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ABSTRACT
The‘oscillating-jét technique has been used previously for measur-
ing the surface tension between a gas and a liquid. Here it is extended

to the_méasurement of the interfacial tension between two immiscible

- liquids. This work was pndertaken to establlsh a hydrodynamlcal theory

~ for the osc1;lat1ng Jet, so as to allow thls technique to be used o

indicate interfacial concentratlons in liquid-liquid systems undergoing
masé.transfer. The mathematical théory by Bohr for'the gas~-liquid case
is extended to the liéuid-liquid case to give an exact but implicif
analytical solution, and a simple correction multiplier to the Rayleigh
formula.has beeﬁ developed to give an explicit representafion of thé
exéct solution. | |

Experimental aaté were taken on.immiscible liquid pairs whose
interfacial tension rangés from 6 to 42 dynes/cm, and were analyzed by
the theoryfdeveloped.

As aﬁ’essential step in this'étudy, a calculational methodrhés
beén developed to predict the velocity profile of a circular liquid Jjet
in a stationary surrounding iiquid. The resulting values of jet radius
and interfacial veloéity have been used to correlate the effective plug-

flow velocity which is reguired as an input for the oscillating-jet theory.
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- In order.to improve the étabilify of the Qscillafing Jjet, and
aléo tp appfoachvcloser'to thecretical flow conditiohs, the use of a
_flowing externallphésé at a velocity near the ayeragé vélocity of the
osciliating:jet is proposed. A calcuiational method to preéict the
nyeiocity profilé for_such a case is éiven as an extension of the method

used for a stationary sprroundihg liquid.



I. STATEMENT OFJTHE PROBLEM
The osciilating.jet'pfovides a well explored means‘of measuring
surface tension‘of liduid jeté’ihto a gés, but has rarely been applied
to determine the interfacial tension between two immiscible liquids.
The measurable‘parémetér in this'method is the ﬁavelengtﬁ prodﬁced by
tﬁekoscillation. Our uitimafe objective, not yet reachéd, is to use

the oscillating Jjet to measure. dynamic interfacial concentratiohs during

‘liquid-liquid mass transfer.

The present Study is aimed at.providing both theory and technique

that will contribute toward approachingvthis objective. | .
| The theéfetical background needed to échievé the'féregoing

oﬁjedtives haé twb pqrtsé firsf, a suitable relation‘betﬁéen waveiehgth;

Othervsystem properties, and interfaciai_tension; and secbnd, knowledge

- df velocity profiles of a circular Jjet in another liquid which is either -

stationary or moving.
The experimental problem is one of obtaining suitable'elliptical i
nozzles, and of finding operating conditions that produce a maximum

number of nodes in the jet and also a maximum total jet length. Because -

"of the non-zero exterior density and viscosity, and very similar re- -

fractive indices in a liquid—liquidisystem, both producing the jet and

measuring»it.appear'to-be considerably more difficult than working with

a .liquid jet in a gas.
Thus the present study deals both with development of the needed 
mathematical background and with analysis of representative experimental'

data taken on pre-equilibrated liguids.



IT. OSCILIATING-JET MEASUREMENT OF DYNAMIC
LIQUID-LIQUID INTERFACTAL TENSION

A. Introduction

When a jet of liquid is forced through an.elliptical orifice | . ;-

under a constant pressure, a standing wave is formed by the oscillations |
of the issuilng stream about its eqUilibriuﬁ cylindrical form.. The standing-
wave pattern foﬁmed by.the stream is the basis for an eXperimental method:
of obtaining the surface tension between a liquid aﬁd a gas, or the inter-
facial tension between two immiscible 1igﬁids. While mass transfér is |
occurring to or from a liquid jet, that is ﬁhile a solute is traﬂsferréd

“to the .interface and.through it, logal solute concentfation and interfaciél’
tension will chanée with distancé from the 6rifice; the changes can bé
folloved by the change in wavelength of the jetb.

A jet is pafticularly suitable for mass—tfansfer studies because

it allows thé study of residence-time effects in the range of.0.00l sec

to 0.1 sec. Also, it cah be caught at a Variable distance fromlthe nozzle,
and analyzed chemically tovgive the mass-transfer rate as a fqnction of
length or time. Khowledge of how. the interfaéial concentration varies

. during mass transfer between two liqﬁidé should give a clearer under-
standing of the fundamental processes'involﬁed{

Two”fiuidfmechanical prqblems must be solved in order to interpret
wavelength measurem;nts on an oscillating jetf first, the elliptical
oscillétion.of_a plug-flow jet; and second, esti@ation of the effective _ v
plug-flow velocity from the calculated properties of laminar-flow
cylindrical Jjets. The present study is the first phase in adapting the

oscillating-jet method to liquid-liquid systems, namely to solﬁe the



W

-3~

wavelength problem mathematically and to explore the experimental
techniques. .

Physical analysis.of the oscillating liquid jet in air dates

7

back more than a century, when Bidone and Magnusl8 independently re-

" ported on the'phenoménon.~'Later, Lord Rayleighgo derivéd'a mathematical

relation [Eq. (41), belo%] between the stream velocity and density, the
surface'tension,.énd‘the oscillation frequency. Rayleigh also showed
experimentally that the surface'tension'of a freshly formed.éoap solu-
tion.is>considerably higher than the eqﬁilibrium value. Pederéon19

improved the experimental techniques and measured surface tensions of a’

number of liquids, including aqueous solutions of ethyl alcohol, using

" Rayleigh's theory.

~In a definitive‘analysis, Bohrll introduced viscous terms;

 and he also provided a theoretical correction ervthe finite amplitude

of the .o’s.'cilla'bio.n, whi}ch’introduces the maximum and the minimum di-
ameters of the jet. |

- Bohr's theory has been'applied by sevéfal.investigators to the
measurements of the surface-ﬁenéioﬁbof IiQﬁids. Stocker21 measured the
surface tension of inorganic salt solutibns. Bond and Puls12 used it in
confirming their results on a commercial soap solutioh, obtained wiﬁh

25

the liquid-sheet method. Sutherland=='2? studied the surface tensions

’ of several systems and found the results obtained by Bohr's theory to

depend upon the particular orifice uéed. Defay and Hommeleh studied

*the rate of surface tension lowering of aqueous solutions of long-chain

alcohols and dicarboxylic acids by the oscillating jet méthod, and
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interpreted their results by the Bohr formula. Hansen and co—workersl o1

also studied the rate of surface-tension depression -of organic acids, in
‘which the surfaée velocity calculated from a nonuniform—velocify model
represents the linear velocity in the Bohr model: the depression rate
could be representedvby a second-order kinetic mechanism in the surface
film.-

25

Very recently Vandegrift ™™ proved experimentally, by use of the

oscillating jet, that water does not have a dynamic surface tension

attributable to hydrogen bonding.

1,2,3,k4,5,6

Addison has also published extensive work on adsorp-

tion of alcohols at the surfaces .of alcohol-water solutions, uéing the

oscillating Jjet. He developed his own empirical relations from Rayleigh's~

solution. In those cases where Addison, Sutherland, and Defay measured
the same systems, Addison's results do not agreelwith those of the other:
two workers. Burcik, who found the rate of change of surface tensién to
be a major factor in determining the stability of foams, used the. os-
cillating jet with Addison's empirical formula to measure.this ra@e

experimentally.8

Only Addison has attempted to étudy liquid-1liquid jets,6 using
‘his empirical formﬁla%lbut with little success. 

Tpus very'iiétle‘use of the oscillating jet has .been made in
liquid4liqﬁid systems. It is verj difficult to prevent the jet's break—
ing up within a path length too short for measurements to be made.
Breakup- occurs more easily due to the outside liquid's héving higher
viscosity and density than a gés. A second problem is the rapid damping
of the oscillations, which requires a larger eccentricity in the orifice

and consequently greater instability.

1

'gj



Notation.
A Sonstant, Eq. (U4k4)
A ;oefficient matrixvfor simultaneous homogeneous equations
a. jet radius |
b,by complex wave number, and 2m/\, real wave number
QT arbitrary constant column vector
c constant axial,veiocity
D matrix, Eq. (37)

D/Dt substantial derivative

d relative wave number defined in Eq. (1k)
o f empirical multiplier defined in Eq. (43)
£, . finite-amplitude correction by Bohr, Eq. (45) -

f(r),b general function to represent velocity or pressure perturbation

g x-direction velocity

g relative x-direction velocity defined by Eq. (5)

h y-direction velocity

hl relative y-direction velocity

Ig,Ié, modified Bessel function of first kind (order =.2), and its first,

" and - second-order derivatives .

T2

i N1

KQ’Ké’ modified Bessel function of second kind (order = 2), and its
first, and second-order derivatives

L combined variable defined in Egq. (35)

m,m, ‘constants in Eq. (Lk)

m.,m
!
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mooR>

(Ve

pressure
pressure perturbation

constant, Eq. (30)

principal radii of curvature of surface
interior Reynolds number, Eq. (33)
exterior Reynolds number, Eg. (BH);

radial component of cylindrical coordinate

maximum and minimum jet radius

components of velocity in cylindrical coordinates

relative velocity components, defined in Eq. (6) and Eg.

velocity vector

rectangular coordinates

matr'ix, Eq. (37)

damping factor

elevatien of jet surface, Eq. (30)
cemponent of cylindrical coordinates
wave length

viscosity

density

interfacial tension

function defined in Eq. »(hl)
perturbation—veloeity vector

relative perturbation-velocity vector, Eq. (5)

\

(1)

¥

component of ax1a1 perturbation veloc1ty in rectangular or

cylindrical coordinates.

relative éxial perturbation velocity component



Subscripts

a

e

interfacial
‘exterior
interior .

at thé orifice plane



B. Theory

1. Summary and Extension of Bohr's Treatment

For exterior medium without visédsity, Niels Bohr linearigzed the
Navier-Stoke. equétions with respect to axial, radiai, and tangential
velocifies, treating the axial velocity as a constant term plus a small "
perturbation, and the radial and tangential velocities only as small
perturbationé. Although the axial velocity really is radially non—unifbrm,v
especilally near the orifice, it appears impractical to account for such
variétion.

The extension of Bohr's mathematical treatment to liguid-liquid
systems, although straightforward, results oﬁly in an implicit relation-
ship between interfacial tension and the other variables. It is therefore
neceséary to solve it numerica;ly for a number of cases, and to find a

. suitable’graﬁhical or empirical means to describe the explicit relation-
ships. |

The equatidns of motion for incompressible viséous flow and the

equation of continuity, in vector form, are

o H o, grad P = uvzw (1)
Dt ~
Cdaivw=o0. | | (2)

" Taking the divergence of Eq. (1) with Eq. (2), we obtain

div grad P = V°P = 0. : : | (3)
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Following Bohr, then linearize the Navier-Stokes equations in
rectangular coordinates,”x,y, and z, with respective velocities g, h,
and w; We set w = ¢ +w , where ¢ is a constant. We also assume that
the velocities are of the form f(x,y):eibz where b is the wave number

2r/\, with A the wavelength. Then the linearized form of Eg. (1) becomes

Poely Lgap )

where 0 = Q(g,h,w); and p is the pressure perturbation. By using the

following transformation, Eq. (4) can be made homogeneous:
Q =0, +— grad p | ' (5)

where,gl(gl,hl,wl) is a function of the transformed perturbations. We
also transform to cylindrical polar coordinates r, Q,fand'z, with re-
spective velocity perturbations;~ W, v,:u. 'The following transformations

are used to make the equations of motion in the latter coordinates

homogeneous :
vedi @ o4y » 6)
~ cbp Or 1 .
L - (7

cbp r 08 1

Thus the component equations of motion and the equation of continuity,

in cylindrical polar coordinates, as obtained by Bohr, become:
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ou: ' '
ibe "1 2 1 :
L I R ST ©)
r r '
ov : ¥
‘b u o '
(Vz—l:)ul'—%J'_E@erl = 0 ©)
r r - : ' v
_ Ibep _ ' _ | :
(v2 u)wl“o | | -
ov . du, | dw -
1 1 1 1 + 1
ST tiw O ()

Now we specify the mode of oscillation as 2, which corresponds
to the type of perturbation we impose on the stream by use of an

elliptical orifice. Accordingly, we suppose that p, wl, Vl’ and u
216+ibz

1

have the form f(r)- The substitution yields the soiuﬁion to

Eq. (3)

- . Qif+ibz
p—[Cfgﬁr)+C§%ﬂmH e , (12)
Similarly, Eq. (12) gives the solution:
e 2i6+ibz
= + o
o [CBIe(rd) CuKe(rd)] e A (13)
where 4 is defined by the relation
d2 _ b2 , ibep 7 (1k4)

[
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v o ' .
Eliminating sél-from Egs. (10) and (13), we find for vy

2i6+ibz
e

(v2 - 2 (15)

(rvl) = -2ib [0512(rd) + Cth(rd)] .

Combining a homogeneous and a nonhomogeneous part, the general solution

of Eq. (20)515
.vl = [% {C512(rd) + C6K2(rd)} - %2 {CQIé(rd)

The continuity relation (13) between u;, v, and w; now yields:

i awl X Xl . v, o
1 |9z " T or

c
1l

2b id .
[;;5 {Calg(rd) + cqu(rd)} iy {0512(rd)

+

C6Ké(rd)}] . (POTIbZ | | (17)
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2. Boundary Conditions for Liguid-Liguid Systém:

The foregoing derivation retraces the steps téken by Bohr for
solving the free-jet problem. Now, the introduction of new 5oundary
conditioné orients the‘dérivation toward a new'resulf. Here we note
that the velocities are finite at r - Oand r 5. Therefore; for the
interior fluid, the constants mqltiplying the modified Bessel function .
of the second kind K2 and its derivative Ké must be zero; and for the
exterior fluid, the constant multipliers of the modified Bessel functions
of the first kind 12 and its derivative Ié must be-zero.

Therefore the axial, radial, and tangential velocities are, for

the interior fluid:

C . :
) N i | 2ie+ibz -
W, =cta =c 3——cpi I, (br) C5Ig(dir)€ e (18)
vv——-CI(b) —CI(dr)-!—E?-I(dr) 2i0+ibz (ig)
i7 coy r "2 i’
2bC id.C. :
\ . .
U, = ¢- fJ%— Lot (br) + 21 (d.r) + ——3—2-1'(d.r) e216+1b?
i { cbpy T 12 rd.e 271 2 2 71
(20)
and, for the exterior fluid:
; 2 216+ibz
W = Ctw =c - gEEéKé(br) -»Cqu(der)s e (21)

c .
1b i 6 2i6+ibz "
36% C K3 (br) - 3. €, K3 (d 1 + 2 Kz(der)g e (Cg)

v
e

<€
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B 2bC 4d ¢ '
_ 2 1 n y . e 6 ., 2i0+ibz
u o= {- CEKz(br_) + Ke(de_r) t— Kg(der) e

e cbpe r

rd 2
e

(23)

 These six velocity equatiohs contain six unknown constants, Cl’
C2, 05, Ch’ 05, and C6’ which are to be determined by the following six
’ boundary conditions, namely the continuity of velocities at the ihterface_

(r = a), and the continuity of stresses at the interface.

Continuity of velocities corresponds to

Yia T Year Via T Vea’ Yia T Yea (24,25,26)

Continuity of normal stresses gives, to first approximation,

-P +2" ave>.'~-1> + 2 (avi Y P P (27)
e © Fe & ) T “i\ar / R, Ry -

Continuity of tangential stresses gives, gimilarly,

<5we .Bve> .<Bwi Bvi> S
t\se * ) M\t - (29)

Continuity of axial stresses gives, similarly,

(Bue u, ave) . (5@1; u, g avi ) Y
p'e_gc'—_-r_‘-kg a=uigxf I +I~'aea (29)

In Eq. (27), o is the in%érfacial tension, and R1 and R2 are the principal

radii of curvature of the interface.
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The equation of the surface is postulated to be:

' 210 +i :

r—a,:C:Qe ’ le (50)
The boundary-surface continuity condition is:

5 (r-a-t) = o. | 61

These combine to give:(to.first-order approximation):

2 2 ) 2 2.
S R S S A A L L (32)
R. ' R a 5~ 32 2" & i )
a a~ o8 dz agbc

Here, the equilibrium normal pressure difference, (Pi - pi) - (Eg - pe),

is balanced by the equilibrium interfacial tension, c/a.
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3, Exact Expression for o

If we now substitute the proper quantities, obtained from the
velocity relations, into the boundary conditions, we obtain six homo-
geneous linear equations with six unknown constants. If we express the

. ' T . ' .
- equations as AC = O, where g = [01{02,05,ch,05,c6] , then Ajk(J,k = 1,6)

. are given as follows (zero-valued elements are omitted): .

A, = I,(pa) _ ' A25 = I,(d;8)
Ao = -Ky(ba) - o Apg = Kp(aa)
- . : 2T, (ba)
- - ) : : - 2
»AlB = .12(dia) Ayp = —a
p _
S - 2K, (ba)
o v _ _ _2
A = Ky(a.2) < Azp = ba
S 2bal,.(d.a)
. : : : 2'1
A = l:l:t ba 3 = - ———————— e s
21 2( ) Az (d.0)2
_ o A i
2bak, (d a)
= -iK! : . e e
Ay, = 1K2(ba) . A}h = 5
(a_a)
e
; . d.aIl(d.a)
. B _ }E ' X » _ . 1 2 i
Azj = dia,IQ(dia) byg = -1
A - PEgigay . d_ak}(d a)
2 dga 2%’ z6 -t 2
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RiIE(ba)
_ - 1t - = e _ 2 t
Ay = ui§21ba12(ba) 5 _r10;12(ba)

ReKé(ba)
- . " S~ e
Ay, = ‘ue321baK2(ba) + =

A = —Eipibalg(dié) -1 g?gé Ié(dia)

Ay, = QiuebaKg(dea)

= 2ufapTi(8) - Ty(a@)} - olTy(a;a)
g =V-2ue ;deaKé(deé) - Kg(dea)}.

A = 2, baI } (ba)

- 1 ’
A, = 2uebaK2(ba)

25 1)1 d.a
Ag), = By %dea + (3222 gKé(dea)
A55 - -iui#alz(dia)
Aéé = iuebaKg(dea)
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_ \ oy I (ba)
gy = My %Ie(ba) T T oa
. ' K2(ba)

Agp = ’h“eg Ky(ba) - <3

gt ba I.(d.a)

_ i . _ 21
Aez =~ Fa .slé(dia), 3a %
i o . i
Ly ba K.(d a)
e . 2 e
e ‘ e
2
(a,2)71".(a,a) (d.a)Il(d.a)

. i 2 1 i/T2N

A65 = -1ui{ - — + QIg(dia)}
2 ' .
: (@ a)Ksy(aa) (daa)ki(aa) .
Agg = iue{ é —5 £ - £ Kg € .+ 2K2(dea)}
‘where

, 2acp., : -
R, = m = (interior Reynolds number) (33)

i ' '

2aep
R, = m € (exterior Reynolds number) _ (34)
: e S '
L £\2

‘ . )3 + (ba :
L = _.(iy_)_ba 2 } » , (35)

We do not negd te evaluate explicitly the C values, since we are
interested only in a relation betweén interfacial tension and the wave-
length of oscillation. The six linear homogeneous equations for the

constants C can have a nontrivial solution only if the determinant of
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the coefficients vanishes. This furnishes the following eigenvalue

equation relating interfacial tension to the wavelength of oscillation;
det A = O. | (36)

Equation (36) can be solved for the interfacial tension in the following

manner:
det A = det D + o det A ' (37)
~ By ~ » ,
Hence

o = _}EEEJQ:_r k58)

Here Q is a matrix obtaihed by replacing the fourth-row eleménts of the

matrix A by the following terms:

; Rile(ba)
— 3 " - ——————np———
Ayg = Hy Elbalz(ba) 5
— _Ds T
AL6 = 21uiba12(dia)

| Au5ﬁ= 2“i {diaIé(dia) - Ie(dia)}

Also, 'Q is a matrix generated by reﬁlacing the fourth row of the matrix

A by the following terms:

-
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Al{—l = -iLIé(ba:): . N N A’-l-5 = -LIe.(dia).
. bal, .y ' o '
Az = 7t 3a T2(%0) Rup T Ay, = =0

From Eq. (38), o can be evaluated numerically for given values
of ¢, ba, Ri’ Re’ ui and ue;'vFurtﬁérmore,_by refexpfeséing the terms in
the determinénts as functions of dimensionless groups, the Weber number
becomes a function of Reynolds number, dimensionless wave numbér, density

ratio, and viscosity ratio:

02a - o K |
e S U | - (39)
o TN T et o )

Eqﬁations (38) and (39) both conform to the eventual objective of this
analysis, namely to observe an internodal distance and from it to' determine
the local value of o. Numerical evaluétion of det g and det Q, so as to
interrelate the dimensionless groups, has been accomplished on a digital
computer (Control Dats Corporation 6600) by use of a standard Gaussian
reduction method.

Actuall&,?because”of the complex-number afithmétic introduced'by

the algebraic form of the velocity function [f(r)4elne-elbz], a purely
real-number ‘b will give a complex-number o without physical significance,

and some complex-number bis needed to obtain a purely real-number o. Thus,

b =%bp +ie | (n =1, 2, ....)" (ko)
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In fact there are an infinite number of e¢'s and o's for a given b._.
: g R

However, the oscillation will be dominated by the.b with the smallesf
positive imagihar& part, i.e., the smallest daﬁﬁing factor e ; the
oséillations of wavelength given by all b's with larger e's shguld
| rapidly be damped out.

For a given bR’ an iterative scheme (reguli-falsi method) has

" been explored to obtain the lowest positive value Qf'e that makes the

imaginary paft bf o vanish. The lowest damping factor el seems to be a

complicated function of Reynolds number and other variables; related
behavior of damping féétorsvfor capillary je%é was found by Goren and
Wronski.l5 ‘As a matter of fact, one or more €'s usually lie within the
range’ of O to 0.15; within this range, adjustments.of b. in the fore-
going mammer do not appreciabiy change the value of the real part of

the interfaciai tension.' ConseQuently most of the calculations have

been carried out without solving for a damping factor.

-

£
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4. Empirical Expression,fOf o

With the analyﬁical solution now solved numerically, it has

seemed desirdble to obtain an explicit formulavtb describe the Weber:

‘number as a function of the other four dimensionless variables given

in Eq. (39). As a point of departure, the Rayleigh solution (20) for
a perfect-fluid jet in a gas can be rearranged into the same dimension-

less grouping:

(cgapi>_ Ii(bge) (3 + (ope)”
o = IE(bRé) (bRa)

} & o(ba) (41)

For convenience in evaluating @(bRa), its relation to (bRa) is plotted
in Fig. 1. By expanding'ie(bRa):in a Taylor series, @(bRa) can be
approximated as .

6 .

—2 {1 + 2 (na)® + -1-3-2- (bRa)h}l (h2)

@(bRa) ~ o 3)2
IV

The Bohr formulall for a viscous-fluid jet in an inviscid
fluid, with the finite-amplitude correction factor omitted for the

time being, becomes

cap, _ . o
( o ) = 0oga) - .{1 2( a o7 3 ( L V2 ()
* R.b a) + R b a>
v iR ' iR
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In this way, Bohr's terms pertaining to interior-fluid viscosity and
exterior—fluid density appear as simple multipliers modifying the
Rayleigh solution.

- Thus it appeared reasonabie that a satisfactory empirical treat-
ment of the liq&id—liquid jet solution also would be found by developing
a multiplier for the Rayleigh formula, one that déscribes the effect of
exterior viscosity and density. If we designate the multiplier as f,

such an equation can be expressed as,

r
cgap. | | '
= = d(bga) - £ (k)

o)

| .
Because £ = 1 as (ue/ui) or (pe/pi) — 0, the following empirical form

for f has been aséumed:

.. i, 1 - _ . ' (45)
{l + A(Ri> l(bRa) 2(p‘e/p'j_) B(Qe/pi) h}

Constants A, m mg, m,, and my, have been determined from a set of exact

12
results, by linear regression of “yalmes of f given by ratios of the exact
Weber humber to @(bRa).

Before applying the linear regréssion, the separate effect of
each dimensionless éfoup was checked by changing it parametrically at
fixed valués of the other groups. ’As sgown in Figs..E and %, a piét
of logl[ (1/f) - 1] against each dimensionless variable falls on a group

of parallel lines, thus supporting the assumed form of correction. At

low Ri’ whether because of error in the computed result or in f, the
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behavior given by Eq. (45) breaks down when the ﬁroduct‘of RibRa falls

below 200. Howevef, in successful experiments of liquid-liquid os-

ciliating Jet, all the déta fall above RibRa = 200. Therefore in

o ‘applying the least-square method, the numerical result for cases where
: Ribéa < 200 has been omitted. Ninety-nine sets of data have been used

to determine the constants; the ranges selected for the respective

variables were as follows:

400 < R, < 2000, " 0.25<Dbe<1.0

. % <f . . < < 2.0
0.25 < p /b, <10.0 0.2 <p_[p, <2
The linear-regression method has given the constants as follows;

A = 1.437

m, = -0.0502, m, = - 0.141, my = 0.0285, 'm, = 0.897

with a. standard deviation of 0.004 and a maximum deviation of * 0.012;
"this corresponds to a_ﬁaximum percentage: error of t 3%. The eupirical
function thus obtained and the data used for the calculations, plus 45
additidnal data, are plotted in Fig. k. ‘The exponents found from the
regression indicate that the most significant dimensionléss éroup is
A the density ratio, and that the other variébles have only a secondary
| efféct. _ |

Also, the éimpler Bohr formula és given in Eq.(hB) canv?redict

an interfacial-tension value within * lO%, but such accuracy is probably '
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not sufficient in cOmpérison with the expected accuracy for A, a, and
the physical properties.
Bohr also found it necessary {o corréct the foregoing theory to
account for the finite amplitude of oscillation. Using the equation of s
continuity and the boundary—sﬁrface condition, and expanding the latter
to a third-ofder approximaﬁion; he obtained a correction factor that is

also applicable to the present problem:

| . |
£ = E— | o (46)

where r and r . respectively are the semimajor and semiminor
max. min
elliptical axes &t the nodes or antinodes. Collecting all the correc-

tion factors gives the complete solution:

a

<c2ap,> - |
s/ =olbge) g g (u7)
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C. Experimental Study

1. Experimental

" From the foregoing theoretical analysis, it is seen that the
quantities that must be measured to calculate the interfacial tension

are: the wavelength of the oscillations, the jet velocity, the maximum

" and minimum diameters of the jet at the place of measurement, and the

densities and viScosities of the two liquids.

A schematic'diégram of the flow’system used to obtain the jet
measurements is shown in Eig. 5. The valve in the line ahead of the
nozzle allows for varying the flow rate withouﬁvmoving the reservoir.
The jet fluid collected 6veffloﬁs from the bottom of the chamber, while
fhe second-phase fluidvis kept.stationary.. The wavelength. and the
maximum and minimum diameters of the Jjet were measured photogfaﬁhically.

The photographs of the jet were taken with a 135-mm Pacemaker Graphic

camera with a magnification of about 2x. The nozzle was used as a

reférenée tq'determine'thé exact magnificatioh ratio in the photographs.
Megsqremént of the negatives thus obtained, which involved further
magnification of Ux, was done with a Vanguard Motion Analyzer which was
accurate to 0.001 in. However, there is a difficqlty of determining
thé exact maximum or minimum of the wave, and the estimated errof in
the dimension measurements amounts to +5%.

One of the more difficult problemé is the preparation of the
elliptical npzzle fhat conforms to a mathematically preCise shape.
Trials of several different methods‘indicated that the best nozzles

could be made by heating glass capillary tubing in & flame, drawing itv.
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to obtain a finer capillary, pressihg the tip between flat graphite
piates to form an ellipticél cross section, and then removing part of

the fip. The nozzles thus produced were as short as 4 cm; since the

. inside diameter of the tubing was about 0.05 cm, the length-to-diameter

ratios were well above 50, which is sufficient to insure a fully de-
veloped flow at the Reynolds numberé which were used. The dimensions _
of the four nozzles are given in Table I. _Figure 6 shows photographs

of the nozzle cross-sections. Because of their large "shelf" errors

' these nozzles are not suitable for the study of a Jjet in a moving
surrounding liquid, as discussed in the closing paragraph.

. 2. Physical Properties

The‘liquids that vere used in the expefiments were di-isobutyl
ketone (DIBK), cumene'(isopropyl‘benzene), normal heptane, carbon tetra-

chloride, isocamyl alcohol, and water. Water was aiways taken as one

_phase, and an organic compound as the other. The two Phases were’

- mutually saturated before the run so as to avoid any mass transfer

between the_ phases during the run. The viscoéities were measured with
an Oswald viscometer, calibrated with water. Density measurements were
made wifh a pycnometer. The interfacial tension was measured with a
DuNouy.riﬁg tensiometer.  The properties of the liquids used are given
in Table II.
3. Results

As the theory wouid predict, the wavelength_of the jet depends
very strdngly on thénvelocity aﬁd the interfacial,ténsion. Whgn the

Jet velocity was decreased, more waves - which were each shorter - became
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Table I. Nozzle dimensions.

Nozzlie No. Max diam. Min diam. Ares Equivalent circular
(cm) (cm) (cm?) radius (cm)
%107
1 0.109 0.061 5.19 , 0.0Lko6
2 0.100 0.055 L3k 0.0371
3 0.108 0.061  5.17 0.0k06
i 0.139 0.064 7.0% 0.0k472

Table II. Physical properties of liquids used.

-Compound ' Density Viscosity Interfacial tension

(g/cmd) (g/cm-sec) against water (25°C)

' (dyne/cm)

Water 1.00 0.0091 --

Cumene 0.86 0.0080 - 35.6

n-Heptane 068 0:00k49 bo.p

Carbon ﬁetrachloride 1.59 T 0.0091 41.h

Di-isobutyl ketone 0.81 - 0.0086 21.5

Isoamyl alcohol 0.81 0.0360 b6l
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Fig. 6. Nozzles used in experimental measurements.
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visible. A still further decrease caused the waves to blur and dis-
appear, giving‘a cylindrical jet with a diameter near that of the
equivalent diameter‘qf the nozzle. At the maximum Velécity uséd, only
aboqt bne-half”wavelength remained visiblé'before’the Jet broke up into
droblets. Runs wefé generally médé at or-near the velocity at which
the greatest.number of waves Waslyisible.

It is possiblé to use either the denser or thg less dense liquid
as the jet phése. Two of the systems used were run successfully both
ways: DIBK-water ahd.cumene—water. Whén»the less dense liquid is the
jet phase, the jet is directed vertically upward. The opposite ié true
with the more dense liquid as the jet phase. Theoretical considerations
indicate, for fhe Jet dimensions and flow conditions used, that gravity ,}
plays no measurable part in the oscillations.

There a#e two‘problems in applyipg thé theory to interbret the
ekperimental déta. |

Firét, beééuse the Jjet is ejected_into a stationafy secondary
phasé, the bulk axial vélécity profiles in each phase is not tniform
as assumed in the theory. The vélocit& gradient near the interface is not
zero and dees not give a small "sleeve" as in'a liquid-gas jet. There-
fore»oné cannot simply take an interfacial wvelocity as representing a
constant velocity for the jet.

Second, there is a change in the radius of a Jet; initially

contraction (termed the vena contracta) due to momentum relaxation,
and then expansion due to the momentum diffusion into the fluid.

Therefore, it is more suitable to use, as a constant jet radius, the
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mean radius at the place where the_wavelength is measured rather
than the equivalent eircular radius of the nozzle.’
Experimental data obtaiﬁed for seven sets of systems are given
in Table IIT. ‘Systems are numbered from 1: to 7, and the jet liquid
is alwéys; named fifat.. Distance is taken from the.orifice plane to

the plane at which wavelength and the maximum and minimum diameters are

measured. The average velocity at the orifice is used as a reference

velocity.

From a number of representative experimental data, a correlation
was sought between a representative local‘jet velociﬁy which corresponds
to ¢ and an‘interfacial velocity LA at the point of measurement. The
interfacial velocity ﬁa'Was calculated using a_method developed by the
present authors.24 The representative local velocity ¢, which is
termed an "effective plug-flow velocity," ﬁas calculated from the

maximum and minimum diameters, wavelength, interior Reynolds number,

zviscosity ratio, and the actual interfacial—tension value, by use of

Eq. (47). The calculated results indicate that the ratio of c/wavisi
dependent on the Viscosity ratio for the two iiquids, but independent
of the density ratios. “The ratio c/wa approaches 1 as the viscosity
ratio diminishes to zero; this is consistent with the observation of
others that the surface velocity can be adopted as the effective plug-
flowvvelocity of.a liquid-gas\jet. Also c/wa must approach 1 as the
velocity profile becomes flat; .

Therefofe the following empirical equation was assumed:

L S S R 1) (8)
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Table ITI. Oscillation data.
System Nozzle Max.  Min. Wave- Flow- Av. vel. Calc. or
No.. diam. ‘diam. length rate at inlet actuval o
(em)  (em)  (em) (ew’/s)  (cm/s) (ayne/cm)
1 2 0.067 0.0u4k 0.322. 0.625 14k 47.6
2 0.063 0.055 . 0.308 0.505 116 33.3
2 0.071 0.0hk2 0.426 0.840 194 52.0
1 0.088 0.057  0.535 0.995 192 . 50.0
: Actual - _ ' hp.2
2 1 0.072  0.0%6 0.500  0.615 . 119 21.1
: 1 0.071 01055 0.408 0.515 99 21.0
2 0.076  0.0k0  0.452 0.500 115 20.7
3 0.069 0.064 0.452 0.530 102 19.1
Actual : ‘ 21.5
3 1 0.087 0.062 0.519 0.599 116 30.0
1 0.085  0.069 0.364 0.448 86 31.5
3 0.075 0.062 0.356 0.418 9% 36.5
3 0.085 0.054 0.439 0.500 115 37.8
Actual = ' - hi.ho.
i L .7 0.068 0.057 0.665 .  0.455 65 7 5.90
1 0.086 0.038 1.086 0.600 116 5.68
i 0.070 -0.054 0.806 0.615 87 7.h2
1 ‘0.078  0.052  0.802 0.485 ok 5.81
. Actual ' 6.1
5 1 0.07%  0.059 0.392 0.645 - 124 3k.9
. 2 0.075 0.050 0.384 0.605 .= 139 37.2
2 0.079 0.048 0.499 0.695 160 33,4
i 0.094% - 0.080 0.62% 0.990 b1 32,7
Actual 35.6
6 L 0.086  0.07h4 0.532 0.831 118 - 23.3
1 0.083  0.063 0.559 0.746 11k 15.0
L 0.099  0.065 0.625 0.977 139 25.3%
2 0.083%  0.060 0.715 0.887 204 25.7
Actual 21.5
7 1 0.074 0.068 0.332 0.512 99 27.9
: i 0.085  0.067 0.445 0.823 117 33.1
L 0.089 0.07h 0.432 0.905 129 43,2
2 0.076 - 0.053 0.520 - 0.834 192 36.6
Actual | : ' 35.6
3
*) System:
1 Water - m-heptane 5 Water - cumene
2 Water - DIBK 6 DIBK - water
3 cCl), - water _ 7T Cumene - water
i Water - iso-amyl alc.
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Constants @ and n were determined empirically as @ = 0.3, n = 0.25.
Using the effective plug-flow ve1001ty obtained from the
visccsity ratio and the calculated interfacial velocity in Eq. (48),
the inteffacial ﬁensidn can be calculated by the eXac% combuter program, or
more efficiently by the empirical'correlation of Eq. (47). The experi-
mental data of Tabie‘III were analyzed in thié manner to get the inter-
faciai ﬁension. Velocity data for the calculation are given in Table IV.
The calculated icterfacial tensions, also shown in Table TIT, are plotted
against the actual values in Fig. 7.

15

Some investigatofs who have studied the liquid-gas oscillating

Jets reported that each nozzle gives a wavelength that must be correlated

for the nozzle's deviation from an ellipse. However, the presenﬁ data

do not seem to give such a definite trend. Comparison of the calculated
interfaciai‘%ension with the actual value inFﬁg. 7 shows considerable

scatter, especially when the Jet fluid is lighter than the exterior

fluid. The resdlts are better for those systems in which it was possible

to obtain four or more waves: water into DIBK, and water into cumene.
Water into isoamyl alcohol gave only about 2.5 waves; however, because
of extremely low ihterfacial tension, its long waveiength gave Jets as

long as the others, and it could be measured with high accuracy..

4. Discussion

Instead of adopting an effective plug-flow velocity, it might

“be pcssiblezﬁo correlate the apparent increase in the wavelength that

results from the radial gradient of axial velocity.. However, since
such a treatment would still be emplrlcal, 1t is likely that similar

accuracy would be obtained despite the greater numerlcal complexity.
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Table IV. Velocity data.

System Dimensionless  Interior (z/a R.) Interfacial c/wa calc.
distance, z Reynolds ot vel., wa/w from
no., R, - © Eq. (48)
1 33,4 1180 0.0284 0.740 1.01
2L.5 aoké 0.0256 0.737 0.95%
23.3 - 1380 0.0169 0.70% 0.965
25.9 - 1710 -0.0151 . 0.695 0.8k9
2 k9.0 1030 0.0476 0.658 0.9k%0
49.8 884 0.056k '0.663% 0.947
50.9 - 9ko 0.0541 0.662 0.950
5h.7 891 0.061k 0.666 0.910
3 37.5 .. 1650 0.0227 0.659 0.816
35.7 - 1220 . 0.029% 0.676 0.806
38.2 1250 0.0305 0.678 0.888
32.87 1630 0.0201 0.651 0.865
L L2.6 675 0.06%2 0.482 1.24
53.9 1035 0.0520 0.482 0.963
34,0 776 0.0L438 0.480 1.21
39.4 839 0.0470 0.481 0.938
5 37.7 1110 0.0340 0.660 0.901
30.0 1130 ° 0.0266 0.648 0.867
53.1 1305 0.0Lk07 0.669 - 0.871
38.4 1470 0.0262 0.6L45 0.799
6 31.4 1530 0.0205 0.575 0.824
4o.7 872 0.0466 0.615 0.822 .-
20.0 1240 0.0161 0.559 0.791"
58.0 1k25 0.0407 0.611 0.75%
7 32.5 865 0.0376 0.591 0.814
29.6 1190 0.02k9 0.566 0.869
27.2 -+ 1310 0.0208 0.561 0.803
27.3 - 1530 0.0179 0.552 0.791
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Fig. 7 Comparison between actual and calculated interfacial
' tension. Open circles, jet fluid heavier; closed
circles, jet fluid lighter.
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In order fo develop this method of measuring interfacial tension
into a more accurate tool, there are two ﬁain areas in which more work .
is neceséary.

First, better nozzles are needed. The work reported here in-
dicates that at least four waves aré necessary for reliable results. The
length of such a jetAié sufficient for a significant study of mass trans-

5 to lO—2 sec.

fer, since it provides a contact time in the range of 10~
The range 6f usable jet‘diaﬁeters and velocities is restricted

by several factors. foremost of these is the likelihodd that thé Jet

issuing‘from the orifice ﬁill héVe greater stability and a better defined

velocity profile if the Jet is laminar; i.e. if Ri < 2000, or ac < 10.

Bohr has given a damping factor ¢ (per cm) dependent upon Ri and ‘a:
€ ~ (const.)/aRi

For a gas-liquid Jjet the fheofetical value of constant is 12; for
the liquid-liquid. jet studied experimentally, the observed constant was -
about 25. For satisfactory measuremenfs, €z < 1, hence 25z/aRi <1.
The distance reqﬁired to measure dynamic interfacial-tensioﬁ behavior
resulting from mass transfer is of the order of UA. From Rayleigh's
solu£ion; the wavelength A is approximately 5ca5/2/cl/2; hence for
o~ 30, A~ O.5ca5/2. Therefbre, the radius of a nozzle a must be
a > 0.03 cm. | |

The desired contact time for mass transfer studies is generally
less than 0.1 sec. Thus z/c ~ UA/ec < 0.1; hence for A ~ O.5ca5/2,

a < 0.14 cm.
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To limit the error of dimensional measurements of the jet within

%, it is necessary to have the jet length at least 1 em; hence

M > 1.0, ca/? > 0.5. This limit is in the vicinity of R, = 500.

Thus the above four conditions limit the épefable region of an
oscillating jet. A schematic diagram of the'operablé combinations of
a and c is given in Fig. 8. .

Second, in order to»improve the stability of the Jet, énd also
fo'approximate the flowvéonditions better to the theoryadefived, the
use of a flowing external phase (instead-of a stationary one) at a
velocity hear the mean velocity of the interior jet is proposed. The
present authors alsd have solved the velocity-profile problem for this

2
case.
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IIT. VELOCITY PROFILE OF CYLINDRICAL LAMINAR LIQULD JETS
: ENTERING A STATIONARY SURROUNDING LIQUID

A. Introduction .

Jets of a liquid into a second immiséible,liquid are of particular
interest for studies,of mass transfer and heterogenecus reaction kinetics.
In such systems, also, interfacial adsorption éan be deﬁermined by means
6% an oscillating (elliptical) Jjet which measures the local interfacial
tension along the length of the jet.

Several investigations have been made of léminar free Jets, i.e.,
liquid Jets issuing.frpm an orifice or a capillary into an inviscid or
zero-density medium. Scriven and Pigfordlo obtained an approximate solu-
tion using the boundary-layer theory to calculate the surface velocity,
and fouﬁd that %he surface velocity increases as the cube root of the
axial distance in the,néighborhood'of the orifice. Recently GorenlL and

5

- Goren and Wronski”’ have derived formulas for the surface velocity and

9

the change in the radius of the jet by the method of Meksyn,” with results
very similar to those obtained‘by Scriven and Pigford. Middleman8 has
used a boundary-layer type analysis to calculate the velocity profile
and jét diameter as functions of an axial variable, assuming a polynomial
form for the jet wvelocity. |

The nonlinearity 6f the Navier-Stokes equations gives considerable
difficﬁlty in 6btaining the soiutions, but fhé boundary conditions at the
surface impose further difficulty even when one tries tobsolve the equa-
tions nﬁmerically: the exact location of the interface is not known Qﬁtil .

one has solved for the velocity profile. Duda ande'rentasl have over-

come the difficulties of the free boundary by use of a coordinate system
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in which the stream function is used as the variable in the radial
directiong they obtain a boundary-layer solution at high Reynolds num-
"bers and numerical solutions for several cases. Also they obtain an
analytic solution by iinearizing the equation of motion, and have shown
good agreemént between this result and one by numerical calculation. In
principle their methéd can be applied o a'liquid—liquid'jet, but com-
plexities caused by the involvement of the second-phase equations and
Ithe boundary coﬁditions are not dealt with easily.

There are only a few studies available on the velocity profile
of a liquid jet in another liquid. Garner and MinaB‘éolved the‘broblem
for the case where the inertial terms are negligible compared with the
viscous terms in the equation of motion. waever, this case is entirely
outside the scope of our present interest. Schlichtingll solved the |
problem in thch a viscous fluid issues from a point source iﬁto an
infinite volume of the same fluid.

In this paper we seek an apprcximate solution for the problem,
applying the\governing relations to a pair of empirical velocity equa-
tions which describe the transition from parabolic to,noh—parabolic

behavior.
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B. Theory

We shall consider a steady axisymmetric liquid jet, flowing into
another immiScible liquid which is stationary at infinite distanée from
the jet; The pressure in the,z-directioﬁ is aésumed éonstant; hence the -
total momentum in the z-direction is constant in all planes normal to
the jet axis, downstream of fhe orifiée. The axial flow of exterior
£luid is'supplied by inwardly‘(later, outwardly) directed radial flows
of éxtérior fluid. iAﬁ ahy ;ross-section, the momentum in the outlying
exterior fluid being displaced by downstream axial flow is negligible
compared to the momentum directly transferred into the near exterior fluid
moving as part of the expanded jet. Momentum transfer provides a flow
of mechanical energy, which in the steady state will undergo confiﬁual:
viscous dissipation into an eqﬁivalent quantity of thermal energy. Wev
assume that this dissipation occurs at extremely large radial and axiai
distances,’and thus does not affect tﬁe jet equations. Also, our analysis
appliés to real jets only in the stable région prior to breakup.

The Navier-sfokes equation for incompressible fluid under boundary-

‘layer type approximations, in dimensionless form, is

Vst t Uy s = g‘zs;(rg;ﬁ) @
= i, e)

(e-
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.-The following notations are used:

A,B,c;cl,D,Dl;E,M

Al

U!

'w_!

w.!

coefficients which are functions of the axial-~
distance variable

interface radius (cm)

orifice radius (cm)

A'/AO', dimensionless jet radius

WO'Q/EAO'g, Froude number

gravity constant

modified stream function

function defined by Eq. (31)

R'/A ', dimensionless radial distance
2A " 'p./u,, interior Reynolds number
0 -0 "i'T1
g ot o s
28, "W, pe/ue, exterior Reynolds number
radial distance (cm)
constant defined by Eq. (25)

Uf/wo', dimensionless radial velocity

radial velocity (cm/sec)

W!/wo', dimensionless axial velocity
axial velocity (cm/sec)

initial mean velocity of jet (cm/éec>
7'/7.', dimensionless axial distance
intérior phase

exterior phase

parabolic constant
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B ' uepe/uipi, viscosity-density constant
™ . ‘ function defined by Eq. (30)
/R
2/R, |
.q similarity_variable'
n viscosity (g/cm sec)
o ' density (g/cmj)
' : superscript denoting dimensional variables
¢ ' stréam function

In this analysis, radial velocity is assumed negligiblé_'
compared wifh axial veloéity, and fhe effect of iﬁterfacial
- tension is disregarded for the Reynolds-number fange of interest
(200 -'2,000). |

Axial velocities are expressed with the use of five co;
‘efficients which are functions of the axial-distance variable, z.
The problem is now reduced to one of solvinngor these fdnctions
and for the jet radius at each given axial distance, by satisfyihg
the six.following,boundary conditions.

The first condition is that the radial velocity vanishes

at the center of the jet. Equation (1) then simplifies to

Bwi) o1 ( oW, o
r = & |F o ¥ 37| (1a) -
: r=0 1 3 ) I‘:O

To avoid difficulty associated with the evaluation of an’
empirical velocity equation, which we shall discuss in the following

section, Eq. (1la) has been integrated with respect to z:
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-0

s oW |
2 L 1.0 i
(v, )r: "“ﬁ‘g/z [;'5; (r‘&i>=o = @)

The second condition is that the continuity of axial velocities

at the interface:

Gl = ) o

The third condition is the continuity of tangential stresses at
the interface, in which again the term involving the radial-velocity

component has been omitted.

| ow, \ fow. o
b\sT i = u\57 o (%)

=8

The fourth condition is the conservation of volume or mass for
the jet phase. Given a parabolic profile at the orifice, the mass

balance is

(5)

S“~\
r—h% -
5
i
-

The fifth condition is the macroscopic momentum balance in the
interior (jet) fluid, assuming that momentum is transferred between the
two phases only through tangential stresses. Noting that there is no

flow 'across the interface, we follow a Von Karman-type momentum integral.
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For an initially parabolic velocity profile,

“/Ha ' - Z 3w ) A '
2. 2 2 i
- W, dr = = 4——/ - r dz : (6)

0 :

‘The sixth condition is the complementary momentum balance of the

exterior fluid, which is taken to be stationary behind the nozzle ‘plane,

” - oW |
2 .
f W, dr = - ETQ-/ ,a(é—fg) dz . _ (7)
e 0 r=a

a

1. Empirical Veloéity Equation

A Now we assume sﬁitable forms of axial-velocity expression for both~'
interiof and exter;or phases. The forms selected are somewhdt arbitrary. |
To approximate its initial parébola, the jet phase requires a form which
combines a perturbing function with a parabola. This form allows the
radial-velocity profile to change from a parabolic (the first term being
dominant) to a nonparabolic form (the.second term being dominant) with
increasing axial distance. The perturbing function (the second term) can
assume the same radial functionality as Schlichting's solution.11 An
exponential form has been adopted for the surfounding phase. The resultiné

equations are:
W= eae’MZ(a2 - r2) + B/ (1 + Ar2)2 (8)

_Cr ' - . | : o

O
~—
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Here A, B, C, D, and M are functions of the axial variable z
To initiate the calculation, the perturbing function B must be non-zero;
- hence the parabolic constant & cannot be set precisély at unity. Sub-
stituting W, and W_ into Egs. (2) and (7) gives us the followirig six
equations which enable us to evaluate the unknown functions A, B, C, D,
M, and the jet radius a. |

- Equation (2) becomes:

Z

(20 M252)2 1 uopa®e™? 4 B° - b - g-?—-/ (ce™ 4 aB)az = 0
. i
° (10)
Equation (3):
. p2 .ce® ~ |
B/(1 + Aa°)" - De "~ =0 : (11)
Equatibn (W)
-Mz 2.3 —Ga2
ae + AB/(1 + Aa®)” - O.5(ue/ui)CDe =0 (12)
Equation (5):
oza”e'MZ + Bag/(l + Aae) -1=0 (13)

Equation (6):

%fa%‘?Mz + EOZBe_MZ[au/(l + Aag)— zn(1g+ Aag)/A2 + e{g/_(A(l + Aag)}]
- , 2
vz (/AL -2/ s Aa2)3} ; -§- - g-l- f (oe ™M252
: ' 0

+ ABaQ/(l + Aae)B}dz =0 | (1k)
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Equation (7):

%—L . D2 _203 - g—f dz:= 0 (15)
0

2f - Computation Procedure

It is necessafy to solve thésg»six simultaneous equatiohs for the
six unknowns at each z value, even tﬂoﬁgh no explicit solutions are avail-
able. These.equations have beén iinearized in each of the six uhknowns,
relative to its preceding valué, so as to obtain six linear simultaneous
equations which can readily be solved for small increments of =z.

Because of the high nonlinearity of the equations, absimple Euler-
type method causes large truncation errors and gives meaningless results..
A successful calculation has been acﬁieved by use of a third-order Runge-

Kutta method, the algorithm of which is as follows:

k) = hf(xn?yn)
ky = hf(xn 2 h/2, y, o+ kl/2) n=0,1,2, ....
kB = hf(xn +h, y o+ 2k, - kl)
Ve = Ty + (R + My +15)/6 | (16)

Near the drifice, C and D are unmanageably large, so in Egs. (11),

(12), and (15), the substitution is needed:

E = e % . : ' _ (17)



If now we express the linear simultaneous equations as

where dx, = dA, dx, = dB, de = dC, dx) = arE, ax

Jk

are omitted).

I

-5k

Mdx = Ndz,

A~

5 = da, dx6 = dM, then

M. and Nj(j,k =1,2,....6) are given as follows (zero-valued elements

8cPa e M 4 lopaPue M2 30(0e 12 4 AB)/R,

2
2Ba/(1 + As2)"

1/(1 + aa?)?
1

“4ABa/ (1 + Aa2)’

B/(1 + 2a2)° - BABaE/(l +'Aa2)u

A/(1 + Aa2)5
-1/2(u /u )D
-1/2(u_/u,)c
~6ABa/(1 + Aaz)h
—oze B
QMe Mz

1/2(8ah) /(1 + 2a2)2
a2/(2(1 + Aa®))

2@3 e-MZ
-1/2 (Ozauze_MZ )

1/2(aahMe'MZ)

. B'a/'(l . Aae) _ ABaB/(l + Aa2)2‘-
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My = EQBe'MZ[-a6/(1 + Aa2)2‘-vah/[A<l + 4s2)?)
- 2a2/(A%(1 + Aae)] + (1 + Aaz)/A5
- 1/6(B/A) {1 - 1/(1 + Aa2)5} + 1/2(Ba) /A + Aa2) )
M52 - 20e™ /(1 + Aa® ) - zn(l + As° )/A
+a /{A(l + Aa® )}] + 1/3(B/A)(1 - 1/(1 + A.a2)5
Mo =_ho?a5e'2MZ + uABa5 MZ/(1 + 22°) + B2/(1 + Aa® )
Mg = 4/3(cPal2e %) - popre™P[a"/(1 + a°)
- 4n(1 + Aa )/A +a /{A(l + Aa )}],
Ny =_u/3(a a ze z) + 21BMe-Mz[au/(lx+ Aae)'

.;,gn(l + Aa )/A +a /(A(l + Aa )} - 8/R (oage'MZ

+ ABa /(1 + Aa ) ]
Mgy = -1/h(E/C)2
Mgy, = 1/2(E/C)
u/r_(cEa®)

=
o)
]

Thé numerical calculafibns have been done on a Control Data
Corporation 6600 digital computer.

The choice of & is arbitrary; the closer it is to 1, the
finer the z—increﬁents required in order fbr the computation to remain
stable. By trial we found that o = 0.95 giveé.a reasonably good fit
to the initial parabolic form,'with z-increments initially lx10-7;
any finer increment size would.requirevdouble-précision érithmetic

with an undesirable increase in computation time. Moreover, values

nearer to 1 do not give appreciably different results.
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The initial values for A and B are obtained from Egs. (13) and
(14) by use of a suitable root-finding method, fof example, the Newton-
Raphson method. The initial values of C and E are determined from
Eqs. (11) and (12); they make the left-hand side of Eg. (15) equal to
about 10_6, which is well within the level of accuracy that has been
retained. After =z reaches 1x10_l, C and b can be calculated separately
and then Eg. (9) can be evaluated. fully.

By using an integrated relation(2),We €liminate dB/dz, da/dz,
and dM/dz, but.it is still necessary to know the initial value of M.
Fortunately, the product Mz near the origin is so small'that any arbi-
trary initial value of M, after several steps, gives’ the same M values
in the following steps. |

~In severai calculations, for small viscosity or density ratio,
the velocity profiles have completely switched to nonparabolic forme.
As a result the terms involving M have dropped out,.and %he'number of
equations has become more than necessary to solve for five unknowns.
Addition of Eq. (6) to Eq. (7) times density ratio, gives Eq. (6a),
which is a total momentum balance for the jet. Therefore, in such
cases, one can replace the fifth governing relation (6) Ey Eq. (6a),

leaving out Eq. (7):

-5, ‘ . ©
: 2 g 2 2
/ rw, dr + (pe/f?i)f rv, dr =3 - (6a)
O . a :

'
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The foliowing step-by-step calculation can be achieved by use of 5X5
matrix elements with new fifth-row elements corresponding to (6a). The

changes in the fifth-row elements of the matrix expression are:

oy = -1/4(8/0) (o /o))

M. =
My, = 1/2(8/0) (o /o,) |
Ny = /3 (Palze22) +v2aBMe_MZ‘['3h/ (1 + £8°)

- In(1 % Aa,z)/A2 + ag/[A(l + Aae)}]
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C. Results

1. Comparison with Published Experimental Data

Kimura and Miyauchi7 have measured the interfacial velocity for
a benzene jet into water, using stroboflash photography. As tracers,
they injected water bubbles into_the‘benzene phase, and aluminum particles
into the surrounding wate£ phase. Their experiocntal parameters
(viscosity ratio 1.54, density rafio 1.15,‘ana interior Reynolds number
450) fall withiﬁ thc range of.our model. Thc experimental results for
interfacial velocity and the jet radius are plotted in Fig.vl, along
with comparative calculated values.

For the calculation, tha'input data are an interior Reyholds
number Ri’ a viscosity ratio ue/ui; and;a‘density ratio pe/pi. The
values of interfacial velocity predicted from ﬁhe preSept model are
significantly.higher; and the calculated jet-radius values are lower,'l
than the experimental data. As discuésed by- Fosberg and Heideger,2 such.
discrepancies can be attributed to fluid-dynamic end effects due to the
receiver into which che inoerior Jjet impinges: the solid surface of
the receiver hinders.thé flow of both the interior and exterior fluid.

| A more realistic‘model requires a boundary condition at the
downstream end of the'jet, and also a pressure-gradient term in the
equation of motion; thus the'?roblem becomes one of boundary-value
t&pe rather than of‘initial—value type. At this stage so detailed a
model seems too complicated to be sol&ed, so a simpler correction method
has been proposed. An additional.resistance caused by the presence of

a receiver may be viewed as equivalent to an increase in viscosity ratio,
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producing a commensurable increase in jef—radius change. Hence we pro-
pose fo correct the velocity profile by.matching a calculated jet-radius
profile with an observed shape. Thereby we either (1) determine a new

B value to bé used in cqmputihg the interfacial velocity, or (2) simply
divide the calculated velocity vélues by the équare of thé Jet-radius
ratios; method (1) has been apbliéd héré.

In the experimental-jet profile, there>is no description of the

vena contracta, which should occur very close to the orifice plane with
a reduction of the jet radius by approximately 5%. An experimental

. : 6 ‘ , ,
photograph by Kimura seems to show a vena contracta very near the

orifice plaﬁe, hence the real initial radius could be abdut 5 larger
than the given value; this correction ﬁas alsQ been included. The jet
radius corrected in this way has been found to fit a value of (”e/”i)
'(pe/pi) = 4.0, as shown in Fig. 1. This value, indicated as B = 4.0,
also gives a good fit to the measured interfacial velocity.‘ (Justifica—v

‘tion_for'using the parameter B follows directly.)

2. Genéralized Behavior
Close examinatién of Egs. (10-15) indicates that the functions
A, B, and M and thg Jet radius a can be expressed concisely in terms
éf two collective parameters, composed of the féur original variables
Ri, ue/ui, pe/pi, and Z. |
h The first paramefer is the product of viscosity ratio aﬁd

density ratio, designated by B:
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B =pp/ue, . (18)

The second parameter, which is exact within the framework of the
present boundary-layer approximation, is a modified axial distance

designated by (:
t = Z/Ri v o - (19)

. The validity of these substitutions can be proved in the following
way. Use of Eq. (19) involves replacing Mz by'MRig, with the subsequent
fihding that MRi can be treated as a single variable. Separately, from

- al
Egs. (11) and (12), we find that De Ca

and Cpi/pe must each be functions'
of B. (From this, it.follows that Dpi/pé depends upon_B.), Finally,
using these relations, Eq. (15) is shown to involve only functions of

B and MR, . “

. The functions A, B, and M and the jet radius a are plotted in
Figs..2 énd 3. TFor tﬂe conditioﬁs used, A ranges between 0.3 and 0.85
(ABl/3 between O and 1.8); B between 0.2 and 2.0; MRiC (or Mz) between
0 and 8.0; a between 0.9 and 1.35. The functions Cpi/pe (or Cl) and
D, (equal to D at pe/pi = 1) relating to the exterior fluid are plotted
(as reciprocals) in Fig. 4. At any density ratio other than 1, at
cénstant B, D. is obtained from Dl’ Cl’ a; apd pe/pi, as

o
p

| D = D, exp[Clag(—s--l)] o , (20)
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Fig. 2 Interior-jet parameters A and B as functions of { and B.
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Fig. b Exterior jet parameters as functions of { and B.
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The velocity profile éf the jet can be,réconstructed from.the preceding
plots, using Egs. (8) and (9). The center-line velocity and the inter-
facial velocity (shoén in Fig. 5) are also functions of B and §.

The center-line velocityrcufves for various B's collapse into
a single line with a_slope of -8a, as_C diminishes to zero. This is
Eecause the initial radial profile of axial velocity is pseudo-paraboiic;

The ihterfacial velobitj and jet radius curves for d free jet
(see below),'which correéponds toB =0, ére calculated by Duda and
Vréntas.l These curves are also plotted in Fig. 3 andvFig.VS with
broken.lines. -' |

Figure 6 shows a velocity profile radially with the axial
distance 2z as a parameter for benzéne-watEr ;ystem (ue/ui = 1.54,

pé/pi = 1.13, anq R, = 450).

3. Comparison with Schlichting-Type Solution

A circular jet issuing from a ﬁoint—source orifice and mixing
with the surrounding fluid has been analyzed by Schlichting, in a boundary-
layer approximation.ll As in the preceding analysis, the pressure is
considered constant. The total momentum provided in a "real" cylindrical-
Jjet with initially parabolig velocity préfile can be equated to the
momentum in the Schlichting jet. In the Schlichting jet the velocity
through the point sourée is infinite, but the initial mass flow rafe is -
zero and the momentum remains finife. Tﬁerefore a direct comparison

only becomes possible at distances far downstream. from the orifice.
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To Eas. (1) and (6a), for the case where the jet liquid and the

.exterior liquid are the same, or have the same densities and viscosities,

we can apply the transformationsvequiValent td’the following;

z . L (511

¢ =z-h0), n=R > - - (&)
S T , T ; e

Here ¢ is the streém‘function, 1 is a "similarity variable," and R, is

the Reynolds number 2A6W6pi/ui as_calculatéd for the fealvjet.

In térms of the real—jet'variables, the‘veldcifies5then-become

W, = - (22) -
i (1«23i+es':/;2)2 '
U = hr(ESZg'- rQRi)g R .. o _(25)
i i) ' 242 c o
(r“R, + 282z%) R : _ -

i

When the mass bélance for the real interjor jét phdse is intro-
duced, the jet radius (applicable only at large z, ahd_With an drifice

plane possibly different from that for the réal'jét)_can be given'as;:

2 - 237 : - : : S )

When the total momentum is equated between the Schlidhting Jjet

and the real jet, a constant S is obtained:

S = 52/Ri | ,(25)
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In terms of parameter Q(:z/Ri), Egs. (19) and (22) are then

expressed as

5 i
Woo B (29)
* (r” + 6W")"

2 6l 2

a, =

) -1 - N

Figures 7;9 show the center velocity,'interfacial velbcity?
and the jet radius calculated ffom the Séhlichtiné model for { values
~ between 0.0625 (a singular poinﬁ) and 1.0, together with those from
the real-jet model in fhe case of B = 1.0. As is expected, theicurves
become parallel in the vicinity of 'Cé 1.0. Since in the réal-jet:
model the exteriof-velocity profile is aséumed to have an exponential‘
‘form, the aéreement is better in the neighborhood of r = O.

V'andegrift15 extended Schlichting'é model to the case of fwo
different fluids. His solutién does not satisfy tangential-stress
vcontinﬁity at the intefface, but does satisfy the total momentum balance
for interiof plus extérior fluid. The interior velocities and the jet‘
radius can be expressed the same way-aélin Egs. (22-24), but witha
different value of S which is obtained from the numberical integra-
tion of the momentum balance for both phases described by Eq. (6a).
The exterior velocities becomé:

Lz

W, - (2 - 12) B - (28)

h_r_.a_ﬂz
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U= m O -f-1-n (29)

where

L
g Re(Re-R.l)

2 ) . .
Y= +1 ‘ | (30)
L (esefwaR)T
, QaERe“ _ '
L = —5—— -1 : . (31)
2822+a2Ri . ‘ '

Profiles calculated_by using these equations have been given
5y Vandegrift.l5 For this case, as for a single phase, the match on
t is difficult to establish. Also thé calculated and experimental
velocity profiles can agree only at poihts rather far doﬁnstream from

the real inlet.

k., Effect of Density Difference

The buoyancy effect due to a difference in fluid densities can
-be_%aiénmihto account by introducing Froude-number terms into the
equation of motion for center-line velocity ahd into interior and

exterior momentum-balance equations. These equations then become:

(Wi?)r=0 - k= “/Rif - [% 86? (r 5}'1‘>] o dz + % (2a)
T O -



'-7h—

a a : 7 BWi Z 5
' = 2 R, dz + 1 2
f W “ar 2/5+/1_/,: al 57= . % /Fr./(; a“dz

0
(6v)

o o z awe z o
s ’ -/ .
f rwe dr -2/Re f al s dz - _L/EFrf (pi/p.e)a dz
23 0 ) I=a 0 :
(Ta).

. ' o t :
where Fr :‘WO /2AO g, and the corresponding changes in the matrix

elements are-

N, =N - 1/13r
2.
N5 = N5 - a /hFr
N,o= N+ (o, /o )et/eE
6 76 i'Fe r .

The liquid-liquid Jjet bf‘interest usually has a Ri/Fr of about
10, .and for this case the numerical computation which includes Froude-

number terms does not show any appreciable difference.



D."Summarx

A calculationél method for thé'velocity profile of a circular
liquid Jjet in a qtétionary surrounding.liquid has been devgloped: " The
" .assumed éxial-veloéity equations are made to satisfy six géverning con-
-ditions.‘, | +

| ' Linearizatién and numerical integfatioﬁ by a.third-order Runge-

Kutta method hésffeen used to obtain numefical values of velocity funcﬁions
‘in terms of an axial distance_variable. The’velécity valueSJahd the Jet
radius, as well as the generating parameters in the velocity equations,
are obtained as‘functions»of a viscosity-dénéity constant-B and a»dimen-
sionless axial distange . The effect of gré#ity; expressed by‘a‘ratio
of Reynolds-number %o Froude number near 1OQ-is found to be negligible.

The method has béen applied to published éxperiméﬁtal data, and
shows fairly good agreement. 'Comparison with Schlicﬁtingis analytical.}
-solution of a circular Jjet is also fairly_goéd at distancés far down-
stream from theﬂofifice'plaﬁe. ;Comparison with values for a free jet_.

indicates that the method is leés accurate aﬁ'B values below about 0.25.
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IV. VELOCITY PROFILE OF CYLINDRICAL LAMINAR LIQUID JETS
ENTERING A MOVING SURROUNDING LIQUID

Af Introduction

In cases where a laminar-flow liquid Jjet ié injected axisyﬁmet -
rically in an immiécible liquid flowing at uniform velécity, knowledge
of[the eﬁtry beﬁavior‘iéﬁnecessafy to establish ihe actual velocity be-
hévior of both:liquids_as governed by momentum-transfer across the phase
boundary. If the.éxternél flow also is_laminar, the jet will be more
stable than for injection into a stationary external liquid, due to the
lower rate of momentum transfer. Moreover, whereas injection into a
stationary external’liquid may never reach a éteady—state profile, the
distance required for transition of the interiorFJet velocity from its
initially parabolic prbfile to a flat profile is relatively short.

' ‘One important experimental application of such Jjets isvtheir
vusé in studies of heat{énd maés transfer, the latter sometimes including
chemicalhfééction. The theor& of an dsciliafing jet2 assumes a uniform
axial=velocity profile;'éh which perturbed velocities dﬁé to the non-
.eircular orifice are éuperposed. Theréfore a closer approximation ﬁo
the theory shoﬁld be shown by a jet iﬁ.a flowing external 1qiuid than
by one in a stationary external liquid. '

Wygnanskihbrecently solved the problem of a two—dimenéional
laminar Jet issuing co-directionally into a uniform stream of the same
fluid. He developéd a.direct expansion to épply near the origin, and
an asymptotic éxﬁansion'valid only at large distances; the two expansions-

are joined along the center line of the jet. However, it appears that
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no theory has yet been developed for the axisymmetric case, particulérly
for a pair of immiscible liquids having different viscosities and densities.

The present authors with Vandegrift5

have developed a numerical
stepwise empirical—fit technique for a cylindrical Jjet issuing into a
stationary immisciblé liquid. That method will be extended here to cases

having a flowing external liquid.
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B. Theory

We_consider é.liquid jét injected into another liquid flowing
-in the same.diregtion, and confined in a cylindrical -tube. Throughout
the léngth of the éystem gonsidered here, the exteriof’liquid flows
within a reiativelelarge.cylindrical wall. Upstfeam of the orifice
from which the interior jet emerges, its flow is also bounded by a cen-
tral thin-wall orificé'tube having the sameﬁdiahetef'aé'thé emerging jet
(Fig. 1). |
At the érifice, the velocity at thé.ihtérface Bétweén'interior
and exterior fluids is zero. Immediately downstream, at radius values
near the ﬁalué of the érificé radius, both fluidsvare accelerated. If
.the interior-fluid velociﬁyvadjaceht to the interface ingreases more
rapidly, the'interior Jet can be termed a "strong" jef;'conversely, if
its acceleration is less rapid, it can be identified as "weak." Near
fhe orifice a strohg j§t Will.impart momentum to the exterior fluid,.
whereas a weék jet will ébsorb‘ momentum from the exterior fluid; further
downstream, the directiéh of momentum transfer may re#erse before the
Steady?stafe profile is attained. However, bécadse of the mathematical
forms of velocity equations, only a strong-jet behavior, which is our
main concérn,-can be described by the following model.
The following nptations are'used;,
A,B,C,Cq,D, ’coefficienﬁs which are functions of the’axial—distancé
Dl,E,G,M variable
A “interfacial radius_or jet radius (cm)

Ay orifice radius (cm)
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| Fig. 1 Flow-system geometry with representative velocity profile.
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1

AT' tube radius (cm)
a A'/A ', dimensionless jet radius
‘ ) o :
K 1 +k° - (1 -«%)/In(1/x)
. , 2 2, -

K, (1 - «k"a")/in(ka) = 2(1 - 1)/1nm

R! radial distance (cm)

r - R'/A.', dimensionless radial distance

. W ! v int : y '
Ri | | 2AO 0 pi/ui, interior Reynolds number
Re 2AO'WO'pe/ue, exterior Reynolds number based on the
v interior-flow conditions

W' axial velocity (cm/sec)

W ' W'/WO', dimensionless axial velocity .
S initial mean velocity of jet (cm/sec)

‘WAF' initial mean annular velocity (cm/sec)

VA © axial distance (cm)

'z L'/A)', dimensionless axial distance

i. .interior phase

e - exterior phase

o o parabolic constant

B uepe/uipi, viscosity density consﬁant

Y WAF;/WO', ratio of initial average velocities

n - (ka)

K v Ao'/AT', ratio of orifice radius to outside-tube radius
B z/R,



-82-

1. Empirical Velocity Equations

In the case of a stationary surrounding fluid we added a perturbing
function to a parabolic form to describe an interior jet—vélocity profile.
Here we shall add an expénential—type perturbing functiqn to an annular-
flow expression to givé an exterior jet-velocity prbfile. However; since
the outside-tube diameter is substantiall&'larger than the orifice diaéeter,
the exterior liquid éan be viewed as essentially an infinite medium. This
is equi&alent‘tovsaying that the Boundary layer that forms in the exterior
liquid does not interact with the outsidé—tube wall within the flow-path
interval in which the interior-jet profile changes from a parabolic to a
- flat form: ZExcept for a very minor correction factor, G, which is intro-.
duced to satisfy the consefvation of mass,'our treatment isibased upon the
rhysical fact that.the exterior jet-&elocity profile far from the inter-
face does not Qhange.

The perturbing functions assumed for the interior and exterior ‘

jets are the same as in the stationary case. The velocity equations are:

W, = 2ae'MZ(a2 - r2) + B/(1 + Ar2)2 | | v(1)

=
1l

2yG/K{1 - (k) - (1 - Kzae)ln(Kr)/in(Ka)} + De-Cr2 (2)

wheré the first term in each equation represents the parabolic or annular-
‘type profilél.which applies ét the orifice plane.

As in the related énalysis for a Jjet in a‘stationary fluid, a
boundary-layer approximation is made, ahd axiél velocities can be‘ex—

pressed by use of six parametric functions plus the radius a.
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The following seven governing equations are used: firsf, the

integrated equation of motion on the center line,5
' h
, . : - - -
— l ,
(Wi )r=0 - LI' - u/Rif a Sr r=0 dz : ‘ (5)

0

The continuity of axial velocities at the interface,

(Wi)r=a,= (We)r=a ()
The continuity of tangential stresses at the interface,
(awi> (awe) |

IJ'i or =g, = lJ'e or re=a ‘ ' | : (5)

Mass balance for the interior jet,

frwiar:l/z | SR (6)

0

‘Mass balance for the exterior fluid, which is flowing and bounded by a

cylindrical tube,

fl/K . =‘/l'l/K.rWAFdr ’ | | -

a

where
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=]
]

2y/K(1 - (Kr)2 - (1 - K2)1n(;<r)/3n]_

with v /W Y, K =1+ K° - (1- K?)/ln(l/K); and 1 < r < 1/k.

Momentum balsnce for the interior Jet,

S SN P

1/k

f I‘W.Edr =
l .

0

\NIF\D

Momentum balance for the exterior fluid;

f lgwe?dr_fl/K oW, Car = - g_/: ( ) dz (9)

r=8

Substituting in and W_ into Egs. (3) through (9), we obtain

. ,

-Mz 2,2 2 - - 2 - .
(2ce Za)+thaeMZ+Bg-h—%—f (OﬁeMZ+AB)dz=O
_ i .

(10)
é 2 -Ca2
B/(1 + Aa")" - De =0 _ (11)
8™ 4 4m/(1 + 20%)7 - 0.5(u /i) (6K (@E 1k fe?)
—Ca2 = O ) (12)

+ CDe

o‘ahe-Mz +‘Ba2/(l + Aag) -1=0 (13)
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- 2(ye/K){ (1/k Q a) - O.25K2(1/Ku - au) . O.5a2(l - Kl)

2 ACag
+ 0.25(1 - Kl)Ka/K } + 0.5De /c~0

2a6e "Mz e M2 [ah/(l + Aae) - In(1 + Aag)/Ag

\N

+ a?/{A(l + Aag)}] + %(BE/A){l - 1/(1 + Aa2)5}

% g—f M, ABaQ/(l + Aa2)3}dz =0
a
2 ol
f{—f {(VG/K)(EH + K ) + Cha%e }dz
0
here MIL = ML, + MI, + ML, and 1 = K2 2
vher T 2 z anan =xa
1/k
ML, =f W, dr = const
-1

' K
ML -.-fl/ (2ve/K)%(1 - (kr)? - »Kalf'n(Kr)}2rd:‘c'
= 2(’YG/K)Q[(l.- MAE + @ -0 /3E
+ (Ka?/hKE){Q - n(lnnjé + Eﬁlnn - 21}

- (R e RN/ - aPam/e -

. (K, /) (0 - nem - 1)]

()

()

(16)

(17)

(18)
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K 2
MI, =~/;/ (ya/K) (1 - (Kr)2 - Kéln(Kr)]De_Cr rdr

: - 2 -Ct - -Ct
i/ﬂn (2YG/K) (De €« tDeVC - K_De ¢ anQt/Q)dt
2 _ '
a,

b ; o o o : : . i
(2ya/K)[De%® /o - kPpe™C® (1 + ca®)/c? o

2

(x,0e™"* /ec(tm +

a2 L2
El(ca )3 (19)

M, = DPe 2C® /¢ (20)

The last term in Eg. (19) is the exponential integral,

El(Cag) =f°; (e Yt )at

Ca

2. Computatién Procedure

| As in the:base_of stationary external liquid, the above'seven
équations are linearized, énd the resulting séven.linear e@uations are
solved for seven incremental values of parameters at each increment of z.
The third-order Runge-Kutta shceme is used tovreduce truncation errors.
The following substitution is also needed to avoid numerical difficulties

3
/

at small z values:

E = De_CaL



The elements of the linear simultaneous equations Mdx = Ndz

are‘given as follows (zero-valued elements are omitted), where dx

2
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dx, = dB, dx; = dC, dx, = dE, dx5 = da, dx, = 4G, and dx

= haaee-MZ + 2B

16O£2a5e—2MZ + 81Bae-MZ

_8a2ahe-2Mz ) QZe-Mz :

80Pa e 22 ko Pye M2

~Mz

32(ce %AB)/:R:.L

2Ba%/(1 + AaR)”
1/(1 + Aa®)?
-1

_haBa/(1 + Aa®)’

B/(1 + Aa2)> - 3Aﬁ§2/(1 + 12)"

AL+ 8e2)?

'0;5(“e/“i>E

7

= dM:

1

dA,

—6A23a/(1.+ AaE)LL ; 2(ue/ui)CyG/K)(l - q + 1nq)/a” (1m)®

-o.5(ue/ui)(v/K)(2f.<2 +‘Ka/?2)

-M2z
-Qze M

aze M2
—O.5Bau/(l + 1a®)?
2.

)

o,5a2/(1 + Aa

gaa5e'MZ + Ba/(1 + Aag) - ABaB/(l + Aa2)2

—O.5aagze_MZ _
0. 508 e M



" where

25
5h
55
Mo
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= ;0.5E/02
= 0.5/C
2(va/K)((1 - n)a - 1 - 0.5aK_ + 0.52(1 - n)dK, /dn)
200/K)( (/K - &) - 0.25 21/ - &

0.25(1 - K k%)
)2

) + 0.5 2(1 -

+

_EaB[-a6/(1 + A2 - au/{A(l + Aa2)2} - 2a2/{A2(1:+ Aag)]

2rn(1 + AAE)/ABJe'MZ - 1/6(B/A)2[1 -1/(1 +~Aa2)5}

+

0.5(8a)?/(A(L + 2a2)™)

+

Il

QOé[a,LI'/(]_ + Aag) _'Jln(l + Aa?)/Ae + ag/{A(l + Aae)]]e'-MZ

1/3(B/A){1 - 1/(1 + 2a°)?)
hofa’e M hoBaBe‘MZ/(l + Aae) + B2a/(l + Aag)

-h/50?a6zef2MZ - QQBZ[au/(l + Aée) - m( + Aag)/Agv

-+

L

N

It

+

e2/(A(1 + Aa®))le™?
oM

24 EQBM[ah/(l + Aag) -n(1 + Aag)/Ag

ag/{A(l + Aag)}]e_M% - 8{Qage-MZ

i / 50623. 6Me B

+

+ ABég/(l + Aag)B}/Ri

ecyG/K)[2K23/05 + (n - i)E/CE + O.5Ka(E/C2)}£nn

+

2
&% B (0aF))] + 0.5E/C

i

b(yG/K)Z(Ty + 0.5K T, (aK, /an) - (k_#n)°/4

»Ka(n - 1)gmm + T5(dKa/dn)}a - 2(yG6/X) (2nE/(Ca)

+

2
K E{gnn + e El(Cag)} ‘

EMIl/G + M12/G

h((y6/K) (20 + K_) + CBa®} /R

-n2 +2n -1

2 - n(ﬂnn)e +2nfn - 2q
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nZ/h - o+ 3/% - (1F/2 - q)em

—2(em + (1 - 1)/n)/(2nn)?

T3

dK; /dn

As in the calculation for the stationary surrounding liquid,

-6
o is taken to be 0.95, zo = 1.,0x10 ~, and ay = 1.0. The initial values

 are then determined as before, except that G is set at 1.0. When the
terms involving M shrink to negligible levels, a total momentum

balance is used, adding Eq. (8) to Eq. (9) times the density ratio:

- 2 Pe /x 2 o Pg 2 2
W, dr + — W ar = + — rW dr = const.
i P, e 3 P. Jq AF
. 1 g 1 .

0
(8a)
The resulting 6xX6 matrix has changes in the sixth-row elements, as follows:

Mgy, = (pg/o Moy

Moo = Mgs + (o /0, Mg
Meg = (pe/pi)M%‘

N6v = (o /0,

3. Generalized Behavior
There are four input variables for the present calculation:
viscosity ratio ue/ui, density ratio pe/pi,,orifice—to—tube radius

ratio K, and average-velocity ratio 7y. Once K and 7y are fixed, the

the functions A, B, Cp,/o_ (or ¢)), D, (equal to Dat p_/p, =1), a,
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M, and G can be expressed in terms of two parameters B and_C as for the

stationary surrounding liquid.

TRV N | (21)

W
H

¢ = z/R,

i (22)

Therefore B, <Y, and K are the input variables to be specified so as to
carry out the numericallintegration by - the third-order Runge-Kutta
scheme. In order to explore the functional behavior, B has been varied

from 1 to 16; y from 0.125 to 2; K from 0.025 to 0.20.

a. Effect of viscosities and densities. For v = 0.25 and K = 0.1,
the profiles of centér-iine velocity, interfacial velocity, ahd Jet
radius are shown in Fig;.Q. The curveé fdr.different B's show that
highér values of B have a diminishing effect on thé.jet behavior.

At higher v values, near or over l,‘curvesvfor differént B's
would combine into a singleicurve, iﬁdicating.that B has little effect
“in sﬁch cases. Thqs the behavior for different valueé of B, atAy near

or over 1, can be determined from the Curves'fbr B =5h giveh in Fig. 3.

b. Effect of average-velocity ratio. .For B = 4.0 and k = 0.1,

profiles at different 7y values are shown in Fig. 3. The vy values have
the most pronounced effect on the behavior of the velocity and the jet

radius. Naturally, higher y's give higher center-line and interfacial



-91-

N RO N @
T

o
|

" Interfacial |
velocity -

o ©
~ @
T 1

Dimensionless velocities (axial components)

P
1.30
.20
110
: /(f+‘4+
, 1100
0O 002 004 ol 02 04 05

XBL68II-7195

Fig. 2 Effect of B on jet velocities and radius for vy = 0.25

- and Kk = 0.1,

Dimensionless

radius

et

J



(axial components)

Dimensionless velocites

F

l.8 T T T T T T T 1 T 1 T T
|.6+ Center-line :
5 velocity .
|4 E
i 1
.21 ]
1.0} =
0.8} Interfacial
velocity - X )
0.6f — |
i | 0.25 .
0125 .30
0.4+ / ‘ ,
B o YO|25 0.25 41.20
O.2~' Jet radius | .
j o ST
| & =1.00
) ! | | N | \ n
O 002 004 O.l 0z 03 04 05
C
XBL68II-7194
ig. 3 Effect of y on jet ve1001t1es and radlus‘, for B =L

and Kk = 0.1.

Dimensionless jet radius



-93-

velqcities for the interior Jjet, and smailer changes in the jet-radius
profile;

For smaller <y, the velocity profiles level off at wvalues above
thé original exterior average‘velocities, which they should uitiﬁately
appfoéch. The present model fails to describe the enfire eventual
vélOcity profile. The équation of motion for the exterior phaée has
not been included, and only the fegion adjacent to the interior Jet
undergoes much changé in veloéity within the distance where the interior
Jet varies fromﬁpafabolic to plug flow; +the distance necessary for the
exterior fluid to attain é true steady state is approximately 100 times

that for the interior jet.

c. Effect of orifice-to-tubé radius ratio; . For B = 4.0 and v =1.0,
profiles at différent K values are given in Fig. 4. Because of the
approximations.made in the hass and momentum balances for the exterior
phase, Eas. (14) and (16), +the present calculational method does not

: apply for the K ﬁalués‘above 0.2. At 7y values near or over 1, K does
nof haﬁé much effect on fhe profiles, although it is quite significant
‘af 1ow Y values. The radius of maximum exterior velocity comes cioser
to the center-line of the tube, and the'interior-veloéities‘attain.

highef values (with less increase in a), for smaller K values.

d. Behavior of parameters. For reference, representative values of

the parameters, as functions of { between 0.005 and 0.5, are tabulated

~in Table T.
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Parameters

1.59

.971

Table I. Behavior of
A | B M
= . t= t=
K v .0005 .005 ,05 .5 L0005 .005 .05 (.5 .0005 ,005 .05
1.0 0.10 0.25 1.314 0.908 0.550 0.019 0.225 0.739 1.k95 0.635 0.421 0.k01 0.771
1.0 0.10 1.0 1.392 0.967 0.519 0.0013 0.212 0.658 1.508_ 0.944 0.373 0.354  ~--
2.0 0.10 0.25 1.316 0.917 0.580 0.01k 0.225 0.723 1.hW48 0.603" 0.419 0.382 0.359
2.0 0,10 -1.0 1.393  0.958 0.517 0.0011 0.212 0.659 1.502 0.943 0.373 0.353 ---
4.0 0.05 1.0 1.39% 0.971 0.520 0.0007 0.211, 0.654% 1.508 0.962 0.3T1 0,352 ---
0.10 0.25 1.320 0.931 0,597 0.0107 0.224 0,702 1.388 0.589 0.417 0.379 .0.292
0.5 1.377 0.961 0.546 0.0039 0,214 0,665 1.486 0.803 0.382 0,358  -=-
1.0  1.393 0.969 0.515 0.0009 0,212 0.656 1.498 0.943 0.375 0.353 ---
_ 2.0 1.397 0.971 0.485 0.000k 0.211 "0.654 1.480 0.987 0.371L 0.352 ---
0.20 1.0 1.387 0.95 0.514% 0.0010:0.213 0.661 1.496 0.936 0.376 0.356 ---
8.0 0.10 0.25 1.325 0.947 0.611 0.0089 0.223 0.679 1.347 0.582 0.41k 0,366 0.26k4
_ 1.0  1.39% 0.971 0.51k 0,0008 0.212 0.655 1.496° 0.943 0.373 0.352 ---
16,0 0.10 0.25 1.330 0.963 0.621 0.0076 0.222 0.660 1.322 0.578 0.410 0.354 0.252
1.0 0 0.514 0.0008 0.212 0.654 1.hk9hk 0.943 0.373 0.352 ---

..g6-



Table T.

b75

.01

. (continued)
/o foy) % = 0}y e
. pz T p= - . ‘ p= N .

B v .0005 L,005 .05 .5, .0005 @ .005 .05 .5  .0005 .005 ..05 .5°
1.0 0.10 0.25 U8k  8.01 0.983 0.2kl sl 1.69 0.883 1.00 1.00. 1,01 1.01

1.0 69.6  12.98 1.765 0.721 o« 72,750 3.86 2,02  1.00 1.00 1.00 1.00
2.0 0.10 0.25 26,k 4L.60 0.709 0.216 18,7  1.18 0.829 1.00 1.00 1.01 1.01
- 1.0 Wk 8,59 1.k22- 0,718 w 909.0  2.74 2.02 1,00 1.00 1.00 1.00

4,0 0.05 1.0 26,0  5.1% 0.921 0.495 = 28.8  1.65 1.61  1.00 1.00 1.00 1.00

0.10 0.25  15.4 2.89 0.556 0.207 3.35 0.929 0.811 '1.00 1.00 1.01 1.01

0.5  21.6 L.21 0.740 0.37% 11.52 1.31 1.27  1.00 1.00 1.00 1.01

1.0 31.8 6,40 1.253 0.718 o 101.4 2,30 2.02  1.00 1.00 1.00 1.00

2.0 51.2 10.63 2.269 1.420  « 6943, 6.5 L4.,16° 1,00 1.00 1.00 1.00

, 0.20 1.0 43,7 '8.99 1.955 1.19 ® 135k, L,72  3.32 1.00 1.00 1.00 1.01

8.0 0.10 0.25  9.90 = 2.03 0.48 0.203 808 1.35 0.79% 0.803  1.00 1.00 1.01 1.01

1.0 25.5 5.30 1.167 0.717 = 33.8  2.11  2.01 = 1.00 1.00 1.00 1.00

16.0 0.10 0.25  7.15 = 1.58 0.L20 0.201 51.7 c.832 0.725 0.800 1.00 1.00 1.01 1.01

© 1.0 22.3 1.126 0.7T17 o 19.5 - 2.03 2 1.00 1.00 1.00 1.00
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V. CONCLUSIONS
The.mathematical description of the oscilléting Jet has been

divided into two parts: - elliptical ?SCillation of a plug-flow jet, and
relation of effective plug—flow velocifies to actual velocit& profiles,
and jet radii. A complete numerical solutiop for the oscillatipg wave-
length haé been bﬁtéineaf' Also, the cylindricél velocity profiies héve
have been calculated with.an accuracy which should be adequaté for in-
terpreting experimental data on liquid-liquid jets.

Further studj is needed of the effect of downstream ob-
structions‘producing pressure gradients along the jet'path,'and also of
the correlation needed to define the effective plug-flow veiocity 6h
which tbeainterfacial—tensiqn determination is based.

The nozziég used.in the reported experiments were'made by
drawving heated capillary.glass tubing to obtain a taper and then pressing:
v the tubing into an elliptical_shape. Numerous other methods of-prdducing:
-satisfactory nozzles were attempted. In the most successful of.them,
heated Pyrex glass tubing (5 mm Q.D.) was drawvn to capillary dimensions
(0.3-0.8 mm), and the resulting capillary was pressed into elliptical
form. After breaking the tube.squarely, l‘to 2.cﬁ of nozzle tip thus
obtained was attabhed to a stainless;steel hypodérmic needle (No.'l9) 
with epoxy_glue. The efféct of nozzle wall thickness shouid be much
sméller than that of the nozzles constructed from thick-wall capillary
tubing. | | , -
A study of additivesvfor the exterior liquid (such as carbbxymethyl
cellulose) is necessary, to keep it in the laminar-flow regibn by increas-

ing its viscosity without accompanying major changes in diffusivity.
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APPENDIXES: COMPUTER PROCRAMS

I. Wavelength--Interfacial-Tension Relation

The following programs were written to solve Eq. (38) to.obtainv

the interfacial tension and the empirical multiplier, f.

A. Main Program (XINTES)
(1) Abstract
The object of this program is to evaluate a 6x6 complex matrix

equation, the matrix being a function of a variable;

alo) - x =0

For nontrivial X, A(¢) = O must hold, which leads to solving the deter-

22

minant equation for ¢.

det D
F(E)' Usage
Ihput:
N ' ~ run no.
B | ﬂ wave number, 2m/A
‘ A ' Jet radius, a
REl. o one half of interior Réynolds no.,

ca p./u,

CMUL S interior—fluid viscosity
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RMU : S ‘*.viSCOsityvratio, ue/ui

RRHO | density ratio, | pe/pi

c effective'plug—flow velocity

7(1), _z(e) S estimated in;’Ltial-damping factors

Output:

DEIR, DELT real and imaginary perts of det A

DETR, DETT . real and imaginary ﬁarts of det D

TR, TT o ' real and imaginary parts of interfacial
tension ' :

z(L) o . damping factor

WE : modified Weber no., _uic/c

RWE reciprocal of modified Weber no.

RWEL - R ‘reciprocal of Weber no., c/ceapi

O empirical multiplier, f

B. Gauss-Reduction Subprogram (GAUSS)

(1) Abstract
This program gives a determinant of a matrix with complex variables.
(2) Usage

CALI GAUSS(M,BR,BI,DETR,DETI,FACTOR,JROW,ICOL)

!

‘M ' ~ 'no. of rows or colummns of a matrix
BR _ ‘ » o real part o£ element in A

BT - ' _ imaginary part of element in A
DETR o real part bf determinant

DETT . ‘ imaginary part of determinant
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FACTOR scale factor to control overflow or
' underflow

(3) Restrictions 
M <20
(4) Method
The basic feature of the method is to éonvert the squaré deter-

minant to triangular form, so that the determinant is simply the product"

of diagonal elements of the triangular matrix.

C. Bessel-Function Subprograms (BIS,BIL,BKS,BKL)
(1) Abstract B |
Thése ?rograms givé the functional values of modified’Bessel
functions with comélex arguments.
(2) Usage
| CALL BIS(N,RHO,PHI,BRis,BIIS)
CALL BiL(N,RHO,PHI,BRIL,BIIL)
CAIL BKs(N,Rﬁo,PHI,BRKs,BIKs)
CALL’BkL(N,RHO,PHI,BRKL,BIKL)

N order of modified Bessel function

RHO ' magnitude of argument
PHI arg z = arctan(y/x)
BRIS,BIIS,BRIL,BIIL ' real and imaginary parts of modified

Bessel function of the first kind

BRKS,BIKS,BRKL,BIKL real and imaginary parts of modified
. Bessel function of the second kind



a
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.(5) Restrictions-
BTS,BKS for RHO < 10
BIL,BKL for RHO > 10
(k) Method ‘
'BIS and BKS aré>summations of series (9.6.10), (9.6.11) up to
the twentieth term. BIL and BKL are summations of series (9.7.1) and

(9.7.2) up to the thirtieth term. These series are given’in Handbook

. *
of Mathematical Functions.

Abramowitz and Stegdn, Handbook of Mathematical Functions, Natl.
Bureau of Standards, Appl. Math. Serles No. 55, U.S. Govt. Printing
Office (1964).
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NO NN

PROGRAM XINTES(INPUTsOUTPUT,TAPES = INPUTsTAPEG6 = OUTPUT)
COMMON AR(20920).sA1(20520) sJROW(20),I1COL(20)5IR0OW(20)5JCOLI20)
1 .BR(20» 20)9QW(ZW,ZO);AAR(é)9AAI(6)9CP(709?0)’fI(?0 $20)

2 TR(25)5T1(25)52(25)

N = RUN NDe» B = REAL—WAVE NO«s A = AVe JET RADIUSQ RE1 = ONE HALF
OF INTERIOR REYNOLDS NOes CMUl = INTERIOR-FLUID VISCOSITYs MU =
VISCOSITY RATIOs RRHO = DENSITY RATIOs C = CONSTANT AXIAL VELOCITY

"y 2 = DAMPING FACTOR» TR = REAL-PART INTERFACIAL TENSION

T1 = IMAGINARY-DART INTSRFACIAL TZNSIONs WE = MODIFIED WEBER NOes
RWE = le/WEs RWE1l = 1le/(WESER NOs)s F = EMPIRICAL MULTIPLISZR TO

CRAYLEIGH SOLUTION.

GIVEN BAs RE1sRMUs RRHOs AND Z OF 1ST AND 2ND APPROXIMATION, WEZ )
OBTAIN TR WITH TI = Des WEBER NOeSs AND F, WHEN IT OVERFLOWSs TR =
TI = WE = F = J,¢ WHEN TI DOES NOT CONVERGE TO 09 TRy TIs WEs AND

F WILL 8E SST TO 100,

. ~HOoT-

READ (5,1) N9?949&F19CMU1’QVU ?QHOQC
IF(NeFDN«99) STOP

READ (5911) Z{1)9+2(2)

CMU2 = RM*CMU1L

RE2 = RE1#(RRHO/RIMU)

WRITE (6s2) NyB;A,Q:19CWU1;QMU RRHOsC

L= 1 - ) -
8AR = R#*A

‘BAT = Z(L)*A ‘

J1 = 3AR#%2 - BAI¥%2 ~ BAl*RE]

U2 = RBAR®¥2 — BA[#%¥2 - 2AT*RF2

V1 = 2.%#3AR*RA] + BAR#RE]
. V2 = 2.%#BAR%*8AT + RAR#RE?2

Y12 = (-Ul + SORT({UL¥*2 4+ V1%%2))/2
Y22 = (-U2 + SQRT(U7X*? + V2#%2))/2e



Y12 + U1l

X12 =

‘X22 = Y22 + U2

‘ND1AR = SQRTI(X12)

‘D1ALI = SQRTI(Y1l2)

D2AR = SQART(X22)

N2AI = SQRT(Y22) :

RBA = SQRT(BAR#*#%#2 + BAI*x%2)

PHIR = ATAN(RAT/8AR)

"R1 = SQRT(D1AR¥#2. 4+ DIAI*%2)
PHI1 = ATAN(N1AI/D1AR) _
R2 = SQRT(N2AR#*%*2 + ND2A[%#¥2)

PHI2 = ATAN(D2AI/D2AR)

RBAR = BAR/(BAR%#%¥2 4+ BA[#%2)

RBAI = =3AI/(3AR%%2 + BAI#x%2)

_S3AR = RAR%¥%2 ~QA[%%2

SBAI = 2.%3AR%BAI _

RSBAR = SSAR/{SBAR¥%*2 4+ S3A[%%2)

RSBAI = =-SBAI/(SBAR*%2 + SIIAT*%2)
RD1AR = DIAR/((NDIAR®%#2)+(N1AI#%2})
RD1ATI = =DIAI/((D1AR®#%*2)+(D1AI%%2))
RD2AR = D2AR/((D2AR*%2)+(N2AI#%2))
RD2AT = =N2AT/((D2AR¥%2)+(D2AT1%*%2))
SP1AR = U1

SD1AT = V1

SN2AR = U2°

SD2AT = V2 o -
RSDIAR = SD1AR/({SD1AR*%¥2)+(SND1ATI*%2))
RSDI1AI = =SNDIAT/Z({SN1AR*%2)+(SN1AT*%2))
RSND2AR = SD2AR/((SD2AR%#%2)+(SN2AT#*%2))
“RSD2AI = =SN2AI/Z((SD2AR*%#2)+(SD2AT#%2))

- CALL BIS({1sRBAsPHIRIRIIRHRILI)
CALL BIS(29RAPHIRLZRIZ2R,3ITI21)
CALL 3KS5(1s23A,PH7T3,3K1R,3K11)
CALL 3XS({2sRRADHRyBK2R,3IK21}
IF (R1-104) 300,310,310

300 CALL BTS(1sR1sPHI1NI1IRsNIIT)

"CALL BIS{2sR1+PHIL1HINI2RINIZIL)

GO TO 315 )

~GOT-



319
315
329
330

335

CALL BIL(1sR1sPHI1sDI1IRDILI)

CALL -3IL(2sR19PHI14N12RsNI2T)
IF (R2-17.) 320,330,330

CALL BXS(1sR2sPHI2sNDK1RNKIT)
CALL BKS(23R2sPHIZ2sNK2RsNK21)
GO TO 335 ‘ '
CALL 3XL(1sR2sPHIZ2sNDK1IRNK1T)
CALL 3XL{2sR2sPHI2sNK2RsNK2I)

BI2PR = BI1IR = 2,*(RRAR¥RI2R = R3AI*B121)

RI2P! = RI1l = 2.%(RRAI*RI2R+RBAR*3121) -

BI2OPR = (1e+64*RSBAR)#BI2R=6+*RSBAI#3]2]-RIARBIIR+RBAI*3I[11
BI2PPI = (le+6.#%RSBAR)#BI21+64%RS3AI*3[2R-RBA[*311R~ ?aA?*%I1I
3K2PR = ~3K1IR =2.*(R3AR#3K2R = RBAI*3K21) :

BK2P1 = =RK1] - 2.%(RBAI%3K2R + R3AR%3K21)

QK2PPR = [le+be*RSAAR)*RK2R=6,*¥RSRAT*#3K21+RBRAR¥BKIR-RBA#23K11
BK2PPI = (1e+6¢*RSBAR)#BK21+6,*RSIAT#3IK2R+RBAI*BKIR+R3AR*RK]]
DI2PR = DI1R = 2¢#(RNI1AR®DIZR = RDIAI*NI2T) '

DI2PI = DIl = 2.+(RDIAI%*DI2R + RD1AR=DI2I)}

DI2PPR= (1e+6e¥RSDIAR)%#DI2R~64*RSDIAI*DI2I-RDIAR*DIIR+RDIAI*DI1I]
DIZ2OPI= (1e+65e%RSDIARI*#NDTI21+6,4,%RSNHIAI®NTI2R-RDIAT*D]1IR- 2014anr11
NDK2PR = =DK1IR = 2¢#(RD2AXDK2R = RD2AI*#DK2I)

PDX2PI = =DKI1I - 2%(RD2AI*DK2R + RN2AR#DK2I)

DK2PPR= (1e+6e%RSN2AR)%DK2R—64 ¥RSD2AT#DK2T +RD2AR*¥NDKIR=RD2AT*0K 1]
NDK2PPI= (1. +6 ERSD2AR) DK 2T +6,4 *RSN2AT#NK2R+RN2AT#NKIR+RN2AR%NK] ]
FLR = =(R3AI*#(3,+SB8AR)+S3A[*#R2AR) /C

ELI = (RBAR*(3.+SBAR)-53A1%R3A1)/C

AR(1s1) = 3I2R

AI(1s1) = 8I21

AR(1s2) = =3%2R

AT(1s2) = =821

AR(1,3) = =DI2R

Al(193) = =DI21

AR(1s4) = DX2?2R T
AT(1s4) = NX2I

AR‘I’S) = Do

AT(1,5) =

Ve
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AR(146)
AT(146)
AR({2s1)
AT(2s1)
AR{242)
AT(2+2)
AR(243)
~AT{2+3)
AR(244) =
Al(244)=
AR(245)
Al(245)
AR(2+6).
Al(246)
AR(391)=
AT(3s1)=
AR(3,42)
Al(342)=

De

De

-812P1

312PR

RK2P1

~RK2PR . ‘

(BAR*RDIAR~- QAI*RDIAI)*DI7PI+(%AR*RDIAI+%AI*?DIAQ)*DIZP?
== (BAR¥RDIAR-3AI*RN1IAT)#D[2PR~( BAR*¥RDIAT+IAT*RD1AR)*DI 2P
- (RAR#RD2AR-BA[®RN2AT ) ¥NK2P[—(3AR*RN2AT+RAT*IN2AR) *7K2PR
(3AR%¥RN2AR- QAI*R57AI)*0<9°R+(QAR*QD’AT+3AI*?02AQ)*0(791
DI2R

nI2t -

=NK2R

=-D¥21

«*(RIARHBI2R -~ RBAI*3I21I)
2.*(R3AR%*812] + RBAI*3I2R)
-2+ #(R3AR®AK2R - RBATI*8K2I) .
-2+ %*(R3AMBK2I + RBAI*BK2R)

N

AR(393)==24*((BAR:#RSN1AR~ 3AI*QSDIAI)*5I7?-(BAR*RSDIAI+RAI*QS71AR)*

10121

AI(3,3)‘—? *((BAR#¥RSD1AR=~ BAI*RSDIAI)*DIZI+(BAR*RSOIAI+QAI*?SDIAR)*

IDI2R)
AR(344)
1nK21)

AT(344)=

1P 2R)

AR(345)

Al{(345)
AR(346)
AT(346)
AR(4;1)
Al(441)
AAR(1)

AATI(1)

AR{442)

All4s2)

AZ.*((%AR*RSDZAR—%QI*RSDZAI’*DK2R~(3&R*RSDZAI+3AI*RSDZAR)*
24%( (BAR¥RSND2AR=-SAI*RSN2AT ) #DK 2 +(BAR¥RSN2AT+3IAT#RSND2AR) *

(DIAR*¥DI2PT + DIAI*NI2PR) /2,

-(D1AR*¥DI2PR = NIAI#DI2PI) /2. .

={N2AR*DK2PI + N2AI*DK2PR) /2.

(N2AR*NKIDR — NOATI#NK2PT) /2.
=24*¥CMUL*(BAR*RI2PPI+3AI#Q[2PPR) - CMUI¥RE1#3[2R
24 #CMIULH (RAR%®RT2PPR-BAT%3[2PPT) = CMUI*RE1I#3[2]
(FLR*3I2P1 + FLI*312PR) :
~(ELR*3[2PR - FLI*RI2D])

2 #CMIJ2X (3AR®RK2PPI+3AI#R(2PPR) + CMU2%¥RE2%RK2R
—2.#CMU2% (BAR#ZK2PPR-RATI#8K2PPL) + CMU2%RE2%#3K2]

N on
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Oe
Ve

AAR(2)
AAT(2)

non

AR(4393) = 2.%CMUL H(BAR¥D[2PPI+BAI*N]20PR) -

AT(493) ==2,%CMUL#(BAR#NI2PPR-BAI*NI2PPT)
AAR(3) = (BAR*ELR~BAI#FLI)*(RND1IAR*NDI2PT+RNIAI*NTI27R)

1 - +(BAR¥ELI+BAT*ELR) *(RN1AR*NI2PR-RN1AT*NT2°1)
AAT(3) = —(BAR¥ELR-3AI#ELT)*(RDIAR¥NDIZPR-RN1IAT#DI2PT)
1 , +(8AR’FLI+%AI*fLR)*(QDIAQ*DI7PI+Q01AI*DI7PQ)
AR(4s8) = =24%CMU2%(BAR¥NK2PPI+3AT*NK2PPR)
Al(Gsl) = 2,#CMU2%(BAR%#DK2PPR~BATI*NK2PPT)
AAR(4) = Do ’ ' ~
AAT (&) = 0, ' o ; ,
AR(445) = 2,*CMUL*(ND1AR®*DI2PR ~ DIAI*NI2PT - DI2R)
AT(495) = 2.#CMUL*(D1AR%NI2PT + DIAY*DI?P? - D121)
AAR(5) = =(ELR*DI2R - ELI*DI2T)
AAT(5) = =(ELR*¥DI21 + ELI*DI2R)
AR(435) = =24%CMU2%(D2AR*NK2PR-D2AT*DK 2P [~ NK2R)
Al(4sh) = -2.*CMU’*(D7AQ*D<2PI+D?AI*D<2°Q o<21),
AAR(6) = 0Na
AATI(6) = O : ' ’
AR(531) = 2,%#CMUL#(RAR#3I2PR - %AI*%I?PI)
AT(591) = 2,%#CMUL*(3AR*#RI22] + RAI*a[2PR)
AR(592) = =24#CMU2%(QAR¥*3K2PR - RAI%#3K2P[)
AT(552) = —24,%CMU2%(BAR%3K2PI + BA[*3K2PR)
AR(593) = =CMU1*((D1AR+S3AR*RNDIAR-S3AI*RNIAT)*NDI2PR
1 : =(D1AI+SBAR¥RDIAT+SRAT#*RN1AR) *DI2P 1)
AT(593) = —CMUL#*#((D1AR+S2AR*¥RND1AR=S3AI*RD1AI)*D12P1
1 +(ND1AT+SBAR*¥RNIAT+SAAT#RNIAR) #¥D ] 2PR)
AR(594) = CMU2%((D2AR+S3IAR%¥RN2AR-SIAI*¥RD2AT)*NK2PR
1 ~ ~(D2AT+;3RAR®RD2AT+SBAI*RN2AR) #DK2P 1) '
AT(554) = CMU2#({D2AI+SRAR¥RD2AR=53AT*RN2AT)*NK2P1
1 +{(N2AT+SRAR*¥RDIAT+SRATI®#AN2 AR ) #NK2PR)
AR(555) = CMUI*(BARXDI2I + RAT*DI2R)
AI(555) = =CMULI*(3AR*DI2R - SAI#DI21)
AR(596) = =CMU2*{8AR*DK21 + SBAI*NDK2R)

A1(556) = CHMJ2%¥(RAR®DK2R = BAT*NK2T)
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CAR(651)-

1
2

1

2

1

2

. 219
200
211

212

215

1

2

Lo #CMUL%(RI2PR ~ (RIAR¥Z[2R — RBAT*3121))

AT(6s1) = Go#CMYIX(3I20] - (RBAR®*3I2] + RRAI*]I2R))
AR(692) = —~L*CMUI%(BK2PR = (RSBAR#3K2R - R8AI®*aK21))
AT(652) = =44%CMU2#*(BK2PT - (RBAR#RK2I + RBAI*8K2R))
AR(693) = —4o*CMUL*{ (RAR*¥RDIAR=3AI*¥RD1AT)#NI2PR=(3AR*RDIAI
+3AT#RNDIAR)*NI 2P~ (AR#*¥RSNIAR-RAT*¥RSNIAT) *¥DI2R
: +(RAR#RSN1AI + RAI*RSN1AR)*DI21)

Al(693) = =44%CMUL*({BAR*RDIAR-SATI#RD1AT)#DI2PI+(BAR*¥IDIAL
+BAT*RD1AR)#NI2PR~(3AR¥RSN1AR-BAT*RSDIAL) #0121
~(RAR%*RSNI1AI + SAI*RSN1AR)*#NI2R)

AR(S94) = 4o#CMU2%( (RAR®RD2AR=-3AI*#RD2AT)*NK2PR=~(RAR#RD2A]

o +BAT#RD2AR) #DK2P T~ (3AR¥RSN2AR-3AT*RSN2AT ) #DX2R
: +(BAR*RSD2AI + 3IAT*RSDZ2AR)#DK2T)
AT(634) = 44%CMU2%( (BAR%¥RD2AR-BAI*RD2AT)*#DK2P [+ (BAR#¥RD2A]
' +8AI*RDIAR) ¥DK2PR=(RAR¥RSN2AR-BAI¥RSN2AT) *¥DHK21
~(3AR%#RSND2AI + BAI#RSN2AR) *DK2R)

kAR(6,5)= CMUL*({ (SD1AR¥NIZPPI+SNIAI*DI2PPR)/2«=(D1AR*¥D[2°]

1

1

1.

1

+D1AT#DI2PR) /2,+2.%D121)
AL(655) = ~CMUL*((SD1ARXDI2PPR=SOIAT*DI2PPT)/24=(D1AR¥DI2PR
C —D1AI®DI2PI)/2.+24%DI2R)
AR(656) = -CMUZ*((SDZAR*D(ZPPI+SD2AI*D(’PPR)/2.-(02A°*D<7PI
+D2AT*DK2PR) /24+24%#DK21)
AT(656) = CMJ2%((SD2AR%DK2PPR~- SDzAI*DKZDPI)/2.—(DZAQ*0K?PR
‘=D2AT#DK2PT)/2,+24*NK2R)
ITEST = O

DO 211 J = 155
I'F (ARS(AR(39J)) - o1 £ 11) 23052105210

ITEST =11

IF (ITEST) 21152115212
CONT INUF

GO TO 259

LJ = J

DO 215 1 = 146

AR(TeLJ) = AR(TIsLJ)*, 1 F- 11
AT(IsLJ) = AT(IslJ)*sl E=11

CONTINUE
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216
217

259
20
105
107
10

16

30

AAR(LJ)
AAT (L)

nn

AAR(LJ)#*41 E~11
AAT(LJI*e1 E-11

IF (ARS(AR{3sLJ)) = &1 E 11) 21692179217

ITEST =

ITEST =

2

-GO TO 200

1

GO TO 290

no 20 1
Do 20
Do 2N

BR(TIsJ)

BM(IsJ)
SCALE =

nounQ—n

1.
CALL GAUSS{63sARsAT sDETRINDETI s SCALE s JROWSICOL)

196

= 16
= 1456
AR(1+J)
AT(TsJ)
9 .

IF (NETR-.1 F 50) 10551059125
IF (DETI=«1 £ 53) 10741079125

DO 10 I = 115
PO 10 J = 1s6 .
AR(I4J) = BR(TsJ) r
AT(TsJ) = SM(1sJ)

DO 16 J = 16
AR(4sJ) = AAR(J)
AT(4sJ) = AAT(J)
DO 30 I = 146
DO 30 J = 136
CR(IsJ) = AR(TsJ)
CI(IsJ) = ATI(IsJ)
DNETR = DETR
PDETT = DETI . .
CALL GAUSS (63sARsATSDETRSDETI»SCALEsJROWS ICOL)
DELR. = DETR
DELI = DETI
DETR = DDETR
DETI = DDETI
PO 15 I = 146
PO 15 J = 136

= aR(1sJ)

AR(T9JY).
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15

120°
125

126

WE = D4

DELR = N,

NDELT. = 0,

F = N

RWE = 0

RWELl = 0.

GO T9D 69

SSQ = NELR##2 + DELT#%2

TRILY = =(DETR*¥NDELR + DETI*DFLI)/SSD.
"TI(L) = =(DETI®*NDELR + DETR#DELI)/SS2

60

62

AT(IsJ) = BM{IsJ) .
IF (DELR=-.1 £ 50) 12051205125
IF (DELI=.1 F 57) 126512565125
TRIL) = 9.

TI(L) = 0,

WE = CMU1%#C/TRI(L)

CALL BIS(258AR90,75312R»R121)
CALL BIS({158ARsN.2+311Rs111)
BRI2PR = 3I1R - (2+/8AR)*3I2R
DENO = BI2PR/SI2R#(3, + BAR*#2)/8AR
F = WE*RE1/DENO

RWE = 1e/WFE

RWE1 = 1le/(WE%RF1)

IF (L=1) 5057050

WRITE (693) L

WRITE (6461)

PO 62 I = 196 '

-TTT-

WRITE (634) AR(Isi)9AR(I52)sAR(Is3)sAR(Ts4)sAR(T95) sAR(146)

CONT INUE

“WRITE (6+63)

64

DO 64 I = 196

WRITE (634) AT(Ts1)s4T(T92) AT (153)5A1(Ts4)9AT(155)sAT(Ts6)

CONTINUE
WRITE (6955)

WRITE (694) AAR(l)9AAR(2)9AAR(3)9A&§(4),AAR(5)9AAR(6)

WRITE (6966)

WRITE (696) AAT(1)98AT(2)28AT(3)98AT(4) s8AT(5) sAAT(6)

)



70

72

T4

990

50
~ 35

40
34

WRITE (695) DETRsOETIsDELRSDELIsTR(L) s TI(L)sZ (L) sWESRWEsRWELsF
GO TO 8

WRITE (693) L

WRITE (6961)

DO 72 1 = 146 - o
WRITE (6s4) AR(Is1JsAR(Is2)sAR(I33)sAR(I+4)>AR(I95)9AR(T46)
CONT INUE | |

WRITE (6s53) . .

NO 74 1 = 156 _ .

WRITE (694) AI(I91)sAT(I52)9AT(I53)sAT(1s4)sAI(195)sAT(5)
CONTINUE

WRITE (6965) -

WRITE (694) AAR(1)sAAR(2)sAAR(3)sAAR(4)sAAR(5)4AAR(6)

WRITE (6966)

WRITE (696) AAT(1)sAAT(2)sAAT(3)sAAT(4)sAAT(5)sAAT(6)

WRITE (695) DETRsDETIsDELRSDELIsTR(L) o TI(L)sZ (L) sWESRWEIRWELSF -
IF (ABS(TI(L)) = 0.001) 898599

L =2 ' .

GO TO 7

IF (ABS(TI(L)) = 0.001) 60460535

WRITE (693) L

"WRITE (695) DETR:DETIQDELR,DELIrTR(L)9TItL)9Z(L)oWEiRWE9RWE1’F

L = L+1 o . .

Z(L) = Z(L~1) = (TH(L-1)/Z(TI(L=1)=TI(L=-2))*(2(L=1) = Z(L=2)))
IF (L=25) 42,540,334

GO TO 7

TRIL) = 100.

TI(L) = 100,

WE = 100,

F =,1000

RWE = 199,

RWE1 = 100,

GO TO 60 : ’ :

FORMAT (I29F8443F1Ne4sF1Ne23F10e59F10454F1%e59F642)

FORMAT (/7204 INTERFACIAL TENSIONs&Xs 7THRUN NOJ.I3/11H INPUT DATA/5H

-2TT-



‘1 B = FB8e4912X95H A = FBe4/7H REZ1 =
22 F10e637X$THRRHO = F1046/6H C =F1043)
3 FORMAT (/4H L =137) ’
1T FORMAT (2F1046)
61 FORMAT (/17H THE VALUES OF AR)
63 FORMAT (/17H THE VALUES OF Al)
65 FORMAT (/18H THE VALUES OF AAR)
66 FORMAT (/18H THE VA[LUES OF AAIl)
4 FORMAT (1X96(F12e494X)) : : o
5 FORMAT (1H 94Xs9HD =2E16¢899X9FHDELTA =2F1648//

114H T =2F164891J0Xs8H. Z =E£1648//14H WE
28526Xs8H RWE =E4,6+8//14H RWE1 =E16¢8526Xs8H F .
6 FORMAT (1Xs6(E12e494X)//)

END

FlO0eGs7Xs THCMUL = F1l0e6/7TH RMU

_ =£16
=£16487

T -CTT~



C81s

csIL

SUBROUTINE BIS(NsRHOPHI»3RISy3IIS)

XN = N
R = RHO/2.0
RSQ = R*#2 - '

FP = R%#¥N/FACN(XN)

BRIS = FP*COS(XN*¥PHI)

BIIS = FP*SIN(XN*PHL)

DO 1 K = 1929

XK = ¥

FA = FP#*{RSQ/(XK#{XK+XN)}))

FP = FA : :

BRIS = FA®COS((2¢)%XK+XN}*PHI) + 3RIS
BIIS = FA®SIN((2e9#XK+XN)*PHI) 4+ BIIS
RETURN - o

END

1

SUBROQUTINE BIL(NsRHOSPHI»3RILSSIIL)
Pl 36141592654

XN N '

XMU = 44%(XN#%2)

R = RHO*8,0

PF = 1.

PFR le

PFI1 De9

SUMPR PFR

SUMPT = PFI

DO 1 K = 1537

XX K

XM 2#K -1

PF =({XMU = (XM%3%2))/(XK*R) ) #*2F
PFR = PF#COS{—-XK#*PHI)

PFI = PF#*SIN{=XK*PHI)

TR T

SUMPR = SJMPR + PFR
SUMPI = SIJMPI + P 7]
CONTINUE

-1-"["[-
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»
»

ALPHA = COS(PHI)

BETA = SIN(PHI)

X = RHO*ALPHA : : -

Y = RHO¥3ETA . ' :

SR =(EXP(X)/SQRT(24%PI#RHO) ) ¥ (COS{=PHI/24)¥COS(Y)=SIN(-PHI/24)*SIN
1(Y)) L

ST =(EXP(X)/SQRT(24%PI#RHDO)}#(COS(=PHI/2¢)*SIN(Y)+SIN(-PHI/24)*COS
1Y) .
BRIL SUMPR#SR = SUMPTI#S]I

BIIL SUMPR#ST + SUMPT#SR

RETURN ¢
END

SUSROUTINE SKL(NsRHOsPHIs3RKLs3IKL)
P1=3,141592654

XN = N

XMU = Go¥(XN%%2)

R = RHO%8,0

PF = 14,9
PFR = 190
PFI = 2.0
SUMPR = DPFR

SUMPI = PFI
DO 1 K = 1439

XM = 2#K =1

PF = ((XMU = (XM¥¥2))/{XK*R))*PF
OFR = PF#*COS(-XK*DHT ) -
PFI = PF®SIN(=XK*PHT)

SUMPR = SUMPR + PFR
SUMPT = SUMPI + PFI
CONT INUE .

ALPHA = COS(PHI)
BETA = SIN(PHI)

X = =RHO*ALPHA

-GTT-



CBKS

Y = -RHO*BETA

SR *(CXP(X)“SQRT(PI/(2.‘R43)))*(COS(-PHI/Z.)‘ COS(Y)}=SIN(=PHI/24)%5:

1IN(Y))

St ‘(EXP(X)*SQRT(PI/(?.*RHO)))‘(COJ(-DHI/Z.)’SIN(Y)+SIN(~PHI/2o)*C

10S8(Y}))
RRKL = SUYPR#SR - SUMPI#SI
BIKL = SUMPR#ST + SUMPI#SR
RETURN
END
FUNCTION PHY(XL)
SUM = =C¢577215665 -
IF(XL=16eD) 19192
1 PHY = SUM
RETURN
2 L = XL
LL = L-1
SOMME = Do
DO 3 M = 1eLL
XM = M
SOMME = SIOVMME + 140/XM
3 CONTINUE ' :
PHY = SU“ + SOMME

RETURN

END

SUBROUTINE BKSINsRHOsPHI»3RKSs31KS)
XN = N : :
R = RHO/2.0

RSQ = R¥*%#2

FIRST = FACN(XN-1l. 3)

FIRSTR = FACN(XN=-1e7)

FIRSTI = 7.0

SUM1IR = FIRSTR

SUM1l = FIRSTI

M = N-1

IF (M) b4e493

3 N0 1 K = 1M

)

~9TT-



XK = K

FIRST =(FACN(XN=XK=14)/FACNIXK))¥*( (~RSQ)#%K)
FIRSTR = FIRSTHCOS(2e*XK#PHL) '

FIRSTI = FIRST*SIN(2¢*XK#2HI)

SUM1R = SUMIR + FIRSTR
SUM1T = SUM1I + FIRSTI
CONTINUE

SUMIR=(D, 5/(R**N))*(SUM1? COS(=XN*PHI)=SUMLI*SIN(=XN*PHI))
CSUMLT = (De5/(R#*¥N))*(SUMIR*SIN(=XN*PHI) + SUMII#*COS(=XN#PHI))

"CALL BIS(VoRHO,PHI’B?I 311) oo

SUM2R (-1 .)**(N+1))*(ALOG(?)*BRI PHI*OII)
SUM2I .= ((=14)%#(N+1))*(ALOG(R)*BII + PHI®*3RI)
THIRD=(=2,577215665 + PHY(XN+140))/FACN(XN)
THIRDR = THIRD

THIRDI = NeD

SUM3R = THIRNR

SUM31 = THIRDI

DO 2 L = 1929
- XL o= L

THIRD=(PHY(XL+1e 3} +PHY (XN+XL+1 7))*(RSO**L)/(FACN(XL)*FACV(XN+XL))
THIRDR=THIRD#COS (2« I#XL*¥PHI)
THIRDI=THIRD*SIN(2,0%¥XL*PHT)
SUM3R = SUV3R + THIRDR
SUM3TI. = SUM3I + THIRDI

CONTINUE

SUM3R=((~14¢)#%*N)*¥(045% (R#*N)*(SUM3R* COS(XN*PHI)-DUMBI*SIN(XN*PﬂI))
1y :
SUM31=((-1.)**N)*(0.5*(R**N)*(SUM3R*SIN(XN*P#I)+SUM31*COS(XM*?HI))
1) ' ' :

BRKS = SUMIR + SUM2R + SUM3R

BIKS = SUM1Il + SUM21 + SUM3I

RETURN

END

-LTT-



FUNCTION FACN(XN)
IF{XN=247) 19293
FACN = 19
RETURN

FACN = 249
RETURN

N = XN

FACN = 249
DO 4 I = 3
Xl =1 :
FACN = FACN¥*XI
RETURN

END

N

et~



SUBROUTINE GAUSS(MsARsII4sNETRIDETI sFACTOR s JROWSICOL)
 DIMENSION AR(20920)sA0(20920) s JROW(20)sICOLI20)s2R(2I92D)s
1B1(20529) , :

N =M

DO 33 I=1sN
‘DO 33 .U=1N
CAR(I5J) = 3R(1sJ)

AT(IsJ) = 3I(IsJ)

33 CONTINUE ‘
SCALF = FACTOR

DO 11 IT = 1N
. JROW(IT) = IT
11 ICOL(IT) = IT

NN = N-1

DO 4 L = 1NN

K = L+1

AMAX = 0,

DO 20 J= LN
DO 20 I = LN
SSQ = AR(JsI)%#%2 + AI(Jsl)5%%2
IF(AMAX-55Q) 10920420
10 UR = J
IR = 1
AMAX = 559
20 CONTINUZ=
SSQ = AMAX
IF(SSQ) 21510021 -
21 IF(JR-L) 32,540,530
30 DO 31 I = 1N
CR = AR(JRI)
CI = AI(JRsI)
AR(JRsT) = AR(LsI)
AT(JRsI) = Al(LsI)
AR(LsI) CR
31 AI(LsI) cl
SCALFE = =SCALF

-6TT-



JRO = JROW(JIR)
JROW({JR) = JROWI(L)
JROW(L) = JRO
40 IF (IR=-L) 60452962
60 DO 61 J = 1N

CR = AR(JsIR)
Cl = AI(JsIR)
AR(JsIR) = AR(JsL)
AT(JsIR) = AT(JsL)
AR(JsL) = CR

61 AI{JsL) = CI
SCALE = =SCALE

'ICO = ICOL(IR)
ICOL(IR) = ICOL(L)
1coL(L) = Ico

50 DO 4 I = .KsN

. SQ = AR(IsL)%%2 + AI(IsL)%%2
IF(SQ) 39453

3 D0 14 JJ = LN

J = N+L—-JJ '
AX = AR(I,J)—(AR(IoL)*A?(LoJ)*AR(LoL)+AR(I'L)*AI(L’J)*AI(L,L)
1 +AT(TsL)*AR(LsJ)#AT (Lo )=AT(IsL)*AI(LsJ)*AR(LSL)I/SSQ
AT(T9d) = AI(TsJ)=(AT(IsL)*AT(LsJ)*AT(LsL)+AT(ToL)*AR(LsJ)*AR(LsL)
1 . 4AR(IsL)*AI(LsJ)¥AR(LsL)—AR{TsL)*AR(LS J)*AI(LoL))/SSQ
14 AR(I4J) = AX
4 CONTINUE

IF(SCALE) 7997
-9 SCALE = 1.

7 DETR = SCALE
DETI = 0o
DO 95 I = 1N
DR = DETR
NDETR = DETR*AR(IsI)=DETI*ATI(Is1])
95 DETI = DETI®*AR(I 1) +DR#AT(Is])
RETURN

)

100 DETR = Q.

- -02T-
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II. Velocity Profile in a Stationary Surrounding Liquid
The following programs were made to calculate the axial-velocity

components and the jet radius as functions of axial distance.

A. Main Program (ESGJET)
(l). Abstract C
The object of the program is to sélve for increments of the six -
empirical parameters in Egs. (8) and (9) at edch axial-distance z. The

matrix elements are given in the section for computation procedure.

(2) Usage 1
Input:
N : run number
RE1 ’ ‘ interior Reynolds nuﬁber
RMUV . ' " -viscosity ratio
RRHO ='. density ratio
RFR ' _ | reciprocal of Froude number
" Qutput:
A,B,C,D,E,M,z . funcfional valués of parameﬁers at each z.
F(1),F(2),F(3),  numerical values of Bgs. (10) through (15)
F(L),F(5),F(6) | |
vC : o dimensionless center-line velocity
VI ' dimensionless interfaciai velocity
SUMF f& {F(i)]g, éummation of the squaré of

s e r
i=i errors

z : ' dimensionless axial distance



(3) Restrictions
2z < 100

(4) Method

-12%-

Runge-Kutta third-order integration method.

B. Linearization Subprogram (LINIAL)

(1) Abvstract

This program provides numerical evaluation of z—derivatives of

given functions. ;Thhs, the elements of the matrix in the main program

can be evaluated without algebraic calculation. However, computation

by tﬁis method is several times slower than the use of algebraically

derived elements, therefore, this program was used only for a checking

purpose.

(2) Usagé

CALL LINIAL(Y,LS,A,B,LT,DF,F,SUMF,DSF,SUMO,SUML, SUM2)

Input:
Y

Lva
LT

F, SUMF, SUMO,
SUML, SUM2

Output:

A(T,T)
B(I)
DF(I,J)

DSF

magnitude of variables
number of variables

number of functions to be differentiated

* to be called from a function subprogram

denoting the linearized matrix equations
as AdY = B;

dF(I)RY(I) (1 511
-(0F(1)/0z)az (1
OF(1)/0Y(I) (1<
o(suMr)/0Y(J) (1<

IN

IT, 1 <J < L8)

IN
=

< IT)

—
IA

LT, 1 <J < LS)

A
o

< LS)
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(3) Method

"Numerical differentiation: _ - L

aFi/axj ~ {Fi(xjﬁﬁxj) - Fi(xjﬂij)}/(2Agj)

C. Simplified Program for’Soiving Liﬁearfsiﬁultaneous Eqﬁationé*(EQLIN)
(1) Abstract "
This frogram solves linear simultaneéus equations é§ = B by the
elimination methéd. |
(2) Usage:

CALL EQLIN (A,B,M,X)

Input:

A - L : coefficient-matrix element

B constant vector

M . number of rows dr columns in é
Output:

X _ i rOoté of the equations

(3) Restrictions
No provision has been made for underflow or overflow. A IRL
library tape, LINIT, is used to replace EQLIN for cases where underflow

or overflow occurs; it was not generally used because it had about twice

the execution time of EQLIN.
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D. Function Subprogrém (FUNC)
(1) Abstract |
This program furnishes magnitudes of functions for given
variables. Thué, this can be used for the checking of errors generated
by numerical integration.
(2) Usage

CALL FUNC(Y,LS,F,LT,SUMF,SUMO, SUML, SUMR)

Inpuf:

Y ., | ‘magnitude.of variables

LS  _ number of variables

IT - ‘ number of functions

SUMO, SUM1,, SUM2 : intégral values in functions
Odtpﬁt: | | v
F - | magnitude of functions

SUMEF - ' summation of square of F's



°ROGQAM CSGJET(INDUToOUTPUT) ' '
DIMENSION A(696),B(6)9X(6)’F(6)’Y(7)’XO(6)9X1(6)¢X2(6)’Y1(6)0YY(7)

19DF(6sT)sDSF(T)9SCR(6520)
. COMMON EXsRWU;D:LZ9ALPHApDELIQDEL2’F1(6)’F7(6)’F3(6)9F4(6)9WC0

19NDsRRHOFF3
LOGICAL SINGUL

'THIS IS AN EXPONENTIAL=SCHLICHTING TYPE VELOCITY MODEL.
VELOCITY PROFILE OF INTERIOR JET ASSUMES TWO. FORMSe AT FIRST
APPROXTMATE PARASOLA» THEN SCHLICHTING rvpr. o

(a¥aXa!

24 RFAD ) N’REI’RWUQRRHOQRFR
, IF (NeEQe99) STOP .
1 FORMAT (1294(F12. 6))
"PRINT 4
-~ &4 FORMAT (141) :
PRINTSs NsRE1+RMUSRRHOSRFR : o :
5 FORMAT (19H COMPUATION NOe = I12s//s19H INSIDE RE = Fl24694X

2/FROUDE ND, = Fl2.6//)

ALPHA IS A PARABOLIC CONSTANT. , '
- ALPHA = 1,9 CORRESPONDS TO A °ARABOLIC FORM,
- HOWEVER»TOO HIGH A VALUE OF ALPHA MAY CAUSE A BSREAKDOWN OF THE
. CALCULATINN.
RFR IS A RECIPROCAL FROUDE NQes WHICH IS DOSITIVE WHEN THE
INTERIOR. JET FLOW IS IN THE DIRECTION OF THEZ GRAVITY,

1¥aXaXaXaXa T

ALPHA = 0,95
C _ INITIAL VALUZS OF PARA%FTERS

‘148937

J¢14019 -
1¢9 ‘

1e¢9

Yili)
Y(2)
Y(3)
Y(4)

19194 VISCOSITY RAVIO = F12,6/19H DENSITY RATIO _=_F12.694X919H le

-gat- -



300
150

31

Y{5) = le0
Y{6) = D

Y{7) = 149E-D06
X{6}) = D

SUMO = 0,

SUM1 = Do

SUM2 = D

DEPZ = Ja

WCO = 240
FF3 = 0o

NB = 1

ND = 999

NP = O

NG = )

MA = 6

IT =19

DEL1 = 149E-05
DFL? = 045F-05

RE2 = RE1#RRHO/RMJ

PRINT 399, ALPHA

FORMAT (1Xs9H ALPHA = F644//)
PRINT 150

A

FORMAT (4Xs34 S1s9Xs5H F(1)97X’5H F(2)s7Xs5H F(3)s7Xs5H F(&)y?X;

15H F(5)97Xs54 F(6))

EX = EXP({-Y(6)%Y(T))

CALL LINTAL(Ys79A3Bs6, 3F9F93UMF’DSFo§U10 SUML s SUMZ)
IF (N3,GT.20) STOP

S1 = F(4)#%2 + F(5)%%2

PRINT 110y S1sF(1)sF(2)sF(3)sF(4)sF(5)sF(6)
IF (SleLTe2.9E-12) GO TO 100

DENO = DF(491)%*DF(552) = DF(492)%DF(541)
EPA = (F(4)*DF(H592) = F(8)*DF(442))/DENO
EPB = (F{5)%DF(49s1) - F{4)*DF(591))/DENO
Y{1) Y{1) = EPA

Y(2) Y{2) - EP3

N3 = N3 + 1

-LeT-



100

GO TO 31

R1 = ALPHA + Y(1)%#Y(2)/(1e + Y(1))#x3
Y(4) = Y(2)/({1e + Y(1))#%2

R2 = 0D45%RMU*Y(4)

Y(3) = R1/R2

EX = EXP(=Y(6)*Y(T7))
CALL FUNC(Ys79Fs69SUMFSUMI9SUMLeSUM2Z)
PRINT 1195S1sF(1)sF{2)sF(3)sF(4)sF(5)sF(6)

'VC = CENTER VELOCITYs VI = INTERFACIAL VELOCITY

PRINT 13

13 FORMAT(/ 4Xs2H Z910X 924 AleX;ZH 3410Xs2H Cs10Xs24 Ds13X92H Rs10X>

55

56

530

59

12H Mel1DXe3H VCs1I0Xs3H VIe3Xed5H SUMF/)

VC = 2 ¢#ALPHAXEXP(=Y(6)%Y(T))#Y(5)%%2 + Y(2)
WCO = VvC . -

VI = Y(2)/(1e + Y{1)%Y(5)%%2)%%2

VIE = Y(4)

PRINT 14y Y(7)e(Y{I)sI=146)sVCesVIsSUMF
PRINT 117s VIEs(F(I)elI=146)

DELZ = 1eNE-07

InD = 1

X(6) = 0 .

“IF (NP eNE«OsANDeNDEQa999) NQ = NQ + 1

IF (INDeGELND)Y GO TO 56

IF (EXP(=Y(6)%*Y({T7))elLTa5¢25=04) ND
IF (IDeEQ.ND) PRINT 39IDsY(7)sEX
FORMAT (135251244)

IF (INDeEQND) PRINT 6

FORMAT(5HID IN) '

IF (Y(7)elLTe170s) GO TO 59

PRINT 530 IDSY(T)

ID

FORMAT (1HO921HTOTAL NOes OF STEPRPS = [39/////79114MAX YI(T7)

GO TO 24

IF (INWEQeID) NFLZ = 104#DELZ .
IF (ID.EQ.180) NFLZ 104%NFLZ
IF (IDJ5Q.279) DELZ 104 %0DELZ

. -83‘[-
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IF (ID.EQ.360) DELZ 104%¥DELZ

IF (ID4FR457) DELZ = 10.#DELZ

IF (INJEQ.540) DELZ = 104*DELZ

CIF (ID.EQ4630) DELZ = 10,%DELZ
60 IF (NDeNZ¢999) DELZ = 140

IF (NQ;EQ.IO)»DELZ = 140
IF (NQeERa1l1l) NP = 9
IF (NPLEQ.0) NQ =0
NS = 1 -
NO 73 1 =
YY(I) = Y{(
73 CONTINUE
493 DO 400 I
DO 401 J
AlTsJ) =
401 CONTINUE
 B(I) = O
400 CONTINUE
EX = FXP(—Y(é)*Y(7))
IF (NDJNEL399) EX = D,
FX = 1o + Y(1)#Y(5)%%2.
- IF (FXeLTeDeD) PRINT 16
16 FORMAT(9HFXel.TeNeD)
IF (FXebLTeDe0) GO TO 24

17
1)

146
1496

QO u

- -62T-

Al192) = 4 %ALPHAREX*Y(5)#%2 + 20%Y(2)

A(1s5) = 16*ALPHA#®2¥*Y(5) *#3%EX* %2 + Bo*ALPﬂA*Y(Z)*Y(D)*EX

Al196) = —Boe*ALPH\¥%2%Y(5)%X4%Y (T7)HEXK%2 = 4o XALPHARY (2)*#Y(5)**2%Y
1(7)*EX

BU1) = EX*(Be*ALPHAXR2KY(6) XY (5)*#4%EX + 4o*ALPHARY (2) %Y (6) %Y (5)%*
12)*DELZ | |

AG251) = =2e%Y(2)%Y(5)%%2/FXH3

Al252) = 1e/FX%%2 |

Al2s4) = =1e

A(255) = —Ga*Y(1)RY(2)%Y(5)/FX*%3

A(391) = Y(2)/FX%%3 = 34%Y(1)¥Y(2)#Y(5)%%2/FX4x4

A(3s2) Y1) /7FX#%3



402

A(393) = =De5%RMUY(4)

Al3s4) = =D45%IMURY(3)

Al395) = =6#Y(1)%¥A2XY(2)%Y(5)/FX*%4
A(3s6) = —ALPHA®Y(7)#*EX

B(3) = ALPHA%Y(H)*EX#DELZ

AlGs1l) = =DeS5%Y(2)X*Y (D) *%4/FX*%2

Al{492) = DeBHY(5)#%2/FX

A(495) = 24%ALPHA¥Y(5)%#%3%EX + Y(2)*Y(5)/FX = Y(l)*Y(?)*Y(S)**B/ﬁx
1#%2 '

Al4sb) = —3.5*ALPHA*Y(5)**4*Y(7)*EX

Bl4) = O45%ALPHA*Y(6)*Y(5) #¥4#EX*DELLZ

Al591) = 2o*ALPHARY(2)*EX¥ (=Y (5)**6/FX*%2 - Y(S)**4/(Y(l)*FX**2) -
12.%Y(S5)#%2/ (Y (1) #¥%2%FX) + 2.%ALOGIFX)/Y(1)%¥%3) = 1le/6e*(Y(2)/Y(1))
2%%2%(1e = Lo/TX#%3) + 0o5%(Y(2)#Y(5))**2/(Y1)*FX*%4)

AlB5s2) = 24*ALPHAXEX*(Y(5)*%4/FX — ALOG(FX)/Y(1)%%2 + Y(5)%%2/(Y{1
1I#FX)) + 1e/3e%*(Y{2)/Y(1))%(1e = 1la/FX¥%3)

A(555) = L4 #ALPHA®#2%Y (5)%*54EX#%2 + 4o ¥ALPHA¥ Y(Z)*FX*Y(S)**B/rX +
1 Y(2)%#2%Y(5)/FX%%4

A(596) = =lo/3eXALPHARR2HY (5)$¥6XY (T)HEX* %2 = 24 *ALPHARY (2)#Y (7)%E
IX*(Y(5)%%4/FX — ALOG(FX)/Y(1)#%2 + Y(5)%%2/(Y(1)*FX))

BI5) = (4e/3¢*ALPHARR2RY(6) XY (5)H¥GREXHHD + 24 *ALPHAXY (2)*#Y(5) *EX*

LY(5)*#4/FX = ALOGIFX)/Y(1)*%*2 + Y(J)**Z/(Y(l)*FX)))*?ELZ

Al693) = =De25%(Y(4)/Y(3))%*2
Albss4) = 0e5%#Y(4)/Y(3)

IF (NDsEQe999) GO TO 402
A(553) = A(593) + RRHO®A(6,3)
A(594) = A{594) + RRHO*A(64+4)
MA = 5

IF (NS<EQ.2) GO TO 426

IF (NS.S2.3) GO TO 407

IF (IDeNZL1) GO TO 700

Ul = 32.%(ALPHA%EX + Y({1)*Y(2))/RE1 - RFR.

V1 = 84/REL1*(ALPHA#EX#*Y(5) ¥%2 + Y(l)*Y(Z)*Y(S)**Z/(l.
1 + Y(1)%Y(5)#%x2)%*%3) — (425%Y(5)*#2%RER

Wl = &, /REZ*Y(B)‘Y(A)*Y(b)*KZ - 0 25%Y(5) #*¥2*RFR/RIHI
GO TO 701

- -04T-



799

701

550
15
551

71

74

406

552

Ul = Us
vl = V4
Wl = W&
8(1) = 3(1) = U1*DELZ
B(5) = 3(5) - V1#*DELZ
B(6) = 3(6) + WI®DELZ

IF (NDeNE.999) B(5) = 3(5) + RRHO*3(6)
IF (NDeNE4999) GO TO 550 E
CALL EQLIN(AsBsMAsX)

GO TO 551 '
CALL LINIT(As3sXsMAs1sDE TOIEX,&.\IQobINGUL’f)QS\.?)

IF (SINGUL) PRINT 15
FORMAT (13HA IS SINGULAR)
IF (SINGUL) GO TO 24

DO 71 1 = 146
X0(I) = X(I)
CONTINUE

DO 74 I = 16 |
YOI) = YY(I) + XO(I)%0,5

CONTINUE

Y(7) = Y(7) + 045%DELZ

NS = 2 |

GO TO 403

U2 = 324%(ALPHA*EX + Y(1)%Y(2))/RE1 - RFR

V2 = 8¢/REL*(ALPHAXEXH*Y(5)*%#2 + Y(l)*Y(Z)*Y(D)**2/(lo
L+ Y(L)*Y(5)%%2)%%3) = 242557 (5)%%243FR

W2 = 4¢/RE2¥Y(3)%Y(4)%*Y(5)#%2 - Oo’S‘Y(S)**Z*RFR/RRHO

]

'B(l) = B(1) - U2#DELZ
B(5) = 3(5) = V2¥DFLZ
B(6) = 3(6) + W2*DELZ

IF (NDeNEW999) 3(5) = 3(5) + RRHO*3(6)

IF (NDeNZ.999) GO TO 552

‘CALL EQLTIN(A9s39eMMAsX)

GO TO 553 =

CALL LINIT(Ao%oX,WAa1'3°T0I°X9CNR,SIVGJL 695CR)
IF (SINGUL) PRINT 15
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IF (SINGUL) GO TO 24
553 DO 75. 1 = 116
X1(I) = X(I)
75 CONTINUE
DO 76 1 = 116 |
YOI) = YY(I) + 244X1(1) = XO(I)
76 CONTINUE -
YO7) = Y(7)+ 045%DELZ
NS =-3
GO TO 403 .
407 U3 = 324%(ALPHAXEX + Y(1)%Y(2))/RE1l ~ RFR .
V3 = 84/RELI*(ALPHAXSX®Y(5)%%2 + Y(1)*Y(2)%Y(5)%%2/(1e

1 + Y(1)%Y(5)%%2)%%3) — 0425%Y(5)#%2%RFR

W3 = 4o/RE2¥Y(3)%Y(4)%XY(5)%%#2 — 0e25%Y(5)*%*2%¥RFR/RRHO
B(1) = 3(1) - U3*DELZ
"B(5) = B8(5) - V3*¥DELZ

1]

B(6) 3(6) + W3*IELZ
IF (NDoNELS99) 3(u) = B8{5) + RRHO*3(6)
IF (NDeNEZ,999) GO TO 554 ’ o
CALL EQLIN(AsBsMAsX)
GO TO 555

554 CALL LINIT(AsBsXsMAs19DETIEXsCNRySINGULISsSCR)
IF (SINGUL) PRINT 15 :
IF (SINGUL) GO TO 24

555 DO 77 I = 136
X2(1) = X{(I)

77 CONTINUE
DO 78 I = 16 _
YI(I) = 1e/66%*({XOPT) + 44%X1(I) + X2(1))

78 CONTINUE
DO 81 I = 16

. Y(I) = YY(I) + YI(I)

81 CONTINUZ
Y{7) = YY{(7) + DHELZ
EX = EXP(-Y(6)%Y (7))
IF (NDeNE.999) EX = O.

~2¢T-



553

75

76

407

554

555

77

78

81

IF (SINGUL) GO TO 24

DO 75 I = 146

X1(I) = X(I)

CONTINUE.

DO 76 1 = 1456 .-

Y(I) = YY{I) + 2#X1(I) = XO(I)

CONTINUE

Y(T7) = Y(7) + De5%DELZ

NS = 3

GO TO 403

U3 = 32,#%(ALPHA#EX + Y(1)*Y(2))/R=1 - RFR

V3 = 8¢/RE1*(ALPHAXEX*Y(5)%%2 + Y(l)*Y(Z)*Y(D)**Z/(l.
1 4+ Y(1)%Y(5)%%2)%%3) = 0,25%Y(5)*%*2%RFR

W3 = 44,/RE2%Y(3)#Y(4)*Y(5)%%2 — O, ZS*Y(S)**Z*RfR/QQHD
B(l) = B({1) - U3*DELZ" '
3(5) = B(5) - V3*DELZ

B(6) = B(6) + W3XDELZ o

IF (NDJNF.999) 8(5) = B(5) + RRHO#R(6)

IF (ND.NE.999) GO TO 554

CALL EQLIN(A9BsMAsX)

GO TO 555

CALL LINIT(A,R,X,MA,l DFToIEX;;NRoSINGULoé;SCR)
IF (SINGUL) PRINT 15 :

IF (SINGUL) GO TO 24

DO 77 I = 196 '

X2(I) = X(1)

CONTINUE

DO 78 I = 1s6 :

YI(I) = 14/66%(X0(1) + &44#X1(I) + X2(1))
CONTINUFE - o

DO 81 I = 196 ,

Y(I) = YY(I) + YI(I)"

CONTINUE ,

YUT) = YY(7) + DELZ
EX = EXP(=Y(6)%Y(T))
IF (NDJNE.999) FX = 0.

gt~



84

14

110

113

U4 = 32e%(ALPHA®EX + Y(1)%Y(2))/RELl - RFR

Vb = Bo/REI*(ALPHAXEX*Y(5)%%2 + Y(1)%Y(2)#*Y(5)%%2/(1.,
1+ Y(L)®Y(5)#%2)%13) — 0,25%Y(5)#*2*RFR

Wh = L44/REQRY(3)RY(4)*#Y(5)%#%2 - 0.25%Y(5)**¥2*¥RFR/RRHO

INTEGRATIODN 3Y TRAPEZOIDAL RULE

sSuMd SUMD + DELZ#(UL + U4)/2.

SUM1 = SUM1 + DELZ*(V1 + V&4)/2.
SUM2 = SUM2 + DELZ*¥(W1 + W&)/2.

CALL‘FUNC(Y’?,FQé’SUMFQSUMO’SUMlQSUMZ)
IF (ID.EQ.1D) FF3 = F(3) , '

X = 0, o

CX = EXP{-Y(3)*Y())*%2)

IF (CXelLTe1le7E5E=-N08) GO TO 84

DX = Y{4)/CX

VC = 24*ALPHAXEX®*Y(5)%%#2 + Y(2)

IF (IDLLEL10) WCO = VC

VI = Y(2)/(1e + Y(1)RY(5)%%2)#%*2

VIE = Y(4) ' o : ,
PRINT 14s  Y(T7)s{Y(I)sI= 195)sVCsVI9SUMF
FORMAT (10E512.4)

PRINT 110y VIEs(F(I)sI=1,6)

FORMAT (T7E12.4)

PRINT 110s (Y1(I)9eI=1958)92X

IF {(ND.NE,993) GO 70O 111

IF (ID,LT422) GO TO 111

IF (SUMF4LTe1,95E~-06) GO TO 114

NP = ND + 1.

REDUCE THE SIZE 0F DELZ WHEN APPROACHING A CRITICAL POINT.,

IF (NP.EQ.1) 2RINT 113
FORMAT { 74SKIC ID) :
IF (NPL,FQ,.,12) GN TO 24

PO 112 I = 145

Y(I) = Y(I) - Y1(I)

..f‘g'[..



112

114

111

CONTINUE ,

Y(7) =-Y(7) - DFLZ ,

SUMD = SUMD = DELZ*(Ul + U4)/2e
SUM1 = SUM1 = DELZ#(V1 + V&4)/2..
SUM2 = SUM2 ~ DELZ*(W1l + W&4)/2.

DELZ = D45%#DELZ

GO TO 55

IF (NPoNE.DeANDNQeLT410) GO TO
IF (NR.FQ.10) PRINT 6
ID = ID + 1

~.G0 TO 55

END

55
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SUBROUJTINE LINIAL(Y3LSsAs3sLTsDFsF s SUMFsDSFsSUMD s SUML s SUM2)
DIMENSION Y(LS)sA{LTsLT)s3(LT)sDF(LTsLS)sF(LT)sDSFILS)
COMMON EXsRMUsDELZ s ALPHAS DCLl,w:Lz»fl(s),=7(6),F3(6),=4(5),Afo
19NDsRRHD9FF3 :
CALL FUVC(Yo?sFoSoSUMFoaUMO SUM1 s SUM2)
SUMF1 = SUMF .
DO 1N2 J = 14tT
F1(J) = F(J)
102 CONTINUE
PO 101 I = 14LS
Y(I) = Y(l) - DFL1
CALL SUNC(Ys79F 969 SUMFsSUMDsSUML s SUU2) e
DO 104 J = 1sLT
F2(J) = F(J)
104 CONTINUE
YOI) = Y(I) + 2.%)EL1 , <
CALL FUNC(Ys75sFs65SUMF, SUMD §S1JMT 9 SUM2) '
DO 124 J = 1sLT
F3(J) = F(J)
124 CONTINUE -
Y{I) = Y(I) - DEL1
110 Y(1) = Y(I) = DFL2
CALL FUNCI(Ys73sFs69SUMF9SUMI9SUMT s SUM2)
DO 125 J = 1sLT ‘
O OF4(dy = F(D)
125 CONTINUE
SUMF2 = SUMF
Y(I) = Y(I) + 2.%)EL2
CALL FUNC(Y»s75Fs65SUMF3SUMNSUML suw2)
CY(I) = Y(I) - DEL2
NO 1n3 K = 1,LT
DF1 = (F3(X) = F2(K))/(2,%DFL1)
DF(KsI) = (F(K) .= Fa(K))/(2e#NDFL2)
DEF = ASS(NDF(KsT) = DF1) _
IF (DEFeLTeleNE~04) GO TO 103
IF (DFEL24LTeleN5=28) GO TO 103
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116

103

101

105
127

106

108

DO 116 J = 1sLT

F3(J) = F(J)
F2(J) = Fa4ald)
CONTINUE

DEL1 = DEL?
NEL? = DFL2%#7.5

GO0 TO 110

CONTINUS -
DSF(I) = (SUMF = SUMF2)/(2.%DSL2)
CONTINUE :
DO 107 I = 14LT

NO 105 J = 1,LT
A(TsJ) = DF(1sJ)
CONTINUE

CONTINUE

PO 106 I = 1,LT |
B(1) = =DF(I,LS)*DFLZ
CONTINUE

DO 108 1 = 1,LT
FIT) = F1(I1).
CONTINUE

SUMF = SUMFI
RETURN

END
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SUBRDUTINF EQLIN(AsRsMeX)

DIMENSION A(MyM) 9B (M) X (M) :

COMMON EXosRMUsDELZ s ALPHASDELY9DEL29sF1(6)sF2(6)19F3(6)9F4(6)s%WCO
1sNDsRRHDFF3 : :
DO 1 K=1M

wW=0

DD 5 J=K M

Y=A8S(A(JsK))

IF (YeLFaW) GO TO 5

W =Y

M=

CONTINUE ’ K S
IF (WelLTeleNE=150) GO TO 7
ND & J=XK M

W=A(KsJ)

A(KeJ)=A(JIMyJ)

A{IMeJ) =

W=3(X)

B(K)=3(JM)

S(JM)=W

W=A(KsX) .

DO 2 J = KM

A(Ky J)=A(C s J) /Y

B(X)=3(X})/W

DO 3 I=1yu

IF(I.FRK)Y GO TO 3

W=A{1sK)

DO 4 J=X M
A{ToJ)=A(T s J)-WH*A(KosJ)
B{I)=3({1)~W%3(K)

3 CONTINUE _

CCONT {NUFE , ' : e
NN Q9 J=1 ¢V : '

X{J)=_(J)

GN TN 8

PRINT 100

. =Q¢T-
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SUBROUTINE FUNC{YsLSsFsLTsSUME»SUMO s SUML SUMZ)

DIMENSTION Y(LS),F(LT) o '

COMMON . - EXsRMU,DE LZ s ALPHA) DEL1955L7’:1(6)957(6)’:3(6)’:4(6)9WC0
1sNDSRRHO 9 FF 3

IF (NDeNZ,999) FX = O,

FX = 1la + Y(1)®Y(5)%%2 . -

IF (FXeLT40eD) GO TO 1

EX = EXP(=-Y(6)%Y(T7))

‘COMRINATION OF PARAROLA AND NONPAQAQOLA.-
THE FOLLOWING rQUATIOVS ARF s

1 COUATIOM OF MOTION AT R = 0

FU1) = (2,%ALPHAXEX®Y(5)#%2)%##2 + 4.*AL°HA*Y(7)*Y(D)**2*EX + V(Z)*.

1%2 = WCOX%2 + SUMD

2. THE MATCHING OF VELOCITIES AT AN INTERFACE
F(2) = Y(2)/FX#%2 = Y(4)

3. THE MATCHING OF TANGENTTAL STRESSES AT AN INTERFACE
F(3) = ALPHAXEX + Y(1)¥Y(2)/FX*%3 = 0,5¥RMUXY(3)*Y(4) ~ FF3

4e MASS 3ALANCE FOR A JET
Fl4) = O0eS5S*ALPHA*Y (5)%*%4%EX + O S*Y(Z)*Y(S)**Z/FX = 045

5 MOWcNTUM 3ALANCE FOR A JET

FU5) = 2e¢/3e¢*ALPHAXHIRY(5) #XGREXH®D + 2,4 *\LPHA*Y(Z)*EX*(Y(S)**A/EX

1 - ALOG(FX)/Y(1)%%2 + Y(5)%#%2/(Y{1)*FX)) + le/6a{Y(2)%¥%2/Y(1))*(1
2¢ = le/FX%#%3) — 2, /3. + SUM1 ,

6e MOMFNTUM RALANCF FNR A SURRDUNDING . FLUID
FI6) = D425%Y(4)%%2/Y(3) — SUM2

IF (NDeNEL999) FI(5) = F(5) + RRYO*F(6)

SUMF = F1)%%2 + (2)%%2 + F(3)#%2 + E(4)#%2 + F(5)*#%2 + F(5)*x2

o
.
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III. Velocity Profile in a Moving Surrounding Liquid

~ L

The programs are designed to calculate the axial—#élocity com-

ponents and the jet radius as functions of axial distance.

A. The Main Program (ANUJET)

(1) Abstract

The object of tﬁe program is to solve for increments of the seven

N

parameters in Egs. (1) and (2) at each axial-distance z. The matrix

elements are given in the section for computation procedure.

(2) Usage
Input:
N

RE1

RRHO

SK

Output:
A,B,C,D;E,G;M,a

F(1),F(2),F(3),F(L),
F(5),F(6),F(7)

Ve
VI

SUMF

run nﬁmﬁer

interior Reynolds number
average velocity ratio
viscosity ratio

density rafio

orifice~-to-tube radius ratio

‘functional values of parameters at each z

numerical values of Egs. (10) through (16)

dimensionless center-line velocity

dimensionless interfacial velocity

© summation of the square of errors

dimensionless axial distance
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~(3) Restrictions.
z < 100

(4) Runge-Rutta third-order integration method

B. ‘Funétion'Subfrogram (FUNC)
(1) Abétract
This program gives the numerical'values 6f functions for given-
variables.
.(2) Usage

CALL FUNC(Y,LS,F,LT,SUMF, SUMO, SUML, SUM2)

Input:

r o o ' mégnitude of vériables

Ls : a number.of variablés
LT - number of-functions
»SUMO,SUMl;SUMQ , integral values in functions
dutput:

F ' ‘ . magnitude of functions

SUMF ' . summation of square of F's

LINIAL and EQLIN are the same as given before



aXaNaYA!

aNNOANNN

5

PROGRAM ANUJET (INPUT »2UTOUT)

NDIMENSION A(7,7)s8(7)’X(7),F(7)9Y(8)9XO(7)9X1(7)oX2(7);Y1(7)9YY(9)

19DF(798)eNDSF(8)3SCR(7+20)

COMMON EXsRMUSDELZ), ALPHA9DCL19DCL79F1(7)9F7(7)’ 3{T7)esF4(T)s%CO
1sNDsRRHDO 9 FAMA S CK 3SKsCKAsSK19FEELsFF 395 F54F

LOGICAL SINQUL

THIS IS A PROGRAM-DES+GNZD FOR A JET IN A CIRCULAR TU3E.
THIS IS AN EXPONENTIAL-SCHLICHTING TYPE VELOCITY MODEL.
VELOCITY PROFILE OF INTERIOR JET ASSUMES TWO FORMSe AT FIRST
APPROXIMATE PARABOLAs THEN SCHLIC+TING TYPE, : :

READ 14sN9RE1sGAMASRMU»RIHD,SK

FORMAT (1255F1245)

IF (NeFEQ2¢9 ) STOP

ORINT 4

FORMAT (1H41)

PRINT 595 NsRE1sGAMASRMYSRRYO

FORMAT (194 COMPUTATION NO. = 129//s194H INSIDE RE = F124694X
15194 AVEs VELe RATIO = F12.6/19H VISCOSITY RATIO = F12.654Xy134 DE
2NSITY RATIO = F12.6//) - :

ALPHA - IS A PARASOLIC CNANSTANT,.

ALPHA = 1.0 CORRESPONDS TO A PARABOLIC FNORM,

HOWEVER»TOO HIGH A VALUF OF ALPHA MAY CAUSE A 3SREAKDOWN OF TH-
CALCULATION. '
GAMA IS A RATIO OF AVERAGE VELOCITIFS OF ‘INTERIOR AND EXTEQIOQ
JETS.

ALPHA = 0,95
INITIAL VALUES OF PARAMETERS

Y1) = 148237
Y{2) = 0414019
Y(3) = 1.0
Y{4) = 149

T



308

390
31

Y(6)
YT
Y(8)
- SUMD

_SuUM2

FF3

Y{5)

DO

z

)
lT‘
1.
)
o]

X(7)

DO O

SHM1

[ LI T R { N T RO N T B | O

[ Jx )
e o o

N\
.
Oe

NELZ
WCO

FF5
FFT.
NS
ND..
NP

w o
DO D
e o ®

T TR TR R TR
0
0

D ~ND D0

RE2 = RC1*RRHO/RM!)

"RE2 IS AN EXTER+-R REYNOLDS NJ. BASED ON THE DRIFICE DIA

€K = 1o + SK#%2 = (1, - SK*%2)/ALOG(14/SK)

E€1 = 0.
SK1 = SK#*%2 :
CKA = (le = SK¥#2)/(ALOG(SK))

"PRINT 1378, SX

FORMAT (1X»184 RAT+0D OF RADII = Fba4//)

PRINT 1390, ALSPHA v

FORMAT (1Xe94 ALPHA = Fée4//)

X = EXP{=Y(T7)*Y(3)) _

CALL LINIAL{Y 983A9R3790F sFsSUMFeDSEHZSUMDeSIUMI »SUM2)
IF {(N34GT422) STHO?

-gnt_



S1 = F(L4)#%2 + F(6)%%2

PRINT 1195 Sls (F(I)sl=157)
110 FORMAT (8511.3) |

IF (S14LT42.95-12) 50 TO 100

DENO = DF(4s1)%DF(652) = DF(492)%*DF(691)

EPA = (F(4)%DF(692) = F(6)*DF(452))/NENO

EPS = (F(5)%NDF(4s1) = F(4)%*DF(691))/DIND

Y(1) = Y(1) - EPA

Y(2) = Y(2) - FP83

NB = N3 + 1

GO TO 31
100 R1 = ALPYA + Y(1)#Y(2)/(1s + Y(1))%%3 = O, S*RMU*GAWA/C<*(2.*S<* 2

1 + CKA/Y(5)#%2) . .

Y(4) = Y(2)/(1e + Y(1))%%2

R2 = N45*RUURY (4)

Y(3) = R1/R2

EX = EXP({=Y[T)#Y(R))

o

CALL FUNC(Y,q,F,7.SUMF,suwo,suw1,suw2) o
FF5 = F(5) &
FF7 = F(7) '

PRINT 1175 S1s (F(1)sI=1,7)
VC = CENTSR VELOCITYs VI = INTERFACIAL VELOCITY
PRINT 13 S
13 FORMAT(/ 4X32H Zs9Xs2H As9Xs24 B39Xs24 Cs9Xs2H Fs9Xs2H R59IXs2H Gy
19X 92H M99X9s3H VCeIXs3H VIe7Xe5H SUMF/)
vC = 2. *ALCHA*’:XP(—Y(7)*Y(8H)*Y(5)**2 + Y(2)

WCO0 = VvC
VI = Y(2)/(1e + Y(1)%Y(S)*%2)%%2
VIE = Y{4)

PRINT 143 Y(8)s(Y!I)aI=1s7) sV sVIsSUME
14 FORMAT(11511.3) -
PRINT 1105 VIEs(F(1)sI=1s7)

PELZ = 14755=27 | ‘ - -
In =1 . . . _ _
= N,

55 X(7)



69

73
4013

401

409

‘DO 401 J

IF (NP oNE.DsANDSND.FA,999) NQ
IF (ID.GE.ND) GO TD 556

= NQ + 1

IF (EXO(=Y(7)%Y(8)Y)elLT41s25-03) ND = 1D
IF (INFAND) PRIANT 35IDsY(8)9EX

FORMAT (1352F11473)

IF (IDJEQ.ND) PRINT 6

FORMAT (19410 AND TAPE-READ IN)
IF (Y(8)4LT+1704) GO 1D 5%
PRINT 537, INsY(8)

FORMAT{ 1HO s 21HTOTAL NO, OF STEPS = 133/////511HMAX Y(T7)

GO TO 24

1]
m
—t
N
>

~

IF (NPeNEeD«ANDGNQLTL52) GO TO 60

IF (IN.EQ.90) DRLZ = 10.%#DELZ

IF (ID.£Q.189) NSLZ = 10.*DFLZ
IF (I1D.5Q.270) DELZ = 10,%DELZ
CIF (ID.ENQ.360) DELZ = 10,#D5LZ
IF (IN.ER.457) NELZ = 10.,%DEL7
IF (ID.EQ.540) DELZ = 10,%DFLZ
IF (NDJNEL.999) +ELZ = 149

IF (NQ.5Q.51) NP 3 9
IF (NP,EQR.N)Y NQ = 0O
NS = 1

DO 73 1 = 1.8
YY(I) = Y(I)
CONTINUE

DO 409 1 1s7
197

]
o I | ]

Al(Ts)
CONT INU=

B(I) = D .
CONTINUE :

SK1 = (SKX#Y(5))%%D
CKA = (1e¢ = (SKEY(5))%%2)}/ALOG
NDCKA = =2,/ALOGISKY) = 2,*( (1,

EX = EXP(=Y(7)%*Y(8))
IF (NDeNS.999) "EX = 7,

FLnt-

(SK*Y(5)) .
- SX1)/5%1)/(ALOG(SK1) ) *%2



15

FX = 1o + Y(1)%Y(5)%%2
GX = 1a + Y(3)%YUS)%%2
IF (FXeLT4N4D) PRINT 16
FORMAT (9HF XaLTeN o))

IF (FX.LT42eN) GO TO 24

Alls2) = 4.*ALPHA*:X*Y(D)**? + 2 *Y(7) '

Al195) = 164#ALPHAXRRDX Y(5)**3*:X%*7 + B HALPHA®Y(2)%2Y(5)%EX

A(1s7) = —~Se#ALPHA®X2¥Y(5) %¥4%Y (B)HEXFHD = L HALPHARY (2) %Y (5) #%2%Y
1(8)%EX L » .

(1) = EXH(Be¥ALPHAR®DAY (T )HY (5 )RH4HEX + LXALPHARY (2) %Y (T)*Y(5)%*
12)%¥DELZ

Al2s1) = =2 *Y(Z)*Y(D)**’/FX**3

A(292) = Y4/FX%#%2

Al2+4) = =1le .

A(295) = —Lo*Y (1) EY(2)%Y(5)/FX*#3

A(3s1) = Y(2)/FX#*3 - 3.*Y(1)*Y(2)*Y(5)**7/FX**4

Al392) = Y{1)/FX#3#3

Al393) = =0,5%¥RMU*Y(4)

Al{3s4) = =Ng3%#RMUXY(3)

A(34+5) = -60*Y(1)**7*Y(7)*Y(D)/FX**4 + 2 *QMU*UAMA/CK*(I. - SK1 +
1 ALOG(SK1))Y/Z(Y(5)##3%#(ALOG(SK1) ) #%x2)*Y{(6) ‘

Al(398) = —=0e5%RMUGAMAR(D 4 ¥SK%*2 + CKA/Y(O)**Z)/L(

A(397) = —=ALPHAR*Y{B)*EX

8(3) = ALOHA*Y(7)*EX*DELZ

Alhsl). = =045RY(2)#Y(5) %84 /FX#%2
Albs2) = De5*Y(5)%%2/FX -

AlGs5) = 24#ALPHAXY(5)*%3%EX + Y(Z)*Y(S)/CX - Y(L)*Y(2)%Y(5)**3/FX
1%%2

AllsT) = =Do5*ALPHARY (5)%#%4%Y (8)*EX

B(4) = Q. s*ALDHA*Y(7)*Y(S)**4*cx*3:|7 s

A(593) = —045%Y(4)/Y(3)*%2 '

Al5s4) = N45/Y(3) : R
A(595) = 24%(GAMARY(6)/CK)#(Y(5)%(1s ~ s<1) = 1o = UeSEFY(S)FCKA +

1 NeS®#Y(5)#(1s = SK1)#DCKA) .
A(556) = 2e*(GAMA/CK)I*((1e/5K — Y(5)) = 0,425%SK**2%(1, /SK**A -Y(s

1) #%4) 4+ 0SEY(5)M*2#(1, = SK1) + (1l = SK1)#CKA/ (4o #SK*%2]))

el

'Y
A



11

12

Al591) = 2.*ALPHA*Y(2)*EX*(-Y(5)**6/¢X**2 - Y(5)#%6/(Y(1)MEX%%D) =

12.*Y(5)**?/(Y(1)**2*FY) + 2.*ALOGIFX) /Y (1) %#%3) = 1a/6e%tY(2)/Y(1))

2¥#2% (14 = 1e/FX#%3) + 045%(Y(2)%#YUS))®*%¥2/(Y (1) *FX*¥4)
A(592) = 2.*AL°HA*FX*(Y(5)’*4/FX ~ ALOG(FX)/Y(1)%%2 + Y(5)%%2/(Y(1
1I#FX)) + 1e/3.%¥(Y(2)/Y(1))%(1, 1e/FX*%3)

A(695) = LgHALPHAXX2®Y (5)%x% S*CXw*7 + 4.*AL°HA*Y(?)KCX ®Y(5)%%#3/FX +
1 Y(2)*%#2#Y(5)/FX%*%4
AL6sT) = =44/30 *ALP%A**?%Y(5)*xé*y(8)w5x**2 - _.xALPHA*Y(Z)*Y(B)*E

vv1X*(Y(5)**4/FX - ALOG(FX)/Y(1)%#%2 + Y(5)#x2/(Y(1}#FX))

B(6) = (4e/3¢*ALPHAX%ZRY (T )RY (5 )*#EXEX*%2 + 2 FALPHARY (2)MY (T ) *EXH*
1(Y(5)#%4/FX = ALOG(FX)/Y(1)%%2 + Y(S)**Z/(Y(l)*FX)))*?CLZ

AN EXPONENTIAL INTEGRAL IS APBROXIMATED. .

EE1 IS AN EXPONENTIAL INTEGRAL TIMES EXPIY(3)*Y(5)%*%2)

P = Y(3)%Y(5)%%2

IF (PelLTele) GO TO 11

Al = 845733287401 .
A2 = 1841592159730 -
A3 = 8,634760R925 vy
AL = 0,2577737343 !
Bl = 945733223454

B2 = 25.,6329561486

B3 = 2140996530827

B4 = 3,9584969228

CEE1 = (P#%4 4+ Al%P%%3 + AZ*P**Z + AIRP + AQ)/(P**Q + B1%*P%%3 3 32%
1P%#2 + 83%P + 34)/P .

GO TO 12

AD = -N.57721556

Al = 0,99999193 :
A2 = =04249 1055

A3 = 0,75519968

AL = =N,NN976N004

A5 = 0,79107857

EE1 = EXP(P)#(-ALOGI(D) + AN + A1*P 4+ A2%Dx%2 4+ A3#PR%#3 4 A4#Pxxy4
1+ AS%#Px%5) v - R
Al793) = 2% (GAMA/CK ) ¥ (24 %SKRX2%Y (4)/Y(3)%%3 4 (SK1 = 1a)%Y(4)/Y(



13)%%2 + O, 5*”KA*(Y(4)/Y(3)**?) *#(ALOG{SK1) + (14 = Y(3)*Y(5)%%2)

2 ¥FE1 + la) )Y (6) = 0425%(Y(4)/Y(3))*%2

A(Ts4) = 24%(GAMA/CK )% {1e/Y(3) = (SK/Y(3))*#2%(1e + YI(3)XY(5)%%2)
1 - O.S*CKA/Y(3)*(ALOG(SKI) + EE1)I%Y(6) + 1e/24%Y(4)/Y(3)

Tl = -SK1##2 + 2,%5K] = 1. SR . :

T2 = 24 = SK1¥(ALOG(SK1))*%2 + 2 #SC1*#ALOG(S<1) - 2.%5K1

T3 = SK1%#%2/4, - SK1 + 3,74, = (045%#S5K1%%2 ~ SK1)*ALOS(SK])

A{T795) = Lo*({GAMAXY(H)/CK)*%2%(T1+ D 5XCKART2#NCKA - (CKA*ALOG( SK1

1))1%%2/4¢ = CKA¥(SK1 = 1.)%ALOGISK1) + T3%DCKA)XY-(5) — 2% (GAMA*Y (6
2)/CK)#(24#SK1%Y(4) /(Y (3)#Y(5)) + SKI*Y(&4)/(Y(3)%¥Y(5))*(ALOGISK1) +
3 FE1I¥DCKA + YI{4)*¥Y(5)%CKAREEY) S

GM1 = 2.*%(GAMA*Y(8) /LK) #%2%((1s — SK1)/SK*%2 +-(1e = SKl**?)/(B.*SV

1K*#2) + 0.25#%#(CKA/SK)*%2%#(24 — SKI#(ALOGISK1))*%#2 + 24%SKI*ALOG(SK
21) = 24%#5K1) = (le = SK1%%2)/SK#%2 + (CKA/SK**#2)%(J425%5K1%%2 = 0,

 35%SK1*#2#ALOG(SK1) ~ 0425) ~ (CKA/SK#%2)%(SK1 - SKI*¥ALOG(SK1) — 1.

- 4))

GM2 = 2-*(GAMA*Y(6)/CK)*(Y(é)/Y(?) - (SK/Y(3))##2%#Y(4)%(1, + Y(3)*

1Y(5)%%2) = O, 5*(C<A*Y(4)/Y(3))*(ALOu(SKl) + EE1))

402

770

A(T96) = 2.%GML/Y(6) + GM2/Y(6)
IF (NDeEQ.999) GO TO 402

A(653) = A(693) + RRHO®¥A(7,3)
Al6s4) = A(694) + RRHO®A(T7s4)
A(655) = A(695) + RRHO*A(755)
Al6s6) = A(6s6) + RRHOXA(T46)
MA = 6

IF (NS.SQ.2) GO TO 406
IF (NS.EQ.3) GO T) 407 - ,
IF (IDJNE.1) 50 T 700 | -

Ul = 32.%#(ALPHA%EX + Y(1)¥Y(2))/RE1
V1 = 8./RE1*(ALPHAXEX*Y(S5)#%2 + Y(1)*Y(2)*Y(5)%#2/ (1.
1 + Y(1)#Y(5)#%2)%%3)
Wl = 44/RE2¥(GAMARY(6)/CK¥(24#SK1 + CKA) + Y(3)*Y(4)*Y(5)%%2)
G0 TO 701 : :
Ul = Ua
V1 = V4
= W4

|"I1

a

-Og'[..



701

559

iS
W551
.71

74

406

552

553

8(1) = 8(1) = Ul*UELZ
B(6) = 3(6) = V1*DELZ
B(7) = 8(7) + W1*DFLZ

IF (ND«NS.999) B(6) = B8(6) + RRHO*B(7)

IF (NDeNEL999) GO TO 550 '

CALL SQLIN(A9R4MAsX)

GO TO 551

CALL LINIT(AsBsXsMAs1sDET IFx,CNR,SIN JLs79SCR)
IF (SINGUL) PRINT 15 : o
FORMAT (134A IS SINGULAR)

IF (SINGUL) GO TO 24

NO 71 1 = 1.7

X0(I)y = X(1I)

CONTINUE

PO 74 1 = 147 :

Y(I) = YY(I) + XO(1)#0,5

CONTINUE _ .

Y(8) = Y(8) + D,5%DFLZ

NS = 2 -

GO TO 403

U2 = 32 *(ALDHA*FX + Y(l)*Y(Z))/RCI

V2 = 84/REL1*(ALPHAXEX*Y(5)*%#2 + Y(l)*Y(Z)*Y(:)**Z/(l.
1 + Y(1)%#Y(5)*%2)%x%13)

W2 = 44/RE2%#(GAMA%Y(6)/CK*(24#5K1 + CKA) + Y(3)#Y(4)%Y(5)%%2)

B(1) = 8(1) - U2*DELZ
B{6) =-3(6) - V2*DELZ
B(7) = B(7) + W2*DELZ

IF (ND.NF.999) B(3) = B(4) + RMNHO*3(7)
IF (NDeNS.999) GO TO 552 :

CALL SOLIN(AsBsMAsX)

60 TO 553 o -

CALL LINIT(As3sXTMAs1sNETsIEXsCNRsSINGULs7sSCR)
IF (SINGUL) PRINT 15

IF (SINGUL) 6D TO 24

DO 75 1 = 197

X1(I) = X(1)

~TCT-



75 CONTINUE
DO 76 1 =1
Yiry = yv(l
76 CHONTINUE .
YA8) = Y(8) + 045%DELZ
NS = 3 ' '

o7 . .
) + 2.*X1(I} - X0(1)

GN TN 4N3 |
407 U3 = 32.#%(ALPHA%EX + Y(1)%*Y(2))/RE1
V3 = B,/RELI%(ALPHA®EX®Y(5) %%2 +. Y(l)*Y(Z)*Y(S)**Z/(l.
1 + Y({1)*Y(5)#%2)%%3)
W3 = 4, /QFZ*(uAWA*Y(é)/C(*(Z.*S(I + CKA) + Y(3)*Y(4)*Y(5)**2)

8(1) = B(1) = U3*IELZ
B{6) = B(A) = V3#DELZ
B(7) = B(7) + W3®DELZ

IF (NDNF,999) 8(6) = 3(6) + RRHO*R(7)
IF (ND.NEL.999) GO TO 554 : _
CALL FQLIN(AsRsMA4X)
GO TD 555
554 CALL LINIT(AsBsXsMAs1sDET) IfX,CNstlNoUL 795CR)
IF (SINGUL} PRINT 15 . _ o
: IF (SINGUL) GO TO 24. _ ' R - ,
555 D0 77 1 = 1.7 : ‘
X2{(1) = X(I)
- 77 CONTINUE
DO 78 1 = 147 :
YI(I) = 1e/66*(X0OLT) + &4o¥*¥X1(1) + X2(1))
78 CONTINUE -
DD 81 I = 147
Y(I) = YY(IY + YI(I)
81 CONTINUF
Y{8) = YY(8) + DELZ’
EX = EXP(=Y(7)%*Y(8))
CIF (NDWNE.999) FX = O.

Us = 32.*#(ALPHA®EX + Y(l)*Y(7))/Q:1
V4 = 3, /Rfl*(ALDHA*FX*Y(S)**Z + Y(l)*Y(’)*Y(S)**?/(l.
1 + Y(l)*Y(S)**?)**?)

-26T-



W4 = 4./REZ*(GAMA*Y(6)/CK*(Z.*SK] + CKA) + Y(3) Y (4)*Y(5)%%2)

INTEGRATION RY TRAPEZOIPAL RULE

SUMO = SUMD + DELZ*(U1l + U&)/2.
SUM1 = SUM1 + DELZ*(V1 + V&)/2.
= SUM2 + DELZ*(W1 + W&)/2.

SuM2

CALL FUNC(Ys83sFs79sSUMFsSUMDeSUMLeSIIM2)
DX = N, . :

CX = EXP(=Y(3)*#Y([5)%%x2)

“IF (CXeLT41le0E=08) GO TO 84

PX = Y(4)/CX
84 VC = 2 ¥ALPHAXEX®Y(S5)%#2 + Y(2)
 IF (IDGLEL10) WCO = VC

IF (IDeFQ.10) FF3 = £(13)

VI = Y(2)/(1e + Y(1)%Y(5)%%2)%%2

VIE = Y(4)

IF (IDeLTe449) GO TO 115 o

PRINT 14s Y(8)s(Y{(I)sI=1sT)evCsVIsSUMF

CPRINT 1109 VIES(F(T)el=1s7)

PRINT 119s (Y1(I)sI=197)sDX

IF (NDeNZ.999) GO TO 111

IF (IDLT.20) GO 'O 111

IF (SUMFeLTe2¢JE=U8) GO TO 114

NP = NP + 1

REDUCE THE SIZFE OF DELZ WHFEN APPROACHING & CRITICAL POINT.,

IF (NP.EQ.1) PRINT 113 ' ' .
113 FORMAT (54HSKIP ID AND TAPE-READ UNTIL IT SWITCHES TO NONPARA3ZQLA)

DO 112 I = 147

Y{I)y = Y(I) = YI{I)
112 CONTINUE

Y(8) = Y(8) - DELZ Ea
SUMO = SUYD = DELZ#(ULl + U4) /2.
SUM1 = SUM1 - DELI*(V1 + V4)/2,

-gCT-



SUM2 =
DELZ = 045%NELZ
GO TO 55
114 IF (NPoNE.DeANDNQ.LT+50)
| IF (NQ.EQ.50) PRINT 6
115 1D = ID + 1 .
GO TO 55
END

SUM2 - DELZ*(W1 + W4)/2.

‘GO0 TO 55

-eT-



SUBROUTINE FUNC(YsLSsFy LToSUMFgSUMO SUM1sSUM2)

DIMENSION Y(LS)sF(LT)
"COMMON EXsRMUsDELZ s ALPHA DFLIsOELZsFl(?)’F?(7)9F3(7),F4(7)9WCO

1;ND9RPH3’GAMA9CK9SK9C<A’S<1,EEI9CF39Fc5sFF7
IF (NDeNE.999) EX = O’ .

FX = 1l + Y(l)*Y(5)**2.-

IF (FXeLTo042) GO TO 1

EX = EXP({=-Y(T7)%*Y(8))

SK1 (SK#*Y(5))#x]

CKA (le - (S(*Y(S))**2)/ALOG(SK*Y(D))

COMBINATION OF PARASOLA AND NONPARABOLAS
THE FOLLOWING EQUATIONS AREs

1. EQUATION OF MOTION AT R = 0
F1) = (2.%ALPHAXEXHY (5)%%2)%%2 + 4.*ALPHA*Y(2)*Y(5)**2*¢X +Y(2)%

1%2 - WCO**Z + SUMO

/ 2e THE MATCHING OF VELOCITIES AT AN INTERFACc
F2) = Y(7)/FX**2 - Y{4) S : Sl

3. THE MATCHING O< TANGENTIAL STRESSES AT AN INTERFACE
F(3) = ALPHA®EX + Y(1)%#Y(2)/FX#%3 = 045#*RMU*(GAMA/CK*(24%*5K#%2 +

1CKA/ZY(5)#%2)#Y(6) + Y(3)*Y(4)) - FF3

4e MASS BALANCE FOR A JET :
Fl4) = 0o5%ALPHA*Y (5)%#4%EX + 045%Y(2)%Y(5)%%2/FX = 045

5 MASS BALANCE FOR A SRROUNDING FLUID
CF(5) = 24%(GAMA*Y(6)/CK)*#((14/SK. = Y(5)) = 0425#5K*#2%(1,/5K*%4 ~
1 Y(5)%%4) + Ne5%Y{B5)##2%(1, = SK1) + 0De25%(1e = SK1)*CKA/SK*%*2) +

"2 De5%Y(4)/Y(3) = FF5 I

6. MOMENTUM SALANCE FOR A JET
FU6) = 24/3¢ ¥ALPHARX2%Y (5) %XEHEX*%2 + 24 #ALPHAXY (2) #EX* (Y (5)*%4 /FX
1 = ALOGIFX)/Y (1) %*%2 + Y(5)#%2/{Y(1)#FX)) + 1e/6e%(Y(2)%%2/Y(1))%(1

-ggt-



aNaNa)

20 = 1e/FX#%3) = 2./3¢ + SUML

7. MOMENTUM BALANCE FOR A SURROUNDING FLUID
AN EXPONENTIAL INTEGRAL IS APPROXIMATED.
EE1 IS AN EXPONENTIAL INTEGRAL TIMES EXP(Y(3)#*Y(5)%%2)

P = Y(3)xY(5)%%2.
IF (PeLTele) GO TO 11

Al = 8,5733237401
A2 = 1840590169739
A3 = 846347608925
AL = 042677737343
81 = 9,5733223454
B2 = 2546329561486
B3 = 21.0996539827
B4 = 3,9584969228

FE1l = (P¥#4 + A1%P#%3 + A2#P¥%2 + A3%P + A4)/(P#%4 + B1l#P*#3 4 32

]
1P%%2 + 33%P + 34)/P O
. GO TO 12 _ A
11 A0 = =0¢57721566
Al = 0,99999193 ; : I . R o
A2 = =0424991055 o . . _ . . -
A3 = 0,05519968 - ' : '
AL = =0400976004
A5 = 0,00107857

EE1l = EXP(PJ#(=-ALOG(P) + AQ + ALl%P + A2#P##2 + AZ*P#%3 + A4#P#4

1+ A5#Px#i5) - S o '

12 GM1 = 2¢#(GAMA®Y(6)/CK)#*#2%((1e = SK1)/SK#%2 + (le = SK1#%3)/(3.%S =
1K#%2) + 0425#(CKA/SK)Y##2%( 24 —~ SKI#(ALOGISKL))#%2 + 24%SK1*ALOG(SK . _
21) = 24%SK1) = (1le = SK1#%2)/SK#t%¥2 + (CKA/SK##2)%(D425%5K1%#2 ~ 0,
35%SK1#%#2#ALOG(SKL) ~ J425) = (CKA/SK##2)#(SK1 = SK1#ALOG(SK1) = 1l

- 4)) : - : _ ' : ,

C GM2 = 24 #(GAMARY(3)/CK)I®(Y(4)/Y(3) = (SK/Y(3))##2%Y(4)%(1e + Y(3)%
1Y(5)%%2) = D45%(C<A*Y(4)/Y(3))%(ALOGISK]1) + €51)) .

FOT) = GM1 + GM2 + D425%Y(4)®%2/Y(3) = SUM2 - FF7



IF (NDeNE.999) F(6) = F(6) + -RRHO*F(7)

SUMF = F(1)%%2 + F(2)%%2 + F(4)%%2 + F(5)%%2 + F(6)%%2

IF (NDeNZe999) SUMF = SUMF = F(6)%#2

RETURN

PRINT 2
FORMAT ( 9HF XeLTe0e0)
END a

"LQT'
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: o

A. Makes any warranty or representation, expressed or implied, with

 respect to the accuracy, completeness, or usefulness of the informa-

_tion contained in this report, or that the use of any information, .
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages

resulting from the use of any information, apparatus, method, or
process disclosed in this report. '

As used in the above, “person acting on behalf of the Commission’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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