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. ABSTRACT

Following a suggestion.by'Goldberger and Low, the crude multi-
Regge bootstrap model of Chew and Pignotti is reformﬁlatedvthrough a

generaliéation of the physical'region integral équation discovered in

1962 by Fubini and collaborators. When consideration is restricted to'

zero momentum transfer, Lorentz symmetry'permits almost completé
diagonalization of the.kernél,bLorentz poles corrésponding-to eigen-
Values’théféof; Cuts also appear but in a manner dynamically and
unambiguously related to fhe‘poies. Being an expression of unitarity,

the equation encompasses "absorptive" effects.
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Ad INTRODUCTIONY

Theoretical study of strong -interaction dynamics heretofore
has concentrated on reactlons between two-particle channels, human
capacities still not having mastered the combined requlrements of
‘Lorentz 1nvar1ance, analytic1tx and unitarity for this simplest reaction
t&pe.l.The time nonetheless is ripe for serious study of multlhadron
systems. It has long been recognized (a) that unitarity precludes
dynsmical isolation of .two-particle from multiparticle channels,b and
(b) that indefinite proliferation of particle production characterizes
any relativistic process:: Theoretical attention to such questions-has
been inhibited not by belief in their unimportance but by the technical
difficulties attendant on an indefinitely increasing number of spin-
vmomentum variables. Recent experimental’and theoretical derelopments,
however, have suggested a general'kinematical‘technique for decomposing
arbitrarily large particle systems'into finite subunits of manageable
proportions; the approach may loosely be described as "multiperipheral.”
In this paper we propose a physically plaus1ble and theoretlcally
tractable dynamical equation suggested by multiperipheral kinematics

The physical content of our equation is equivalent to that
: presented.by Chew; Goldberger, and Low,l our Work being stimulated
b& theirs. The difference between the two papers lies in the
“kinematical techniques employed. The principal advantaée in theh
'techniques of this paper is the simplicity achieved through‘almost
complete diagonalization'of the kernel of the integral equation. Both
the inhomogeneous and -homogeneous problems then become tractable. We

began this work motivated by the desire to clarify the crude multi-Reggev

bootstrap model of Chew and Pignotti (CP),2 and the ensuing equation
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amounts to a generalization of that proposed in 1962 by Fubini and .-

collabbrators;;
Aftef diagonalization our multiperipheral equaﬁion is.of the
Frédholm type in avsingle'variaﬁle, with both'kérnel and inhdmdgéneoﬁs
term fixed/by "input"‘Regge polés. The dérivatioﬁ employs forwafd;_‘
direction unitarity in tWo;particle elasfic scéttering; but applicability.
of the ﬁnderlying principles to broader'situations will Be‘apparent. |
'Thé kernel of the equation, in particular, is independent of the amplitude
being unitarized, so the determination of Regge;poles as’eigenvalues of
the kernel is corfespoﬁdingly channel—indépendent.. |
An important aspect of.mﬁltipéripherai‘dynémics is the broad
basié that_it provides for Regge asymptotic behav;or. It will be seen
that anyvfinite number of "input" Regge poles lead to "Qutputﬁ Réégé'
poles.* Regge'cuts are also to_be expecte&; but these are dynamically
and uﬁambiguously_related tévthe poles. (Bging an éxpreséion of unitarity,
our eéuation encompasses the effects ofﬁen:deécfibed as "absorptive.")
FA second‘important'featufé of the muitiperipheral.eqpatioh is

that it never strays outside the physical region. The kernel correspond-

ingly has direct physical meaning and fhere can bé no divergence difficulties.

* ‘- . D . .
. We confiné ourselves here to forward-direction unitarity, and the

corresponding "output"” zero-momentum-transfer Regge poles auto-
matically fall'into families corresponding to Lorentz poles. A

subsequent paper will deal with nonforward unitarity.
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Of great potential impoftanée_isfthe'bootstrap application, in
_ whfch the multiperipheral kernel is'related to the eqnationfs solution.
It is straightforward to implement.versions of the Cheﬁ—?&gnotti rroposal
based on duality, and improvements, of the Ccp modelfquiékly come to mind.
In this.papef, however,.we do not venture into such questions. A separate
,papéﬂ now in nreparation deals with speculations concerning the Pomeranchuk

trajectory that are motivated by thevmultipéripheral equation.
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B. KINEMATICS
To‘de scribe the multiparticle productlon amplltude ‘we shall use
variables of the type 1ntroduced by Ball, .Chew and Plgnottl (hereafter

de51gnated BCP). b The process is -
a+b>0+1+2+ +er (nl)., ' - (B-1)

where.the numbers identify'the"n¢2 outgoing particles.'.frelimihary

1

to the definition of ourﬁvariables, recall that Teiler5 has suggested

describing such a process through an amplitude

. M(by, by, bl"‘f:'bn{l’ bb)', : ~p  (s-2)
where bk denotes an element'pf the sixaperameter homogeneous_Loreth'.
group SL(2,c). FPhysical meaning_attacheSftolioller's variables through
the‘decompositien. | | | | | |

Pe T e - (B-B)
where uk__ls an element of the three parameter rotatlon group whlch
constitutes the little group of the kth partlcle-momentum o and

w(pk is the three~parameter transformation connecting an arbltrary

%
reference frame to the rest frame of partlcle k. .

*

oy R(w)R(e)R(fzﬂ)

W(pk).

Rz(@k) 3,(®k Bz(gk)v,

where RZ ‘and Ry are rotatlons about the 1nd1cated axes and. B
is a boost. The two initial rotations in U, characterized by

: Ok and .¢k’ merely serve tq.deflne the direction about Vhlch
particle spin is to be measured. Thus there are really only four

degrees of freedom per particle..

_We may assoc1ate an expllClt set of six- parameters with b . as follows:
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The four-vector particle momentum pk' is’related_to Vo by
G

Pk = L(Wk) /I\J mk s : (B- )4)

the unit veetor 5 having only an energy component, while wu, acquires

k
significance by expanding the amplitude into representations of the

rotation group:

(z-5)

Thé expansion éoefficient M ("'Pkf")  can be interpreted és the
amplitude for finding m to be the z component of the sﬁin of particle
k in some érbitrarily oriented rest frame, .Sk being the magnitude of
v the particle spin. |

- Conservation of energy-momentum,
-pa+p'b = po+ .'.+P +l) (B—6)

‘must bé_rémembered’as placing a constraint on the set of w 's, while

Lorentz invariance implies that

M(by, By tts By) = M(bb, bb, e by ) D

. The set éf eleménts _(ba e bb)  69rfésponds'tb the associatidn'
with each pérticle of a conventional rest frame. . The kiﬁematic de;
scrlptlon proposed - by BCP is similar in splrlt to that of Toller but
selects a set of conventlonal frames in which momentum transfers play

the role occupied above by the particle momenta. This momentum—transfer.

emphasis is better "suited to multiperipheralism.
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Let Qi denoté a four-momentum transfer, such that
Qi = -p, + Z y Py - i = 1,+++ n+l , | (B-8 )
| 3=0 o :

corresponding to Fig. 1. Now in the rest frame of the ith outgoing °

particle the three-momenta of Qi and Qi+l are collinear, since
p, = Q - Q. | ' (B-9)

We now adopt the convention that in the special rest frame associated

with bi these three-momenta lie along the 2z axis. If we assume spacelike

momentum transfers, a boost along the 2z axis can bring Qi to the

form

Qg_i’r) : é) 0, O, ('ti);/z) . | - (B'TlO)

The required boost is uniquely determined by ti and ti+l,vanq the
ffame (i,r) defined in this way is seen‘tq be the same Es.tﬁat ‘
designated with a similar butvsiightly différent notation by BCP. The
reason‘for the altemative approach here is to'amplify the significance
" ‘of . the Lorentz_transformétidn-associatéd with the frame (i,r)..

" Let us designate.by a; the Lorentz‘transfofmation cqnnecting
the frame (i,f) ~to our fixed[referenCe frame. Still following BCIS
we introduce the z:bodst ‘qi'vwhich carries the frame (i,r).‘tqva

3 has the form

Qiizl K = G 0, 0, (-t,, 51/2)_..' »‘(Béil_) |

frame (i+l, £) -in which Q,

i+l

UCRL-18616
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Fig. 1. Kinematical diagram defining the momentum transfers

Q- Qi
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The boost réquired here is given by

- 2

Q94 o eI !

cos gy - \1/ 1/ 1/2 12
1o , |

i+l
(B-12)

By.consfructiqn, however, recall that the frame ‘(i+l, r) also gives
to Q,, the form (B=11). Thus the two frames (i+l, £) and
(i+l, r) must be related by an element of the little group of Q,, -8

thrée-parameter transformation in SU(1,1) ' which we designate |

YR (v, 4) « (B-23)

i ~ Rz(ui+l) Bx(g i+’

i+l
The a; are thus successively connected by the formula,

a ‘i = Ll..en, (B-14)

PSR B LS P
where g, is shorthand for Bz(qi)’ a recursion relation fundaméntal

to the BCP kinematical analysis. Note that the parameters in each g

have been uniquely defined.

The two ends of the chain in Fng 1 require separate consideration.

Starting with the b, frame, a z boost defines a special rest frame of

0

p, Which ve may denote (0,r) and associate with the transformation 8y
We then z-boost from (0,r) to (1,£), where Q; has only a z component,
thereby defining dg - The frame (1,r) has already been defined; SO

we dchieve a meaning for g, - In particular,

él = ao.qo g - ‘ | . (B=15)

v
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At the other end of the chaih we define a boost qn+l ‘byvan
analogous procedure, and adopt the convention that the special rest

frame associated with b-b corresponds to

(3416)

bb = % Y%a v

where rB is a rotation still to be specified. Similérly we define r,

by ag = ba T, The upshot of all the above analysis is that: the

and t, cee %

amplitude may be regarded a function of g "' 8 1 n+l’%

n+1

together with ry and 'ra. Energy-momentum consérvation and Lorentz
inﬁmﬁxmeware then implicit. This was the BCP result. What has been
added here is a more explicit description of the physical meéning of

the. BCP variables. . In particular, our approaéh has called attention to

the Lorentz transformations

8y = By Ty 9y E1% & Y. & (3-17)

with the recursive property (B=14).' Even though the a; are not fully
independent of each other (as are the . gi), they will turn out to be

extremely convenient for the formulation .of multiperipheral dynamics.
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C. PHASE SPACE
The'chief techniéal difficulty in multiperipheral dynamics ié'

the treatment of.phase space. The multiﬁeripheral aﬁplitude factorizes
in its dependencé on the successive 847 so.one desires a corresponding
factorization of phase sﬁace.v BCP found a phase-space expression that
factored to a consideréble extent, but @he overallvconstréint bf‘enefgy
COnseryation was handled'in such a way as to impose an awkward-condition
on the gi's. Thé constraint treated ail .gi's symmetrically by

requiring that in the rest frame of particle D,

~

By T LT(r%0 &) % 7t Epyy Y Tp ) P (c-1)
In the present approach this constraint is satisfied by én inductive
process. Energy and momentum are conserved at the leftmost "vertex" in
the BCP chain and the phase space is so constructed that the addition
of each new "vertex" automatically satisfies energy-momentum conservation.

~

Thus if we require that -

. . ! A

(a) : p, = Llay) pm, |

and : ' ' o - (c-11)
(b)) v%ﬂ=-%qi%ﬂ’ ’ 'i=0, 1, ntl ,

then the overall constraint (CFl) will have béenvfulfilléd,. 

- What is potentially confusing abbut the inductive approééh'is

that in the end b T a_ . 1is to be set equal to b L b, , which is
. ) a n+2 : . a b

fixed during the integration over the phase space. One then works back- .

wards through the inductive chain. If the g; are chosen outside the
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phase space, then constraint (C-1')(a) can not be satisfied. This
constraint appears as é,iﬁ function in the phase space and so enSuresr
overall energy-momentum conservation. The inductive appfoach to energy
conservation is the crucial first step in formulating a recursive'phase
space.  That this approach is not the same as‘the BCP approach will become
clear when it is note&i that in the BCP approach (C-1) is used to.eliminate
rb whereas in the present approach fb is a variable of the phase
space and g, will be ellmlnated by using (C-1')(a).

Let us begin with the momentum phase space for n+2 particles:

n+l

(n) _ ! v, 2 2 L g, 2 2k ”‘
P = Ty 87wy mg )t aR B ey m B Py 'Pb
. ) . : i__

(c-2)

Eliminating Py via the energy-momentum delta function and successively

converting from Dy to Qi aécording to‘Fig._l, we find

F®) - 6+{(Pa+Q1I)2 - .mog] leQ:L 8" {(Qe;Ql)g } T e Q‘ﬂ+1

+[ 2 2 }

5‘L(Pb Qm_-l) M
(c-2')

Consider the invariant volume element 4 Q- The four-momentum

transfer Ql may be written in terms of the Lorentz transformation"al

as
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o - e B2, (e

A ) . .
where Q is a unit four-vector in the positive z direction. Keeping
fixed .ag, aB--- (and thus er, Q3~-') and remembering from Formula
(B-14) that .

a, = a,(q )"
1T %l 8

, S (e
, N ] ; AR
we. may replace -d.Ql by.'d-Ql s where - «
o = ng,t g, § (e o (c-5) |
1 . o A 2 \TU /0 / -
whence, by straightforward calculation from Formula (B-13),
, d,gl = (-tl/é) dt, sinh q, d cosh gq; 4 cosh §2_dv2 . _(Cf6)
e Lo b . P ' e
A similar change d Qi'» a Qi may be applied in turn to each invariant
volume element; provided the order of integration is maintained. The

last integration requires special attention. Here we have ‘

1/2

Liaygp) al-ty ), (c-7)

Qn+l
but now‘

fnel T bb(%+1 rb)_l _— | | (C-&):

where rb is a rotation, rather than an element of the form‘(Belj).

If we parameterize r, as

vy = R G)R(8) B (), N

¢
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it follows that

L 1 ' n+l | : -
= - i ' d .
d Qn+l - < 5 dtn+l cosh L1 d.31nh LY cos Qb dﬁb _
(c-10)

Next we eliminate the_ d cosh qi; i=1l.-..n+}, and d sinh 9’
using Formula (B-12) and the mass shell delta functions:

eesh 8y B ((Qi“fl &) ) Y RV
2(-t, (-t,
1

i+l
i=1n,

(c-11)

. + 2 2 ' 1
d sinhq ., ® ((Pb " Q) - mn+l) “’ ‘

o (-t

Putting all factors together we finally have

qgﬁn) - ‘5+[sinh qq - 6;02-ma2-tl/2mé(-tl)1/2)]_

2n+3 v

2 ' ma m.b

. _ X.dtl"'dtn+l sinh q,-+sinh q cosh Y1

p'Trd cosh &g BV, 4 cos % %y

X d cosh ge'dv
(c-12)
The expression becomes more concise if we remember to add

helicity phase space. Since the frame bi is related to the frame '

(i+l, £) by a z boost, the angle u represents rest-frame rotations

i+lv
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about. the direction of the particle-momentum b, - The sum over helicities
my then becomes én‘integral'over ‘ui+i, and the full phase space is
. o o
(n) ' ' My - oy -y
qﬁ = constant X & {sinh q, - ——
2m_ (-t )l/2
a1

Gty ceedty g

X sinthi *++sinh qh'coshyqn+l dgi-dige d§g3"’d§rb ’
| | " (c-13)
. where
ng. = I a éosh.g. av, ' | 1: (c-1k4)
i i i i :
@r, = av d cos o, af, L (c-15)

The quantity 9y appearing in the delta function, is to be regarded as

a'functlon of tl--'t g2‘.’gn+l’ and r determlned for given

n+l’ b’
b and b
a .

b by the constraint

U

L [?a,qo gl][ql-gl-'f' 81 %1 Tb ¢ (?'16)

The essential point here is.to”realize-that each of the‘threé transfor-
‘mations r_, q, and g, is separaféiy determined by (d-}é) (apart
from theuusua; ambiguity tﬁat 6nly.the Egg:of the final Z rotation
in 'gl and fhe initial 2z .rotation ihl T, .is det‘ermined). The :’z
boost 9 is ﬁhus expressible in terms of the variableé employed in

(c-13).
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D. DYNAMICS

The defining characteristic of multiperipheral models is the

vfactorizafion'of the amplitude into a prdduct of functions that each

depends on only & finite number of'variablés, the functional form of

an individual factor being independent of the total number of particles.
Motivation far-assuming localized particle -correlation cbmes from the
experimental 6bservation that the mean trahs&ersé,momentum of any
prodqcedlparticie is smdll and independent of totai energy. If produced
pérticiés are sequentially arranged according to'iongitudinal monmerita,
defining a definite set éf momentum transfers -Qi, it follows that thé 4(
average magnitude of any ti is Small'andvindependent of the.chain
léﬁgth. Furthermbre the relative momentum of a particlé pair increases
with the séparation betwéen pair meﬁbers invthe sequence. Adjacent
particles in the seQuence‘teﬁd to lie closest to each other in phase

* .
space.” Tt thus seems natural to assume "short-range order" along the

~

BCP chain.

The simplest multiperipheral model is of the type proposed by
)

Fubini and collaborators, _Where each factor depends on a single t..

i
Theré is minimal interparticle correlation here, dependence on the.

g4 ‘being tqtally absent. A more realistic model allows each factor to
depend on & finite number of "adjacent" ti's and gi's.- The dynamical
equation associated with such a model shares many charactéristics with
the equation that will be deyeloped below from a slightly different type
of short-range correlation. The particular model used here to illustrate

and bj may be defined as the boost in ’bi"l b.-

"Distance” between bi

This boost is equivalent to the ‘'relative momentum."

|

J
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mﬁltiperipheral dynamics hés been selected with an eye toward bootstrap
applications.

Tet us make a multiple 0(2,1) decomposition of the absolute

square of the amplitude (summed over final-particle helicities),

2

)|

n+1

(n) ' C b e
J (rafgl’ 17Ty BT

sa j Si
D © toe
X mamo(ra) E ", (g)E

Sn+l oy Sb B
(g,,4) D~ (r ).
01 mnmn+_l ‘n+l mn+lmb- b

(D—-l)'

This expansion is completeiy general, -[dsi] denoting the appropriate
measure for the 0(2,1) gfoup. Multiperipheralism is injected by

assuming that

Eéan be approximated as an analytic fuhction of S5 contaiﬁing only

simple poles with factorizable residues. The integral f'[dsi] may

then be replaced by a sum over these poles. Making this pole approximation

"in succession for i = 1-+*n+l, we find

o
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N ay, . 77 ¥ 4 b
(n), - *71 172 n+l
'M ~ | R () Ry “(eptp)eeeRy w0 (b 5)
. 0 1 n+1

a2 717 T’ By

] m e«eem
e RS EL S

s ' a& (tl) _ ay -(tn+l) )
><-DmamA(ra) E i (gl)'.'Em E+l (gn+l) Dm? (rb)’
a0 Mo n n+l _ n+1"b

(p-2)

where 71' labels the different poles in Si’. the symbol ay (ti)
denoting the position of a pole. We furthermore assume that the

* ) : , v
Notice that a, (ti) -is the position of a pole in the absolute
square of the amplitude, not in the amplitude itself.
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. residue factor r"7 (t,t') is large only for lt| and  |t'| both

X *
small. ,

Unitarity gives for the absorptive part of the elastic (ab —» ab)

forward amplitude the.expression

A, by) - | g fd.ﬁ(n) M@ 1P, (>3)
| s I

where it is understood that

b-lb ey r s 00 r
a "o - Ta%%1%  "8ni1 s o

is held fixed in the integration. Designating by (n)A(ba’l bb) the -
"contribution to A from n-particle'production,'we how introduce an

auxiliary function

*

The pair of superscripts 7y' on the residue R can be'uséd tq

sﬁecify‘the type of particle prodﬁced.at the vertex % of the-

BCP.chéin. {In fact, for a gifén pair of adjoining poles at
'ay(t) and ay,(t’), there is rérely mbreithan one-possible

stable particle that can be emitted from thevintervening vertex.]
The sﬁm over y and 7' thus includés:gli ﬁossiblé arfangements-

of particle types along the chain if we underétand that the:
‘vertex boost ¢ depends on these indiées. ,Becauée of the emphasi;

on small values of Itil, double counting is expected to be

unimportant.

o

G
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S

L, - o
n+l, - -1 3 3
= d cae a
-(n)Bm (ba Sn41’ tn+l) = 4(/;> : dpy d7gy-d gn+l )
n+1 \
Sayl".yh'
' m.a,mo--»mn
‘ o ; v . | oy
X "fdtn sinh ql **+ sinh q,
m2 -m? -t S ay Yoy
/ 0 " a 1 a 1 172,
X 6<sinh - >D (r )G - (ti,8)a " “(ti,t,,8,)
% Ema(_»,6‘1)1/2 Tmmg e’ mgm 161 B m, L 2 B0
. Y.y
n’' n+l .
)< G m (tn’ tn+l’ gn+l) ’
: ‘n n+l
(D-4)
with
_ o (t, )
(}717i+1(Jc . = R7,i7i+1(JG ¢ )@ 7iqg i (e )
mom, o0 ci? i1’ Bih/ = P V% Yiaa/ Mnom, €i41/ -
i i+l i 17i4+1
(D-5)

" - The relation between (th.'and (n)B'-is then



UCRL-18616"

-20-
=1 ' 3 .. ) n+l -1
(n)A(ba bb) B ATy dt 41 cosB Q4 (n)Bm (ba Fn41? Pnal
—_— ) n+l
: Y b PR -
s b
CXR™™ o L, w5 (@),
‘ mn+l -+l mn+lmb b
: . (D-6)
with

a1
41 T P Ty Y - (D-7)

The heart of mﬁltiperipheral dynamics lies in the recursion .

relation that can be read off from the definition {D-4):

Yot wry 31 a4 .. = 7 | 7' Tt
(n+l)Bm’(a.’t ) = d— g d.t sinh g (n)Bm (a,t)Gmm,(t,t » 8 )j
7,m
(p-8)
wvhere a' = aqg' and
cosha = (@2 -t e)/2(e6)H2 (0-9)
If we define
, Qg"ﬂ S S
B = L | (n)B,’ - _ | (1_3-;0.) .
n=0 .

€
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it »'f.ollowsv that
S () L Bo, (p-11)

where the variables and integration are the same as in (D-8). Performing
the linear operation (D-6) on /B rather than on (h)B evidently

produces A. Thus if the integral Eq. (D-11) can be solved for B in

terms of (O)B , we can find the complete absorptive parflin terms of
: 2. 2
' m -m -t
7’ t ty _ i - 0 a 1
(O)Bm, (at,t!) = | B(S_mh U = T e
| om ()
§g,oMm M '
o, (t")
a ;.. ay!, . 7! ' :
X Dm m(ra) Rm v(t ) Emm’ (g ) s

; g1 — - 1
with a' = r, 9 8
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E. LORENTZ SYMMETRY AND PARTIAL-WAVE ANALYSIS

The integral Eq. (D-11), which written out is

tyi(a';t'). = (0 ) (a t') + ZE_A “‘/’-3 ' at 31nh q

. i
X Bmy(a,t) Ggy(tJt';g"))

(E-1)

possesses é fUndaméntal symmetry that (a) facilitates its éolution
through diagonalization; and‘(b) leads to Regge asymptotic behavior.
The kernel ‘is inVarianf under the transférmation a - ca, a' - ca',
where ¢ is aﬁ arbitrary Lorentz transformation. The volume element
in (E-1) evidentiy possesses this same invariance. The symmetry
operatidn &n question does not involve ahy transformation of ba and
therefofe-is more than a statement of overall Lorentz‘invariance.* It
ié a dynamical symmetry arising from the basié multiperipherai
assumptionvthat only a finite number of particles.are correlated. It
would not matter if N particles, rather than. 2, were correlated, so
long as N is independent of the chainv"lenéth" ba-l bb{ The function
B and the kernel wbuld then have more variables.but thefe would be

invariance of kernel and volume element under a common Lorentz transfor-

mation of all N of the correlated a's, keeping ba fixed.

* ' . . .
Of course the invariance of the kernel guarantees Lorentz invariance

of the final absorptive part A(ba_l bb)‘

4

13

@«




UCRL-18616

An analogous symmetry is present in the Bethe-Salpeter equation,

.a circumstance which encourages a tendency to equate the content of

multiperipheral dynamics with that of fhis‘ceieﬁratéd off-shell'eqpatiqn.
Without prejudging the question of'whethef an off-shell kernel can be
found that correSponds to an arbitrary on-shell kefnel, we stress that
ﬁhe éévantages gained by attedpting'to:go off-shell arelobscure. A
tremendous asset of mulﬁiperipheral dynamics is that everything takes

place not only on shell but in the physical region.' The kernel G has

a direct Physical significance, subject to experimental check.

Because of the Lbrentz symmefry'of the kernel it ié natural to
expand the_fﬁnction B(a') into its irfeducibie components with respect
to the Lorenté group. The consequent diagonaiization Qf Eq. (Efl).Will
be explored in detail in a subsequent paper. We note briefiy, however,
that after projection onto réprésentations of the Lorentz group with

Toller quantum numbers M and- A, Eq. (E-1) will have the structure

) - () (") % M) Meeat . (8-2)

The symbolic solution of this Fredholm equation, .

BMX : '
0
AR S E - (2-3)
' I-¢G _ ,
will éontain t! 'dependent Lorentz poles arising from input Regge poles
M\ ' o |

in (O)B and GMX, together with +t' independent Lorentsz poles -

wherever GMK has the eigenvalue 1. The latter will propagéte'éssentiélly A

unchanged into the corresponding Lorentz projection of the absorptive

part, AMK, while the former will become branch cuts. Inverting this
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projection to achieve the absorptive part itseli;-A(baf_bb), leads to
asymptotic behavior in bé_l b, that is controlled in the familiar way
" by the 1eading gingularities in A. ‘Quridynamiés of course yields the

complete absorptive part, not simply an asymptotic representation thereof.

&
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