SKEPTIC checks the eigen vectors and 

values from MEERA-ORTHO by forming the vector 

== 
1 
- (e..) 
t:. 

for each root, a"using eigen energiesE(a) and eigen vectors 
"J.., (~) 
1!k . It then forms and prints 

( 
(~2.)}2. £ (V'k) 

k. ) ) 

. which should all be smaJ.ll ·if. the eigen solutionis valid. 

5. SUBROUTINE. EZERO calculates the rho-square of the 
, 

--~ E transition for proton systems using eigen 
0+ 

vectors from TET... Parameters A, L( J), N(J) must be set 

188 



--.... 

to the atomic number of the nucleus, the orbital angular 

momentum of the j-levels, and the oscillator quantum number 
, , 

of the j-levels, respectively. 

6.' PROGRAM SLATER computes radial integrals of a delta 

potential using harm0nic oscillator wave functions. The 

parameters A, L(J), N(J) must be set as in EZERO above. , 

7. FUNCTION RADIAL is called by SLATER to compute 

radial integrals for a given set of four j-levels. 

8. FUNCTION FFF is called by RADIAL to compute 

the' fk(m,m ') function given in eq. ,(13) of Appendtx III-A. 

9. PROGRAM TRANONE reads punched output of TET and 

computes the spectroscopic factors of one nucleon transfer 

reactions ... 

v 

.Y 

i 
I 



PROGRAM TET (INPUT,OUTPUT,TAPE3=OUTPUT,PUNCH) 
C SENIORITY ZERO 0+ SPECTRUM AND SENIORITY ONE SPECTRUM 
C BY EXACT DIAGONAlIZATION OF A GENERAL POTENTIAL 
C LEVELS IS THE NUMBER OF SHELL-MODEL LEVELS 
( NPR IS THE NUMBER OF PAIRS 
C LEV IS THE NUMBER OF CONFIGURATIONS 
C MH IS NUMBER OF NONZERO SUPER-DIAGONAL ECEMENTS OF H 

C DIMENSION ARRAYS AS FOLLOWS •••••• 
C IX(LEVELS,LEV1~Z(LEVELS),MULT(LEVELS),S(LtVELS'LEVELS),O(LEVELS) 
C QP(LEVELS),E(4),R(4) ,W(LEV,4),H(MH),IHrMH),JH(MH),ZL(LEVELS) 
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( DEL(LEVELS),S2(LEVELS,LFVELS),ISEN(LEVELS),NULT(LEVELS),OD(LEVELS) 
DIMENSION P(10tlO) ,Q( 10910) ,Z( 10) ,0( 10) ,S( 10dO) ,QP( 10) ,S2( 10,10) 
DIMENSION H(127S),E(4),W(200,4), IH(1275),JH(li75),R(4) 
DIMENSION MUlT(10),IX(10,200),ZL(10),DEL(10),ISEN(10),NULT(10) 
DIMENSION.OD(lO) 

C FOR NO PUNCHED OUTPUT, SET IPUN(H=O 
C TO PUNCH ONLY E-VALUES AND E-VECTORS, SET IPUNCH=1 
( fO PUNCH H, E-VALUES, AND E-VECTORS, SET IPUNCH=2 

I PUNCH=O 
( SET NCARD=NUMBER OF NUCLEI TO BE RUN 

NCARD=17 
C SET IS=O IF WISH TO READ-IN S VALUES. =2 IF WISH ALLiS=-l. 

IS=2. 
C SET IS2=0 IF WISH TO READ-IN S2 VALUES. =2 IF WISH ALL S2=0. 
C SET 152=1 IF WISH S2 DERIVED FROM S AS IN A DELTA-POTENTIAL 
( FOR A SURFACE-DELTA POTENTIAL, IS=2 AND IS2=1 • 

IS2=1 
C E-VALUES WILL BE ACCURATE TO ABOUT HO TIMES THEIR MAGNITUDES. 

HO=I.0E-14 
( THE PROGRAM WILL COMPUTE THE FIRST IP3 E-VECTORS. 

IP3=4 

1 FORMAT(16IS) 
2 FORMAT (10F8.S) 

C READ-IN THE NUMBER OF J-LEVELS 
READ 1, LEVELS 

( READ-IN PAIR MULTIPLICITIES OF J~LEVELS 
READ 1, (MULT(l),I=I,LEVELS) 
DO 4 I=I,LEVELS 
DO 4 J=l,LEVELS 
S2(I,J)=0. 

4 S(Y,J)=-l. 
IF(IS.GT.l)GO TO 55 

C IF IS=O, READ-IN S( I ,Jl S.T. 
C G* S ( I , J) =+ ( I I ,0 IV I JJ ,0) I SQR T ( ( 2J+ 1) * (2 1+1) ) • 

DO 5 I=I,LEVELS . 
READ 2,(S(I,J),J=1,I) 
DO 5 J=It1 



5 S ( J, I ) =5 C I ,J ) 
55 CONTINUE 

S12=IS2 
IFCSI2.GT.0.l) GO TO 56 

C IF IS2=O, READ-IN S2CI,J) SUCH THAT 
C G*S2(I,JI= SSUM OVER K$. C2K+l'*(IJ,K/V/1J,K). 

DO 6; I=I,LEVELS 
READ 2, (S2(J,J),J=ltI) 
DO 6 J= 1, I 

6 S2(J,I)=S2CY,J) 
56 CONTI NUE 

SI2=(SI2-1.·)**2 
'IFCSI2.GT.O.1) GO TO 54 
DO 51 1=1,LEVELS 
DO 51 J=1,LEVELS 
D=O. 
R=I-J 
IF(~**2~LT.0.1) 0=1. 
OI=r>1ULTC I) 
OJ=MULT(J} 

51 S2(I,J)=2.*COI-O)*OJ*SCI,J) 
54 CONTI NUE 

DO 3 IA=I,NCARD' 
C READ-IN THE NUMBER OF PAIRS 

READ 1, NPR 
C READ-IN SINGLE PARTICLE ENERGIES OF J-LEVELS 

READ 2, (Z( I) ,I=I.LEVELS) 
C READ-IN THE SENIORITIES OF THE J-LEVELS 

READ 1, (lSENCI),I=I,LEVELS) 
DO 7 l=ltLEVELS 

7 NULTCI)=MULT(I)-'ISENC1) 

CALL CONFIG(NPR,LEVELS,LEV,NULT,IX) 

C SET NG=NUMBER OFG-VALUES TO BE RUN 
NG=1 ' 

C IF NGREAD=O, THEN READ-IN THE DI FFERENT G-VALUES 
C IF NGREAD=2, START AT G=GO AND ITERATE BY GIT FOR NG T)MES, 

NGREAQ:=2 
GO=0.45' 
GIT=O.1 

G=GO 
DO 8 IG=l,NG 
IFCNGREAD.LT.lIREAD 9. G 

9 FORM,AT(SEI5.6) 
DO 11 1=1,4 
E(I)=O. 
RCIl=O. 
DO 11 J=I,LEV 

111,lCJ,I )=0. 
MH=O 
DO 13 J=I,LEV 
DO 13 JJ=l,LEV 
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C 

Ii C 

C 

c 

c 

IS JJ EQUAL TO J 
R=JJ~J 
IFCR**2.GT.0.1) GO TO 14 

IF SO, CALCULATE DIAGONAL MATRIX ELEMENT 
B=O. 
0015 I=l,LEVELS 
O=MULTCI) 

·SEN=ISENCJ) 
X=IXC I,J) 
OH=O* (0-1.) 
IFCO.LT.1.1)OH=1. 
B=B+ZCI)*C2.*X )+G*SCI'I)*X*CO-X+1.~SEN) 
B=B+0.5*G*S2C I,I)*X*(X-1.+SEN)/OH 
DO 15 K=lt1 
R=I-K 
IFCR.LT.O.5)GO TO 15 
SENK=ISENCK) 
OK=MULTCK) 
Y=IXCK,J) 
B=B+G*S2CI,KI*CX+0.5*SEN)*(Y+0.5*SENK)/CO*OKl 

15 CONTINUE 
GO TO 16 

IF NOT, IS JJ GREATER THAN J 
14 R=JJ-J 

IFCR.LT.C-0.1» GO TO 13 
IF IT IS, CALCULATE NON-DIAGONAL MATRIX ELEMENT 

B=O., 
ATEST=O. 
DO 17 I=1,L~VELS 

X=IXCI,J) 
XX=IXCI,JJ) 

17 ATEST=ATEST+CX-XX)**2 
IFCATEST.GT.O.l) GO TO 18 
PRINT 19 

19 FORMATC/* TWO CONFIGURATIONS ARE THE SAME*) 
GO TO 8 

18 ATEST=ATEST-2. 
IFCATEST**2.GT.0.1)GO TO 13 
DO 30 I=l,LEVELS 
DO 30 N=l,LfVELS 
X=JXCI,J) 
XX=IXCI,JJ) 
Y=IXCN,J) , 
YY=IX(N,JJ) , ',,_ 
R = ( X - X X':'" 1 • ) * * 2 + ( Y - Y Y + 1 • ) * * i' -
IFCR.GT.0.1) GO TO 30 
ON=MULT(NI-ISENCN) 
01 = MULT ( I ) - I S EN C I ) 
R;(XX+1.)*(OI-XX)*YY*(ON~YY+l.) 
IFCR.GT.O.)B=B+SQRTCR)*G*S(I,N) 

30 CONTINUE 
IF MATRIX,ELEMENT IS NON-ZERO, ENTER IT IN H 
16 IFCB~EQ.O~) GO TO 13 

MH=MH+1 
IHCMH)=J 
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.-., 

JH(MH'=JJ 
HCMH,=B 

13 CONTINUE 
IT=O 
M=LEV 
Ml=M 
CALL MEERACHO,IP3.IT.H,E,W,IH,JH,R.M,Ml,MH) 
PRINT 23,LEVELS,LEV,G 
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23 FORMATC/I* THE NUMBER OF LEVELS IS*,I5,32H iHE NUMBER OF CONFIGURA 
ITJONS IS,15, 9H AND G IS.EI5.5' 

PRINT 24, CMULTCI),I=I,LEVELS) 
24 FORMAT CI134H PAIR MULTIPLICITIES OF LEVELS ARE.IOIS) 

PRINT 2.6 
26 FORMAT (/* THE SCI,J) ARE*) 

REVElS=LEVELS 
DO 27 I=l,LEVELS 
PRINT28, (SCI,J),J=I.LEVELS) 
R=MULTCI)-ISENCI) 
IFCR.LT.O~l) REVELS=REVELS-l. 

27 CONTINUE 
28 FORMAT{/I0FI0.5) 

PRINT 52 
52 FORMATCI* THE S2CI,J) ARE*) 

DO 53 I=I,LEVELS 
PRINT 28, (S2CI'J),J=I,LEVELS) 

53 CONTINUE 
PRINT 10 

\. 

10 FORMAT(/* THE MATRIX H(I,J), WITHOUT ODD-PART. ENERGY. IS*I) 
PRINT 20, (HCK) tIHCK) ,JH(K) ,K=l,MH) 

20 FORMAT (4(E2008,2H (,I3,I4,lH») 
PU=IPUNCH 
IF(PU.GT.l.5) PUNCH 21,(H(K).IHCK),JHCK),K=I,MH) 

21 FORMAT(4CEI4.7,2I3)Y 
PRJNT 22, MH 

22 FORMAT (/9H THEREARE,I5,36H 
PRINT 25, (ZCJ) ,J=I,LEVELS) 

NONZERO SUPER-DIAG MATRIX ELEMENTSII) 

25 FORMAT(/* THE SP ENERGIES ARE*.10F9.5/) 
DO 57 1=1,4 
DO 57 J:: 1 , LEV E L S~ 
SEN=ISENCJ) 

57 E( I )=E( I )+SEN*ZCJ) 
PU=IPUNC~ . 
IF(PU.GT.0.5) PUNCH 29, (E(lltl=I,4) 

29 FORMAT (5H EEEE,4E18.10) 
PRINT 31, (ECI),I=I,4),(MULTCJ),J=1,LEVELS) 

31 FORMATel* EIGEN-VALUES, INCLUDING ODD-PART. ENERGY, ARE*/4E20.10,1 
15X,lOI3) 

PRJ.NT 50, (I.SENCI),I=l,LEVELS) 
50 FORMATell* SENIORITIES OF THE J-LEVELS ARE ••• *,60X,10I311) 

PRINT 32 
32 FORMAT (1118H EIGEN-VECTORS ARE) 

DO 33 K=l,LEV 
I F ( P U ~ G T • 0 • 5) PUN C H 34, K , ( W ( K , J) ,J = 1 , 4 ) , ( I X ( I., K ) , I :: 1 t 1 0 ) 

34 FORMATCI4,4E16.7,2X,10111 . \ 
PRINT 35, (W(K,J),J=1,4), K, (IX(I,K).I=l.LEVELS)· 



35 FORMAT(/4E20.10,5X,I5,5X,1013) 
33 CONTINUE 

PRINT 36, HO 
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36 FORMAT (1139H THE EIGEN~VALUES ARE ACCURATE TO ABOUT,E8.1,23H T1ME 
15 THEIR MAGNITUDES) 

DO 37 1=2,4 
37 E(I)=EeI)-Eell 

E( 1)=0. 
PRINT 38, (Ee I),I=1,IP3) 

38 FORMAT (/28H THE EXCITATIO~ ENERGIES ARE/4E20.10) 
DO 39·I=I:,LEVELS . 
OC(I)=O.,: 
DO 40 K=ltLEV 
R=,I X (l ,K ) 

400C(I)=OC(I)+2.*R*W(K,1)**2 
SEN=ISEN(I) 

'.~; . ODe I )=OC(I I+SEN 
R=MULTeII-lsEN(I) 
IFeR.EQ.0.)R=1.OE-20 

390CeI)=oceI)/(2.*R) 
PRINT 58,(ODC I)d=l,LEVELS) 

58 FORMAT(/* THE AVERAGE NOS. OF PARTICLES, (O/N/O), ARE*I/IOFll.6/) 
DO 59 l=l,LEVELS 
R=MUL T ( I ) 

590DeI)=ODCI)/(2.*R) 
PRINT 60, (ODC I), I=l,LEVELS) 

60 FORMAT(/* THE OCCUPATION NOS., (0/N/O)/C2J+l), ARE*/II0Fll.6/) 
PRINT 41, COCCI),I=l,LEVELS) 

41 FORMAT(/* THE PAIR OCCUPATION NUMBERS, v=co/p/o)/eO-SEN), OF TH 
IE LEVELS ARE*I/IOFll.6/) 

ZLAM=O. 
DO 43 J=l,LEVELS 
DEUJ)=O. 
DO 44 I=l,LEVE~S 
R=MULTeII-ISENCI) 
R R = 1. -OC ( I ) 
IFCRRoLT.O.)RR=-RR 

44 DEL(JI=DELCJ)-R*G*S(J,I)*SQRTeOC(I )*RR) 
RD=1.-2.*OCCJ) 
RF=1.-RD**2 
IFCRF.LT~O.lRF=-RF 
IFeRFeEQ.O. )RF=1.OE-20. 
ZLCJ)=zeJ)-DEL(J)*RD/SQRT(RF) 
R=MULT(jl-ISEN(J) 
IF(R.LT.O.l) GO T9 43 
ZLAM=ZLAM+ZL(j)/REVELS 

43 CONTI NUE 
PR I NT 45, (DEL e j) ,j=ltt:EVELS) 

45 FORMATe/* THE DELTA(j) ARE*//8E15.6) 
PRINT 46, (ZL(J),j=I,LEVELS) 

46 FORMATel* THE j-THLEVEl APPROX.TO LAMBDA ARE*I/8E15.6) 
PRINT 47, ZLAM 

47 FORMAT(/* THE AVERAGE LAMBDA=*,E13.6) 
DO 48 I=l,LEVELS 

48 QP(I)=SQRT«Z(I)-ZLAM)**2+DELCI)**2) 



- PRINT 49, (QPCI),I=l.LEVELS) . 
49 FORMAT(/* THE Q.P. ENERGIES ARE*//lX.~E15.6) 

PRINT 42 
42 FORMAT ClHl) 

CALL EZEROCLEVELS.LEV,IX,W) 
G=G+GIT 

8 CONTINUE 
3 CONTINUE 

STOP 
END 
SUBROUTINE CONFIGCNPR,LEVELS,LEV,MULT,IX) 

C DIMENSION ARRAYS SAME AS IN TET 
DIMENSION MULTC10),IX(lO,200) 
DIMENSION 11(10) 

C 

II(l)=NPR 
DO 1 I=2,LEVELS 

1 11(1)=0 
KK=O 

DOES THE CONF I G r'N _ LLJ:XCEED THE MULT OF ANY LEVEL 
2 003 l=l,LEVELS 

R=MUL T ( I ) - I I ( I ) 
IF(R~LT.(-O.l»GO TO 4 

3 CONTI NUE 
C IF IT DOES NOT, THEN TRANSFER IT TO IX. 

C 

KK=KK+l 
DO 5 l=l,LEVELS 

5 IX(I,KKI=II(I) 
ARE WE FINISHED (IE., ALL ZEROES EXCEPT EXTREME RH ENTRY OF II) 

4 SUM=O. 
L=LEVELS-l 
DO 6 l=l,L 
R= I I ( I ) 

6 SUM=SUM+R'IH<-2 
IF(SUM.GT.O.lIGO TO 7 
LEV=KK 
RETURN 
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C IF NOT THEN SCAN II FROM RT FOR FIRST NON-ZERO, NON-EXTREME RH ENTRY 
,7 DO 8 1=2,LEVELS 

c 

C 

C 

J=LEVELS-I+l 
R=II(J) 
IF(R.GT.O.l) GO TO 9 

8 CONTINUE 
HAVING FOUND A NON-ZERO ENTRY, REDUCE IT BY ONE 

9 II(J)=IICJ)-l' 

\ ' 

THEN PUT THE REMAINING PAIRS IN THE NEXT ENTRY TO RI~HT ~ND PROCEED 
II(LEVELS)=O 
KSUM=O 
DO 10 l=l,J 

10 KSUM=KSUM+II(I) 
I I (J+l) = NPR-KSU"'1 
GO TO 2 
END 
FORTRAN IV SUBROUTINE MEERA(HO,IP3,IT,H,E,W,IH,JH,R,M,Ml,MH) 

C LOWEST FEW EIGEN-VALUES AND EIGEN-VECTORS 

v 



- ( 
( .-, 

" 

~ 

DIMENS10N ARRAY5 SAME. AS IN TET 
DIMENSION H(1275).E(4).W(200.4),IH(1275),JH(1275),R(4) 
(OMMON X(200) ,SI (200) ,D(200) ,G(200) 

500 FORMAT(3014) 
510 FORMAT(1X,7E17.9) 
230 EM=O. 

DO 10 1=1,Ml 
10 EM=EM+1. 

EM=1./50RTCEM) 
DO 126 IP= 1,IP3 
NI=O 
WP=1.E30 

20 I1=IP-1 
IF( IT)30,30,220 

30 DO 100 I=l.M 
100 X(I)=EM 
220 IF(I1) 120,120.117 
117 CALL ORTHOCl1,X.H,E,WtIH,JH,R,M,M1,MH) 
120 Wl=O. 

T1=0. 
DO 101 I=l.M 

101 0(1)=0. 

105 
102 

106 

109 
103 

110 

210 

240 

--- 70 
128 
111 

DO 102 K=I,MH 
I=IHCK) 
J=JHCK) 
IF(J-I) 105,102,105 
D(J)=DfJ)+HCK)*X(I) 
D(I)=D(I)+H(K)*X(J) 
DO 103 I=1tM 
JFCI-Ml) 106,106tl09 
G(ll=X(I) 
T 1 = T 1 + X C I ) *G ( I ) 
GO TO 103 
5 I( I ) = D ( I ) 
W1=W1+XC J .)*D( I) 
W3=~HITl 
DO 110 1=1 ,}U 
5ICI)=D(I)-W3*G( I) 
512=0. 
DO 210 I=l,M 
S I 2 = 5 12+ 5 U I ) * 5 I ( I ) 
IF(5I2-1.E-12) 121,121,240 
XO=ABS(WP~W3)/(AB5(W3)+HO) 

IF(XO-HO) 121,121,70 
IF(I1) 111,111,128 
CALLORTHO(I1,51,H,[,W,IH,JH,R,M,Ml,MHl 
W2=0. 
NI=NI+1 
T2=0 • 

. 0 =0. 
P =0. 
DO 115 1=1 tM 
XO=SICI) 
IF(I-Ml) 104,104,115 
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C 

C 
C 
C 

104 P=P+G(I)*XO 
T2=T2+XO*XO 

115 Q=Q+D(I)*XO 
DO 114 K=ltMH 
I=IH(K) 
J=JH(K) 
IF(J-I) 108,107,108 

107 XO=Sl(I)*SI(I) 
GO TO 114 

lOa XO=2.*SI(I)*SI(J) 
114 W2=W2+H(K)*XO 

C=T1*Q-Wl*P 
B=0.5*(Tl*W2-Wl*T2) 
G1~C/(B+SQRT(B*B+C*(T2*Q-W2*P») 

Gl=G1*0.9 
DO 1 l(; I=l.M 

116 X(I)=X(I)-G1*SI(I) 
WP=W3 
GO TO 120 

121 E(IP)=W3 
T = 1. I SQR T CT 1) 
DO 122 I=1.M 
S I ( I ) = S I ( I ,* T 
X( I )=X( I )*T 

122 W(I.IP)=XCI) 
WRITE (3,830)NI 

830 FORMAT (4H NI=I4) 
IF(Il) 51,'51,52 

52 CALL ORTHO(I1,X,H.E,W,IH,JH,R,M,Ml.MH) 
WRITE(3.510)(R(I).I=1.I1) 
T=O. 
DO 11 I=l,Ml· 

11 T~T+SICI)*SI( I) 
IF(T> 51.51.12 

12 T=1./SQRTCT) 
IT=1 
DO 13 1=1 tM 

13 XCI )=SI( I '*T 
51 WRITE(3,510)W3 

WR I TE .(3,61 ) 
FORMAT CIHO) 
CONTINUE 

61 
126 

CALL SKEPTIC(~,IH,JH,E,WtMH,M) 
RETURN 
END 
FORTRAN IV SUBROUTINE ORTHO(I1,X,H.E,W,lH.JH,R,M.M1.MH) 

ORTHOGONALIZATION TO ALL THE LOWER VECTORS 
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DIMENSION H(1275),E(4),WC200,4), 
201 FORMAT( E14.6) 

IH(1275).JH(1275),R(4),X(200) 

117 DO 119 IPl= 1,11 
xo=O. 
DO 118 1=1 tMl 



.... !"l ... ,. 

118 XO=XO+X( I)*W{ I tIPll 
119 R{ IPl)=XO 

DO 127 J=ltM 
DO 127 IP1= 1,11 

127 XCJ)=xeJ)-RCIP1)*weJ.IP1) 
RETURN 
END 
SUBROUTINE SKEPTICCH,IH,JH,E,W,MH,LEV) 

C DIMENSION ARRAYS SAME AS IN TET AND MEERA 
DIM ENS ION H ( 1 275 ) , I H ( 1 27 5) ,J H C 1275) ,EC 4 ) ,R SQ ( 4) ,RA B ( 4 ) ,w ( 200 ,4 ) 
COMMON R{200,4) 
DO 4 L=l,4 
RSQ(L)=O. 
RAB(L)=O. 
DO 3 I=l,LEV 

3 R( I ,L>=O. 
DO 1 1=1 ,MH 
C1=IH{ I) 
C 2=JH ( I ) 
II=IH(I) 
JJ=JH(I) 
IF(E{Ll.EQ~O.)E{L)=1.0E-20 

IF(CI-C2'**2.LT.O.1) GO TO 2 
R(II,L)=R(II,L~+H(It*W(JJ'L)/E(L) 

R(JJ,L)=ReJJ,Cl+H(Il*W(II,L)/E(L) 
GO TO 1 

2 R ( U , L I ="R (I I , LJ + ( H ( I ) -E ( L ) ) * W ( I I , L ) I E ( L) 
1 CONTINUE 

DO 4 I =1 ,LEV 
RSQ(L)=RSQCL)+RCI,Ll**2 

4 RABCL)=RAB(L)+ABS(R(I,L» 
DO 5 L=1,4 

5 RSQ(L)=SQRT(RSQ(L» 
PRINT 6,(RSQ(L),L=I,4) 

6 FORMAT(/* FOR THE FOUR E-VECTORS, W, THE RMS MAGNITUDES OF VECTORS 
1 R={l/E)(H-E)W ARE*//4E20.51 

PRINT 7,(RABCL),L=1,4) 
7 FORMAT{/* AND THE FOUR SUMS OF ABSOLUTE VALUES OF COMPONENTS OF VE 

lCTORS, R, ARE*//4E20.5) 
PRINT 8 

8 FORMAT(/* FOR THE FOUR E-VECTORS, THE COMPONENTS R(I) (AND THE R 
1ATIOS ABSCRCI)/W(I)) ARE*) 

DO 9 I =1 ,LEV 
DO 10 L=1,4 "I 

10 RSQ(L)=ABS(RCI,L)/w(i,L» 
PRINTll,{ReI,L) ,RSQ(L),L=1,4) ,1 

9 CONTI NUE 
11 FORMAT (/4(EIO.2,*(*,E8.2~*)*),5X~15) 

RETURN 
END 
SUBROUTINE EZERO(LEVELS,LEV,IX,W) 
DIMENSION L(10),N(10),IX(10,2DOI,W(200,4)" 
IBOTM=l 
ITOP=2 
SIGMA=0.025 



-

A=90. 
LCl)=3 
L(2)=1 
L(3)=1 
LC 4) =4 
N(1)=3 
N(2)=3 
N(3)=3 
N(4)=4 
RATIO=7.0278954884E~Ol 
R2=O. 
R4=0. 
DO 12 K=I,LEV 
DO 12 I=I,LEVELS 
PIX=IX( I,K) 
PN=NCI) 
PL=LCI) . 
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R2=R2+W(K.IBOTM)*W(~~ITOP)*PIX*2.*(PN~I.5) 
R4=R4+W(K,IBOTM)*W(K.ITOP)*PIX*2.*(1.S*PN*(PN+3.)-0.5*~L*(PL+l.» 

12 CONTI NUE 
R2=R2*(RATIO/A**(I./3.)} 
R4=R4*(RATIO**2/A~*(2./3.» . 
RH02=R2**2 
RHO=(R2-SIGMA*R4)**2 
PRINT 13,R2,R4 

13 FORMAT (/41H THE MATRIX ELEMENTS OF R**2 AND R**4 ARE,2E20.10) 
PRINT 15,RH02· 

15 FORMAT (/24H WHEN SIGMA=O, RHO**2 IS.E20.10) 
PRINT 16,SIGMA,RHO 

16 FORMAT (/14H WHEN SIGMA IS,F9.4,lOH RHO**2 I$,E20.10) 
RETURN· 
END 

·A , 



, 

" 

PROGRAM SLATER(INDLJT,OUTPUT,PUNCH) 
CO"1HON f3F3 
I)H1ENSIO(\! N( 10) ,U 10) ,NN(4) ,lU4) 
DIMENSION S(10~10) 
I DUV1~W"'O 
LEVELS=5 
A=140. 
88=1.005991*A**(1./6.) 
READ 1, (NC I) ,I=l,LFVEL:l) 
REA.D· 1, (L(I) ,I=I,LFVELS) 

1 FORt'~~T (1015) 
DO 10 I=I,LEVELS 
DO 10 J=ld 
NN(l)=N( I) 
m~(2)=N( 1) 
NN(3)=.N(J) 
NN(4)=N(J) 
LUl)=UI) 
LU2)=UIl 
LU3l=L<J) 
LL(4)=L(J) 
S( I ,j)=R/\DIAL( IDUt·i\1Y,NN,LL) 
P R I NT 2, - (N 1\]( K) , L L} K ) , K = 1 ,4 ) ,S ( I ,J l 

10 CONTINUE' 
2 FORMAT(/4(215,5X),E20.10) 

DO 11 I=l,LEVELS 
PlmCH 3, (S( I ,J) ,J=l, I) 
PRINT 4, (SCI,J),J=l,I) 

11 CONT JrWE 
3 FORMAT (lOF8.5) 
4 FORMAT (/I0F8.5) 

STOP 
F~ID 
FIJNCT I ON ~ Ai) I AL( K, 1\.\, Ll 
C0"'1f;10\! 68 
Drr·iENSION N(4),LC4) 

'·D I HENS ION .f:., (4) ,B (4) , C C 4) ,G ( 2 ,5 ) 
P J = 3. Ifi 1 5 ':) 2 "7 
DO 16 1=1,4 
R =/'11 ( I ) -1 
RR=LC I ) 
IF(R-O.llI0,ll,ll 

10 A(I)=l. 
W( I ) =0. 
C( 1 )=0. 
GO TO 16 

11 IF(R-l.-O.l)12,13,13 
12 A( I )=SQRT(RR+3./2.) 

'9C I )=-l.jll.( I) 
(1)=0. 
GO TO 16 

13 1F(R-2.-0.1)14,15,15 
14 A(I)=SORT«RR+3./2.)*CRR+5./2.)*0.5) 

(3 ( I ) = - SO R T ( ( 2 • * ( R R + 5. I 2. ) ) 1 eRR + 3 • 12 • ) ) 
( I )=0.5/.l\( 1) 
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GO TO 16 
15 PRINTI 

1 FOR~AT(6H ERROR) 
16 CONTINUE 

DO 17 1=1,2 
G ( I , 1 ) = A ( I ) * j\ ( I + 2 ) 
G( I ,2)=A.( I ){..c3( 1+2)+8·( I P'A( 1+2) 
G ( 1,3) =l\ ( I ) *c U +2) +C ( J ) *A i 1+2) + 
G ( I ,4) =B ( I ) *C (I + 2) +C ( T ) *8 ( 1+2 ) 

17 G(I,5)=C(I)*C(I+2) 
RA.IJIAL=O. 
DO 18 1=1,5 
DO 18 J=I,5 
IT=U l)+U 3)+2-X-( 1-1) 
JJ=L(2)+L(4)+2*(J-ll 

B( I )*B( 1+2) 

18 RADIAL =RADIAL+G(1~I)*G(2,J)*FFF(K,II,JJ)' 

2Ql 

R A. D I A L = R .\ D J.l\ L * S Q R T ( 2 • * ~- ( L ( 1 ) + L ( 2 ) + L ( 3) + L ( 4 ) 1 / ( F F l\ C ( 2 -Y,- L: ( 1 ) + 1 ) -If F F A C ( 
12*L(Z)+I)*FFAC(2*L(3)+ll*FFAC/2*L(4)+I») 

RADIAL=RAI)IAL*16./PI 
RFTURN 
END 
FUNCT I ON FFF ( K ,,'1\1, ~2) 

C WHEN CALLED BY RADIAL, THIS FUNCTION GIVES DELTA-FORCE RADIAL INTEGRAL 
C THE POTENTIAL STRENGTH IS 500 MEV FERMI**3 

CO~<F-'lON SB 
PI=3.1415927 
SIG=(-1.)**(Ml+~2) 

IF(SIG)lOdO,ll 
11 N=(HIHi2+2)/2 

FFF=FFAC(2*N-l)*SQ~T(PI/2.)*500./(2.**(2*N+l)*4.~PI*RB**3) 
RETURN 

10 N=(Ml+M2+2-1)li 
FFF=FACiN)*500./(2.**(N+2l*4.*PI*SB**3) 
RETURN 
E"1D 
FUNCTION FAC( II 
FAC=l. 
DO 1 L=l,I 
R=L 

1 F.4C=F AC*R 
RETURN 
END 
F I) N C T I ON F FA C ( I ) 
FFAC=l. 
K=(I+ll/2 
001 L= 1, K 
R=2*L-l 

1 FFAC=FUIC*R 
RE-~TUqN 

END 

J. , 



PROGRA~ TRA~ONE (INPUT,OUTPUT) 
DIMENSION IX( 11)'200) ,1,'/(200.4) ,yXO( 10,20,) .':!OC20('!,'fl ,rOCIO) 
DIMENSION Z(4,4) . 
IDECKS=4 
DO 20 IDUM=l,IDECKS 

C READ IN EVEN-A DATA 
RFAD 5, (IO(I)d=ldO) 

5 FOR~1l\,T (10 15) 
DO 32 K=I,200 
DO 40 L=I,4 

40 \.<J(K,L)=O. 
DO 32 1=1,10 

32 rX(I,K)=O 
READ 1,LEV,LEVELS 

1 FORMAT (I5,SX,ISJ 
DO 11 K=I,LEV 
READ 3,(W(K,L) ,L=1,4),( IX( I,K),I=l,LEVELSJ 

11 cml TI NUE 
3 FORMAT (4X,4~16.7~2X,10Il) 

C READ IN ODD-A DATA, ONE LEVEL AT A TIME 
C SET W\j TO THE ,NUf'13EROF ODD DECKS TO BE READ IN 

NI\I::4 
, DO 20 I I J :: 1 ,NrJ 

C SET TWHAT TO 0 FOR STRIPPING, TO 1 FOR PICKUP 
C SET IGO :: NO. OF LFVEL IN ODD-ATO/FR8~ WHICH TRANSFER IS YADE 
C 5FT IEV~N TO ~.JlJr~9ER OF STt\TES OF EVEN l\j'JCLELJS TO P..E USED 

202 

C SET [ODD TO NU~RER OF STATES OF GIVEN J OF ODD NUCLEUS TO BE'USEb 

~.j H.6. T :: I ~,: H r~ T 
DO 36 K=I,200 
DO 41 L=I,4 

41 \'10 ( K , L ) :: () • 
DO 36 I=1dO 

36IXO(I,K)=O 
READ 1,LEVO,LEVELS 
DO 13 K=I,LEVO 
R E /\ D 3, (':/0 ( K ,l) ,L:: 1, 4 ) ,( I X 0 ( r , K J ,J = 1 , L f::: VEL S ) 

13 U)tHINIJE 
DO 31 K=I,LEV 
PRINT 30,(IX( I,K),I=1,10),(W(K,L),L=1,4),(IXO(!,K),r=1,1~),(WO,(K,L 

1),L=1,4) 
31 CONT INU~ 
30 FORMAT 11X,10Il,4~14.5,2X,lOIl,4E14.5) 

IF(~HAT-O.l)22,22,23 

22 CO;\!T INUE 
C **************~ STRIPPING ************ 
CJAKE AN rxo AND COMPARE TO ALL rx-s 

DO 4'~ I:: 1 ,4 
DO 44 J= 1, It 

4 f t Z(i,J)=O. 
DO 14 KO=I,LEVO 
00 14 K=l,LEV 
ER::O. 
DO 16 I=I,LEVELS 
R= r X I I ,K ) - I XO ( I , KG) 



16 ER= ER+R-:a 2 
C IF IT IS THE SAME, ADD WO*W*( 

IF(ER-O.l) 17.17,14 
17 i~=lX(IGO,K) 

RR=IO( IGO) 
R=R IRR . 
r F ( 1 • - R ) 14 , 1 4 , 3 4 

V~ UVH I NLJf 
DO 45 LE=l,IEVEN 
DO 45 LO=l,IODD 

TO Z 

45 Z(LE,LO)=Z(LE,LO)+WO(KO,LO)*W{K,LE)*SQRT(l.-R) 
1'+ CONT I NUE 

DO Lf6 LE=l, I EVEN 
DO 46 LO= 1, IODD' 
Z(LE,LO)=Z(L[,LO)**2 

46 PRINT 4, LE,LO,Z(LE,LO) 

203· 

4 FORMAT(/* THE SQUARED MATRIX ELEMENT OF A+ FRO~ LEVEL*,I5,* OF EV 
lEN-A TARGET TO THE NUMBER*,I5,* LEV~L OF GIVEN J IN bOD NUCLEUS I 
2S*llf40.10111) 

GO TO 20 
C *************** PICK-UP 
C TAKE ANIXO AND COMPARE TO ALL IX 

23 DO 47 1=1,-1+ 
DO 47 J=1,4 

47 Z( I ,J) =(). 

DO 24 KO=I,LEVO 
DO 24 K=l,LEV 
ER=O. 
DO 25 l=l,LEVELS 
RR=IGO-I 
IF(RR**2-0.1)26,26,27 

26 R=IX(I,v.)-(IXO(I,:(O)+l) 
GO TO 25 

2 7 R = I X ( I , K ) - r X 0 ( I, K 0 ) 
25 Er':=ER+R'.H-2 

***************** 

C IF IXO IS THE Sl\f,1E .AS IX, EXCEPT ONF U::SS IN THE PICK--UP LEVEL 
C THE \1 ,I\DD ',AJO'*\/}~- ( ) TO Z 

IF(ER-O.l)28,28,24 
2B F<=IX(IGoJ,K) 

RR=TO( IGO) 
R=R/RR 
IF(rn24,24,35 

35 cmn I NU>:: 
DO 48 LE=ldEVEN 
DO 48 LO::;:!, 1000 

48 Z(LE,LO)=Z(LE,LO)+WO(KO,LO)*W(K,LE)*SQRT(R) 
--- 24 CO~~ T I ~lUE 

DO 49 LE=l,IFVEl\! 
DO 49 L0=1,IODD 
Z(LE,LO)=Z(LE,LO)**2 

49 PRINT 6,LE,LO,Z(L~,LO) 
6 FOf~~·1:\T(j~- THE SQU.ARED 1v1ATRIX ELU1ENT OF A- FROr·1 LEVEL*,r5,~' OF EV 

lEN-A TARGET TO TH~ NUMSER*,I5,* LEV~L OF GIVEN J IN ODn NUCLEUS I 
2S-':.-I/[40.10111) 

20 CC)1\jTINUF 

STo f' 

EN D 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor ~he Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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