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ABSTRACT 

In this work we demonstrate that the basic equations of the 

Landau hydrodynamics may be derived directly from the quantum mechanical 

microscopic N-body Hamiltonian, which is expressed as a functional of 

the local observables, namely particle and current densities. The 

Landau quantum hydrodynamic equations are then the Heisenberg equations 

of motion of these quantities . 
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I. INTRODUCTION 

As the experimental
l 

and theoretica1
2 

picture of li~uid helium 

becomes less diffuse, it appears that the studies of Landau towards a 

~uantum mechanical theor; of hydrodynamics3 are II···germane and funda-
.. 2 

mental ". Initially the Landau ~uantization of hydrodynamics stimulated 

a number of attempts at extension. These studies began with varying 

forms of classical hydrodynamics expressed in terms of velocity potentials.
4 

The formalism of canonical ~uantization was then applied to the classical 

theory of. :fluids. These theories, due to their highly nonlinear character, 

give rise to cut-off problems. 

It is the. purpose of this work to demonstrate that the basic .. 

e~uations of the Landau hydrodynamics may be derived directly from the 

~uantum mechanical microscopic N-body Hamiltonian, thus avoiding the 

difficult and physically uncertain ~uantization of the classical theory 

of fluids. 

Let us review briefly the Landau construction of ~uantum hydro

dynamics5 for a Bose fluid. Since the natural variables for describing 

a li~uid are densities and currents, Landau constructs these ~uantities 

as 

p(2S) 

and 

J(x) 
'" tv 

\' o(x - x.) / mi IV ""'~ 
l. ....... __ 
i=l 

1 
2i 

(1.1) 

(1.2 ) 
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Now the classical hydrodynamic description of the liquid provides an 

expression for the energy of the macroscopic movem.ent of the liquid; 

1 . 2 [ ] The energy density of the system is 2" pv + p € P . , where is 

the internal energy of a unit mass of the liquid, which is supposed to 

depend only on the density p of the liquid. This classical.expression 

provides Landau with the quasimacroscopic Hamiltonian of his theory, 

(1.3) 

However, the representation of this expression as an operator necessitates 
6 

the definition of a velocity operator v(x). The definition of the 
...v~ 

classical velocity, ~<2s) = .:!(3)/P\3) , suggests a quantum mechanical 

representation of the velocity operator as 

v(x) 
"'" r-; 

1 [1 . . 1 ] - - J(x) + J(x) -. -
2 p(x) ""',..; ~,.... p(x) 

,-.; ....., 

(1. 4) 

From the known commutation relations of the fields p(x) and J(x), 
f'J <'V.#'V 

one obtains the commutation relations for the components of this velocity 

operator, 

i 5(x - y) _1_ .(i-:- v. ex) 
IV "'" p(x) i J rv ....., 

~Vi~) 
(1.5 ) 

The Landau quantum hydrodynamics then consists of the Heisenberg equations 

of motion fo~ p~) and ..:r(x) with the given Hamiltonian (1.3). ,..., ....,. 

In our derivation of the quantum hydrodynamic equations we start 

directly from the Hamiltonian describing N identical interacting 

particles of the Bose type, which can be written in the language of 

• 
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second quantization in terms of creation and annihilation operators 

satisfying canonical commutation relations. However, we prefer not to 

describe quantum liquids with these canonical fields as the set of 

qUantum mechanical flcoordinates 0 fI Rather, following Landau, we will 

give a complete description of quantum liquids in terms of observable 

quantities only. The natural variables for this description are the 

:r:article and current densities p(x) and J(x), respectively. 
-.J I'V ...., 

These 

variables are not canonical coordinates. 

The idea of formulating theories in terms of observable current 

densities has recently become quite attractive in strong-interaction 

physics. 7 There the weak and electromagnetic hadron current densities 

are local observables and one supposes that these currents, which treat 

all strongly interacting :r:articles (hadrons) on an equal footing, are 

useful coordinates in a dynamical theory of hadronic matter. The 

8 
formulation of dynamical theories in terms of local observables . is not 

new and is implied by the formulation of field theory in terms of firings 

9 
of local observables. fI The local observables are just the obj ects which 

we are working with, namely, current and density operators. These are 

the local fields in the sense of abstract field theory . 

." . ~ 



-4-

II. N-BODY HAMILTONIAN IN TERMS OF DENSITIES AND CURRENTS 

We consider a system of N identical spinless bosons interacting • 
through a local two-body potential which is described by the Hamiltonian 

~ 2 t p. 
H 

\ ,~ Vij (2.1) == L - + 2m 

• 
i==l i<j 

The expression for the Hamiltonian in the language of second quantization 

is given by 

H == 21 Jd3XY"'I//(X) 'V 1jr(x) 
m· N rv'" '" 

+ ~frd3x d3y t+~) j'+~) v(~ZI) V~) V~, 
.I (2.2) 

where the field operators satisfy the following 

canonical commutation relations: 

[1jr(X), 1jr(y)] == 0, . 
. ,.... -

(2.3) 

5(x - y) 
\ 

,.." -
Since we do not wish to describe quantum liquids with these 

nonobservable canonical fields as a s'et of quantum mechanical 

ITcoordinates, IT werewr.ite the Hamiltonian (2.2) in terms of observable 
• 

quantities only. These are the density p(x) and the current J(x). 
....., IV "" 

In the second-quantized formalism, these operators are given by 

p(x) 
'V' 

(2.4) 

J(x) 
"v -'" 

- . 'V 1jr+(x)1jr(x)] . 
...... ,..., "" 
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The physical interpretation of p(x) and J(x) is clear: they represent 
..- ,..., ,.... 

particle or mass density and flux. From the commutation relations (2.3) 

of the fields and one may determine the algebra satisfied 

by p~) and 

[p(x), p(y)] == 0, -..- ~ 

[p(x), J.(Y)] 
"" ~ ;v 

[J.(x), J.(y)] 
~....... J.-

-i J..-.' [5(x - y) J. (x)] ox . ;"V',.... ~ ,.... 
J 

+ i J- [5(x - y) J.(x)] 
vYi ,.."..... J ...... 

One can easily show that, according to Schur's lemma, p(x) and 
..v 

J(x) represent a complete set of "coordinates. ,rlO This result tells 
""'~ 

us that the states of our system of N identical particles span a single 

11 irreducible representation of the algebra. We consider the states, 

which form a basis in the Hilbert space, as being the complete set of 

eigenvectors associated with a maximal commuting set of density and 

current operators, i.e.,in our case p(x). Thus we choose the following 
"... 

set of eigenstates of P: 

p(x) Ix •. 'x.J ,.; .-.;1 .... l~ 5(x - x.) Ix ••• x...) . 
~ ...... ~ "",1 ,· .. d~ 

(2.6) 

Moreover the irreducibility of the "coordinates" p~) and J(x) -- implies 

that every operator is a function of p(x) and J(x). For example, the 
"'" ~---

total momentum P and the total angular momentum L are given by 
r--' ,-..; 
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p == J d3
x jL(,) , ,..,; 

L == J d3
x x )( J(x) 

f'V ,.., f'Y .,... 

With the help of the identities 

v p(x) + 2i J(x) 
IV "'" ,..., ,..., 

one obtains the following form for the Hamiltonian (2.2) expressed in 

terms of the particle density and flux operators: 

H == _1_ [V p(x) + 2i J(x)] 
p(x) "';,y ~ -

""" 
(2.8 ) 

'r 
+ 2! /1 I d3x d3y p(x) v( Ix-yl) p(y) . )j ,.... ..... ".., ('V 

We want to emphasize that although we have derived the form of 

the Hamiltonian and the commutation relations of the density and current 

operators from the underlying representation in terms of creation and 

annihilation operators, their form could also have been deduced from 

other considerations. The algebra (2.5) is the simplest possible, i.e., 

no extra derivatives of o-functions, consistent with the interpretation 

of p0;) as particle density and ! == J d3x Ie..:) as generator of 

spatial displacements. 

I~ the operators in the Hamiltonian (2.8) are replaced by 

c-numbers, so that the ordering can be neglected, it reduces to the 

• 

,..' 
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~uasimacroscopic hydrodynamic Hamiltonian of Landau (1.3), with 

1 

p(x) ,...... 
+ ~ Jd5y o~)V( ic-zl) 00;). 

(2.9) 

We observe that if one adopts the Landau definition (1.4) for 

the fluid velocity operator vex), one can calculate the commutation 
I"J '" 

relations of its components with the help of the algebra (2.5) and the 

identity 

where denotes the functional derivative. 
6p 

(2.10 ) 

This calculation yields 

[ v. (x), v. (y)] 
1.,.... J ...... == i 6(x - y) ,..., ,...; 

1 

p(x) ('~ v.(x) 
i J-

.J- v. (x~ , ox. 1.-
J ..... 

(2.11) 

which is Landau's result (1.5) as well. 12 
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III. HEISENBERG EQUATIONS OF MOTION FOR DENSITIES AND CURRENTS 

One can now calculate the Heisenberg equations of motion for the 

observable quantities p(~) and ~(~, which satisfy the algebra (2.5), 

using the Hamiltonian (2.8). For the particle density p we obtain 

the equation of continuity: 

p(x) = i [H, p(x)] = - 'V J(x) . 
. ,.., "......,,...,,,....... "..." 

The equation for J can be calculated in a similar manner by using the 
,...." 

identity (2.10). We obtain 

~ Ptx) ('VkP~))('Vk 2, p~)) 
"" 

+ §(\'kP0:»)2~ o<.ls» ~o (~) + ~k<.ls):O C~,)00(~)h<.ls) 
"., ,..., 

+ 19k'V p(x) _1_ Jk(x) - Jk(x) _1_ 19
k 

'V p(x)\ 
\ ,.., "" () _ ,...., () \ ~ -'J p x . p x --- ~ 

+ (17kOI:») :0 CJ0 ol:»)Jkl:) 

- Jkl:) ;0 C~)0z o <.lsX17k oW) }] 
,..., 

. 
..... 
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Looking at the above equation of motion (3.2) for J, we see 
rv 

that it involves inverse operators. However, in liquid helium p{x) ,..., 
-l{ is nearly a constant and one can replace p ~. in the Hamiltonian 

(2.8) by the c-number PO-l~), where. PO{~) is the ground-state 

expectation value of p{x) • The resulting Hamiltonian is bilinear in 
;v 

p{x) and J{x) and is the~efore much easier to hmdle. In this 
"-" "" rv 

approximation the Heisenberg equation of motion for p{x) remains 
....." 

unchanged and the Heisenberg equation of motion for J{x) simplifies 
-- r-' 

+ \ [.' L. 
k 

+ 1 {Jk{x)C2Jk~). _ \7~(~)) 
2PO~) ,....... . 

+ (,? Jk~) • 17Jd..(l:)) Jk~)} 

+ 4p i (x) [(17kP~»G Jk~)- 17ki!.(~V -G Jk(;<.) - 17Jd..~~~kP~)) 
o ~ l 
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Finally we would like to point but the equivalence of the 

Heisenberg eCluations of motion (3.1) and (3.2) and the algebra (2.5) 

from the point of view of physical content. Solving the latter means 

that one has to introduce a functional representation of the algebra 

(2.5). By this we mean that we specify a basis in Hilbert space consisting 

of the complete set of eigenvectors associated with a maximal commuting 

set of density and current operators [see ECl. (2.6) and the remarks above]. 

Then an arbitrary state I¢) is represented by giving its components 

along each of the basis vectors, Le., by a wave functional. With the 

states represented in this way the effect of applying any density or 

current operator to a state I¢) can be represented either as 

multiplication of. the associated wave functional by a c-number function, 

or by c-number functional differentiation applied to the wave functional. 

With the density and current operators realized in this way, the algebra 

(2.5) is automatically satisfied and the dynamics is contained in the 

solutions to a functional Schroo.inger eCluation. 

~I 

• 
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IV. DISCUSSION 

We have seen that the local, observable density and current 

operators provide a natural description of the macroscopic behavior of 

a quantum mechanical many.bodY,system. The Hamiltonian (2.8) together 

with the Heisenberg equations of motion (3.1) and (3.2) for P~ and 

J(x), or equivalently the functional representation of the algebra (2.5), '"" ,...; 
show an alternative way in which one may view the Landau quantum 

hydrodynamics. Many attempts to derive the Landau theory, and indeed 

to formulate quantum mechanical theories of collective motion, have taken 

up the problem of quantization of classical hydrodynamics. No justification 

has been given for this procedure. 14 In fact, several of these studies 

carried out the quantization procedure with the assumption of the 

existence of a dynamical variable canonically conjugate to the local 

density operator. This has been shown to lead to contradiction.15 The 

representation in terms of noncanonical variables circumvents these 

difficulties. The Landau theory thus appears as an exact consequence 

of the introduction of a mathematical velocity operator and the non-

canonical representation in terms of density and current operators. 
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