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Lawrence Radiation Laboratory and Department of Chemical Engineering 
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ABSTRACT 

The oscillating-jet technique has been used previously for measur-

ing the surface tension between a gas and a liquid. Here it is extended 

to the measurement of the interfacial tension between two immiscible 

liquids. This work was ~dertaken to establish a hydrodynamical theory 

for the oscillating jet, so as to allow this technique to be used to 

indicate interfacial concentrations in liquid-liquid systems undergoing 

mass transfer . The mathematical theory by Bohr for the gas-liquid case 

is extended to the liquid-liquid case to give an exact but implicit 

analytical solution, and a simple correction multiplier to the Rayleigh 

formula has been developed to give an explicit representation of the 

exact solution. 

Experimental data were taken on immiscible liquid pairs whose 

interfacial tension ranges from 6 to 42 dynes/cm, and were analyzed by 

the theory developed. 

As an essential step in this study, a calculati.onal method has 

been developed to predict the velocity profile of a circular liquid jet 

in a stationary surrounding liquid. The resulting values of jet radius 

and interfacial velocity have been used to correlate the effective plug-

flow velocity which is required as an input for the oscillating-jet theory. 
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In order to improve the stability of the oscillating jet, and 

also to approach closer to theoretical flow conditions, the use of a 

. flmving external phase at a velocity near the average velocity of the 

oscillating jet is proposed. A calculational method to predict the 

velocity profile for such a case is given as an extension of the method 

used for a stationary surrounding liquid. 

.\. 
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I . STATEMENT OF. THE PROBLEM 

The oscillating jet provides a well explored means of measuring 

surface tension of liquid jets into a gas, but has rarely been applied 

to determine the interfacial tension between two immiscible liquids. 

The measurable parameter in this method is the wavelength produced by 

the oscillation. ·Our ultimate objective, not yet reached, is to use 

the oscillating jet to measure. dynamic interfacial concentrations during 

liquid-liquid mass transfer. 

The present study is aimed at providing both theory and technique 

that will contribute toward approaching this objective. 

The theoretical background needed to achieve the foregoing 

objectives has two P8;I'ts; first, a suitable relation between wavelength, 

other system properties, and interfacial tension; and second, knowledge 

of velocity profiles of a circular jet in another liquid which is either 

stationary or moving. 

The experimental problem is one of obtaining suitable elliptical 

nozzles, and of finding operating conditions that produce a maximum 

number of nodes in the jet and also a maximum total jet length. Because 

of the non-zero exterior density and viscosity, and very similar re-

fractive indices in a liquid-liquid system, both producing the jet and 

measuring it appear to be considerably more difficult than working with 

a.liquid jet in a gas. 

Thus the present study deals both with development of the needed 

mathematical background and with analysis of representative experimental 

data taken on pre-equilibrated liquids. 
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II . OSCILLATING-JET MEASUREMENT OF DYNAMI C 
.LIQUID-LIQUID INTERFACIAL TENSION 

A. Introduction 

When a Jet of liquid is forced through an elliptical orifice 

under a constant pressure, a standing wave is formed by the oscillations 

of the issuing stream about its equilibrium cylindrical form. The standing-

wave pattern formed by the stream is the basis for an experimental method" 

of obtaining the surface tension between a liquid and a gas, or. the inter- . 

facial tension between two immiscible liquids. While mass transfer is 

occurring to or from a liquid. jet, that is while a solute .is transferred 

to the interface and through it, loqal solute concentration and interfacial 

tension will change with distance from the orifice; the changes can be 

followed by the change in wavelength of the jet. 

A jet is particularly suitable for mass-transfer studies because 

it allows the study of residence-time effects in the range of 0.001 sec 

to 0.1 sec. Also, it can be caught at a variable distance from the nozzle, 

and analyzed chemically to give the mass-transfer rate as Ii function of 

length or time. Knowledge of how the interfacial concentration varies 

during mass transfer between two liqui,ds should give a clearer under-

standing of the fundamental processes involved .. 

Two 'fluid-mechanical problems must be solved in order to interpret 

wavelength measurements on an oscillating jet: first, the elliptical 

oscillation ofa plug-flow jet; and second, estimation of the effective 

plug-flow velocity from the calculated properties of laminar-flow 

cylindrical jets. The present study is the first phase in adapting the 

oscillating-jet method to lj_quid-liquid systems, namely to solve the 
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wavelength Froblem mathematically and to explore the experimental 

techniques. 

Physical analysis of the oscillating liquid jet in air dates 

back more than a century, when Bidone 7 and Magnus18 independently re­

Forted on the phenomenon. Later, Lord Rayleigh
20 

derived a mathematical 

relation~q. (41), below] between the stream velocity and density, the 

surface tension,and the oscillation frequency. Rayleigh also showed 

experimentally that the surface tension of a freshly formed soap solu­

tionis considerably higher than the equilibrium value. Pederson19 

imFroved the experimental techniques and measured surface tensions of a 

number of liquids, including aqueous solutions of ethyl alcohol, using 

Rayleigh's theory. 

In a definitive analys~s, Bohrll introduced viscous terms; 

and he also Frovided a theoretical correction for the finite amFlitude 

of the oscillation, which introduces the maximum and the minimum: di-

ameters of the jet. 

Bohr's theory has been aFFlied by several investigators to the 

21 measurements of the surface·tension of liquids. Stocker measured the 

surface tension of inorganic salt solutions. Bond and Puls12 used it in 

confirming their results on a commercial soaF solution, obtained with 

the liquid-sheet method. Sutherland22 ,23 studied the surface tensions 

of several systems and found the results obtained by Bohr's theory to 

deFend uFon the Farticular orifice used. Defay and Hommelen studied 

the rate of surface tension lowering of aqueous solutions of long-chain 

alcohols and dicarboxylic acids by the oscillating jet method, and 
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interpreted their results by the Bohr formula. 16 17 Hansen and co-workers ' 

also studied the rate of surface-tension depression -of organic acids, in 

which the surface velocity calculated from a nonuniform-velocity model 

represents the linear velocity in the Bohr model: the depression rate 

could be represented by a second-order kinetic mechanism in the surface 

film .. 

Very recently Vandegrift25 proved experimentally, by use of the 

oscillating jet, that water does not have a dynamic surface tension 

attributable to hydrogen bonding . 

. 123456 Addlson ' , , " has also published extensive work on adsorp-

tion of alcohols at the 'surfaces.of alcohol-water solutions, using the 

oscillating jet. He developed his own-empirical relations from Rayleigh's 

solution. In those cases where Addison, Sutherland, ,and Defay measured 

the same systems, Addison's results do not agree with those of the other 

two workers. Burcik, who found the rate of change of surface tension to 

be a major factor in determining the stability of foams, used the os-

cillating jet with Addison.'s empirical formula to measure this rate 

8 experimentally. 

Only Addison has attempted to study liquid-liquid jets,6 using 

his empirical formula,< but with little success .. 

Thus very little use of the oscillating jet has been made in 

liquid-liquid systems. It is very difficult to prevent the jet's break-

ing up within a path length too short for measurements to be made. 

Breakup occurs more easily due to the 'outside liquid's having higher 

viscosity and density than a gas. A second problem is the rapid damping 

of the oscillations, which require s a larger eccentricity in the orifice 

and consequently greater in stab Hi ty. 

, 



'.' 

-5-

Notation, 

A constant, Eq. (44) 

coefficient matrix for simultaneous homogeneous equations 

a jet radius 

b,~ complex ~ave number, and 2rr/~, real ~ave. number 

cT arbitrary constant column vector 

c constant axial velocity 

D 

D/Dt 

d 

f 

f a 

matrix, Eq. (37) 

substantial derivative 

relative ~ave number defined in Eq. (14) 

empirical multiplier defined in Eq. (43) 

finite-amplitude correction by Bohr, Eq. (45) 

f(r) , 
f(x,y) 

general function to represent velocity or pressure perturbation 

g 

i 

x-direction velocity 

relative x-direction velocity defined by Eq. (5) 

y-direction velocity 

relative y":direction velocity 

modified Bessel function of first kind (order = 2), and its first, 
and second-order derivatives 

modified Bessel function of second kind (order 
first, and second-order derivatives 

2), and its 

L combined variable defined in Eq. (35) 

ID
l

,m
2

, constants in Eq. (44) 
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P pressure 

p pressure perturbation 

Q constant, Eq. (30) 

principal radii of curvature of surface 

R. interior Reynolds number, Eq. (33) 
1 

R exterior Reynolds number, Eq. (34). 
e 

r radial component of cylindrical coordinate 

r max', maximum and minimum jet radius 

r . mln 

u,v;w components of velocity in cylindrical coordinates 

relative velocity components, defined in Eq. (6) and Eq. (7) 

w velocity vector 

x,y,z rectangular coordinates 

6 matrix, Eq. (37) 

E damping factor 
n 

s elevation of jet surface, Eq. (30) 

e component of cylindrical coordinates 

A wave length 

~ viscosity 

p density 

a interfacial tension 

¢ function defined in Eq. (41) 

perturbation-velocity vector 

£1 relative perturbation-velocity vector, Eq. (5) 

(.l) component of a;xial perturbation velocity in rectangular or 
cylindrical coordinates. 

l/ 

(.l)l relative axial perturbation velocity component 
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Subscripts 

a interfacial 
• 

e exterior 

i interior 

.0 at the orifice plane 
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B. Theory 

1. Summary and Extension of Bohr's Treatment 

For exterior medium without viscOSity, Niels Bohr linearized the 

Navier-Stoke.; equations with respect to axial, radial, and tangential 

veloci ties, treating the axial velocity as a constant term plus a small" 

perturbation, and the radial and tangential velocities only as small 

perturbations. Although the axial velocity really is radially non -uniform, 

especially near the orifice, it appears impractical to account for such 

vdriation. 

The extension of Bohr's mathematical treatment to liquid-liquid 

systems, although straightforward, results only in an implicit relation-

ship between interfacial tension and the other variables. It is therefore 

necessary to solve it numerically for a number of cases, and to find a 

suitable' graphical or empirical means to describe the explicit relation-

ships. 

The equations of motion for incompressible viscous flow and the 

equation of continuity, in vector form, are 

p Dkt + grad P ~ifw Dt ~ 
(1) 

div W = O. (2) 

Taking the divergence of Eq. (1) with Eq. (2), we obtain 

div grad P = y2P = O. 
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Following Bohr, then linearize the Navier-Stokes equations in 

rectangular coordinates,"'x,y, and z, with respective velocities g, h, 

and w. We set w = c +m , where c is a constant. We also assume that 

the velocities are of the form f(x,y) ·e
ibz 

where bis the wave number 

2rr/~, with ~ the wavelength. Then the linearized form of Eq. (1) becomes 

1 
= - grad p 

I.l. 
(4) 

where n = n (g,h,m); and p is the pressure perturbation. By using the 
'" '" 

following transformation, Eg. (4) can be made homogeneous: 

i n = £1 + -b· grad p (5 ) c p 

where 21 (gl,hl,m
l

) is a function of the transformed perturbations. We 

also transforIil. to cylindrical polar coordinates r, e, and z, with re-

spective velocity perturbations, m, v,u. The following transformations 

are used to make the equations of motion in the latter coordinates 

homogeneous: 

i ~ v - cbp + vl (6) 

!~+ i u cbp r e u
l 

Thus the component equations of motion and the equation of continuity, 

in cylindrical polar coordinates, as obtained by Bohr, become: 
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(if _ ibcp ) v _ 
vl 2 dU

l 0 
. IJ. 1 2"- 2 de r r 

(8 ) 

(~ ~) ul 2 dV
l 0 - U -+- de = IJ. 1 2 2 

r r 

(if - ibcp ) (J) = 0 
IJ. 1 

(10) 

dV 1 vi 1 dUl + d(J)l -' 

rr+-+-de dz= o. 
. r r r e z (11) 

Now we specify the mode of oscillation as 2, which corresponds 

to the type of perturbation we impose on the stream by use of an 

elliptical orifice. Accordingly, we suppose that p, (J)l' vl ' and u
l 

have the form f(r)·e2ie+ibz. The substitut~on yields the solution to 

Eq. (3) 

2W+ibz 
e 

Similarly, Eq. (12) gives the solution: 

where d is defined by the relation 

2ie+ibz e 

(12) 

(14) 
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OJ.! 
Eliminating de 1 from Eqs. (~o) and (13), we find for v 1 

e2ie+ibz (15) 

Combining a homogeneous and a nonhomogeneous part, the general solution 

of Eq. (20) is 

The continuity relation (13) between ul ' vl ' and illl now yields: 

U = 1 

+ C K I (rd)}] . e2:i:.8+ibz 
6 2 

(16) 
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2. Boundary Conditions for.Liquid-Liquid System 

The foregoing derivation retraces the steps taken by Bohr for 

solving the free-jet problem. Now, the introduction of new boundary 

conditions orients the derivation toward a new result. Here we note 

that the velocities are finite at r = 0 and r ~oo. Therefore, for the 

interior flUid, the constants multiplying the modified Bessel function 

of the second kind K2 and its derivative K2 must be zerOj and for the 

exterior fluid, the constant multipliers of the modified Bessel functions 

of the first kind I2 and its derivative I2 must be zero. 

Therefore the axial, radial, and tangential velocities are, for 

the interior fluid: 

w. 
l 

c + (I). '=c -1 C1 I (br) 
l cpo 2 

l 

an~for the exterior fluid: 

2i8+ibz 
e 

w = c + (I) = C - ~ C2 K (br) - C
4
K (d r) ~ e2i8+ibz , 

e e cA 2 2 e ' e 

~ 
. ·b C6 v = _l_ C K' (br) - ~ C4K' (d r) + - K2 (d r) 

e cp 2 2 d 2 ere 
e e 

2i8+ibz 
e 

(18) 

2i8+ibz e 

(20) 

(21) 

(22 ) 

j' 
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2bC4 + -- K (d r) 2 2 e 
rd e 

2ie+ibz 
e 

(23 ) 

These six velocity equations contain six unknown constants, Cl , 

C
2

, C
3

, C4, C
5

, and C6, which are to be determined by the following six 

boundary conditions, namely the continuity of velocities at the interface 

(r = a), and the continuity of stresses at the interface. 

Continuity of velocities corresponds to 

u. = u 
~a ea (24,25,26) 

Continuity of normal stresses give~ to first approximation, 

(dV.) ( 1 1) 
= -Pi + 2tJ.i dr~ a + Rl + R2 a (27) 

Continuity of tan gential stresses gives, similarly, 

(28) 

Continuity of axial stresses gives, similarly, 

(
dU u 1 dv ) e e. e 

tJ.e c;r- - r + r de 
. a 

In Eq. (27), a is the interfacial tension, and Rl and R2 are the principal 

radii of curvature of the interface. 
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The equation of the surface is postulated to be: 

__ (\e2iG H,bz r-a=s "(, 

The boundary-surface continuity condition is: 

~ (r-a-S) = O. 

These combine to give (to first-order approximation): 

111 -+-=--
Rl R2 a 

..L 
2 

a 

, 

.L 02
(; _ 02

(; _ 1 
a2 oe2 oz2 - a 

(30) 

(31) 

(32) 

Here, the equilibrium. normal pressure difference, (Pi - Pi) - (Pe -PeL 

is balanced by the equilibrium. interfacial tenSion, a/a. 

.,. 
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3. Exact Expression for a 

If we now substitute the proper quantities, obtained from the 

velocity relations, into the boundary conditions, we obtain six homo-

geneous linear equations with six unknown constants. If we express the 

equations as~£ = 0, where ~T = [Cl,C2'C3'C4'C5'C6J, then Ajk(j,k = 1,6) 

are given as follows (zero-valued elements are omitted): 

All = 12 (ba) A 
25 = 12 (di a) 

A12 -K2(ba) A26 = -K2 (dea) 

A13 ,..I2 (d
i
a) A31 

212 (ba) 
= = ba 

I 

A14 K2 (dea) A32 
2K2 (ba) 

= = ba 

A21 iI~ (ba) ~3 
2baI2 (d

i
a) 

= 2 (d.a) 
1 

A22 -1.K2(ba) A34 
2baK2 (dea) 

= --
(d a)2 

e 

_ iba II(d a) 
d.aI2(d.a) 

A23 ~5 -i 1 1 = = d.a 2 i 2 
1 

d aK2(d a) 
A24 iba K' (d a) 

A36 i e e ,- = d a 2 e' 2 e 
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A = '-II ~ d a + ~2~II(d a) 53 ~i i d.a 2 i 
1 

A = I-l ~d a + (ba)2 lK' (d a) 
54 e ~ e d a ~ 2 e e 



where 

R e 

L 

2acp. 
~ 

2acp . e 
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(interior Reynolds number) 

(exterior Reynolds number) 

We do not need to evaluate explicitly the C values, since we are 

interested only in a relation between interfacial tension and the wave-

length of oscillation. The six linear homogeneous equations for the 

constants .~ can have a nontrivial solution only if the determinant of 
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the coefficients vanishes. This furnishes the following eigenvalue 

equation relating interfacial tension to the wavelength of oscillation; 

det A = o. 
FI;j 

Equation (36) can be solved for the interfacial tension in the following 

manner: 

Hence 

det A = det D + a det ~ 
R:J ~ A:S 

det ~ . 
. det ~ 

~ 

(37) 

Here D is a matrix obtained by replacing the fourth-row elements of the 
~ 

matrix A by the following terms: 
~ 

= -2i~.baI21!(d.a) 
~ ~ 

Also, ~ is a matrix generated by replacing the fourth row of the matrix 

!'c by the follOl-ling terms: 
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A41 = -iLI2(ba) 

A43 = -i ~aL I 2(d.a) 
.a J. 
1. 

= 0 . 

From Eq. (38), (J can be evaluated numerically for given values 

of c, ba, R., R , ~. and ~. Furthermore, by re-expressing the terms in 
1. e 1. e 

the determinants as functions of dimensionless groups, the Weber number 

becomes a function of Reynolds number, dimensionless wave number, density 

ratio, and viscosity ratio: 

2 
c aP

i 
--- = 

(J 
in.(R., 

1. ' 
ba, 

Equations (38) and (39) both conform to the eventual objective of this 

analysis, namely to observe an internodal distance and from it to determine 

the local value of (J. Numerical evaluation of det D and det 6, so as to 
~ R:J 

interrelate the dimensionless groups, has been accomplished on a digital 

computer (Control Data Corporation 6600) by use of a standard Gaussian 

reduction method. 

Actually,'because'of the complex-number arithmetic introduced by 

( )' ine ibz 
the algebraic form of the velocity function [f r·e ·e ], a purely 

real-number' b will give a complex-number (J without physical Significance, 

and some complex-numberbis needed to obtain a purely real-number o. Thus, 

(n 1, 2, .... ) (40) 
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In fact there are an infinite number of E'S and a's for a given bR, 

HO'Ylever, the oscillation 'Will be dominated by the b 'With the smallest 

pos,itive imaginary part, Le" the smallest damping factor E
l

; the 

oscillations of 'Wavelength given by all b' s 'With larger E' s should 

rapidly be damped out. 

For a given bR, an iterative scheme (reguli-falsi method) has 

been explored to obtain to-e lo'West positive value of E that· makes the 

imaginary part of a vanish. The Im7est damping factor El seems to be a 

complicated function of Reynolds number and other variables; related 

. . / 
behavior of damp:ing factors for capillary jets 'Was found by Goren and 

WronskL15 As a matter of fact, one or more E 'susually lie 'Within the 

range'of 0 to 0.15; 'Within this range, adjustments of b in the fore-

going manner do not appreciably change the value of the real part of 

the interfacial tension. Consequently most of the calculations have 

been carried out 'Without solving for a damping factor. 
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4. Empirical Expression for (1 

With the analytical solution now solved numerically, it has 

seemed desirable to obtain an explicit formula to describe the Weber 

number as. a function of the other four dimensionless variables given 

in Eg. (39~. As a point of de}>arture, the Rayleigh solution (20) for 

a perfect-fluid jet ina gas can be rearranged into the same dimension-

less grouping: 

(41) 

For convenience in evaluating <p(~a), its relation to (bRa) is plotted 

in Fig. 1. By expanding I 2 (bRa) in a Taylor series, <p(bRa) can be 

approximated as 

6 
(42) 

The Bohr formula
ll 

for a viscous-fluid jet in an inviscid 

fluid, with the finite-amplitude correction factor omitted for the 

time being, becomes 

= <P (b a) . 
R 

1 (43) 



In this way, Bohr's terms pertaining to interior-fluid viscosity and 

exterior-fluid density appear as simple multipliers modifying the 

Rayleigh solution. 

Thus it appeared reasonable that a satisfactory empirical treat-

ment of the liquid-liquid jet solution also would be found by developing 

a multiplier for the Rayleigh formula, one that describes the effect of 

exterior viscosity and density. If we designate the multiplier as f, 

such an equation can be expressed as, 

2 cap. 
1 

( 

(44) 

Because f'~ 1 as (~/~.) or (p_ /p.) ~O, the following empirical form 
e 1 e 1 

for f has been assumed: 

f 
1 (45) 

Constants A, ml , m2 , m
3

, and m4 have been determined from a set of exact 

results, by linear regression of ':values of f given by ratios of the exact 

Weber number to ~(bRa). 

Before applying the linear regression, the separate effect of 

each dimensionless group was checked by changing it parametrically at 

fixed values of the other groups. As shown in Figs. 2 and 3, a plot 

of log[ (l/f) - 1] against each dimensionless variable falls on a group 

of parallel lines, thus supporting the assumed form of correction. At 

low R., '~hether because of error in the computed result or in f, the 
1 
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behavior given by Eq. (45·) breaks down when the product of Ri bRa falls 

below 200. However, in successful experiments of liquid-liquid os-

cillat1ng jet, all the data fall above R.b a = 200. Therefore in 
1 R 

applying the leasit-square method, the numerical result for cases where 

RibRa < 200 has been omitted. Ninety-nine sets of data have been used 

to determine the constantsj the ranges selected for the respective 

variables were as follows: 

400 <R. < 2000, 
1 

0.25 < ~ /~. < 10.0 e 1 
0.2 < p /P. < 2.0 

e 1 

The linear-regression method has given the constants as followsj 

A = 1.437 

ml = -0.0502, 0.0285, 0.897 

with a standard deviation of 0.004 and a maximum deviation of ± 0.012j 

this corresponds to a maximum percentage error or ± 3%. The empirical 

function thus obtained and the data used for the calculations,plus 45 

additional data, are plotted in Fig. 4. The exponents found from the 

regression indicate that the most significant dimensionless group is 

the denSity ratio, and that the other variables have only a secondary 

effect. 

Also, the simpler Bohr formula as given in Eq.(43) can predict 

an interfacial-tension value within ± 10%, but such accuracy is probably 



-24-

not sufficient in comparison with the expected accuracy_ for r.., a, and 

the physical properties. 

Bohr also found it necessary to correct the foregoing theory to 

account for the finite amplitude of oscillation. Using the equation of 

continuity and the boundary-surface condition, and expanding the latter 

to a third-order approximation~ he obtained a correction factor that is 

also applicable to the present problem: 

f a 
:= 

1 + 371 rmax 
24 r max 

1 
r min l 2 

+ r . \ mln 

where rand r. respectively are the semimajor and semiminor 
max· mln 

(46) 

elliptical axes at the nodes or antinodes. Collecting all the correc-

tion factors gives the complete solution: 

(47) 
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C. Experimental Study 

1. Experimental 

From the foregoing theoretical analysis, it is seen that the 

quantities that must be measured to calculate the interfacial tension 

are: the wavelength of the oscillations"the jet velocity, the maximum 

and minimum diameters of the jet at the place of measurement, and the 

densities and viscosities of the two liquids. 

A schematic diagram of the flow 'system used to obtain the jet 

measurements is shown in Fig. 5. The valve in the line ahead of the 

nozzle allows for varying the flow rate without moving the reservoir. 

The jet fluid collected overflows from the bottom of the chamber, while 

the second-phase fluid is kept stationary. The wavelength and the 

maximum and minimum diameters of the jet were measured photographically. 

The photographs of the jet were taken with a 135-mm Pacemaker Graphic 

camera with a magnification of about 2x. The nozzle WRS used as a 

reference to determine the exact magnification rati0 in the photographs. 

Measurement of the negatives thus obtained,which involved further 

magnification of 4x, was done with a Vanguard Motion Analyzer which was 

accurate to 0.001 in. However, there is a difficulty of determining 

the exact maximum or minimum of the wave, and the estimated error in 

the dimension measurements amounts to ±5%. 
One of the more difficult problems is the preparation of the 

elliptical nozzle that conforms to a mathematically precise shape. 

Trials of several different methods indicated that the best nozzles 

could be made by heating glass capillary tubing in a flame, drawing it 
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to obtain a finer capillary, pressing the tip between flat graphite 

plates to form an elliptical cross section, and then removing part of .. 
the tip. The nozzles thus produced were as short as 4 cm; since the 

inside diameter of the tubing was about 0.05 cm, the length-to-diameter 

ratios were well above" 50, which is . sufficient to insure a fully de-

veloped flow at the Reynolds numbers which were used; The dimensions 

of the four nozzles are given in Table I. Figure 6 shows photographs 

of the nozzle cross-sections. Because of their large "shelf" errors 

these nozzles are not suitable for the study of a jet in a moving 

surrounding liquid, as discussed in the closing paragraph. 

2. Physical Properties 

The liquids that were used in the experiments were di-isobutyl 

ketone (DIBK) , cumene· (isopropyl benzene), normal,heptane, carbon tetra-

chloride, isoamyl alcohol, and water. Water was always taken as one 

phase, and an organic compound as the other. The two phases were 

mutually s.aturated before the run so as to avoid any mass transfer 

between the phases during the run. The viscosities were measured with 

an Oswald Viscometer, calibrated with water. Density measurements were 

made with a pycnometer. The interfacial tension was measured with a 

DuNouy ring tensiometer. The properties of the liquids used are given 

in Table II. 

3. Results 

As the theory would predict, the wavelength of the jet depends 

very strongly on the velocity and the interfacial tension. When the 

,jet velocity was decreased, more waves - which were each shorter - became 
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Table I. Nozzle dimensions. 

Nozzle No. Max diam. Min diam. Area Equi valent circular 
(cm) (cm) (cm2 ) radius (cm) 

··103 x_ 

l 0.109 0.061 5.19 0.0406 

2 0.100 0.055 4.34 0.0371 

3 0.108 0.061 5.17 0.0406 

4 0.139 0.064 7·03 0.0472 

Table II. Physical properties of liquids used. 

Compound Density Viscosity Interfacial tension 
(g/cm3 ) (g/cm-sec) against water (25°C) 

(dyne/cm) ., 

Water 1.00 0.0091 

Cumene 0.86 0.0080 35.6 

n-Heptane 0.68 0:0049 42.2 

Carbon tetrachloride 1.59 0.0091 41.4 

Di-isobutyl ketone 0.81 0.0086 21.5 

Isoamyl alcohol 0.81 0.0360 6.1 

Ii 
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Fig. 6. Nozzles used in experimental measurements. 
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visible. A still further decrease caused the waves to blur and dis-

appear, giving a cylindrical jet with a diameter near that of the 

equivalent diameter of the nozzle. At the maximum velocity used, only 

about one-half wavelength remained visible before the jet broke up into 

droplets. Runs were generally made at or near the velocity at which 

the greatest number of waves was visible. 
\ 

It is possible to use either the denser or the less dense liquid 

as the jet phase. Two of the systems used were run successfully both 

ways: DIBK-water and cumene-water. When the less dense liquid is the 

jet phase, the jet is directed vertically upward. The opposite is true 

with the more dense liquid as the jet phase. Theoretical considerations 

indicate, for the jet dimensions and flow conditions used, that gravity 

plays no measurable part in the oscillations. 

There are twq 'problems in applying the theory to interpret the 

experimental data. 

Fir~t, because the jet is ejected into a stationary secondary 

phase, the bulk axial velocity profiles in each phase is not Uniform 

as assumed in the theory; The velocity gradient near the interface is not 
, 

zero and d!res not give a small "sleeve" as in a liquid-gas jet. There-

fore one cannot simply take an interfacial velocity as representing a 

constant velocity for the jet. 

Second, there is a change in the radius of a jetj initially 

contraction (termed the ~ contracta) due to momentum. relaxation, 

and then expansiol'l due to the momentum diffusion into the fluid. 

Therefore, it is more suitable to use, as a constant jet radius, the 

II 
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mean radius at the place :where the wavelength is measured rather 

t han the equivalent circular radius of the nozzle.' 

Experimental data obtained for seven sets of systems are given 

in Table III. Systems are numbered from l' to 7, and the jet liquid 

is always named first. Distance is taken from the orifice plane to 

the plane at which wavelen,gth and the maximum and minimum diameters are 

measured. The average velocity at the orifice is used as a reference 

velocity. 

From a number of representative experimental data, a correlation 

was sought between a representative local jet velocity which corresponds 

to c and an interfacial velocity w at the point of measurement. The a 

interfacial velocity w was calculated using a method developed by the a 

present authors. 24 The representative local velocity c, which is 

termed an "effective plug-flow velocity, II was calculated from the 

maximum and minimum diameters, wavelength, interior Reynolds number, 

viscosity ratio, and the actual interfacial-tension value, by use of 

Eq. (47). The calculated results indicate that the ratio of c/w is a 

dependent on the viscosity ratio for the two liquids, but independent 

of the density ratios. The ratio c/w approaches 1 as the viscosity 
a 

ratio diminishes to zero; this is consistent with the observation of 

others that the surface velocity can be adopted as the effective plug-

flow velocity of a liquid-gas jet. Also c/w must approach 1 as the a 

velocity profil~ becomes flat. 

Therefore the following empirical equation was assumed: 

c~ w + a[w (a /a)2 _ ~ )(~ /~.)n 
a 00 a e 1 

(48 ) 
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Table III. o.scillation data. 

" 
System Nbzzle Max. Min. Wave- Flow- Av. vel. Calc. or '<, 

no., dfam. diam. length rate at inlet actual (J 

(em) (em) (em) (cm3/s) (cm/s) (dyne/em) 
~, 

1 2 0..0.67 0..044 0.·322 0..625 144 47.6 
2 0..0.63 0..0.55 0..30.8 0.·50.5 116 33·3 
2 0.·0.71 0..0.42 0.;'426 0..840. 194 52.0. 

.. :. 1 0..0.88 0.·0.57 0.·535 0.·995 192 50.·0. 
Actual 42.2 

2 1 0.·0.72 0..0.56 0.·50.0. 0..615 119 21.1 
1 0.·0.71 0.10.55 0..40.8 0.·515 99 21.0. 
2 0.·0.76 0..0.40. , 0..452 0.·50.0. 115 20.·7 
3 0..0.69 0..0.64 0..452 0.·530. 10.2 19·1 

Actual 21.5 
3 1 0..0.87 0..0.62 0..519 0.·599 116 30.·0. 

1 0..0.85 0..0.69 0..364 0..448 86 31.5 
3 0.·0.75 0..0.62 0..356 0..418 96 36.5 
3 0..0.85 0..0.54 0..439 0.·50.0. 115 37.8 

Actual 41.4 
4 4 ' 0.~0.68 0..0.57 0..665 ' 0..455 65 5·90. 

1 0..0.86 0..0.38 1.0.86 0..60.0. 116 5.68 
4 0.·0.70. ' 0.'.0.54 0..80.6 0..615 87 7.42 
1 0..0.78 0..0.52, 0..80.2 0..485 94 5.81 

Actual 6.1 
5 1 0..0.74 0..0.59 0.·392 0..645 124 34~9 

2 0..0.75 0..050. 0..384 0..60.5 139 37.2 
2 0..0.79 0..0.48 0..499 0..695 160. 33.4 

'" 4 0..0.94 0..0.80. 0..623 0..990. 141 32·7 
Actual 35.6 

6 4 0..086 0..0.74 0..532 0..831 118 23·3 
1 0..0.83 0..0.63 0.·559 0..746 114 15·0. 
4 0.·0.99 0..0.65 0..625 0.·977 139 25·3 
2 0..0.83 0..0.60. 0.·715 0..887 20.4 25·7 

Actual 21.5 
7 1 0..0.74 0..0.68 0.·332 0..512 99 27·9 

4 0..0.85 0..0.67 0..445 0..823 117 33·1 
4 0..0.89 0..0.74 0..432 0.·90.5 129 43.2 
2 0..0.76 0..0.53 0..520. 0..834 192 36.6 

Actual 35.6 
~ 

*) System: ii 

I Water -n-heptane 5 Water - cumene 
2 Water - DIBK 6 DIBK - water 
3 CC14 - water 7 Cumene - water 
4 Water - iso-amyl ale. 
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Constants a and n were determined empirically as a = 0.3, n = 0.25. 

Us~ng the effective plug-flow velocity obtained from the 

viscosity ratio and the calculated interfacial velocity in Eq. (48), 
, 

the interfacial tension can be calculated by the exact computer program,or 

more efficient1y by the empirical correlation of Eq. (47).' The experi-

mental data of Table III were analyzed in this manner to get the inter-

facial tension. Velocity data for the calculation are given in Table IV. 

The calculated interfacial tensions, also shown in Table III, are plotted 

against the actual values in Fig. 7. 

Some investigators13 who have studied the liquid-gas oscillating 

jets reported that each nozzle gives a wavelength that must be correlated 

for the nozzle's deviation from an ellipse. However, the present data 

do not seem to give such a definite trend. Comparison of the calculated 

interfacial tension with the actual value in Fig. 7 shows considerable 

scatter, especially when the jet fluid ·is lighter than the exterior 

fluid. The results are better for those systems in which it was possible 

to obtain four or more waves: water into DIBK, and water fnto cumene. 

Water into isoamyl alcohol gave only about 2.5 waves; however, because 

of extremely low interfacial tension, its long wavelength gave jets as 

long as the others, and it could be measured with high accuracy. 

4. Discussion 

\0 Instead of adopting an effective plug-flow velocity, it might 

be possible to correlate the apparent increase in 'the wavelength that 

results from the radial gradient of axial velOCity. However, since 

such a treatment would still be empirical, it is likely that ,similar 

accuracy would be obtained despite the greater numerical complexity_ 



-38-

Table IV. Velocity data. 

System Dimensionless Interior (z/a R.) Interfacial c/wa calc. ,'< 

distance, z Reynolds o 1 vel., w /w from 
no., R. 

a, 0 Eg. (48) 
1 

~, 

1 33.4 1180 0.0284 0.740 1.01 
24.5 946 0.0256 0·737 0·953 
23·3 1380 0.0169 0.703 0.965 
25·9 1710 0.0151 , 0.695 0.849 

2 49.0 1030 0.0476 0.658 0.940 
49.8 884 0.0564 0.663 0.947 
50·9 940 0.0541 0.662 0·950 
54.7 891 0.0614 0.666 0·910 

3 37·5 1650 0.0227 0.659 0.816 
35.1' 1220 , 0.0293 0.676 0.806 
38.2 1250 0.0305 0.678 0.888 
32.8 1630 0.0201 0.651 0.865 

4 42.6 675 0.0652 0.482 1.24 
53·9 1035 0.0520 0.482 0.963 
34.0 776 0.0438 0.480 1.21 
39.4 839 0.0470 0.481 0·938 

5 37.7 1110 0.0340 0.660 0·901 
30.0 1130 0.0266 0.648 0.867 
53.1 1305 0.0407 0.669 0.871 
38.4 1470 0.0262 0.645 0.799 

6 31.4 1530 0.0205 0·575 0.824 
40.7 872 0.0466 0.615 0.822 
20.0 . 1240 0.0161 0.559 0.791 
58.0 1425 0.0407 0.611 0·755 

7 32·5 865 0.0376 0·591 0.814 
29.6 1190 0.0249 0.566 0.869 
27.2 1310 0.0208 0.561 0.803 
27·3 1530 0.0179 0·552 0.791 .. 
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Fig. 7 Comparison bet"~een actual and calculated interfacial 
tension. Open circles, jet fluid heavier; closed 
circles, jet fluid lighter. 
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In order to develop this method of measuring interfacial tension 

into a more accurate tool, there are two main areas in which more work 

is necessary. 

First, better nozzles are needed. The work reported here in-

dicates that at least four waves are necessary for reliable results. The 

length of such a jet is sufficient for a significant study of mass trans-

fer, since it provides a contact time in the 
3 -2 range of 10- to 10 sec. 

The range of usable jet diameters and velocities is restricted 

by several factors. Foremost of these is the likelihood that the jet 

issuing from the orifice will have greater stability and a better defined 

velocity profile if the jet is laminar; i.e. if R. < 2000, or ac < 10. 
l -

Bohr has given a damping factor 

E '" (const.) jaR. 
. l 

E(per cm) dependent upon R. and a: 
l 

Fbr a gas-liquid jet the theoretical value of constant is 12; for 

the liquid-liquid jet studied experimentally, the observed constant was 

about 25. For satisfactory measurements, EZ ~ 1, hence 25z/aRi ~ 1. 

The distance required to measure dynamic interfacial-tension behavior 

resulting from mass transfer is of the order of4A. From Rayleigh's 

solution, the wavelength A is approximately 3ca3/ 2/al / 2 ; hence for 

a rv 30, A rv 0.5ca3/ 2 . Therefore, the radius of a nozZle a must be 

a > 0.03 cm. 

The desired contact time for mass transfer studies is generally 

less than 0.1 sec. Thus z/c rv 4A/C ~ 0.1; hence for A rv 0.5ca3/ 2 , 

a < 0.14 cm. 

. 
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To limit the error of dimensional measurements of the jet within 

. 5%, it is necessary to have the jet length at least 1 cm; hence 

This limit is in the vicinity of R. = 500. 
l. 

Thus the above four conditions limit the operable region of an 

oscillating jet. A schematic diagram of the operable combinations of 

a and c is giveh in Fig. 8. 

Second, in order to improve the stability of the jet, and also 

to approximate the flow conditions better to the theory derived, the 

use of a flowing external phase (instead of a stationary one) at a 

velocity near the mean velocity of the interior jet is proposed. The 

present authors also have solved the velocity-profile problem for this 

24 
case. 
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III.. VELOCITY PROFILE OF CYLINDRICAL LAMINAR LIQUID JETS 
ENTERING A STATIONARY SURROUNDING LIQUID 

A. Introduction 

Jets of a liquid into a second immiscible liquid are of particular 

interest for studies of mass transfer and heterogeneous reaction kinetics. 

In such systems, also, interfacial adsorption can be determined by means 

of an oscillating (elliptical) jet which measures the local interfacial 

tension along the length of the jet. 

Several investigations have been made of laminar free jets, i.e., 

liquid jets issuing from an orifice or a capillary into an inviscid or 

zero-density medium. Scriven and PigfordlO obtained an approximate solu-
1 

tionusing the. boundary-layer theory to calculate the surface velocity, 

and found that the surface velocity increases as the cube root of the 

4 
axial distance in the neighborhood of the orifice. Recently Goren a~d 

Goren and Wronski5 have derived formul~s for the surface velocity and 

the change in the radius of the jet by the method of Meksyn,9 with results 

very similar to those obtained by Scriven and Pigford. 
. 8 

Middleman has 

used a boundary-layer type analysis to calculate the velocity profile 

and jet diameter as functions of an axial variable, assuming a polynomial 

form for the jet velocity. 

The nonlinearity of the Navier-Stokes equations gives considerable 

difficulty in obtaining the solutions, but the boundary conditions at the 

surface impose further difficulty even when one tries to solve the equa-

tions numerically: the exact location of the interface is not known until 

one has solved for the velocity profile. 1 
Duda and Vrentas have over-

come the difficulties of the free boundary by use of a coordinate system 
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in which the stream function is used as the variable in the radial 

direction; they obtain a boundary-layer solution at high Reynolds num-

'bers and numerical solutions for sever?l cases. Also they obtain an 

analytic solution by linearizing the equation of motion, and have shown 

good agreement between this result and one by numerical calculation. In 

principle their method can be applied to a liquid-liquld jet, but com-

plexities caused by the involvement of the second-phase equations and 

the boundary conditions are not dealt with easily. 

There are only a few studies available on the velocity profile 

of a liquid jet in another liquid. Garner and Mina3 solved the problem 

for the case where the inertial terms are negligible compared with the 

viscous terms in the equation of motion. However, this case is entirely 

outside the scope of our present interest. Schlichtingll solved the 

problem in which a viscous fluid issues from a point source into an 

infinite volwne of the same fluid. 

In this paper we seek an apprcximate solution for the problem, 

applying the' governing relations to a pair of empirical velocity eQua­

tions which describe the transition from parabolic t~ non-parabolic 

behavior. 
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B. Theory 

We shall consider a steady axisymmetric liquid jet, flowing into 

another immiscible liquid which is stationary at infinite distance from 

the jet. The pressure in the z-directiori is assumed constant; hence the 

total momentum in the z-direction is constant in all planes normal to 

the jet axis, downstream of the orifice. The axial flow of exterior 

fluid is supplied by inwardly (later, outwardly) directed radial flows 

of exterior fluid. At any cross-section, the momentum in the outlying 

exterior fluid being displaced by downstream axial flow is negligible 

compared to the momentum directly transferred into the near exterior fluid 

moving as part of the expanded jet. Momentum transfer provides a flow 

of mechanical energy, which in the steady state will undergo continual 

viscous dissipation into an equivalent quantity of thermal energy~ We 

assume that this dissipation occurs at extremely large radial and axial 

distances, and thus does not affect the jet equations. Also, our analysis 

applies to real jets only in the stable region prior to breakup. 

The Navier-Stokes equation for incompressible fluid under boundary~ 

layer type approximations, in dimensionless form, is 

dW 
W -----E. + 

p oz (1) 

'. (p- i, e) 

", 
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The following notations are used: 

coefficients which are functions of the axial­
distance variable 

interface radius (em) 

orifice radius (cm) 

A'/AO" dimensionless jet radius 

W '2/2A 'g Froude number o 0' 

gravity constant 

modified stream function 

function defined by Eq. (31) 

R'/AO" dimensionless radial distance 

2AO'W 0 'p i/ J.1. i' interior Reynolds number 

2AO'Wo'Pe/J.1.e, exterior Reynolds number 

radial distance (cm) 

constant defined by Eq. (25) 

U'/Wo', dimensionless radial velocity 

radial velocity (cm/sec) 

W'/Wo', dimensionless axial velocity 

axial velocity (cm/sec) 

initial mean velocity of jet (cm/sec) 

Z'/Zo', dimensionless axial distance 

interior phase 

exi?erior phase 

parabolic constant 

',. 
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~ p /~.P., viscosity-density constant e e ). J. 

function def~ned by Eq. (30) 

z/R. 
). 

similarity variable 

viscosity (g/cm sec) 

density (g/cm3) 

superscript denoting dimensional variables 

stream function 

In this analysis, radial velocity is assumed negligible 

compared with axial velocity, and the effect of interfacial 

tension is disregarded for the Reynolds-number range of interest 

(200 - 2,000). 

Axial velocities are expressed with the use of five co-

efficients which are functions of the axial-distance variable, z. 

The problem is 'now reduced to one of solving for these functions 

and for the jet radius at each given axial distance, by satisfying 

the six following boundary conditions. 

The first condition is that the radial velocity vanishes 

at the center of the jet. Equation (1) then simplifies to 

To avoid difficulty associated with the evaluation of an 

(la) 

empirical .veloci ty equation, which we shall discuss in the following 

section, Eq. (la) has been integrated with respect to z: 
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- 4 ~~f [1 R. r 
l 0 

dz (2) 

The second condition is that the continuity of axial velocities 

at the interface: 

The third condition is the continuity of tangential stresses at 

the interface, in which again the term involving the radial-velocity 

component has been omitted. 

(
CW. ) 

Ili dr l 
r=a 

(4) 

The fourth condition is the cons~rvation of volume or mass for 

the jet phase. Given a parabolic profile at the orifice, the mass 

balance is 

j. 
o 

a 

rW dr 
i 

1 
2 

The fifth condition is the macroscopic momentum balance in the 

interior (jet) fluid, assuming that momentum is transferred between the 

two phases only through tangential stresses. Noting that there is no 

flow ·across the interface, we follow a Von Karman-type momentum integral. 
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For an initially parabolic velocity profile, 

f 2 2 2 jZ ~dW.) . rW. dr = - +.-.. .. ~ dz 
1. 3 R. or r-<> o 1. 0 =-

(6) 

The sixth condition is the complementary momentum balance of the 

exterior fluid, 'Which is taken to be stationary behind the nozzle plane, 

1. Empirical Velocity Equation 

Now 'We assume suitable forms of axial-velocity expression for both 

interior and exterior phases. The forms selected are somewhat arbitrary. 

To approximate its initial parabola, the jet phase requires a form which 

combines a perturbing function with a parabola. This form allows the 

radial-velocity profile to change from a parabolic (the first term being 

dominant) to a nonparabolic form (the second term being dominant) with 

increasing axial distance. The perturbing function (the second term) can 

assume the same radial functionality as Schlichting's solution. 11 An 

exponential form has been adopted for the surrounding phase. ~ The resulting 

equations are: 

W. 2ae~MZ(a2 _ r2) + B/(l + Ar2)2 (8) 
1. 

2 
W 

-Cr (? ) De 
e 
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Here A, B, C, D, and M are functions of the axial variable z 

To initiate the calculation, the perturbing function B must be non-zero; 

hence the parabolic constant a cannot be set precisely at unity. Sub-

stituting W; and W into Eqs. (2) and (7) gives us the following six 
l e 

equations which enable us to evaluate the unknown functions A, B, C, D, 

M, and the jet radius a. 

+ 

Equation (2) becomes: 

z 

(2 -Mz 2)2 l.~", 2 -Mz B2 4 32 f (-MZ ) ae a + ~Da e + - - -- ae + AB dz = 0 R. 
l 0 

(10) 

Equation (3): 

2 2 _Ca2 
B/(l + Aa) - De = 0 (11) 

Equation (4): 

- Mz / ( 2 3 / ) - Oa 
2 

ae + AB 1 + Aa) - 0.5(~ ~. CDe 0 
e l 

(12 ) 

Equation (5): 

4 -Mz B 2/(1 A 2) _ 1 -_ 0 aa e + a + a -

Equation (6): 

2 2 6 -2Mz -Mz 4/ 2 2 2 2 2 "3 a a e' + 2aBe [a (1 + Aa )- 2n(~+ Aa )/A + a /{A(l + Aa )}] 

2 
3 

8 
R. 

l 

/z 
o 

-Mz 2 {ae a 

(14) 
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Equation (7): 

1 
4 

4 2 -Ca j "z 2 

- R CD9. e dz·. = ° 
e ° 

2. Computation Procedure 

It is necessary to solve these six simultaneous equations for the 

six unknowns at each z value, even though no explicit solutions are avail-

able. These equations have been linearized in each of the six unknowns, 

relative to its preceding value, so as to obtain six linear simultaneous 

equations which can readily be solved for small increments of z. 

Because of the high nonlinearity of the equations, a simple Euler-

type method causes large truncation errors and gives meaningless results. 

A successful calculation has been achieved by use of a third-order Runge-

Kutta method, the algorithm of which is as follows: 

kl = hf(x ,y ) n n 

n = 0, 1, 2, .... 

Near the orifice, C and D are unmanageably large, so in Eqs. (11), 

(12), and (15), the substitution is needed: 

E 
2 -Ca 

De . (17) 
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If now we express the linear simultaneous equations as Mdx = Ndz, 
R;j rv rv 

where dXl = dA, dx2 = dB, ~ = dC, dX4 = dE, dX
5 

= da, dX6 = dM, then 

M. and N.(j,k = 1,2, .••• 6) are given as follows (zero-valued elements 
Jk J .. 

are omitted). 

M12 = ~e-Mza2 + 2B 

16cx· 2 3 -2Mz Q~rn_ -Mz M15 = a e + Uh~e 

Q~,2 4 -2Mz I.~,,",_ 2 -Mz 
M16 = -Uh a ze - ~na ze 

Nl = fu2a4Me-2Mz 
+ ~2Me-MZ - 32(ae-Mz + AB)/R

i 
2 2 2 

M21 = -2Ba /(1 + Aa ) , 

M22 = 1/(1 + Aa2 )2 

M24 = -1 

M25 = -4ABa/(1 + Aa2 )3 

~l = B/(l + Aa2 )3 - 3ABa
2
/(1 + Aa2)4 

2 3 
M32 = A/(l + Aa ) 

M33 -1/2(~e/~i)D 

-1/2 (~ /fl.)C 
el 

-6A2Ba/(1 + Aa2 )4 

-Mz -CXze 

-Mz 
N3 = OM:e 

M41 = -1/2(Ba4)/(1 + Aa2 )2 

2 2 
M42 = a /{2(1 + Aa )} 

M45 = 2cxa3e-
Mz 

+ Ba/(l + Aa2) - ABa3/(1 + Aa2)2 

, / 4 -Mz M46 = -1 2(cxa ze ) 

/ 
4 -Mz 

N4 = 1 2(cxa Me ) 

. 
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-Mz 6 2)2 4/ ( 2)2 M51 = 2Ci.Be [-a / (1 + Aa, - a {A 1 + Aa, } 

_ 2a2/{A2(1 + Aa2 )} + £n(l + Aa,2)/A3 ] 

_ 1/6(B/A)2{1 -1/(1 + Aa2 )3} + 1/2(Ba)2/{A(1 + Aa2 )4} 

M = 2ae-MZ[a4/(1 + Aa
2

) - In(l + Aa
2

)/A
2 

52 
+ a2/(A(1 + Aa2)}] + 1/3(B/A){1 - 1/(1 + Aa2 )3} 

M55 = 4(la5e-2Mz + 4ABa3e-MZ/(1 + Aa,2) + Ba2/(1 + Aa,2)4 

2 6 -2Mz-Mz 4/ 2 . 
M56 = -4/3(a a ze ) - 8aBze [a (1 + Aa ) 

- £n(l + Aa
2

)/A
2 

+ a
2
/(A(1 + Aa

2
)}] 

N5 = 4/3(a2a6ze-2Mz ) + 2aBMe-MZ[a4/(1 + Aa,2) 

_ In(l + Aa2)/A2 + a2/(A(1 + Aa,2)} _ 8/H.(aa2e-MZ 
l . 3 

+ ABa2/(1 + Aa,2) ] 

M63 = -1/4(E/C)2 

M64 = 1/2(E/C) 

N6 = 4/Re(CEa
2

) 

The numerical calculations have been done on a Control Data 

Corporation 6600 digital computer. 

The choice of a is arbitrary; the closer it is to 1, the 

finer the z-increments required in order for the computation to remain 

stable. By trial we found that a = 0.95 gives a reasonably good fit 

to the initial parabolic form, with z-increments initially lxlO-7; 

any finer increment size would. require double-precision arithmetic 

with an undesirable increase in computation time. Moreover, values 

nearer to 1 do not give appreciably different results. 
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The initial values for A and B are obtained from Eqs. (13) and 

(14) by use of a suitable root-finding method, for example, the Newton-

Raphson method. The initial values of C and E are determined from 

Eqs. (11) and (12); they make the left-hand side of Eg. (15) equal to 

-6 about 10 ,which is well within the level of accuracy that has been 

retained. Afte~ 
-1 

z reaches lX10 ,C and D can be calculated separately 

and then Eq. (9) can be evaluated. fully. 

By using an integrated relation (2) we eliminate dB/dz, da!dz, 

and dM/dz, but" it is still necessary to mow the initial value of M. 

Fortunately, the product Mz near the origin is so small that any arbi-

trary initial value, of M, after several steps, gi ves i the same M values 

in the following steps. 

In several calculations, for small viscosity or density ratiO, 

the velocity profiles have completely switched to nonparabolic forms. 

As a result the terms involving M have dropped out, and the 'number of 

equations has become more than necessary to solve for five unmoWlls. 

Addition of Eq. (6) to Eq. (7) times density ratio, gives Eq. (6a), 

which is a total momentum balance for the jet. Therefore, in such 

cases, one can replace the fifth governing relation (6) by Eq. (6a), 

leaving out Eq. (7): 

f a 2 
rw. dr + 

l 

o 

00 

(6a) 
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The following step-by-step calculation can be achieved by use of 5X5 

matrix elements with new fifth-row elements corresponding to (6a). The 

changes in the fifth-row elements of the matrix expression are: 

. 2 
M53 = -1/4(E/C) (Pe/P i ) 

M54 = 1/2(E/C)(Pe/P i ) 

N5 = 4/3 (cia 6ze -2MZ) + 2CXBMe -MZ'[ a4/ (1 + Aa2) 

_ In(l + Aa
2

)/A
2 

+ a2/{.A{1+ Aa
2 )}] 
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C. Results 

1. Comparison with Published Experimental Data 

Kimura and Miyauchi7 have measured the interfacial velocity for 

a benzene jet into water, using stroboflash ~hotogra~hy. As tracers, 

they injected water bubbles into the benzene ~hase, and aluminum ~articles 

into the surrounding water phase. Their experimental parameters 

(viscosity ratio l.54, density ratio 1.13, and interior Reynolds number 

450) fall within the range of our model. The experimental results for 

interfacial velocity and the jet radius are ~lotted in Fig. 1, along 

with com~arative calculated values. 

For the calculation, the in~ut data are an interior Reynolds 

number R., a viscosity ratio Il Ill., and a density ratio pip .• The 
1 e 1· e 1 

values of interfacial velocity predicted from the present model are 

significantly higher, and the calculated jet-radius values are lower, 

than the experimental data. As discussed by-Fosberg and Heideger,2 such 

discre~ancies can be attributed to fluid-dynamic end effects due to the 

receiver into which the interior jet impinges: the solid surface of 

the receiver hinders the flow of both the interior and exterior fluid. 

A more realistic model requires a boundary condition at the 

downstream end of the jet, and also a ~ressure-gradient term in the 

equation of motion; thus the problem becomes one of boundary-value 

t~e rather than of initial-value t~e. At this stage so detailed a 

model seemstbo com~licated to be solved, so a simpler correction method 

has been ~ro~osed. An additional resistance caused by the ~resence of 

a rec~iver may be viewed as equivalent to an increase in viscosity ratiO, 
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producing a commensurable increase in jet-radius change. Hence we pro-

pose to correct the velocity profile by matching a calculated jet-radius 

profile with an observed shape. Therepy we either (1) determine a new 

~ value to be used in computing the interfacial velocity, or (2) simply 

divide the calculated velocity values by the square of the jet-radius 

ratios; method (1) has been 8:pplied here. 

In the experimental-jet profile, there is no description of the 

vena contracta, which should O?cur very close to the orifice plane with 

a reduction of the jet radius by approximately '7/0. An experimental 

photograph by Kimura
6 

seems to show a vena contracta very near the 

orifice plane, hence the real initial radius could be about '7/0 larger 

than the given value; this correction has also been included. The jet 

radius corrected in this way has been found to fit a value of (~e/~i) 

(p /P.) = 4.0, a,s shown in Fig. 1. This value, indicated as ~ = 4.0, e l . ' 

also gives a good fit to the measured interfacial velocity. (Justifica-

tion for using the parameter ~ follows directly.) 

2. Generalized Behavior 

Close examination of Eqs. (10-15) indicates that the functions 

A, B, and M and the jet radius a can be expressed concisely in terms 

of two collective parameters, composed of the four original variables 

Ri , ~e/~i' Pe/P i , and z. 

The first parameter is the product of viscosity ratio and 

density ratio, designated by ~: 

", 
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(18) 

The second parameter, which is exact within the framework of the 

present boundary-layer approximation, is a modified axial distance 

designated by s: 

s = z/R. 
1 

(19) 

The validity of these substitutions can be proved in the following 

way. Use ofEq. (19) involves replacing Mz by MR.s, with the subsequent 
1 

finding that MRi can be treated as a single variable,. Separately, from 
. C 2 

Eqs. (11) and (12), we find that De- a and CP./p must each be functions 
1 e 

of 13. (From this, it follows that :Q:>. / p depends upon 13.) Finally, 
1 e . 

using these relations, Eq. (15) is shown to involve only functions of 

13 and MR .• 
1 

The functions A, B, and M and the jet radius a are plotted in 

Figs. 2 and 3. For the conditions used, A ranges between 0.3 and 0.85 

(A!31/ 3 between 0 and 1.8); B between 0.2 and 2.0; MR.~ (or MZ) between 
1 

o and 8.0; a between 0.9 and 1.35. The functions Cp./p (or Cl ) and 
1 e 

Dl (equal to D at p /P. = 1) relating to the exterior fluid are plotted e 1 

(as reciprocals) in Fig. 4. At any density ratio other than 1, at 

constant 13, D is obtained from Dl , Cl ' a, and Pe/Pi' as 

D (20) 
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The velocity profile of the jet can be,reconstructed from the preceding 

plots, tlsing Eqs. (8) and (9). The center-line velocity and the inter­
I 

facial velocity (shown in Fig. 5) are also functions of f3 and ~. 

The center-line velocity curves for various f3's collapse into 

a single line with a slope of -Sa, as ~ diminishes to zero. This is 

because the initial radial profile of axial velocity is pseudo-parabolic. 

The interfacial velocity and jet radius curves for a free jet 

(see below) ,which corresponds to f3 = 0, are calculated by Duda and 

1 Vrentas. These curves are also plotted in Fig. 3 and Fig. 5 with 

broken lines. 

Figure 6 shows a velocity profile radially with the axial 

distance z as a parameter for benzene-water system (Il Ill. = 1. 54, 
e 1 

p /p. = 1.13, and R. = 450). e 1 . 1 

3. Comparison with Schlichting-Type Solution 

A circular jet issuing from a point-source orifice and mixing 

with the surrounding fluid has been analyzed by Schlichting, in a boundary­

layer approximation. ll As in the preceding analysis, the pressure is 

considered constant. The total momentum provided in a Ifreallf cylindrical 

jet with initially parabolic veloCity profile can be equated to the 

momentum in the Schlichting jet. In the Schlichting jet the velocity 

through the point source is infinite, but the initial mass flow rate is 

zero and the momentum remains finite. Therefore a direct comparison 

only becomes possible at distances far downstream from the orifice. 
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Fig. 5 Center-line and interfacial velocities as functions of S and ~. 
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To Eqs. (1) and (6a),for the case where the jet liquid and the 

exter,ior liquid are the same, or have the same densitles and vlscosities, 

·we can apply the transformationsequi valent to the follmving: 

r 
11 ::: R. 

~ z 
(21) 

Here cP is the stream function, 1.1 is Ii "simllarity var.iable," and R. is 
1 

the Reynolds number 2AOWCPi!~i as calculated for the real jet. 

In terms of the real-jet variables, the velocl'tiesthen become 

32Sz3 

w~ - -(r-2-R""'".-+'"'--2S-z-2-)-2 
~ 

u. ::: 
~ 

(22) 

.. (23) 

When the mass balance for the real interior jet phase is intro-

duced, the jet ra,dius (applicable only at large z, and with an orifice 

plane possibly different from that for the real jet) can be given as: 

2 
a ::: 16z - R. 

. . ~ 

(24) 

When the total momentum is equated between the Schlichting jet 

and the real jet, a constant S is obtained: 

S ::: 32!R. 
~ 
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In terms of parameter s(=z/R.), Eqs. (19) and (22) are then 
1 

expressed as 

w. == 
1024S3 

1 (r2 + 64S 2)2 
(26) 

2 ~2 a == 1 s-l'J 

Figures 7-9 show the center velocity, interfacial velocity, 

and the jet radius calculated from the Schlichting model for S values 

between 0.0625 (a singular point) and 1.0, together with those from 

the real-jet model in the case of ~ == 1.0. As is expected, the curves 

become parallel in the vicinity of s= 1.0. Since in the real-jet 

model the exterior-velocity profile is assumed to have an exponential 

form, the agreement is better in the neighborhood of r == O. 

Vandegrift13 extended Schlichting's model to the case of two 

different fluids. His solution does not satisfy tangential-stress 

continuity at the interface, but does satisfy the total momentum balance 

for interior plus exterior fluid. The interior velocities and the jet 

radius can be expressed the same way as in Eqs. (22-24), but with a 

different value of S which is obtained from the numberical integra-

tion of the momentum balance for both phases described by Eq. (6a). 

The exterior velocities become: 

(28 ) 
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4 C',../ - L2 - L - 1) (29) U rR e 
e 

'Where 

2 4a4
R (R -R.) eel + 1 (30) 'Y = 

2 ~ 2 (2Sz +a .) 
- 1 

2a~ 
L e - 1 (31) = 22 

2Sz +a R. 
1 

Profiles calculated by using these equations have been given 

by Vandegrift. 13 For this case, as for a single phase, the match on 

~ is difficult to establish. Also the calculated and experimental 

velocity profiles can agree only at points rather far downstream from 

the real inlet. 

4. Effect of Density Difference 

The buoyancy effect due to a difference in fluid densities can 

be taken into account by introducing Froude-number terms into the 

equation of motion for center-line velocity and into interior and 

exterior momentum-balance equations. These equations then become: 

= 4/R1.fZ [1 d 
r~ 

- 0 
~~)] r~ dz 

z +­
Fr 

(2a) 



2 
r"yJ. dr 

1 
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= 2/3 +2/R.l Za(:Wi) dz + 1/2F rZ a
2

dz 
lOr r=a r J O 

(6b) 

l
z a(~re) , jZ 2 -2/R or dz - 1/2F ·(P. /p )a dz 

. e r 0 l.e 
O. r=a 

(7a) 

'2 I 

where Fr =W
O 

/ 2AO g, and the corresponding changes in the matrix 

elements are' 

2 N6 + (P./p )a /rF 
1 e r 

The liquid-liquid jet of interest usually has a R./F of about 
. . 1 r 

10, and for this case the numerical computation which includes Froude-

number terms does not show any appreciable difference. 
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D. 'Summary 

A calculational method for the velocity profile of a circular 

liquid jet in a s,tationary surrounding liquid has been developed.; The 

assumed axial-velo~ity equations are made to satisfy six governing con-

'ditions. 

Linearization and numerical integration by a third-order Runge­

Kutta method has been used to obtain numerical values of velocity functions 

in terms of an axial distance variable. The velocity values' and the jet 

radius, as well as the generating parameters in the velocity equations, 

are obtained as functions of a Viscosity-density constant r3 and a dimen­

sionless axial distance~. The effect of graVity, expressed bya ratio 

of Reynolds ,number to Froude number near 10, is found to be negligible. 

The method M.s been applied to published experimental data ,'~d 

shows fairly good agreement. Comparison with Schlichting's analytical 

solution of a circular jet is also fairly good at distances far down­

stream from the, orifice plane. : Comparison with values for a free jet 

indicates that ,the method is le~s accurate at r3 values below about 0.25. 
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IV. VELOCITY PROFILE OF CYLINDRICAL LAMINAR LIQUID JETS 
ENTERING A MOVING SURROUNDING LIQUID 

A. Introduction 

In cases where a laminar-flow liquid jet is injected axisymmet -

rically in an immiscible liquid flowing at uniform velocity, knowledge 

of the entry behavior is necessary to establish the actual velocity be-

havior of both liquids as governed by momentum transfer across the phase 

boundary. If the external flow also is laminar, the jet will be more 

stable than for injection into a stationary external liquid, due to the 

lower rate of momentum transfer. Moreover, whereas injection into a 

stationary external liquid may never reach a steady-state profile, the 

distance required for transition of the interior-jet velocity from its 

initially parabolic profile to a flat profile is relatively short. 

One important experimental application of such jets is their 

use in studies of heat and mass transfer, the latter sometimes including 

chemical reaction. The theory of an oscillating jet2 assumes a uniform 

axial~velocity profile, oh which perturbed velocities due to the non-

circular orifice are superposed. Therefore a closer approximation to 

the theory should be shown by a jet in a flowing external lqiuid than 

by one in a stationary external liquid. 

Wygnanski
4 

recently solved the problem of a two-dimensional 

laminar jet issuing co-directionally into a uniform stream of the same 

fluid. He developed a·direct expansion to apply near the origin, and 

an asymptotic expansion valid only at large distances; the two expansions 

are joined along the center. line of the jet. However, it appears that 
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no theory has yet been developed for the axisymmetric case, particularly 

for a pair of immiscible liquids having different viscosities and densities. 

The present authors with Vandegrift3 have developed a numerical 

stepwise empirical-fit technique for a cylindrical jet issuing into a 

stationary immiscible liquid. That method will be extended here to cases 

having a flowing external liquid. 

-, 
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B.· Theory 

We consider a liquid jet injected into another liquid flowing 

in the same direction, and confined in a cylin,dricaltube. Throughout 

the length of the system considered here, the exterior liquid flows 

within a relatively ,large cylindrical wall. Upstream of the orifice 

from which the interior jet emerges, its flow is also bounded ,by a cen-

tral thin-wall orifice tube having the same> diameter 'as the emerging jet 

(Fig. 1). 

" 

At the orifice, the velocity at the interface between interior 

and exterior fluids is zero. Immediately downstream, at radius values 

near the value of the orifice radius, both fluids are accelerated. If 

the interior-fluid velocity adjacent to the interface increases more 

rapidly, the interior jet can be termed a "strong" jet; conversely, if 

its acceleration is less rapid, it can be identified as "weak." Near 

the orifice a strong jet will impart momentum to the exterior fluid, 

whereas a weak jet will absorb momentum from the exterior fluid; further 

downstream, the direction of momentum transfer may reverse before the 

steady-state profile is attained. However, because of the mathematical 

forms of velocity equations, only a strong-jet behavior, which is our 

main concern, can be described by the following model. 

The following notations are used; 

A,B,C,Cl,D, 'coefficients which are functions of the axial-distance 
Dl,E,G,M variable 

AI 

AI 
o 

interfacial radius or jet radius (cm) 

orifice radius (cm) 
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Fig. 1 Flow-system geometry with representative velocity profile. 
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tube radius (cm) 

A'/AO" dimensionless jet radius 

1 + K2 - (1 - K2)/ln(1/K) 

(1 - K
2
a

2
)/ln(Ka) = 2(1 - l1)/lnl1 

radial distance (cm) 

R'/AO" dimensionless radial distance 

interior Reynolds number 

exterior Reynolde, number based on the 

interior-flow conditions 

axial velocity (cm/sec) 

W'/Wo', dimensionless axial velocity 

initial mean velocity of jet (cm/sec) 

initial mean annular velocity (cm/sec) 

axial distance (cm) 

Z, /Ao', dimensionless axial distance 

·interior phase 

exterior phase 

parabolic constant 

~ p /~.p., viscosity density constant e e 1. 1 

WAF'/Wo" ratio of initial average velocities 

(Ka)2 

A '/A_' ratio of orifice radius to outside-tube radius o T ' 

z/R. 
1 
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1. Empiri~al Velocity Equations 

In the case of a stationary surrounding fluid we added a perturbing ,,. 

function to a parabolic form to describe an interior jet-velocity profile. 

Here "e shall. add an exponential-type perturbing function to an annular-

flow expression to give an exterior jet-velocity profile. However, since 
I 

the outside-tube diameter'is substantially larger than the orifice diameter, 

the exterior liquid can be viewed as essentially an infinite medium. This 

is equivalent to saying that the boundary layer that forms in the exterior 

liquid does not interact with the outside-tube wall within the flow-path 

interval in which the interior-jet profile changes from a parabolic to a 

flat form: Except for a very minor correction factor, G, which is intro-

duced to satisfy the conservation of mass, our treatment is based upon the 

physical fact that the exterior ,jet-velocity profile far from the inter-

face does not change. 

The perturbing functions assumed for the interior and exterior 

jets are the same as in the stationary case. The velocity equations are: 

where the first term in each equation represents the parabolic or annular-

1 type profile. which applies at the orifice plane. 

As in the related analysis for a jet in a stationary fluid, a 

boundary-layer approximation is made, and axial velocities can be ex-

pressed by use of six parametric functions plus the radius a. 
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The following seven governing equations are used: first, the 

integrated equation of m~ion on the center line,3 

I 

z 

= 4/R·l 
l 0 

The continuity of axial velocities at the interface, 

The continuity of tangential stresses at the interface, 

(ow.) 
I-li dr

l 

r=a 

Mass balance for the interior jet, 

r 
o 

rW.dr 
l 

1/2 

(4) 

(6) 

Mass balance for the exterior fluid, which is fiowing and bounded by a 

-cylindrical tube, 

where 

rW dr 
e 
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2 2 
WAF = 2y/K(l - (Kr) - (1 - K )In(Kr)lln) 

Momentum balance for the interior jet, 

11K 

j 
o 

2 2 2 J 11K (OW. ) 
rW. dr = - + - a ~ dz 

~ 3 Ri 1 r r=a 
(8 ) 

Momentum balance for the exterior fluid; 

11K 11K f' (OW 'f rW 2dr -f rW 2 dr = - ~ a ~) dz (9) 
a e 1 AF R 0 or e r=a 

Substituting W. and W into Egs. (3) through (9), we obtain 
~ e 

( 
-Mz 2 2 2 -Mz 2 32 jZ -Mz 

2ae a) + 4a'.Ba e + B - 4 - R.'" (ae + AB) ciz = 0 

2 
-Ca = 0 + CDe 

4 -Mz 21 2 aa e + Ba (1 + Aa ) - 1 = 0 

~ 0 
(10) 

(11) 

(12) 
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2 4 4' 2 
2 (),G/K)( (l/K - a) - 0.25'< (l/K - a ) + 0.5a (1 - Kl ) 

2 
+ 0.25(1 - Kl)Ka/K2} + 0.5De-

ea Ie - 0 (14) 

, .. 

. . 

2 212 2 3 
+ a I(A(l + Aa )}] + b(B /A)(l - 1/(1 + Aa ) } 

2 8 jZ' 2 -Mz 2/( 2 3 - - - - [eta e + ABa 1 + Aa ) } dz = 0 3 R. 
1 a 

2 fZ 
MI - MIO = Re 0 (16) 

l/K 2 
MIO = f rWAF dr = const. 

1 

I /K 2 2 2 
MIl = (2"yG/K) (1 - (Kr) - Ka~n(Kr)} rdr 

a 

2 232 
= 2{-YG/K) [(1 - Tj)/K + (1 - Tj )/3K 

2 2 / 2 2 . 2, 1 - (1 - Tj )/K + (Ka K )(Tj /4 - Tj lnTj/2 - 4) 

(18) 
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2 
(4)'G/K)(1 - (Kr)2 - K£n(Kr)}De-Cr rdr 

a 

-ct 2 -ct 
(2'YG/K) (De - K tDe 

:, ? 

= (2)'G/K)[De-
ca Ic 

The last term in Eq. (19) is the exponential integral, 

El (ca
2

) = f: (e -7t)dt 

Ca 

2. Com;puta tion Procedure 

(20) 

As in the case of stationary external liquid, the above seven 

equations are linearized, and the resulting seven linear equations are 

solved for seven incremental values of parameters at each increment of z. 

The third-order Runge-Kutta shceme is used to reduce truncation errors. 

The following substitution is also needed to avoid numerical difficulties 

at small z values: 

E 
2 -Ca De 
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The elements of the linear simultaneous equations Mdx = Ndz 
~I"'v rv 

are given as follows (zero-valued elements. are omitted), where dXl = dA, 

dX2 = dB, d~ = dC, dX4 = dE, dX
5 

= da, dX6 = dG, and dX7 = dM: 

M = 4aa2 -Mz 2B 12 e + 

M = lc_.2 3 -2Mz o~'Ba. ~Mz 15 OJ a e + uu; e 

M oN2 4 -!2Mz 1._",_ 2 -Mz 17 = -uu; a e - ~~ ze 

o~.2 4M -:-2Mz 1.~..,.,_2M -Mz Nl = uu; a e + ~J:)I::I. e 

- 32(ae-Mz + AB)/R. 
1 

M21 = _2Ba2/ (1 + Aa2)3 

M22 = 1/(1 + Aa2
)2 

M24 = -1 

/ 
2 3 

M25 = -4ABa (1 + Aa ) 

M31 = B/(l + Aa2) 3 - 3ABa
2
/(1 + Aa2)4 

~2 = A/(l + Aa2 )3 

M)3 = -O.5(~e/~i)E 

~5 = -6A
2
Ba/(1 + Aa2)4 + 2(~e/~i)(~G/K)(1 - ~ + ln~)/a3(ln~)2 

M36= -O.5(~e/~i)(~/K)(2K2 + Ka/a
2

) 
. -Mz 

. ~7 = -CXze 
-Mz 

N3 = CXze 
4 . 2 2 

M41 = -O.5Ba /(1 + Aa ) 
2 2 

M42 = O·5a /(1 + Aa ) 

M45 = ~3e-Mz + Ba/(l + Aa
2) _ ABa3/(1 + Aa2)2 

4 -Mz 
M47 = -O.5CXaze 

4 -Mz 
N4 = O.5CXa Me 



where 

M53 = -0.5E/C
2 

M54 = 0.5/c 
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M55 =,2(~G/K){(1 - ~)a - 1 - 0.5aKa + 0.5a(1 - ~)dKa/d~} 

M56 = 2b/K) { (l/K - a) - 0.25 2(1/K4 - a4) + 0.5a 2(1 _ ~ 
+ 0.25(1 - ~)K /K2} a 

6 '2 2 4 2 2 222 M61 = 2a.B[ -a / (1 + Aa) - a / {A(l + Aa ) } - 2a / {A (1 + Aa )} 

+ 21!n(1 + Aa
2)/A3] e -Mz - 1/6 (B/A)2 {1 - 1/ (1 + Aa

2)3} 

+ 0.5(Ba)2/{A(~ + Aa2)4} 

. 4/ 2). ( 2) / 2 2/ ( 2 -Mz M62 = 2a[ a . (1 + Aa -.e n 1 + Aa A + a {A 1 + Aa )}] e 

+ 1/3(B/A){1 - l/(i + Aa2)3} 

1.~,2 5 -2Mz 3 -MZ/( , 2) 2 /( 2 4 M65 = ~ a e + 4aBa e 1 + Aa + B a 1 + Aa ) 

M67 = _4/3afa6ze-2Mz - 2a.Bz[a4/(1 + Aa2) - Pn(l + Aa2)/A2 

+ a 2/{A(1 + Aa
2 )}]e-MZ 

N6 = 4/3a2a6Me-2Mz 
+ 2aBM[a4/(1 + Aa2) - 'fn(l + Aa2)/A2 

2/ 2 -Mz . 2 -Mz '2/ 2 3 / + a {A(l + Aa )}]e . - 8{aa e + ABa (1 + Aa ) }R
i 

2 3 2 '2 
M73 = 2(~G/K)[2K E/C + (~ - l)E/C + 0.5Ka (E/C )}Pn~ 

C 2 2 
+ e a El(Ca ).)] + 0;5E/C 

M75 = 4bG/ K)2{Tl + O.5KaT2(dKa/d~) - (Ka:en~)2/4 

- Ka(~ - l)pn~ + T3(dKa/d~)}a - 2(~G/K){2~E/(Ca) 
Ca2 2' , 

+ K 1 E U n~ + e El (Ca )} . 

M76 = 2MI 1/G + MI 2/G 

N7 = 4{ bG/K) (2~ + K ) + CEa2} /R a e 

;. . 

.. 
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T3 = 'rj2/4 - 'rj + 3/4 - ('rj2/2 - 'rj)£.n'rj 

dK/d'rj = -2Un'rj + (1 - 'rj)/'rjJ/(in'rj)2 
a 

As in the calculation for the stationary surrounding liquid, 

-6 
a is taken to be 0.95, Zo = 1.0><10 ,and aO = 1.0. The initial values 

are then determined as before, except that G is set at 1.0. When the 

terms involving M shrink to negligible levels, a total momentum 

balance is used, adding Eq. (8) to Eq. (9) times the density ratio: 

f a 2 Pe I/K 
rW. dr + _. 

~ p. 
2 2 

rWe ar = 3" + 
2 

rW AF dr = const. 
o ~ a 

(8a) 

The resulting 6x6 matrix has changes in the sixth-row elements, as follows: 

(p /P. )Mn e 1 

M65 =M65 + (Pe/Pi)M75 
M66 = (Pe /Pi )M76 

N6 = (P e /P
i

)N7 

3. Generalized Behavior 

There are four input variables for the present calculation: 

viscosity ratio ~ /~., density ratio Pe/P
1
., orifice-to-tube radius ,e ~ 

ratio K, and average-velocity ratio~. Once K and ~ are fixed, the 

the functions A, B, C P./P (or Cl ), Dl (equal to D at P /p. = 1), a, . ~ e e ~ 
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M, and G can be expressed in terms of two parameters ~ and S as for the 

stationary surrounding liquid. 

z/R. 
l 

(22) 

Therefore~, ~,and K are the input variables to be specified so as to 

carr:y out the numerical integration by··. the third-order Runge-Kutta 

scheme. In order to explore the functional behavior, ~ has been varied 

from 1 to 16; ~ from 0.125 to 2; K from 0.025 to 0.20. 

a. Effect of viscosities and densities. For ~ = 0.25 and K = 0.1, 

the profiles of center-line velocity, interfacial velocity, and jet 

radius are shown in Fig. 2. The curves for different ~IS show that 

higher values of ~ have a diminishing effect on the jet behavior. 

At higher ~ values, near or over 1, curves for different ~IS 

would combine into a single curve, indicating that ~ has little effect 

in such cases. Thus the behavior for different values of ~, at ~ near 

or over 1, can be determined from the curves for ~ = 4 given in Fig. 3 . 

b. Effect of average-velocity ratio. . For ~ = 4.0 and K = O. 1, 

profiles at different ~ values are shown in Fig. 3. The ~ values have 

the most pronounced effect on the behavior of the velocity and the jet 

radius. Naturally, higher ~ I s give higher center-line and interfacial 
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X BL6BII- 7195 

Fig. 2 Effect of i3 on jet velocities and radius for -y = 0.25 
and K = 0.1. 
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~ 
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Fig. 3 Effect of ~ on jet velocities and radius, for t3 = 4 
and K = 0.1.,' 
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velocities for the interior jet, and smaller changes in the jet-radius 

profile. 

For smaller~, the velocity profiles level off at values above 

the original exterior average velocities, which they should ultimately 

approach. The present model fails to describe the entire eventual 

veloci ty profile. The equation of motion for the exterior phase has 

not been included, and only the region adjacent to the interior jet 

undergoes much change in velocity within the distance where the interior 

jet varies from parabolic to plug flow; the distance necessary for the 

exterior fluid to attain a true steady state is approximately 100 times 

that for the interior jet. 

c. Effect of orifice-to-tube radius ratio. For f3 = 4.0 and ~ =1.0, 

profiles at different K values are given in Fig. 4. Because of the 

approximations made in the mass and momentum balances for the exterior 

phase, Eqs. (14) and (16), the present calculational method does not 

apply for the K values above 0.2. At ~ values near or over 1, K does 

not have much effect on the profiles, although it is quite significant 

at low ~ values. The radius of maximum exterior velocity comes closer 

to the center-line of the tube, and theirtterior velocities attain 

higher values (with less increase in a), for smaller K values. 

d. Behavior of parameters. For reference, representative values of 

the parameters, as functions of ~ between 0.005 and 0.5, are tabulated 

in Table 1. 
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Center-I ine velocity 

K= 

:~~~~~~~O.025 0·05 
0·1 
0·2 

Jet radius 

K = 0.2 

0.1 

1.20 

-0:L::!---~--1 I . 10 

-Q) ....... 

(I) 

en 
Q) 

c: 
o 
en 
c: 
Q) 

1.00 E 

o 0.02 0.04 0.1 0.2 0.3 0.4 0.5 

X BL6811- 7196 

?ig. 4 Effect of K on jet velocities and radius, for ~ = 4 
and "I = 1. O. 
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Table 1. Behavior of Parameters 

A B M -S;:: S;:: S;:: 
(3 K 'Y .0005 .005 ,05 ' .5 .0005 .005 .05 <05 .0005 .005 .05 .5 

1 r, .v 0.10 0.25 1.314 0.908 0.550 0.019 0.225 0.739 1.495 0.635 0.421 0.401 0.771 
l.0 0.10 1.0 1.392 0.967 0.519 0.0013 0.212 0.658 1.508 0.944 0.373 0.354 
2.0 0.10 0.25 1.316 0·917 0.580 0.014 0.225 0.723 1.448 0.603 0.419 0.382 0.359 
2.0 0.10LO 1.393· 0.968 0.517 o.oon 0.212 0.659 1.502 0.943 0.373 0.353 
4.0 0.05 1.0 1.396 0.971 0.520 0.0007 0.211. 0.654 1.508 0.962 0.371 0.352 

0.10 0.25 1.320 0.931 0.597 0.0107 0.224 0.702 1.388 0.589 0.417 0.379 .. 0.292 
0.5 1.377 0.961 0.546 0.0039 0.214 0.665 1.486 0.803 0.382 0.358 
1.0 1.393 0.969 0.515 0.0009 0.212 0.956 1.498 0.943 0.373 0.353 
2.0 1.397 0.971 0.485 0.0004 0.211 0.654 1.480 0.987 0·371 0.352 I 

\.0 
\Jl 

0.20 1.0 1.387 0.965 0.514 O. (X)lO 0.213 0.661 1.496 0.936 0.376 0.356 I 

8.0 0.10 0.25 1.325 0.947 0.611 0.0089 0.223 0.679 1.347 0.582 0.414 0.366 0.264 
1.0 1.393 0·971 0.514 0.cx:d3 0.212 0.655 1.496·· 0.943 0.373 0.352 

16.0 0.10 0.25 1.330 0.963 0.621 0.0076 0.222 0.660 1.322 0.578 0.410 0.354 0.252 
1.0 1.393 0.971 0.514 0.0008 0.212 0.654 1.494 0.943 0.373 0~352 



Table I. (continued) 
--

C/ (Pe/P i ) Dl = (Db /p.=l G 
e l 

p= P= p= 

f3 K 'Y • 0005 .005 .05 .5 . .0005 .005 .05 .5 .0005 .005 - .05 .5-

1.0 0.10 0.25 48.4 8.01 0.983 0.241 00 544-. 1.69 0.883 1.00 1.00 1.01 1.01 
1.0 69.6 12.98 1. 765 0.721 00 72 ,750 3.86 2.02 1.00 1.00 1.00 1.00 

2.0 0.10 0.25 26.4 4.60 0.709 0.216· 00 18.7 1.18 0.829 1.00 1.00 1.01 1.01 
1.0 44.4 8.59 1.422 - 0.718 00 909.0 2.74 2.02 1.00 1.00 1.00 1.00 

4.0 0.05 1.0 26.0 5.14 0·921 0.495 00 28.8 1.65 1.61 1.00 1.00 1.00 1.00 

0.10 0.25 - 15.4 2.89 0.556 0.207 00 3.35 0.929 0.811 1.00 1.00 1.01 1.01 
0.5 21.6 4.21 0.740 0.373 00 11.52 1.31 1.27 1.00 1.00 1.00 1.01 
1.0 31.8 6.40 1.253 0.718 00 101.4 2.30 2.02 1.00 1.00 1.00 1.00 
2.0 51.2 10.63 2.269 1.420 00 6943. 6.53 4.16- 1.00 1.00 1.00 1.00 

0.20 1.0 43.7 8.99 1.955 1.19 00 1354. 4.72 3·32 1.00 1.00 1.00 1.01 
I 

8.0 0.10 0.25 9·90 2.03 0.468 0.203 808 1.35 0.796 0.803 1.00 1.00 1.01 1.01 ~ 
1.0 25·5 5.30 1.167 0.717 33.8 2.11 2.01 1.00 1.00 1.00 1.00 I 

00 

16.0 0.10 0.25 7.15 1.58 0.420 0.201 51. 7 0.832 0.725 0.800 1.00 1.00 1.01 1.01 
1.0 22.3 4.75 1.126 0.717 00 19.5 2.03 2.01 1.00 1.00 1.00 1.00 

. .-
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v. CONCLUSIONS 

The mathematical description of the oscillating jet has been 

divided into two parts: elliptical oscillation of a plug-flow jet, and , 

relation of effective plug-flow velocities to actual velocity profiles. 

and jet radii. A complete numerical solution for the oscillating wave-

length has been bbtalned. Also, the cylindrical velocity profiles have 

have been calculated with an accuracy which should be adequate for in-

terpreting experimental data on liquid-liquid jets. 

Further study is needed of the effect of downstream ob-

structions producing pressure gradients along the jet path,and also of 

the correlation needed to define the effective plug-flow velocity on 

which the interfacial-tension determination is based. 

The nozzles used in the reported experiments were made by 

drawing heated capillary glass tubing to obtain a taper and then pressing 

the tubing into an elliptical shape. Numerous other methods of· producing 

satisfactory nozzles were attempted. In the most successful of them, 

heated Pyrex gla~s tubing (5'mm O.D.) was drawn to capillary dimensions 

(0.3-0.8 mm), and the resulting capillary was pressed into elliptical 

form. After breaking the tube squarely, 1 to 2 cm of nozzle tip thus 

obtained was attached to a stainless-steel hypodermic needle (No.·19) 

with epoxy glue. The effect of nozzle wall thickness should be much 

smaller than that of the nozzles constructed from thick-wall capillary 

tubing. 

A study of additives for the exterior liquid (such as carboxymethyl 

cellulose) is necessary, to keep it in the laminar~flow region by increas-

jng its vjscosity without accomPanying major changes in diffusivity. 

.0 
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APPENDIXES: COMPUTER PROGRAMS 

I. Wavelength--Interfacial-Tension Relation 

The following programs were written to s 01 ve Eg. (38) to obtain 

the interfacial tension and the empirical multiplier, f. 

A. Main Program (XINTES) 

(1) Abstract 

The object of this program is to evaluate a 6x6 complex matrix 

equation, the matrix being a function of a variable; 

~(a) • X = 0 

For nontrivial X, A(a) 
'" rv 

minant equa.tion fora. 

a = 

(2) Usage 

Input: 

N 

B 

A 

REl 

CMUl 

det ~. 

det l:,. 

o must hold, which leads to solving the deter-

run no. 

wave number, 'ar/A 

jet radius, a 

one half of interior Reynolds no., 

ca P./'tl. 
1 1 

interior-fluid viscosity 

~. 



'. 

RMU 

RRHO 

c 

Z(l), Z(2) 

Output: 

DELR, DELI 

DETR, DETI 

TR, TI 

Z(L) 

WE 

RWE 

RWE1 

F 
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viscosity ratio, ~e/~i 

density ratio, Pe!Pi 

effective plug-flow velocity 

estimated initial-damping factors 

real and imaginary parts of det 6 
~ 
~ 

real and imaginary parts of detD 
rv 
rv 

real and imaginary parts of interfacial 
tension 

damping factor 

modified Weber no., ~.c/a 
~ 

reciprocal of modified Weber no. 

2 
reciprocal of Weber no., a/c ap. 

~ 

empirical multiplier, f 

B. Gauss-Reduction Subprogram (GAUSS) 

(1) Abstract 

This program gives a determinant of a matrix with complex variables. 

(2) Usage 

CALL GAUSS(M,BR,BI,DETR,DETI,FACTOR,JROW,ICOL) 

M no. of rows or columns of a matrix 

BR real part of element in A 

BI imaginary part of element in A 

DETR real part of determinant 

DEl'I imaginary part of determinant 



FACTOR 

(3) Restrictions 

M < 20 

. (4) Method 
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scale factor to control overflow or 
underflow 

The basic feature of the method is to convert the square deter-

minant to triangular form, so that the determinant is simply the product .~ 

of diagonal elements .of the triangular matrix. 

C. Bessel-Function Subprograms (BIS,BIL,BKS,BKL) 

(1) Abstract 

These programs give the functional values of modified Bessel 

functions with complex arguments. 

(2) Usage 

CALL BIS(N,RHO,PHI,BRIS,BIIS) 

CALL BIL(N,RHO,PHI,BRIL,BIIL) 

CALL BKS(N,RHO,PHI,BRKS,BIKS) 

CALL .. BKL (N ,RHO, PHI, BRKL, BIKL) 

N 

RHO 

PHI 

BRIS,BIIS,BRIL,BIIL 

BRKS,BIKS,BRKL,BIKL 

order of modified Bessel function 

magnitude of argument 

arg z = arctan(y/x) 

real and imaginary parts of modified 
Bessel function of the first kind 

real and imaginary parts of modified 
Bessel function of the second kind 

lo. 
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(3) Restrictions 

BIS,BKS for RHO < 10 

BIL,BKL for RHO >10 

(4) Method 

BIS and BKS are summations of series (9.6.10), (9.6.11) up to 

the twentieth term. BIL and BKL are summations of series (9.7.1) and 

(9.7.2) up to the thirtieth term. These series are given in Handbook 

* of Mathematical Functions. 

* Abramowitz and stegun, Handbook of Mathematical Functions, Natl. 
Bureau of Standards, App1. Math. Series No. 55, u.S. Govt. Printing 
Office (1964). . 



PROGRA\1 XI"!TES(INPUT,OUTPIJT,T~PE5 = INPUT,TA?E6 = OUTPUT) 
COM ~v1 0 N A R ( 2!) , 2 0 L , A I ( 2!) , 20) ,J R ') '.H 2 0] ) , I COL< Z 0) , I ~ 0 ~\J( 2 0 ) ,J CO L<2 0) , 

1 '3R(20,20) ,91~( 2),201 ,AAR(61 ,AAI(6) ,(R(ZO,201 ,(r (20,20), 
2 T R( 2 5 1 ,T I ( 2 5 ) ,Z ( 2 5 ) 

C N = RUN NO., 9 = REAL-WAVE NO •. , A = AV. JET RADIUS, REI = ONE HALF 
C OF INTERIOR REYNOLDS NO., eMUl = INTERIOR-FLUID VISCOSITY, ~M~ = 
C VISCOSITY RATIO, ~RHO = DENSITY R~TIO, C = CONSTANT AXIAL VELOCITY 
C , Z = DAMoING ~AcrOR, TR = REAL-PART INTERFACIAL TENSIO~, 
C .TI = IMAGINA~Y-PART I~T~RFACIAL TENSION, W~ = MODIFIED WE'3ER NO., 

. C RWE = l./WE, RWEI = 1./(WE3ER NO.), F = EMPIRICAL MULTIPLIER TO 
C RAYLEIGH SOLUTION. 

C 
C 
C 
c-

GIVEN 9A, R~I,RMU, RRHO, AN~ Z OF 1ST AND 2~D APPROXIMATION, W~ 
09TAIN TR WITH TI = J., WEBER NO.5, AND~. w~EN IT OVERFLOWS, TR = 
TI = WE = F = J. WHEN TI ~OES NOT CONVERGE T) 0, TR, TI, WE, AND 
F WILL 8E SET TO 100. 

8 READ (5,l)N,9'A"H:::I,C~~1J1,R~U,RRHO,C 
IF(N.~O.qq) STOo 
READ ('Still Z(1) ,Z(2) 
CMU2 = RWJ*C~UI 
RE2 = REI*(R~HO/R~U) 
WRITE (6,21 N,8,A,REI,C\1UI,RMU,RRHO,C 
L= I 
gAR = ~*A 

7 RAI = Z(ll*.A 
'Jl = 9AR**2 - RA I**:? - 9t. r *~Fl 
U2 = BAR*':? - '3A1**2 - q~I*RE2 
VI = 2.*9AR*9A1 + 9A~*R~1 
V2 = 2.*9AR*9AI + 8A~*R~2 
YI2 = (-UI + SQRT(lJl*''!-2 + Vl**Z» 12. 
Y22 = (-U2 + SQRT(U2**2 + V2**2»/2. 

~'. 

I 

b 
+" 
I 



'" 

X12 = Y12 + U1 
X22 = Y22 + U2 
f)lAR = SQr:(T(Xl?) 
!)lAI = SQr:(TCY12) 
D2AR= SQ~TCX~2) 
02AI = SQRTCY22) 
RBA = SQRTC9AR**2 + 9Al**2) 
PHI9 = ~TANC~AT/~~R) 
Rl = SQRT{r')IAR**2 + 0IAI**1) 
PHIl =ATANCI)IAI/OIARI 
R2 = SQRTCI)2Ar:(**2 + 1)2AI**2) 
PHI2 = ATAN(!)2AI/02AR) 
R9AR = 9AQ/C~AR**2 + 9AI**?) 
R8AI = -RAI/CRAR**2 + 9AI**2) 

. S8AR = ~AR**? -9AI**? 
S9AI = 2.*9AR*8AI 
RS9AR = S~AR/CS9AR**2 + $9AI**2) 
RSBAI = -S9AI/CS~AR**2 + 59AI**2) 
~DlAR = !)lAR/((f)lAR**2)+(f)lAT**2) 
RDlAI = -!)IAI/CCr)IAR**2)+C!)IAI**Z)) 
RI)2AR = D2AR/CCD2AR**2)+C!)2AI**2)) 
R02AI = -f)2AI/C(r)2AR**2)+CD2AI**2)' 
Sf)IAR = Ul 

.Sr)lA I = VI 

. Sr)2AR = U~' 
Sf)2AI = V2 
RSDIAR = SDl~R/( (SDIAR**2'+(Sr)IAI**2)1 
R50IAI = -S!)lAT/((S!)IAR**~I+(snlAr**2) 
RS02A~ = S02AR/C (SD2AR**?)+Csn2AI**2) 

'RSD2AI = -Sr)2AI/(CS~2AR**2)+(SD2AI**2) 
. CALL ~r5{1,R9A,PHr9,gIIR,8r1r) 

CALL 9rS{?,~~A,OHT9,Rr2R,~I2I' 
CALL ~~SCl,?9A,P~:9,9KlR,1~1r) 
CALL 9~5(2,RRA,DY;9,R~2R,~~2r) 
IF CRI-IO.) 100,110,110 

30n CALL RTSCl,Rl,PHIl,!)IlR,nIlI) 
CALL ~rS{~,Rl,PHII,~r2R,r)r2L' 
GO TO 11C; 

• 

1 

b 
VI 

I 



31~ C~LL 9ILCl,Rl,PHIl,~rlR,nrlI) 
CALL·~IL(2,Rl,OYrl,~r2~,~r2r) 

315 IF (R2-1~.) ~20,130,130 
328 CALL B~SCl,R2tPHr2,DKl~,D~lI) 

CALL 9KSC2,R2,PHI~,DK2R'DK2r) 
GO TO '~n 5 

330 CALL 9~L(1,R~,PYI2.D~lR,~KII) 
CALL 9~LC2,R~,PHI2,D~2R'DK2I) 

335 ~I2PR = 8IlR - 2.*(~RAR*~r2R ~ R9AI*BI2IJ 
~I2PI = gIll - 2.*CR8AI*9I2R+R9AR*gT2t) 
BI2 0 PR = Cl.+6.*RS8AR)*812R-6.*RS~AI*912I-~9AR*~IlR+~BAI*8IlI 
BI2PPI= (1_+6.*RSAAR)*8I2I+6.*RS8AI*912R-R9AI*9rlR-R9AR*9111 
'3 ~ 2 P R =. - '3 K I R - 2 • * ( R '3 A R * '3 '< 2 R - R 8 A t * 91( 2 I ) 
8K2PI ~ -~KII - 2.*(R~AI*9K2R + R9AR*9K2T) 
9K2PPR = Cl.+6.*RS9AR)*RK2R-6.*RSRAr*9K2I+RBAR*9KiR-R9AT*9KlI 
8K2PPI = (1.+6.*RS8A~)*9K21+6.*RS3AI*9K2R+RRAr*9KIR+R9~R*qKII 
DI2PR = DIIR - 2.*CRDlAR*DI2R - R~1~r*DI2r) 
DI2PI = DIll - 2.~CR~lAI*)12R + RDIAR*~I2I) 
DIZPPR= (1.+~.*RS:)lAR)*DI2R-6.*RSDIAI*DI21-RDIAR*DIl~+RDIAI*)III 
DI2PPI= Cl.+6.*RS~IAR)*DT2I+6.*RSD1~I*nT2R-ROIAT*DIIR-~DlAR*D!II 
D~2PR = -DKlR - 2.*(RD2A~*DK2R - RD2AI*DK2I) 
DK2PI = -DKlI - 2.*CRD2AI*DK2R + RD2AR*DK2I) 
DK2PPR= Cl.+6.*RS~2AR)*DK2R-6.*RSD2AI*DK2I+R02AR*DKlR-RD2AI*D~11 
DK2PPI= CI.+6.*RSD2AR)*DK2I+6.*RSD2~I*~K2R+RD2AI*DKIR+Rn2AR*DKII 
ELR = -CR'3AI*C3.+S8AR)+S9AI*R9AR)/C 
ELI = (R9AR*C3.+SBAR)-S3AI*R3~1)/C 
MHld) = 312R 
AICl.ll = 91?I 
ARCl,n =-9K2R 
At ( 1.2) = -g~ 2 I 
ARCl,3) = -DI2R 
A I C 1 , "3)= -D I 2 I 
ARC I • '+) = D ~ , R 
AICl.4) = D~2I 
ARCl,5) = o. 
AICI,5) = '). 

'< 

, ' 

I 

~ 
I 

c 
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AR(I,6) = O. 
AI C 1,6) = O. 
ARP,l) = -9T2PI 
A r. C ? , 1) = qp DR 
A~C2,2) = 91(2P1 
AIC2,2) = -9K2DR . _ 

;, " . 

ARC2,3) = C9AR*RDIAR-9AI*R~IA1)*DI?PI+C9AR*RDIAI+9Ar*RDIAR)*DI2PR 
AIC2,3) =-C9AR*RDIAR-~AI*R~IAI)*D12PR-(9AR*RDIAr+~AI*~~IAR)*~I'-PI 
ARC2,4)=-(9AR~RD2AR-qAI*R~'-AI)*~K2PI-C~AR*RD2AI+9A1*RD2AR)*~K2PR 
AIC2,4)= (9AQ*RD2AR-9AI*R~2AI)*DK2DR+(qAR*RD2A!+9AI*RD2AR)*DK2Dr 
ARC2,5) = DI2R 
AIC2,5) = DPI 
AR(2,6) = -~1(2R 
AIC2,6) = -I)K21 
ARCJ,1)=2.*CR9AR*91ZR - R9AI*9I2I) 
AIl3,1)= 2.*CR9AR*912I + R9AI*SI2RI 
ARC3,2)= -2.*CR9AR*9K2R - R9AI*SK2!) 
AI(3,2)= -2.*CR9A!*9K21 + RSAI*BK2R) 
AR(3,3)=-2.*C C9AR~RSDIAR-1AI*RSI)IAr)*~r2R-(BAR*RSDIAI+9AI*RSDIAR)* 

1DI2I) 
AI(3,3)=-~.*(CBAR*RSDIAR-1AI*RSDIAI)*DI2I+(8AR*RSDIAI+8A!*RSDIARI* 

1DI~RI . 
AR(3,4)= 2.*((9AR*RSD2AR-~AI*RSD2AI)*DK2R-(BAR*RSD2AI+3AI*RSD2AR)* 

I0K21) 
AIC~,4)= 2.*((9AR*RSD2AR-1AI*RSD2AII*DK21+(BAR*RSD2AI+9Ar*RSD2ARl* 

IDK2R) 
ARC3,5L =CDIAR*D12pr + DIAI*DI2 DR)/Z. 
AIC3,5) = -C11AR*DI2PR - DIAr*DI2PI)/2. 
ARC3,6) = -CD2AR*~K2PI + D2AI*DK2 PR)/2. 
AI(,,6) =(D2AR*D~~DR - D'AI*DKZPI)i? 
ARC4,1) = -2.*C~Ul*(9AR*8I~PPI+BAI*9r2pPR) - (MUl*REl*312R 
AI(4,1) = 2.*C~Ul*(gAR*RI2pPR-9Ar*qI2pP1) - CMUl*R~1*qr2r 
A A R ( 1) = (~L R * 9 I 2 D I + E L T '.I- q 12 P R ) 
AAI(I) = -C~LR*9I2PR - EL1*RI2 D11 
AR(4,~) = 2.*C'vlIJ2*(~Aq*8'<~PP1+9A.1*8,(2PP.~) + 01U2*R~2*8K2R 
A1(4.2) = -2.*CMU2*(9AR*QK2PPR-8A.I*9K2 PD I) + C~U2*RE2*3K21 

I 

b 
--l 

I 



AAR(2) = o. 
AA.I/21 = 1. 
AR(4,1) = 2.*C~ul ~(RAR*DT2PP1+BA1*~I2DPRI 
A1(4,1) =-2.*C~Ul~(BAR*~r2pDR-BAI*~T2PPJ) 
AAR(1) = (9AR*ELR-9AT*~Lr)*(RnlAR*nr2DI+RnlAI*nI2~R) 

'1 +(qAR*ELI+9AT*ELR)*(ROIAR*~T2PR-R~lAI*OI2DI) 
AAI(3) = -(3A~*ELR-8AI*EL~)*(R91AR*OI2PR-~0141*nr2PI) 

1 +CqA.R*~LI+9AI*ELR)*CRnlAR*nI2PJ+RnlAI*DI2PR; 
ARC4,4) = -2.*C~U2*(9AR*O<2PPI+9AI*OK2PDR) 
AIC4,4) = 2.*C~U2*(9AR*n~2pPR-gAI*OK2PPI) 
AAR(4) =1. 
AII,I(4) = 0. 
ARC4,5) = 2.*CMUl*(nlAR*OI~PR - DIAT*OI2Pt - n12R) 
AIC4,5) = 2.*CMUl*(OlAR*OT2P1 + DIA!*nr2 PR - 9121) 
AAR(S) = -(ELR*nI2R - ELt*n12I) 
AArcS) :' -(ELR*OI2I + ~Lt*)I2R) 
AR(4,6) = -2.*CMU2*(D2AR*~<2PR-D2AI*DK2DI-DK2R) 
AI(4,6) = -2.*CMU~*(D2AR*nK2PI+02AI*DK2DR-DK2I) 
AAR(6) =1'). 

AAI(6) = O. 
ARCS,I) = 2.*CMUI*C9AR*912 PR-9Ar*912PI) 
AI(S,I) = 2.*C~Ul*(9AR*~t2DI + AAI*9t2 PR) 
ARC5,2) = -2.*CMU2*(9AR*9~2PR - RAI*9K2 DI) 
AIC5,2) = -2.*CMU2*(8AR*9K2PI + 9AI*9K2PR) 
AR(S,3) = -CMUl*«(DlAR+S9AR*RnlAR-S9AI*ROlAI)*DI2 DR 

1 -COIAI+S9AR*RDIAI+S9AI*RnIAR)*DI2PI) 
AI(S,3) = -CMUl*(COlAR+SQAR*RDlAR-S9AI*RDlAI)*OI2 DI 

1 + C n l.A I + 59 A. R *" R n LA I + S~ A I * R I) 1 A R , * I) I 2 p R 1 
AR C :;,4' = C~IJ2* ( ( 02 .AR+S9A R*R02 AR- S9A I *RI)~ A r , *OK 2DR 

1 -CD2AI+i8AR*RD2AI+S9AI*RD2AR'*DK2PI) 
AICS,4) = CMU2*(iD2AI+S9AR*R~2AR-s9At*Rn2AI)*nK2PI 

1 +Cn2Ar+S9AR*RD~AT+SqAT*R~2AR)*n<2DR) 
ARC 5 , 5) = C wJl * ( R A R * 0 I 2 I + 9A t ~~ ~ I 2 R ) 
AICS,S) = -C~Ul*(9AR*OI2R - 9AI*OIZII 
ARCS,6) = -C~1U2*(9ARH)K2I + 9AI*OK.?R) 
A I C 5 , 6) = C-1 U 2 * C ~ A R * f) K 2 ~ - 9 A 1 * f) K 2 T ) 

-~ • " 

I 
I-' 

~ 
I 
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ARC6,l).= 4.*CMUl*(~t2DR - (RqAR*9r~R - ~~At*~t2r» 
AI(6,l) = 6.*C~~1*(gI2DI - (R9AR*9r~T + ~~Ar*qI~R» 
ARC6,2) =-4.*c~ul*(9K2PR - CR9AR*9K2R - RgAI*qK2I») 
AI(6,2) = -4.*C~Ul*C9K2PI -CR~AR*~~2t + R9AI*~K2~» 
ARC6,3) = -4.*CMUl*C (9AR*RDIAR-3AI*RDIAI)*nI2PR-cQAR*RDlAI 

1 +9AI*ROIAR)*DT~PT-(9AR*RS~IAR-9hI*RSnIAI)*nr2R 
2 +(8AR*RSDIAT + ~AI*RSOIAR)*DI2I) 
AIC6,3) = -4.*tMU1*(1BAR*RDIAR-9Ar*RDIAI)*DI2pr+CBAR*~DIAI 

1 +8AI*RDIAR)*Dr?PR-(9AR*RSDIAR-96r*RSDIAI)*~I2I 
2 -(8AR*RSDIAI + 9AI*RSDIAR)*DIZR) 

ARC5,4) = 4.~CMU2*(C9AR*R~2AR-9AI*RD2AI'*~~2~R-C~AR*RD2AI 
1 +8AI*RD2AR'*DK?PI-C~AR*RSD2AR-9AI*~SD2AI'*D~2R 
2 +C9AR*RSD2AI + 9AI*RSD2AR'*~K21' 
AIC6,4) = 4.*CMU2*C(9AR*RD2AR-BAI*RD2AI)*DK22I+C9AR*RD2AI 

1 +AAI*RC!AR)*DK2PR-(9AR*Rsn2AR-9AI*~SD2AI)*DK21 
2 -(9AR*RiD2AI + 8AI*RSD2AR,*DK2R) 

ARC6,5)= CM'Jl*CCS~lAR*DI?PPI+SDlAr*OI2pPR)/2.-CDlAR*DI2Dr 
1 +DIAI*DI2PRl/2.+2.*nI2I) 

AIC6,5) = -CMU1*CCSDIAR*DI2PPR-SDIAT*DT2 PP I)/2.-CDIAR*DI2 PR 
1 -DIAI*DI2PIJ/2.+2.*DI2R) 
AR(6,6) = -CMU2*CCSD2AR*DK2PPI+SD2AI*DK2PPR)/2.-CD2AR*DK2PI 

1 +D2AI*DK2PR)/2.+2.*DK2I1 
AIC6,5) = CM~2*C CSD2AR*DK2 PPR-SD2AI*DK2PPI,/2.-CD2AR*DK2PR 

1 -D2AI*DK2PI)/2.+2.*D~2RI 
ITEST = 0 
DO 211 J = 1,6 
fF CA9SCARC3,J» - .1 ~ 11) 2JO,21~,2l0 

210 ITEST =1 
200 IF CITESTI 211,211,212 
211 CO~Tr~UE 

GO TO 250 
212 LJ = J 

DO 215 I = 1,6 
ARCI,LJ) = ARCI,lJ)*.l ~-11 

AICI,lJI = AICI,lJ,*.1 ~-11 
215 CO~TrNuE 

~ 

I 

b 
\0 

I 



AARCLJ) = AARCLJ)*.l E-l1 
AAICLJ) = AATCLJ)*.1 E-l1 
IF CAqS(AR(~,LJ)) - ~1 E 11) 216,217,217 

216 TTEST = (.) 
·GO TO 200 

217 TTEST = 1 
GO TO 200 

250 DO 20 I = 1,~ 
1)0 ~ () I = 1. 6 
DO ~I) J = 1.,6 
BRCI,J) = AR(I.J) 

20 q~CI9Ji = AleT.Jl 
SCALE = 1.0 
CALL GAUSS{6,AR,Ar,I)ETR,~ETI,SCALE,JRO~,ICOL) 
IF CI)ETR-.l E 50) 105,105,125 

105 IF CDETI-.l E 50) 107.107,125 
107 DO 10 I = 1,6 

DO 10 J = 1.6 
ARCI,J) = ~RCT.J) 

10 AICI,J)= 8~eI,J) 
. DO 16 J = 1,6 
ARe4,J) = AARCJ) 

16 Ale4,J) = AAleJ) 
DO ~o I = 1,6 
00'30 J = 1,6 
CR(I,J) = ARCI,J) 

30 CIeI,J) = ATeI,J) 
DI)ETR = l)::rR 
DD€TI = I)ETT ~ 
CALL GAUSS C6,AR,AI,DETR,DETI,SCALE,JROW~ICOL) 

DELR = Dt::TR 
DELI = DETI 
DETR = I)I)ET~ 
DETI = ~I)::TI 
DO 15 I = l' 6 
DO 15 J = 1,6 
ARel,J) = C\~cr,J) 

., 
,l 

I 
~ 

b 
I 
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15 AtCI,J) = 8~CI,J) 
IF CDELR-.l E 50) 120,12~,125 

120" IF CDELI-.l F 50) 126,126,125 
125 TR(l) = ". 

rIel) :: o. 
WE = o. 
DELR = o. 
nELl = 0. 
!=' = '). 
R'NE = o. 
RWEI = o. 
GO TO 60 

126 SSQ = DELR**~ + DELI**2 
TR(L) = -CDETR*DELR + DETI*DELI)/SS~ 
TI(ll = -CDETI*DELR + DET~*DELI)/SSJ 
WE = CMUl*C/TR(L) 
CALL 8tS(2,RAR,0.),QI2R,Qt2I) 
CALL RIS(I,8~R,".O.~tlR,~III) 
812PR = 9IIR - (2./9AR)*~I2R 
DENO = 9I2 DR/9I2R*(3. + 9AR**2)/qAR 
F = 'NE*REl/DE"-'O 
RINE = 1.I'lJr:. 
RWEI = 1./eWE*REl) 
IF CL-I) 50,70,50 

60 WRITE (6,3) L 
WR t 11: (6,61) 
DO 62 I = 1,6 
W R I T E (6,4) A R ( I , 1 ), A R ( I , 2 ) , A R ( I , '3 ) , A R ( I ,4) , A R ( I , 5) , A R ( I ,6 ) 

62 CONT r 'WE 
WR IT E (6,6'3) 
1)064 I= 1,6 
WR IT E (6,4) ~ I ( r ,1 ) , ; I C ! , ? ) , A I ( I , '3 ) , A r ( T ,4 ) ,t.. t C ! , r:; ) , A, ! ( !, ,61 

64 CONTINUE 
WRITE (6,6'5) . 
WRITE (6,4) AAR(1),I'IARC2)'AAR(3),~~q(4),AAR(;).AtlR(6) 

WRITF.: (6,66) 
I!I R I T E C 6 , 6) A A I ( 1 ) ,~A I (--2 ) , A;\ I ( '1 ) , ~,,:\ I (4 ) ,.A. A I ( 5 ) ,A" I ( 6 ) 

'.' .' 

I 

t:! 
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WRITE (6,5) ~ETR'JETI,~ELR,DELI,TR(L),TI(L),Z(L) ,WE,RWE,RW~l~F 
GO TO j:J 

70 WR IT E (6, '1) L 
WRITE (6,61) 
DO 72 I = 1,6 
W R I T E (6, 4) A. R ( ,I , 1 )', A R ( I , 2 ) ,A R ( I , 3 ) , A R ( I ,4 ) ,A R ( I , 5 ) , A R ( I ,6 ) 

72 CONTI"JUE 
WRITE (6,6,) 
1)0 74 I = 1,6 
WRITE (6,4) AI(I,1),AI(I,2),AI(I,3),AICI,4),AI(I,5),AI(I,6) 

74 CONTI"JUE 
WRITE (6,65) 
WRITE (6,4) AAR(l)~AAR(2),AAR(3),AAR(4),AAR(5),AAR(6) 
WRITE (6,66) 
WR I T E (6,6) A A I ( 1 ) ,AA I ( ~ \ , AA I ( , ) , A A I ( 4 ),A A If :; ) , A A I' (6 ) 
WRITE (6,5) DETR,DETI,DELR,DELI,TR(L),TI(L),Z(L),YE,RWE,RWE1,F 
IF (ABS(TI (Ll) - 0.(01)8,8,91') 

90 L = ? 
GO TO 7 

50 IF (A9S(TICLl) - 0.1')01) 60,60,35 
35 WRITE (6.3) L 

WRITE (6,5) DETR'DETI!DELR,DELI~TR(L),TI(L),l(L).WE'RWE'RWEl'F 
L = L+1 
leLl = l(L-l) - (TI(L-1)/(TI(L-l)-,TI(L-2))*(l(L-1) - Z(L-2))) 
IF (L-25) 4),40,34 

40 GO TO 7 
34 TR(L) = 100. 

TICLl = 100. 
WE = 100. 
F = ,100. 
RI.4E = 10,). 
RWE1 = 100. 
GO TO 60 

1 FORMAT fI2,F8.4,Fln.4,Fln.2,FlO.5,FlO.5,F10.5,F6.2) 
2 FORMAT f//20~ INTERFACIAL TENSION,4X,7HRUN NO.I3/11H INPUT DATA/5H 

,. .' 

• ..... 
t\) 
I 



.. .. .. 

1 B = F8.4,12X,5H ~ = F8.4/7H.REI = FI0.4,7X,7HCMUI = FI0.6/7H R~U 
2= FI0.6,7X~7HRRHO = FI0.6/6H C =FI0.3) 

3 FOR~At (/4H L =13/) 
11 FORMAT (2FI0.6) 
61 FORMAT (/17H THE VALUES OF AR) 
63 FORMAT (/17H THE VALUES OF AI) 
65 FORMAT (/I8H THE VALUES OF AAR) 
66 FORMAT (/ISH THE VALuES OF AAI) 

4 FORMAT (lX,6(EI2.4,4X)) 
5 FORMAT (IH ,4X,9HD =2EI6.8,9X,9HDELTA =2EI6.811 

114H T =~EI6.8'lJX,8H Z =EI6.81114H WE =EI6. 
28,26X,8H RWE =E\6.8/114H RWEI =EI6.8,26X,8H F =EI6.8/ 

·3) 
6 FORMAT (lX,6(E12.4,4X)/I) 

END 

.. 

• ~ 
~ 
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C9IL 

SUBROUTI~E BISeN,RHO,PHI,g~IS,aIIS) 

XN = N 
R = RHO!2.0 
RSQ = R**2 
FP = R*~~/FACNeXN) 
BRIS = Fo*coseXN*PHII 
SIrs = FP*SINeXN*PHrl 
DO 1 K = 1,2') 
XI( = I( 

FA = FP*eqSQ!eXK*eXK+XNI)) 
FP = FA 
!3RIS = FA*cose e 2.')*XI(+XN)*oHI) + 9Rrs 

1 BIIS = FA*SINee2.0*XI(+XN)*PHI) + S I IS 
RETU~N 
F=.:ND 

SUBROUTINE BILeN,RHo,PHI,9~IL,8IIL) 
PI = 3.141592654 
XN = N 
X~"'U = 4.*eXN**2) 
R = RHO*8.0 
PF = 1. 
PFR = 1. 
PFI = 0.1') 
SIJ~PR = PFi~ 

SIJ"1 0 I = °FI 
00 1 1(.= 1,1'1 
XI( = I( 
X~ = 2*K - 1 
PF = -eex~u - eXM**2) )/eX<*R) )*~F 
PFR = PF*COS(-XI(*PHI) 
PFI = ~F*SIN(-XK*PHI) 
SU"1PR = SJ"1PR + PF~ 
SUMPI = SlJ\1PI + 0:'1 

1 CONTI'JIF 

I 

~ 
I 

~f~ ., 



C8KL 

f 

.. " 

ALPHA = COS(DYII 
8ETA = SIN C pY I I 
X = RHO*ALPHA 
Y = RHO*'3ETA 

.. 

SR =CEXP(XI/SQRTC2.*PI*RHOII*(COSC-PHjI2.I*C0SCYI-SINC-PHI/2.I*SIN 
1 C y) I 

SI =CEXPCXI/SQRTC2.*PI*RHQ)I*CCOSC-DHI/2.I*SINCY)+SINC-PH I/2.)*C05 
1C Y I I 

BRIL = SUMPR*SR - SU~PI*SI 
8IIL = SU~PR*SI + SU~?I*S~ 
RETURN· 
END 

SU8ROUTINE 8KLCN,RHO,pYI,~q~L,3IKL) 

PI=3.!41592654 
XN = ~ 
X1v1U = 4.*CXN**2) 
R = RHO-*8.0 
PF = 1.1) 
PFR = 1.0 
PFI = 0.0 
SUMoR = 0FR 
SUMPI = PFI 
1)0 1 K = 1,1'1 
X~ = K 
X'v1 = 2*K - 1 
PF = CCX~U - CX:-1**2))ICXK;'l-R))*PF 
°FR = PF*COSC-X~*DHI) 
PFt = PF*SIN(-X~*PHI) 
SUMPR = SU~D~ + DFR 
SU~PI = SU~DI + °FI 

1 CONTINUE 
ALPHA = COSCPHI) 
BETA = SIN(PHII 
X = -~HO*ALDHA 

,.,. 

I 
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CF~KS 

Y = -RYOIH~ETA 
5R =(EXP(X)*SJRT(PI/(2.*RHO)))~(COS(-PHI/2.)*COS(Y)-SIN(-PHI/2. )*5-

IPHY)) 
SI =CEXP(X)*SQRT(PI/(2.*RHO)) )*CCOSC- O HI/2.,*SINCY)+SIN(-PHI/2.)*C 

lOSeY) ) 
BRKL = SU~PR*SR - SUMPI*SI 
BIKL = SUMPR*SI + SU~PI*SR 
RETURN 
E"lD 
FUNCTION DHYCXL) 
SU~ = -0.577215665 
J F' e X L - 1. 1) ·1. 1 , 2 

1 PHY = su~ 
RETURN 

2 L = XL 
LL = L-l 
SO"1ME = o. 
1)0 3 M = I,LL 
XM = ~ 
SO~ME = SJ~ME + 1.01XM 

3 CONTINUE 
PHY = SU~ + SOMME 
RETUR"l 
END 

SU9ROUTI~~ ~KS(N.RHO,PHI,gR~S,gI~S) 

XN = N 
R = RHO/2.0 
RSQ = ~**2 
FIRST = FACNCXN-l.0) 
FIRSTR = F'AC~(XN-l.0) 
FIRST! = ').0 
SU~lR = FIRSTR 
SUMII = FIRSTI 
M = '1-1 
IF P-1)' 4,491 

3 r)O 1 K. = 1, q 

'1\ 

, 
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~ 
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XI( = I( 

FIRST =(~ACN(XN-XK-l.)/FAC~(XK) )*( e-RSO)**K) 
FIRSTR = FIRST*COSe2.*XK*P~I) 
FIRSTI = FIRST*SINe2.*XK*~HI) 
SU~IR = SU~IR + FIRSTR 
S.U"1lI = S'F"'lI + FIRSTI 

1 CONTINUE 
4 SUMIR=ea.5/(R**N»*(SUMIR*COSe-XN*PHI)-SU~II*SINe-XN*pHI» 

SUMII = eO.5/(R**~»*(SUMIR*SIN(-XN*PHI) + SU~II*COSe-XN*PHI» 

CALL ~IS(N,RHO,PHI,BRI,8II). 
SU~2R = ee-I.)**PHl) )*eALOGeR)*8RI-PHI*BII) 
SUM 2 1·= (e - 1. ) * * e N + 1) ) * e A LOG ( R ) * B I I + PHI * B R I ) 
THIRD=e-J.577215665 + PHY(XN+l.0»/FACNeXN) 
THIRDR = T'-fIRi) 
THIRDI = f).0 
SU""13R = T,IRDR 
SU~3I = THIRDI 
DO 2 L = 1,20 
XL = L 

• .t, 

THIRD=e?HyeXL+l.8)+PHyeXN+XL+l.0) )*eRSO**L)/eFACNeXL)*FACNeXN+XL» 
THIRDR=THIRD*COSel.O*XL*PrlI) 
THIRDI=THIRD*SINe2.0*XL*PHI) 
SUM3R = SU~3R + THIRDR 
SUM3I = SU"13I + THIRDI 

2 CONTINUE 
SUM3R=e e-l.)**N)*eO.5*eR**N)*eSUM3R*COSeXN*PHI)-SUM3I*SINeXN*PHI) 

11 
SUM3I=e (-I.)**N)*(a.5*(R**N)*eSU"13R*SINeXN*p~I)+SUM3I*COS(XN~PriI») 

1) 

BRKS = SU"11R + SUM2R + SU"13R 
8IKS = SU~II + .SU~21 + SU~31 
RETUR'l 
~ND 

I .... .... 
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FUNCTION ~ACN(XN) 

IF(XN-2.0) 1,2" 
1 FACN = 1.0 

RETUR'I 
2 FACN = 2.) 

RETURN 
3 N = X'l 

FACN =2.0 
DO 4 I = 3,N 
XI = I 

4 FACN = FACN*XI 
RETURN 
END 

1 

~ 
.1 

",,' .. 
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SUBROUTINE G~USS(~.3R'9I,nETR,DETI.FACTOR,JROW.ICOL) 
DIMENSION AR(2Q,20),AI(20,20),JROW(20),ICOL(Z1),BR(2J,20), 

18I(21),20) 
~ = M 
DO 3'3 !=I,r..j 
1)033 J=l,N 

AR(I,J) = 3RCI,J) 
AI ( 1 ,J) = '3 I ( I, J) 

'33 CON T P-lUE 
SCALF. = F~CTOR 
DO 11 IT = 1, l\J 
JROW ( IT) = 1 T 

11 rCOLeIT) = IT 
NN = N-l 
DO 4 L = 1,NN 
K = L+l 
AMAX = O. 
DO 20 J= L,"J 
DO 20 I = L,N 
SSQ = AR(J,I)**2 + AICJ,I)**2 
IF(AMAX-SSQ) 10,20,20 

10 JR = J 
IR = I 
M..,AX = SSt) 

20 CONTI'IU::: 
SSQ = ~''''AX 
IF(SSQ) 21,10J,21 

21 I~(JR-L) 30,40,30 
30 DO '31 I = 1,'1 

CR =: ARCJR,I) 
C I = A r ( JR , I ) 
AR(JR,I) = ARCL,I) 
A I ( JR , r) = A. r ( L, I I 
AR(LtI) = CR 

31 AI(L,I) = CI 
SCALE = -SC!l.L-: 

~.- .' 
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JRO = JRO'JJ C JR ) 
JROWCJR) = J~0WCL) 
JRO',.JCL) = JRO 

40 IF CIR-L) 60,5:),60 
60 DO 61 J = I,N 

CR = ARCJtI~) 
CI = AI CJtIRl 
ARCJ,I~) = ARCJ,L) 
AICJ,IR) = AICJ,L) 
ARCJ,L) = CR 

61 AICJ,L) = CI 
SCALE = -SCALE 
I CO = I COL( I,R ) 
ICOLCIR) = ICOLCL) 
I(OLCL) = rco 

50 DO 4 r = K,N 
SQ = ARCI,L)**2 + AICI,L)**2 
IFCSQ) 3,4,3 

3 DO 14 JJ = L,N 
J = N+L-JJ 
AX = ARCI,J)-CARCI,L)*ARCL,J)*ARCL,Ll+ARCI,L)*AICL,J)*AICL,L) 

1 +AICI,L)*ARCL,J)*AICL,L)-AICI,Ll*AICL,J)*ARCL,L))/SSQ 
AICI,J) = AICI,J)-CArCI,L)*AICL,J)*AICL,LI+AI{I,L)*A~CL,J)*ARCL,L) 

1 +ARCI,L)*AI{L,J)*AR{L,L)-AR{I,L)*ARCL,J)*AICL,LtlrSSJ 
14 AR C I , J) = AX 

4 CONTINUE 
IFCSCALE) 7,9,7 

9 SCAL~ = 1. 
7 DETR = SC.\LE 

DETI = I). 
DO 95 I = l,N 
DR = DETR 
!)ETR = OETR*ARCItII-t)I?:TI*AIUtI) 

95 D!::TI = t)~TI*AR(I,I)+t)R*Ar(I,I) 
RETURN 

100 DETR = a. 

.. ., 

I. 
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II. Velocity Profiie in a Stationary Surrounding Liquid 

The following programs were made to calculate the axial-velocity 

components and the jet radius as functions of axial distance. 

A. Main Program (ESGJET) 

(1) Abstract 

The object of the program is to solve for increments of the six· 

empirical parameters in Eqs. (8) and (9) at each axial-distance z. The 

matrix elements are given in the section for computation procedure. 

(2 ) Usage 

Input: 

N run number 

REI interior Reynolds number 

RMU viscosity ratio 

RRHO density ratio 

RFR reciprocal of Froude number 

Output: 

A,B,C,D,E,M,z functional values of parameters at each z. 

F(l) ,F(2) ,F(3), 
F(4) ,F(5) ,F(6) 

numerical values of Eqs. (10) through (15) 

VC dimensionless center-line velocity 

VI dimensionless interfacial velocity 

SUMF 
6 

{F(i)}2, L summation of the square of 

i=i errors 

z dimensionless axial distance 

.> 
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Restrictions 

z < 100 

(4) Method 

Runge-Kutta third-order integration method. 

Bo Linearization Subprogram (LINIAL) 

(1) Abstract 

This program provides numerical evaluation of z-derivatives of 

given functions. Thus, the elements of the matrix in the main progr~m 

can be evaluated without algebraic calculation. However, computation 

by this method is several times slower than the use of algebraically 

derived elements, therefore, this program was used only for a checking 

purpose. 

(2) Usage 

CALL LINIAL(Y,LS,A;B,LT,DF,F,SUMF,DSF,SUMO,SUM1,SUM2) 

Input: 

Y 

L8 

LT 

F, 8UMF ,SUMO, 
8UM1,8UM2 

output: 

A(I,J) 

B(I) 

D8F 

magnitude of variables 

number of variables 

number of functions to be differentiated 

to be called from a function subprogram 

denoting the linearized matrix equations 
as AdY = B" 

~ rv rv' 

dF(I)/dY(J) (1 ~ I ~ LT, 1 ~ J ~ L8) 

-(dF(I)jdz)dz (1 ~ I ~ LT) 

dF(I)jdY(J) (1 ~ I ~ LT, 1 ~ J ~ L8) 

d(8UMF)jdY(J) (1 ~ J ~ L8) 
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(3) Method 

Numerical differentiation: 

?J F . fO X. rv {F. (x . +6x .) - F. (x . -~x . ) } I (26x . ) 
1 J 1 J J 1 J J J 

C. Simplified Program for 'Solving Linear, Simultaneous Equa ti ons (EQLIN) 

(1) Abstract 

This program solves linear simultaneous equations Ax = B by the 
:::::::"'-' rv 

elimination method. 

(2) Usage: 

CALL EQLIN (A,B,M,X) 

Input: 

A coefficient-matrix element 

B constant vector 

M number of rows or columns in A 

output: 

X roots of the equations 

(3) Restrictions 

No provision has been made for underflow or overflow. A LRL 

library tape, LINIT, is used to replace EQLIN for cases where underflow 

or overflow occurs; it was not generally used because it had about twice 

the execution time of EQLIN. 
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D. Function Subprogram (FUNC) 

(1) Abstract 

-125-

This program furnishes magnitudes of functions for given 

variables. Thus, this can be used for the checking of errors generated 

by numerical integration. 

(2) Usage . 

CALL FUNC(Y,LS,F,LT,SUMF,SUMO,SVM1,SUM2) 

Input: 

Y 

LS 

LT 

SUMO, SUM1, SUM2 

Output: 

F 

SUMF 

magnitude of variables 

number of variables 

number of functions 

integral values in functions 

magnitude of functions 

summation of square of Fls 
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PROG~AM ESGJET(I~PUT,OUTP~T) 
DIME~SION A(6,6) ,BUd ,X(6) ,F(6) ,Y(7) ,XO(6) ;X1(6) ,X2(6) ,YU6) ,YY(7) 
I,OF(6,7),~SF(7),SCR(6,20) 

·CO~MO' EX,RMU,DELZ,ALPHA,DELl,OEL2,Fl(6),F2C6),F3(6),F4(6),WC0 
I.ND,~~HO,FF3 

LOGICAL SINGUL 

C THIS IS AN EXPONENTIAL-SCHLICHTING TYPE VELOCITY ~ODE~. 
C VELOCITY PROFILE OF INTE~IOR JET ASSUMES TWO FORMS. AT FIRST 
C APPROXI'4ATE ~ARA90LA, THi:.:N SCiofLICHTING TYPE. 

24 R~AO 1, N,RE1,R~U,RRHO,RFR 
IF (N.EQ.99) STOP 

1 FOR~AT (I2,4(Fl2.6» 
PRINT 4 

. 4 FOR~AT ClL.fl) 
PRINTS, ~,REl,RMU,RRHO,~F~ 

5 FOR~AT (19H COMPU~ATION NO. = I2,11,19H I~SJ0E RE = F12.6,4X 
1,19M VISCOSITY RA~IO = F12.6/l9H DENSITY RATIO = Fl2.6,4X,l9H 1. 
2/FROUOE ~O. = F12.611' 

C ALPHA IS A PARABOLIC CO~STANT. 
C ALPHA = 1.0 CORRESPONI)STO A PARABOLIC FO~M. 
C HOWEVER,TOO HIGH A VALUE OF ALPHA MAY CAUSE A 9REAKDOWN OF THE 
C CALCULATI0N • 

. C RFR IS A RECIPROCAL FROUDE NO., WHICH IS 0QSITIVE WHEN THE 
C INTERIOR JET FLOW IS IN THE DIRECTION OF THE GRAVITY. 

ALPJ.tA = 0.95 
C INITIAL VA~UES OF PARA~ETERS 

Y(U = 1.8137 
Y(2) = 1.14019 
Y(3' = 1.1 
Y(4, = l.1') 

!' i. 

I 
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Y(S) 
Y(6) 
Y(7) 
X ( 6 ) 
5U~O 
SUMI 

,~ 

= 
= 
= 
= 
= 
= 

1.0 
J. 
1.0E-D6 
'). 

O. 
:J. 

SUM2 =0. 
DELl = J. 
WCO = 2.0 
FI='3 = O. 
~B = 1 
"ID = 999 
NP = 0 
"I() = !) 
~A = 6 
IT =') 

DELI = 1.,)E-05 
DJ:L2 = O.c)E-05 
R E 2 = REI * R R I-f 0 I R Iv,. J 
PRI~T ,00, ALoHA 

300 FORMAT (IX,91-f ALPHA = F6.411) 
PRINT 150 '-' 

150 FOR~AT (4X,3Y Sl,9X,5H F(1),7X,5H F(2),7X,5H F(3),7X,5H F(4),7X, 
ISH F(5) ,7X,5Y F(6)) 

31 EX = EXP(-Y(6)*Y(7)) 
CALL LINIAL(y,7,A,8t6,DF,F,SUMF,DSF,SU~O~SU~1,5U~2) 
IF (N9. G T .2)) STOP 

.51 = F(4)**2 + F(5)**2 
PRINT 110, Sl,F(ll,F(2ltF(3),F(4),F(5),F(6) 
IF (Sl.LT.2.,)E-12) GO TO 100 
DENO = DF(4,ll*,")Fi5,2j - ,)1=(4,2)*I)t:'(5d) 
EPA = (F(4)*I)t:'(5,2) - F(Ij)*I)F(4,~) )/I)~NO 

EP8 = (F(5)*I)F(4d) - F(4)7:-j)F(5tl) )/!)ENO 
Y(ll = Y(ll - EPA 
Y(2) = Y(2) - EP8 
r-.j9 = r-.j:l, + 1 

"! 

I 

I\) 
-.::J • 



GO TO 31 
180 R1 = ALP~A + Y(1)*Y(2)/(I. + Y(I) )**3 

Y(4) = Y(Z)/(I. + Y(I))**2 
R2 = O.5*R~U*Y(4) 
Y(3) = Rl/R2 
EX = EXPC-Y(6)*YC7)) 
CALL FUNC(Y,7,F,6,St)~F,SUM1,SU~I,SU~2) 
PRINT IlJ.Sl,F(1),F(2),F(3),FC4),FC5),FC6) 

C VC = C~NTER VELOCITY, VI = lNTERFACIAL VELOCITY 
DRI~T 13 

13 FORMAT(/ 4X,~~ l,11X,2~ A,10X,2H 9,10X,2H C,lOX,2~ ),IJX,2~ R,IOX, 
12H M,11X,3H VC,10X.3H VI,aX,5H SU~F/) 

VC = 2.*ALPHA*EXPC-Y(6)*YC7))*YCS)**2 + Y(2) 
WCO = VC 
VI = Y(2)/(I. + Y'I)*YC5)**2)**2 
VIE = Y(4) 
PRINT 14, Y(7),(Y{I),I=I,6),VC,VI,SUMF 
PRINT 110, VIE,CF( 1),1=1,6) 
~ELl = 1.0f-07 
I~ = 1 

55 X(6) = O. 
IF CND.NE.O.AND.N~.EQ.999) NO = NQ + 1 
IF (I~.G~oN~) GO TO 56 
IF CEXPC-Y(6)*YC7) ).LT.5.JE-04) N) = I~ 
IF CID.EQ.~D) PRINT 3,ID,Y(7),EX 

3 FORMAT (13,2~12.4) 

IF CID.EQ.~D) PRINT 6 
6 FOR~ATC5~ID IN) 

56 IF CY(7).LT.100.) GO TO 59 
PRINT 53J, ID,Y(7) 

530 FORMATCIHO,21HTOT~L NO. OF STE?S =I3,/////,11H~AX Y(7) = EI2.4) 
('0 TO ~4 

59 IF CNP.NE.O.AND.NQ.LT.I0) GO TO 60 
IF ·(ID.EQ.90) DELl = 10.*1ELZ 
IF CID.EO.leO) DELl = lo.*nELl 
IF (rD.~Q.27J) ~ELl = IO.*DELZ 

~ : 

I 

I\) 
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IF (ID.EQ.~60) DELl = 10.*DF-Ll 
IF (ID.E1.450) DELZ = 10.*DELl 
IF (ID.EQ.540) DELl = 10.*DELl 
IF (ID.EQ.630) DE~l = 10.*DELl 

60 IF (ND.N~.999) DELl: 1.0 
IF (NQ.EQ.10) DELl: 1.0 
IF (NQ.E1.11) NP : ') 
IF (NP.EQ.O) NQ = 0 
~S = 1 
1)0 7'3 I = 1,7 
VV ( I) : V ( I ) 

73 CONTINUE 
403 00 40~ I : 1,6 

DO 401 J : 1,6 
A(I,J) = O. 

401 CONTINUE 
3(1) : O. 

4f)O CONTINUE 
~X : EXP(-Y(6)*V(7)) 
IF (N~.NE.999) EX = O. 
FX = 1. + Y(1)*Y(S)**2 
IF (FX.LT.O.0) PRINT 16 

16 FORMAT(9H~X.LT.0.,)) 
IF (FX.LT.O.O) GO TO 24 
A(1,2) = 4.*ALPYA*EX*V('S)**2 + 2.*Y(2) 
A(I,5) = 16.*ALPHA**2*Y(5)**3*EX**2 + 8.*~LPrl4*Y(2)*Y(5)*EX 

.. 

A(I,6) = -S.*ALPH\**2*V(S)**4*y(j)*EX**2 - 4~*ALPHA*Y(2)*V(5)**2*V 
1(7)*EX ' 
B(ll = EX*(S.*ALP:iA-**2*Y(6)*V(S)**4*EX + 4.*ALPHA*V(2)*V(6)-:t-Y(5)** 

12)*DELl 
A(2,l) = -2.*Y(2)*V(5)**2/FX**3 
A(2,2) : 1./FX**2 
A(2.4) = -1. 
4(2,5) = -4.*Y(11*Y(21*Y(5)/FX**3 
A(3,1) = V(2)/FX**3 - 3.*Y(11*V(21*Y(S)**2/FX**4 
A(3,2) = Y(l)/FX**, 

I 

~ 
\0 

I 



A(3,31 = -O.S*R¥U*Y(41 
A(3,4) = -1.5*~~U~Y('3) 
A('3,SI = -6.*Y(11**2*Y(2)*Y(S)/FX**4 
A(3,61 = -ALPHA*Y(71*EX 
~(3) = ALPrlA*Y(61*EX*DELZ 
A(4,11 = ~',).?*Y(2)-~Y(SI*li'4/FX*'k2 
A(4,2) = 8.S*Y(S)**2/FX 
A(4,51 = 2.*ALPHA*Y(5)**~*EX + Y(2)*Y(S)/FX - Y(1)*Y(2)*Y(S)**3/FX 

1**2 
A(4,6) = -'J.5*ALPHA-:l-Y(SI*-*4*Y(7)*EX 
~(4) = O.5*ALPHA*Y(6)*Y(51**4*~X*DELZ 
A(5,1) = Z.*AL?HA*Y(Z)*EX*(-Y(S)**6/ F X**Z - Y(5)**4/CYCll*FX**2) -
1~.*Y(5)**2/(Y(II**2*FXI + 2.*ALOG(FX)/Y(1)**3) - 1./6.*(Y(2)/Y(I)) 
2**2*(1. - 1./~X**31 + 0.S*CY(21*Y(S) )**2/(YCl)*FX**4) 
A(5,2) = 2.*ALPYA~EX*CYCS)**4/FX ~ ALOG(FX)/Y(1)**2 + Y(S)**2/(Y(1' 

1 ).* F X )) + 1. I 3 • * ( Y ( 2 ) I Y ( 1 ) ) :t- ( I. - 1. I F X * * 3 ) 
A(5,S) = 4.*ALPHA**2*Y(5)**S*EX**2 + 4.*ALPHA*Y(2)*EX*Y(S)**3/FX + 

1 Y(2)**2*Y(5)/FX**4 
A(S,6) = -4./3.*ALPriA**2*Y(S)**6*Y(7)*EX**2 -·2.*ALPHA*Y(2)*Y(7)*E 

lX*(Y(S)**4/FX - ALOG(FX)/Y(I)**2 + Y(S)**2/(Y(I)*FX)) 
8(S) = (4./3.*ALPHA**2*Y(6)*Y(S)**6*EX**2 + 2.*ALPHA*Y(2)*Y(6)*EX* 

1(Y(S)**4/FX - ALOG(FX)/Y(I)**2 + Y(S)**2/(Y(1)*FX)) )*D~LZ 
. A(6,'3) = -:').25*(Y(4)/Y(3) 1*·~2 

A(6,4) = O.S*Y(4)/Y('3) 
IF (NQ.EQ.999) GO TO 402 
A(S,3) = A(S,3) + RRHO*A(6,3) 
A(S,4)= A(S,4) + RRHO*A(6,4) 
~A = S 

402 IF (NS.EQ.2) GO TO 416 
IF (NS.EQ.3) GO TO 407 
IF (I)."'IE.ll GO TO 700 
U 1 = '3 2 • * ( ALP H A * EX + Y( 1 p. Y ( 2) I I R :: I - R F R 
VI = 8./REI*(ALPHAi~EX*Y(5)**2 + Y(I)*Y(2)*Y(S)**2/(1. 

1 + Y(1)*Y(S)**2)**1) - O.~5*Y(5)*·~*~FR 
Wl = 4./RE2*Y(3)*Y(4)*Y(5)**2 - O.25*Y(5)**2~RFR/RRHO 
GO TO 701 

~, .11 
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71J UI = U4 
VI = V4 
'1/1 = ''114 

.. 

701 ~(1) = ~(1) - Ul*DELl 
8(5) = 3(5) - Vl*D~Ll 
8(6) = 3(6) + Wl*jELZ 
IFCND.N::.999) 13(5) = 9.(5) + R~HO*1(6) 
IF IN).N~.999) GO TO 550 
CALL EQLI~CA,I3,~A,X) 

GO TO 551 
550 CALL LINITCA,9,X,~A,I,)ET.rEX,CNR.SINGUL,6,S(R) 

IF (SINGUL) PRINT 15 
15 FOR4ATC13HA IS SI1GULAR) 

IF CSINGULl GO TO 24 
551 DO 71 I = 1,6 

XOCI) = XCI) 
71 CONTI\JUE 

DO 74 I = 1,6 
yn) = YYCI) + XOCI)*:).5 

74 COt.JTII\JUE 
Y(7) = Y(1) + O.5*DELZ 
~S =Z 
GO TO 4/)~ 

406 UZ = ~Z~*C~LPHA*EX .+ Y(l)*YCZ) )/REl - RFR 
VZ = 8./REl*CALPHA*EX*Y(5)**Z +Y(I)*YC2)*Y(S)**2/(1. 

1 + YCl)*YCS)**2)**3) - J.25*Y(5)**2*~FR 
W2 = 4./REZ*Y(3)*Y(4)*YCS)**2 - O.25*Y(5)**2*RFR/RRHO 
8 (1) = 8 C 1) - UZ*')ELl 
8(5) = ~(5) - V2*)~Ll 
8(6) = 3(6) + WZ*jELl 
IF CN1.NE.999) ,(5) = 9(5) + R~HO*':H6) 
IF CND.I\J~.99q) GO TO 552 
CALL EQLTNCAt~,~A,X) 

GO TO 55'3 
55Z CALL LINrT(A,~,X,~A,I,)~T.rEX,CNR,SINGUL,6,SCR) 

IF CSING'JL) PRINT 15 

--;, 

I 

t: .... 
I 



IF CSINGUL) GO TO 24 
553 ~O 75. I = 1,6 

XUI) = XCI) 
75 CONTINUE 

~O 76 I = 1,6 
YCI) = YYCII + 2.-~Xl(I) - XOCy) 

76 CONTINU': 
Y(7) = Y(7)+ O.5;}D;:LZ 
"IS =-3 
GO TO 403 

407 U3 = 32.*CALDHA*EX + Y(1)*Y(2) )/~El - RFR 
V3 = 8./RE1*CALPHA*EX*YC51**2 + Y(1)*VC21*YC5)**2/(1. 

1 + Y(1)*Y(S)**2)**3) - O.25*Y(51**2*~~~ 
W3 = 4./RE2*YC31*Y(41*Y(5)**2 - O.25*Y(5)**2*RFR/RRHO 
8(1) = 3(1) - U3-:f-DELZ 
9(5) = ~(5) - V3*nELZ 
8(6) = 3(6) + 'fJ'3*)ELZ 
IF CND.NE.999) gC;) = 8(5) + RRHO*9(6) 
IF (N~.NE.999) GO TO 554 
CAL~ EQLIN(A98,~A,X) 

GO TO 555 
554 CALL LINITCA,A,X,MA,I,OET,IEX,CNR,SINGUL,6,SCR) 

IF CSINGUL) PRINT 15 
IF CSINGUL) GO TO 24 

555 DO 77 I = 1,6 
X2(I) = XCI) 

77 CONTINUE 
DO 78 I = 1,6 
Y1CI) = 1./6.*CXQ!YI + 4.*X1(I) + X2CI» 

78 CONTIf\jUE 
DO 81 I = 1,6 
YCI) = YYCII + YIC!) 

81 CONTINUE 
Y(7) = YY(7) + ~ELZ 
EX = EXP(-Y(6)*Y(7» 
IF (f\j;.NE.999) EX = O. 

~ !' 
.~ 

I 
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IF CSINGUL) GO TO 24 
~53 DO 75 I = 1,6 

Xl(!) = XCI) 
75 CONTINUE 

DO 76 I = 1,6 
YCI) = YY(I) + 2.*XICIl - XOCI) 

76 CO~T I,\lUE 
Y(7) = Y(7) + O.5*DELZ 
N5 = '3 
GO TO 403 

407 U3 = 32.*CALP~A*EX + YCll*Y(2))/REl - RFR 
V3 = 8./REl*CALPHA*EX*YC5l**2 + Y(ll*YC2l*YCSl**2/Cl. 

1 + YCll*Y(5)~*2)**3l - 0.25*Y(5)**2*RFR 
W3 = 4./RE2*Y(3)~Y(4)*YC5)**2 - 0.25*Y(S)**2*RFR/RRHO 
8(1) = BCl) - U3*DELZ 
3(5) = B(S) - V'3*~ELZ 
8(6) = 8(6) + W~*OELZ 
IF CN'.~E.999) Q(5) = 8(5) + RRHO*8(6) 
IF (ND.NE.999l GO TO 554 
CALL EQLI~CA,8,~A,X) 
GO TO 555 

554 CALL LINITCA,9,X,~A,1,DET,IEX,CNR,SINGUL,6,SCR) 
IF (SINGUL) PRINT 15 
IF (SINGUL) GO TO 24 

555 DO 77 I = 1,6 
X2(I) = XCI) 

77 CO"lTINUC: 
DO 78 I = 1,6 
YICr) = 1./6.*(XOCIl + 4.*XlCI) + X2(I)) 

78 CONTINUE 
DO 81 I = 1,6 
YCI) = YYCI) + YICT)' 

81 CONTINUE 
Y(7) = YY(7) + DELl 
EX = ~XPC-Y(6)*Y(7)) 
IF (~D.NC:.999) ~X = o. 

.. 
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C 

U4 = .32.*(ALPYA*EX + Y(I)*Y(2) I/REI - RFR 
V4 = 8./R~I*fALPHA*EX*Y(5)**2 + Y(I'*Y(2)*Y(5)**2/(1. 

1 + Y(11*Y(~)**2'*~3' - 0.~5*Y(5)**~*RFR 
W4 = 4./~E2*Y(3)*·t(41*Y(5)**2 - 0.25*Y(5)**2*RFR/R~HO 

INTEGRATION 9Y TRAoEZOI~AL RULE 

5U"'10 = SU\.10 + DELZ*(U1 + U4)/2. 
SUM1 = SU~l + DELZ*IV1 + V4)/2. 
SUM2 = SU~2 + DELZ*(W1 + W4,/2. 

CALL FU~C(Y,7,F,6,SUMF,SUM1tSUM1,SU~2' 
IF (ID.EQ.10) FF3 = F(3) 
~X = I). 
CX = EXP(-Y(1)*Y( ;)**2) 
IF (CX.LT.1.'~-08' GO TO 84 
I)X = Y(4J/CX 

84 VC = 2.*ALPHA*EX*Y(5)**2 + Y(2) 
IF (ID.LE.10) ~CO = VC 
VI = Y(2)/(1. + Y(l'*Y(5)**2'**2 
VIE = Y(4) 
PRINT 14, Y(7,,(Y(I),I= 1,6),VC,VI,SUMF 

14 FORMAT (la~J2.4)-
PRINT 110, VIE,(F(I),I=1,6) 

110 FORMAT (7~12.4) 

PRINT 110, (Y1(I),I=1,6),DX 
IF (ND.N~.999) GO TO 111 
IF (I~.LT.2J' GO TO 111 
IF (SU~F.LT.!.'JE-06) GO TO 114 
NP = "1 0 + 1 

C REDUCE THE SIZE o~ D~LZ WHEN APDROACHI~G A CRITICAL °OINt. 
IF (NP.E!J.ll ::IqINT 113 

113 FORMAT(7YS~Io ID) 
IF ("J D .J:.:Q.I-J) GO TO ~4 

~O 112 r = 1,1; 
y(J) = YII) - YlIT) 

~ #I., 

\J 
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112 CONTINUE 
Y(7) =-Y(7) - DELZ 
SUMO = SUM) - DELZ*(UI + U4)/2. 
SUMl = SU~l - DELl*(Vl + V4)/2. 
SUM2 = SUM2 - DELZ*(Wl + W4)/2. 
f)t::LZ = J.IJ*DC::LZ 
GO TO 55 

114 IF (~P.N~.1.AND.NQ.LT.I0) GO TO~5 
IF (NQ.~Q.lOl PRINT 6 

111 ID = II) + 1 
GO TO 55 
E-ND 

.;, 

, 
t: 
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SU9ROUTIN~ LINIA~(Y;LS'A,3,LTiDF,F,SU~F,)SF,SUMa,SU~1,SUM2) 
DIMENSION Y(LS),A(LT,LT),3(LT) ,OF(LT'LS),F(Lr'tDS~(LS) 
CO~~ON EX,R~U,D~LZ'ALPHA,D~Ll,O~L2,Fl(6),F2(6),F3(6)'~4(6),W(0 

1,"lD,RRYO,I='F3 
CALL FUNC(Y,7,F,6,SU~F,SUMO,SU~1,SU~2) 
SU~Fl = SUMF 
DO l0'? J = I,LT 
FUJ) = FrJ) 

102 CONTINUE 
1)0 1')1 I = I,LS 
VCI) = V(II - DF:Ll 
CALL I='UNC (V, 7, F, 6, SW-1F, SU rv10, SU'·l1 , SU'A2) 
DO 104 J = I,LT 
F2CJ) = FCJ) 

104 CONTINUE 
YCI) = YCI) + 2.*0F:Ll 
CALL FUNC C Y, 7, F, 6, SU~F, SU~>'1'), SlJ'.l1, SU~~2) 
00 124 J = I,LT 
F'3CJ) = I='CJI 

124 CONT I NUE· 
VCI) = VCt) - DF:Ll 

110 V C I) = VCr) - DEL2 
CAL L FUN C C Y , 7 , F , 6 , 5 U M F t S U ~A ') , 5 U~.n t s U"~ 2 ) 
DO 125 J = ItLT 
F4CJ) = F(J) 

125 CO"JTI"lUf: 
SU~~F2 = SU".,1F 
V C I) = V C I) + 2. *J E L 2 
CALL FUNC(V,7,F,6,SUMF,SU~~tSUY1,SUM2) 
YCI) = Vcr) - !')::L2 
1)0 103 K = ItLT 
OFI = CF3CI() - F~C1(I)/('-.*r")~Lll 
DF(K,I) = rF(KI - F4(K)l!(~.*!,)EL2) 
OEF = 49S(r")F((.T) - nFl) 
IF (I)=-F.LT.l.O~-04) GO TO 103 
IF CI)~L2.LT.l.~~-18) GO TO 103 

,~ .? 
~ . ! 

I 
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1)0 116 J = I,LT 
F3(J) = F{J) 
F~(J) = ~4(JI 

116 CaNTII\IU~ 
DELI = DEL2 
riEL? = Dt:L2*'1.5 

·G() TO 110 
10'1 CONTtr-.IU': 

05F(I) = (SUMF - SU~~2)/(2.*O~L2) 

101 CONTINUE 
DO 107 I = I,LT 
1)0 In5 J = I,LT· 
A(T,J) = I)!=(!,J) 

l05CONT PIU~ 
107 CONTI"JUE 

1)0 106 I = I,LT 
~(I) = -~F(I,LS)*f)FLZ 

106 CONTI"!U~ 
1)0< 1 n 8 I = 1, L T 
F(I).= FUll 

108 CONTI"W~ 
SW-1F = SU\1!=1 
RETUR'l 
F:NO 

I 

~ 
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SU9~OUTIN~ fOLrNC~,~tM,X) 
DI~~NSIO~ ACM,M),q(~),XCM) 
COM~O~ EX,R~U,DELZ,ALDHA,DEL1,D~L2,Fl(6),F2C6),F3C6)'~4e6),WC0 
1,ND,R~'-iO,~F3 

DO 1 '<=1,\1 
".,=0 
DO 5 J= ,<, '.~ 
Y=A9SCAeJ,I() ) 
IF (Y.LF.W) GO TO 5 
,,,, = Y 

J~=J 

5 CONTI'JUE 
IF (W.LT.1.0E-150) 'GO TO 7 
00 6 J=I(,\1 
'!I=Ael(,J) 
A(I(,J,=AeJM,J) 

6 ,1\ C Y,1, J ) =1.'" 
'.oJ=!3 C I() 
I3(K)=Q(J"1) 
B C JM) ='.oJ 
W=ACI(,'() 

DO ? J = 1(,"1 
2 A(I(,J)=A(~,J)/~ 

B ( I() =q C I( ) n." 
1)0 3 1='1, '" 
IFCI.EQ.I() GO TO 3 
'."'=1\ C It '( I 
DO 4 J='<,'v1 

4 A(I,J)=A(T,JI-W*AeK,JI 
l3e f)='1e I )-'",*qe'() 

'3 CONTI"WE 
1 C0NTi'JUE 

1')1) Q .1=1 tV 

q XeJ)=~(J) 

GO T0 A 
7 PRINT I')!) 

,!' " 

• t: 
CD 
I 
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SUBROUT I NE FLJNC C y, LS, F, LT. SU'-1F, 5'.1'-10, sur-11, SU~'12 ) 
OI~~NSIO~ YCLS),FCLT) . 
CO:v1HOt\J EX, Rr·~u, DELl, ALPYA, DEL 1, ')':L2, F1 C 6) ,F2 C 6) ,I=', C 6) , F4·C 6) , 'tiC 0 

1,NI),RRYO,I='F'3 
IF CND.N~.999) €X = o. 
FX = 1. + Y(1)*YC5)**2 
IF (FX.LT.O.0) GO TO 1 

C EX = EXP(-YC6)*YC7)) 

C . COM~INATION OF PA~A~OL~ A~I) NONPARAgOLA~ 
C THE FOLLOWrN~ EQU~TIONS ARE, 

C 1. EQ~ATI0N OF ~OTION AT R = 0 
F(l) = (2.*ALPHA*EX*YC5)**2)**2 + 4.*ALPHA*Y(21*YCSI**2*EX + Y(21~ 

C 

1*2 - WCO**2 + SU~0 

2. THE MATCHING OF VELOCITIES AT A~ INT~RFACE 
1='(2) = Y(21/FX**2 - YC41 

C 3. TYE ~ATCHING OF TANG~NTTAL STRESSES AT AN INTERFACE 
F(31 = ALPHA*EX + YCll*Y(21/FX**3 - O.5*R~U*Y(31*Y(41 ~ FF3 

C 4. ~ASS 3ALANCE FOR A JC::T 
F(4l = O.5*ALPHA*Y(51**4*EX + O.5*Y(21*Y(Sr**2/FX - 0.5 

C 5. MO~ENTUM 9ALANCE FOR A JET 
F(S) = 2./3.*ALPHA**2*Y(5)**6*C::X**2 + 2.*~LPrlA*Y(2)*EX*CYC5)**4/~X 

1 - ALOGCFX)/YCl)**2 + Y(5)**2/CYC1)*FX) I + 1./6.*CY(~)**2/Y(~))*(1 
2. - 1./FX**31 - 2./3. + SUM1 

C 6. MO~ENTUM 9ALANC~ FOR A SURROUNDI~G FLUrO 
F(6). = J.~5*Y(4)**2/Y(1) - SU~2 

IF CND.NE.999) F(t;) = ~(5) + RRyO*F(6) 

SUMF = F(})**2 + ~C21**2 + F(3)**2 + F(4)**2 + F(S)**2 + 1=(6l**2 

~. ,~, 
r~" .> 

I 
r' 
g 
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III. Velocity Profile in a Moving Surrounding Liquid 

The programs are designed to calculate the axial-velocity com-

ponents and the jet radius as functions of axial distance. 

A. The Main Program (ANUJET) 

(1) Abstract 

The object of the program is to solve for increments of the seven 

parameters in Eqs. (1) and (2) at each axial-distance z. The matrix 

elements are given in the section for computation procedure. 

(2) Usage 

Input: 

N 

I{El 

GAMA 

RMU 

RRHO 

SK 

Output: 

A,B,C,D,E,G,M,a 

F(l) ,F(2) ,F(3) ,F(4), 
F(5) ,F(6) ,F(7) 

VC 

VI 

SUMF 

z 

run number 

interior Reynolds number 

average velocity ratio 

viscosity ratio 

dens i ty ratio 

orifice-to-tube radius ratio 

functional values of parameters at each z 

numerical,values of Eqs. (10) through (16) 

dimensionless center-line velocity 

dimensionless interfacial velocity 

summation of the square of errors 

dimensionless axial distance 



~, .. 

(3) Restrictions 

z < 100 
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(4) Runge-Kutta third-order integration method 

B. Function Subprogram (FUNC) 

(1) Abstract 

This program gives the numerical values of functions for given 

variables. 

(2) Usage 

CALL FUNC(Y,LS,F,LT,SUMF,SUMO,SUMl,SUM2) 

Input: 

Y 

LS 

LT 

SLlMO, SUMl, SUM2 

Output: 

F 

SUMF 

LINIAL and EQLIN 

. magnitude of variables 

number of variables 

number of functions 

integral values in functions 

magnitude of functions 

summation of square of F's 

are the same as given before 



PROG~A \1 A!\HJJr:T ( I"JPUT ,C)IJTP:JT ) 
f) I MEN S ION A ( 7 , 7 ) ,3 ( 7 ) ,x ( 7 ) , F ( 7 ) ,Y ( g) ,X 0 ( 7 ) ,x 1 ( 7 ) ,X Z ( 7 ) ,y 1 ( 7) ,y Y ( q ) 
1,DF(7,8),DSF(8)~SCRl7,20) 

COMMON EX,RMU,DELZ,ALPHA,DELl,DELZ,Fl(7),F2(7),F3(7),F4(7),W(0 
1,ND,~RHO,3AMA,CK,SK,CKA,SKl,E~1,FF~,FF5,FF7 

LOGICAL SINGUL 

C THI5 IS A PROGRAM-DES+GN~J FOR A JET IN A CI~CULAR TU9E. 
C THIS IS AN EXPONENTIAL-SCHLICHTING TYPE VELOCITY MODEL. 
C VELOCITY PROFILE OF INTr:RIOR JET ASSU~ES TWO FORMS. AT FIqST 
C APPROXIMATE PARABOLA, TY~N SCHLIC+TING TYPE. 

24 ~EAD l,N,REl,GA~A,R\1U'~~HO,~K 
1 FOR "1 A T ( 1295 F 1'- • 6 ) 

IF (I\J.E'J.9 ) STOP 
DRfi'H 4 

4 ~OR~~A.T (lYl) 
PRI~T 5, N,REl,GA~A,R~IJ,R~YO 

5 FORMAT (19H COMPUTATION NO. = 12,IJ,19H INSID~ RE = F12.6,4X 
1,19Y AVE. VEL. RATIO = F12.6/19H VISCOSITY RATIO = F12.6,4X,19Y DE 
2I\JSITY RATIO = F12.611) 

C ALPHA IS A PA~A90LIC C0NSTANT. 
C ALPHA = 1.0 CORRESPONDS TO A PARABOLIC FORM. 
C HOWEVER,TOO HIGH' A VALlJE O~ ALPHA MAY CAUSE A BREAKDOWN OF TH~ 
C CALCULATION. ' 
C GAMA IS A RATIO OF AVERAGE VELOCITIES OF II\JTERIOR AND EXTEQraR 
C JETS. 

ALPHA = 0.95 
C II\JITIAL VALI}~S OF PARt\\o1C:TC::~C; 

Y (1) = 1.g')'7 
Y(2) :: 0.14')19 
Y(3) :: 1.0 
Y(4) = 1.') 

~ .. .'.~ .. 
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y ( 5 ) = I.!) 
Y (6) = 1.0 

. 'y ( 7) = o. 
y (8) = 1.0E-16 
X ( 7) = o. 
5U~10 = 0. 
<;! J"11 = I). 
5U~2 = I). 
D~LZ = o. 
'Ncb = 2.0 
FF3 = O. 
FF5 = O. 
FF7 = I). 
~t~ = 1 
NI).· = 999 
NP = I') 

~Q = I) 

M.A = 7 
IT = 0 
D~LI ::: 1.0~-1)C; 

D~L2 = O.5E-(')5 

RE2 = REI *RqHO/R~~'J 
C RE2 IS A~ EXTER+-R REY~0LDS NO. ~A5ED ON THE ORIFICE DIA. 

CK = 1. + 5K**2 - (1. - S~**2)/ALOG(1./S~) 

EEl = O. 
Sl(l = S~**2 
CKA = (1. - SK**2)/(~LOG(SK» 
DR PH ~!")8, S~ 

308 FOQMAT (lX,18Y RAT+O O~ RA~Ir ~ F6.4//) 
PRINT 301), AL~HA 

~00 FOR~AT (lX,9Y ALD~A = ~6.4//) 
~l ~X = EXP(-Y(7)*Y(~» 

CAL L L r N I A L! Y , 8 , A , 9 , 7 , f) F , F , S U )·1 ~ , ) SF, S IJ ~'1Q , S U "'1 1 , SUM 2 ) 
IF (N9.GT.2()) STO? 

"" . ;~, 
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Sl = F(4)**2 + F(6)**2 
PRINT 11~, SI, (F(I),!=1,7) 

110 FORM~T (9~11.~) 

IF LS1.LT.2.,)~-12) GO TO 100 
DENO = DF(4,1)*OF(6,2) - OF(4,2'*DF(6,1) 
EPA. = (F(4P'OF(6,2) -~(6)*I)F(4,2) )/I)E"lO 
EP9 = (F(6)*'JF(4d) - F(4)*nF(6tl) )/D::N0 
Yel) = YCl) - EPA 
ye 2) = YP) - ED9 
~B = N1 + 1 
GO TO 'n 

100 RI = A.LPy~ + Y(1)*Y(2l/(i. + Y(l) )**3 - 0.5*~~U*GA~A/CK*(2.*S~*-2 
1 + CK!\/YCS)**2) 

Y(4) = Y(2)/(1. + Y(l)'**~ 
~2 = n.5*~~U*Y(4) 
YC'3) = Rl/~~ 
~X = ~Xpe-Y(1)*YCR)) 
CALL FUNCCY,9,F,7_SU~F,SU~),SU~I,SUM2) 

FF5 = l='(5) 
FF1 = F(7) 
PRINT 11'), SI. (F(Ild=I,1) 

C VC = CE~T~R VELOCITY, VI = INTERFACIAL VELOCITY 
PRINT 13 

13 FORMATe/ 4X,2H Z,9X,2H A,9X,2Y 8,9X,2Y C,9X,2H E,9X,2H R,9X,2H~G. 
19X,2H ~,9X,1H VC,9X,~H Vt,1X,5H SU~F/) 

VC = 2~*ALD~~*EXP(-Y(7)*Y(9H)*Y(5)**2 + Y(2' 
WCO = ve 
VI = Y(2)/(I. + Y(I'*Y(S)**2)**2 
vtE = Y(4) 
PRI~T 14, y(g) ,(y~ I) ,1=1,7) ,VC.,VI ,SUMt:' 

14 FORMAT(11~11.~) 
PRINT 11~, VIE,(FrI),I=1,7) 
r)ELZ = 1.'jE-,)7 
II) = 1 

55 X(7) = 1. 

.:!' "1 
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IF (NP.NE.O.AND."H1.FI).999) NQ = NQ .. _± __ L~ 
IF (IQ.G~.~~) GO TO ~6 

IF (E X D ( - y ( 7 ) * Y ( 8 ~ ) • LT. 1 • ') c: - 0 1. ) "If) =1 f) 
IF (I~.EQ.N~) P~I~T 1,I~,Y(8)~EX 

, FORMAT (I1,?,Fll.1) 
IF (I~.EQ.N') P~INT 6 

6 FORMAT(19~In AN~TAPE-REA~ IN) 
56 IF (y(g).LT.l'').) GO TO 59 

0RINT 51'), I~,Y(A) 

5~O FORMATClHO,21HTOTAL NO. OF STEPS = 13,/////,IIHMAX Y(7) = E12.4) 
GO TO 24 

59 IF CNP.NE.O.AND.NQ.LT.50) SO TO 60 
IF CID.EO.90) D~LZ= IO.*~ELZ 
IF CI~.EO.I9'») ~C:LZ = IO.*DFLZ 
IF (ID.EQ.~70) ~ELZ = lO.*DELl 
IF (ID.E1.'60) ~ELZ = lO.*D~LZ 
IF (ID.fQ.450) ~~LZ = la.*n~LZ 
.I F U D • E Q • ~ 4 0) . DEL Z = 1 0 • * DE L Z 

60 IF (ND.NE.999) +E~Z= 1.0 
IF (N1.EI).511 N0 , -0 
IF (NP.EQ.O) NQ = 0 
NS = 1 
1)0 7, I = 1,8 
YY (I) = Y ( I ) 

73 CONTINUE 
403 DO 400 I = 1,7 

DO 401 J = 1,7 
A(I~J) = '). 

401 CONT I"HJE 
8( I) ='). 

400 CONTINUE 
S~l = (S~*Y(~) }**' 
CKA = (1. - (SK*Y(S)**2)/!\.LOr;(SK*Y(S') 
DC~A = -~./ALOG(SKI) - 2.*((1. - S~1)/S~l)/(ALOG(S~1))**2 
EX = EXP(-Y(7,*Y(8») . 
IF ("n. N ~ .9? q) -r:X = '"'. 

"'. ), 

I 
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FX = 1. + Y(I)*Y(5)**2 
GX = 1. + Y(~)*YUS)**~ 
IF (FX.LT.0.~) PR:'~T 16 

16 FORMAT(9YFX.LT~0.J) 
IF (FX.LT.0.0) GO TO 24 
A(I,Z) = 4.*~LPHA*~X*Y(51**2 + 2.*Y(2) 
ACl,S) = 16.*ALPHA**2*~(5)**~*EX**2 + B.*~LDHA*Y(2)*Y(5)*~X 
ACl,7) = -8.*ALPHA**2*Y(5,**4*YC8'*EX**2 - 4.*ALPYA*Y(2)*YC51**2*Y 

l(8)·*EX 
3(1) = EX*(8.*ALPHA**2*Y(7)*YC3)**4*EX+ 4.*ALPHA*Y(2)*YC7)*YC5)** 

12)*I)ELZ 
AC2,1) = -2.*Y(2)*Y(S'**2/FX**3 
A(2,2) = 1./FX**2 
A( 2,4) = ·-1. 
A C 2 , 5) = -4 • * Y ( 1 ) ~ Y C 2 ) * Y ( 5 ) I F X * * 3 
A(,,!) = Y(2)/FX**3 - ~.*Y~I)*Y(21*Y(51**2/FX**4 
A(,,2) = YCl)/FX*~~~ 
AC",1 =-O.S*RMU*Y(4) 
A(,,4) = -0.5*R~U*Y(~) _ 
AC~,S) = -6.*Y(1'**Z*Y(ZI*Y(5)/FX**4 + 2.*RMU*G~MA/CK*(I. - S~I + 

1 ALOGCSKl) )/(Y(5)**3*(ALOGCS~I) )**2)*YC6) 
AC3,6) = -O.S*RMU*GAMA*(Z.*SK**2 + CKA/Y(5)**2)/C~ 
A(3,7) = -ALPHA*Y(81*EX 
~(,) = ALDHA*Y(7)*~X*D~LZ 
A(4,1) = -O.~*Y(2)*Y(5)**4/FX**2 
AC4,2' = O.5*Y(S)**2/FX 
AC4,S) = 2.*~LPHA*Y(3'**3*EX + Y(2)*Y(5)/ex - Y(I)*Y(2)*Y(Sl**3/FX 

1**2 
AC4,7) = -O.5*ALPHA*Y(S)**4*Y(8,*EX 
13 ( 4) = 0. 5 * ALP H A * Y ( 7 ) -';l- Y ( '; I * * 4 * EX *:) E'- Z 
A(S,,) = -O.~*Y(4)/Y(3'**Z 
AC5,4) = 0.5/Y(3' 
AC5,S) = 2.*(GAMA*Y(6'/C~'*(Y(3)*(I. - SKI) - 1. - O.5*Y(5)*C~A + 

1 0.5*Y(5)*(1. - SKl,*D(KA) 
A(5,6) = 2.*(GAMA/(I()-:t-(Il./SK - YeS)) - 0 .. 25*SI(**2*(I./SK**4 - ye5 

1)**4) + O.5*Y(S,M*2*(I. - SKI) + (1. - S(1)*CKA/(4.*SK**2)) 

~ -I .,. 
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A(S,ll = 2.*ALPYA*Y(2l*~X*(-Y(5l~*6/~X**2 - Yf5'**4/(Y(l'~~X**~l -
12.*Y(S)**2/(Yfl'**2*FXl + 2.*ALOG(FXl/Y(ll**3' - 1./6.*{Y(2)/Yfl)) 
2**2*(1. -1./FX**,) + 0.5*{Yf2l*YU5) l**?/(Y(I,*FX**4' 

AfS,2) = 2.*ALPHA~EX*(Y(S)**4/FX - ALOG(FX"Yfl,**2 + Y(S)**2/(Y(1 
U*FX») ,+ 1.1,.*(Y(Zl/Yfl))*(I. - 1./FX**'3) 
A(6,5) = 4.*ALPHA**2*YfS)**5*EX**2 + 4.*ALP~A*Y(2)*EX*Yf5l**3/FX + 

1 Y(2,**2*YlS'/FX**4 
A~6,7) = -4./1.*ALPHA**2*Y(5)**6*Y(8l*EX**2 - 2.*ALDHA*Y(2)*Y(8)*~ 

lX*fY(5)**4/FX - ALOG(FX)/Y(I'**2 + Y(S)**2/(Y(ll*FXl) 
9(6) = (4./1.*ALPHA**2*Y(7)*Y(S)**6*EX**2 + 2.*ALDYA*Y(2'~Y(7)*EX* 

1(Y(5)**4/FX- ALOG(FX)/Y(ll**2 + Y(S)**2/(Y(I)*FX)) )*DELZ 
C AN EXPONENTIAL INTEGRAL IS ADDROXI~ATSD. 
C ~El IS AN EXPONENTIAL INTEGRAL TIMES EXP(Y(3)*Y(S)**Z) 

P = Y(3'*Y(5)**2 
IF (D. LT. 1 .) GO T J 1 1 
Al = 8.571'32A7401 
A2 = 18.059~169730 
A3 = 8.6'347608925 
A4 = 0.2577737343 
91 = 9.5713223454 
B2 = 25.6'329561486 
83 = 21.0996511827 
B4 = 3.958496~228 
E~1 = (P**4 + Al*P**3 + A2*P**2 + A3*P + A4)/(P**4 + 91*P**3 + 92* 

IP**2 + 93*P + 94)/P 
GO TO 12· 

11 An. = -0.57721566 
Al = 0.99999193 
A2 ~ -0.249 10S5 
A1 = O.0551~q68 
A4 = -0.')0976004 
A5 = 0.')')107R57 
EEl = EXP(Dl*I-ALOGID) + AI) + AI*P +A2*o**2 + A3*P**3 + A4*D**4 

1+ A5*P**5) 
12 A(7,,) = 2.*(GAMA/CK )*(z.*SK**2*Y(4l/Y(3)**3 + (SKI - 1.)*Y(4,/Y( 

-. 
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+="' 
\0 

I 



t~)**2 + O.S*CKA*(i(4)/Y(~)**2)*(ALOG(SK1) + (1. - Y(3)*Y(S)**21 
2 *eEl + 1.) 1*Y(6) - O.25*(Y(41/Y(3,,**2 

A(7,4J = 2.*(GM-1.fl./CK )*(l./Y(3) - (SK/Y(3) )*A-2*( 1. + Y(3)*Y(S)**2) 
1 - O.5*CKfl./Y(3)*(ALOG(Sql + C:~I)'*Y{6' + 1./Z.*Y(4)/Y{~) 

11 = -S(I**2 + 2.*S(1 - 1. . ~ 
T2 = 2. - S(1*(ALOG(S{I,,**2 + 2.*S(1*ALOG(S(1) - 2.*5(1 
T3 = S(1**2/4~ - SKI + ~./4. - (0.S*S(1**2 - SK1,*ALOS(SK1) 
A(7,Sl = 4.*(GAMA*Y(6)/CK)**2*(T1+ O.S!CKA*T2*~CKA - (CKA*ALOG(SKI 

1"**2/4. - CKA*(SKI - 1.,*ALOG(SK1) + T3*DCKA)*Y(S' -·Z.*(GAMA*Y(6 
2)/CK'*(2.*SK1*Y(4)/(Y(3'*Y(S)) + S(I*Y(4)/(Y(3)*Y(5) )*(ALOG(S(I) + 
~ ~El)*~CKfl. + Y(4)*Y(S'*((A*EE1' 

GM1 = 2.*(GA~fl,*Y(6)/CK)**2*((I. - S(I"S(**2 + (1~ - SK1**3)IC3.*S 
lK**2) + 1.25*(CKA/~K'**2*(2. - SK1*(ALOG(SK1) '**2 + 2.*SK1*fl.LOG(SK 
21' - 2.*S(l' - (1. - S(I**2)/SK**2 + (C(A/SK**2)*(O.25*SKl**2 - O. 
~S*SK1**2*ALOG(SK11 - J.25) - (CKA/SK**2)*(SKI - SKl*ALOGCSKI) - 1. 
4) ) 
G~2 = 2.*(GA~A*Y(6)/CK)*(Y(4)/Y{3) - (SK/Y(3' '**2*Y(4)*(1. + Y(3)* 

lY(S)**2) - 0.S*(CKA*Y(4)/Y(3')*(ALOG(SK1) + EEl)) 
A(7,6) = 2.*G~I/Y(6) + GM2/Y(6) 
IF (ND.EQ.999) GO TO 402 
A(6,3) = A(6.3) + RRHO*A(7,3) 
A(6,4) = A(6.~) + RRHO*A(7,4) 
A(6,S) = A(6.S) + RRHO*A(7,S) 
A(6,6) = A(6.6) + RRHO*A(7,6) 
MA = 6 

402 IF (~S.EQ.Z' GO TO 406 
IF (NS.EQ.3) GO T) 407 
IF (ID.~E.1) GO Tv 700 
UI = 32.*( ALDHA~<EX + Y( lJ*Y( 2) )lREI 
VI = 8./REl*(ALPHA*EX*Y(5'**2+ Y(1)*Y(2,*Y(S'**2/(1. 

I + Y(I)*Y(S'**2'**3' 
WI = 4./RE2*(GA~A*Y(6)/CK*(2.*SK1 + CKA) + Y(~'*Y(4)*Y(S)**2' 
GO TO 7()1 

7')0 Ul = U4 
VI = V4 
'1/1 = Itl4 

" f 
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701 ~(1) = 9(lt - Ul*J~LZ 
9(6) = 9(6) - Vl*1~Ll 
8(7) = 9(7) + "'1l*DELl 
IF (N).N~.999) 9(6) = 8(6) + R~HO*q(7) 
IF (N~~N~.99q) 'GO TO 550 
CALL EOLINCA,g,MA.X) 
GO TO 551 

55~ CALL LINIT(A.f3,X,~A,I,D~T.IEX.CNR.SINGUL.7,SCR) 
IF (SINGUL) PRINT 15 

15 FORMAT(13YA IS SINGULAR) 
IF (SINGUL) GO TO 24 

551 ~O 71 I = 1,7 
XOCI) = XCI) 

71 CONTINUE 
DO 74 r = 1.7 
V(I) = VV(I) + XOCI)*O.5 

74 CONTI NUE 
VCS) = V(S) + O.5*D~Ll 
NS = 2 
GO TO 40'3 

406 U2 = 32.*(ALPHA*EX + Y(1)*V(2) )/R~1 
V2 = S./RE1*(ALPHA*EX*V(5)**2 + V(1)*Y(2)*V(5)**2/(1. 

1 + V(1)*Y(5)**2)**~) 
W2 = 4./R~2*(GA~A*Y(6)/C~*(2.*SKI + C~A) + Y(3)*V(4)*Y(5)**2) 
8(1) = 13(1) - U2*~ELZ 

13(6) = 9(6) - V2*DELZ 
9(7) = 9(7) + W2*JELZ 
IF (N~.NE.qqq) g(~) = 9(6) + ~~HO*g17) 
IF (ND.N~.q99) GO TO 552 
CALL EOLIN(A,9,~A,X) 

GO TO :;5'3 
552 C.LL LINIT(A,g,XT~A,I,~ET.IEX,CNR.SINGUL,7,S(R) 

II=' (SINGUL) P~INT 15 
II=' (SI'lG!JL) GO TO 24 

55'3 DO 75 I = 1,7 
XI ( I) = X( r ) 

• :0;. ' . 
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75 CONTI"WE 
00 76 I = 1,7 
Y(I) = YY(I) + 2.*Xl(I) - XO(I) 

76 C,)"ITINUE 
yea) = Y(s) + O.5*DELl 
NS = '3 
GO Tf) 4f)~ 

407 U'3 = 32.*(ALPHA*EX + Y(II*Y(2) )/REI 
V'3 = 8./R~I*(ALPHA*~X*Y(51**2 + Y(II*Y(2)*Y(S)**2/(1. 

1 + Y(I)*Y(51**21**31 
W3 = 4./RE2*(GAMA*Y(6)/CK*(2.*SKI + CKA) + Y(31*Y(4)*Y(S)**2) 
'3 ( I I = '3 ( I) - U~-* lELl 
'3(6) = 8(6) - V3*JELZ 
B(7) = B(7) + W'3*QELZ 
IF (\lQ.NE~999) q(6) = q(6) + RRHO*R(7) 
IF (~).NE.999) GO TO 554 
CALL EQlI~(A,q,VA,X) 

GO TO 5S5 
554 CAll lINIT(A,B,X,MA,I,DET,IEX,C"IR,SIN3UL,7,SCR) 

IF (SINGUL) PRINT 15 
IF (SINGUL) GO TO 24 

555 00 77 I = 1,7" 
)(2(1) = X(II 

77 CO\lTI"IUE 
1)0 78 I = 1,7 
YI(!) = 1./6.*(XO(I) + 4.*X1( I) + X2(I)) 

18 CONT I ~WE 
1)0 81 1= I, 7 
Y ( I) = YY ( I) + Y 1 ( I I 

81 CO\lTINUE 
y(8) = YY(A) + DELl 
EX = EXP(-Y(7)*Y(8)) 
IF pn.\lE.999) EX = o. 
U4 = 32.*(AlPHA*cX + Y(l)*Y(Z) )/REI 
V4 = 8./REl*(ALPHA*EX*Y(51**2 + Y(1)*Y(21*Y(S)**2/(I. 

I + Y(1)*Y(5)**2)**~) 

-'":I~ 1 
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W4 = 4./R~2*(GA~A*YC6)/CK*C2.*SKl + CKA) + Y(3)*YC4)*Y(5)**~) 

C INTEG~ATIONgy TRAPEZOI~AL RUL~ 

C 

SU~O = SUYO + OEll*(UI + U4)/2. 
SUMI = SU~1 + OEll*(VI + V4)/2. 
SU~2 = SU~2 + DELl*(Wl + W4)/2. 

CALL FUNC (y, 8, F, 7, SU~~F, su",n, 5U\11 , S'jI'-12) 
OX = 0. 
CX = EXP(-Y(1)*Y(5)**2) 
IF (CX.lT.l.0E~08) GO TO 84 
DX = Y(4)/CX 

84 VC = 2.*ALPHA*EX*Y(S)**Z + Y(Z) 
IF (I~.LE.I0' weo = VC 
IF (r~.EQ.I0) FF3 = C(3) 
VI = Y(2)/(I. + Y(I)*Y(5)**2)**2 
VIE = Y(41 
IF (IO.LT.449) GO TO 115 
PRINT 14, YC8"(YCII,r=I,7"VC,VI,SU~"'F 

. P~ I NT 11 (), V IE, C F ( I ) , I = 1 , 7 ) 
PRINT II!), (Yl(I),I=I,7),~X 

IF (~O.N~.999) GO TO 111 
IF (I ~. l T .20) GO ,·0 111 
IF CSfY-1F.LT.2.0E-J8) GO TO 114 
NP = I\IP + 1 

~ELZ WHEN APPROACHING A CRITICAL POINT. 
113 . 

.~ 

113 

REDUCE THE SIZE OF 
IF (ND.E!).l1 DRPH 
FORMAT C54HSKIP ID 
IF (NP.EQ.50) STOP 

AND TAPE-READ UNTIL IT S~ITCHES TO NONPAR~qOlA) 

112 

00 112 I = 1,7 
Y(I) = VII) - YIC!) 
CONTINUE 
Y ( 8) = Y ( R) - r:lELl 
SU~O = SU~0 - OELZ*CUI + U4)/~. 
SU~l = SU~l - OEL~*(VI + V4)/Z. 

'~-

.~ 
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SU~2 = SU~2 - DELZ*(~l + W4)/2. 
DELl =·O.5*I)~Ll 
GO TO 55 

114 IF (NP.N~.a.~ND.~Q.LT.50)GO TO 55 
IF (NQ.EQ.50) P~INT 6 

115 II) = II) + 1 
GO TO 55 
END 

I!J ;, -J: ,~ 
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SUBROUTINE FUNC(Y,LS,F,LTtSUMF,SUMOtSUMl.5U~2) 
DIMENSION YCLS),FCLT) . 
CO~~ON EX.RMU.DELl.ALPHA.DELI,DEL2,FI(7),F2t7t,F3C7),F4(7),WCa 
I'ND'RRH0,GAMA,C~,S~,CKA,SKl,EEl,FF3,FF5,FF7 

IF CNb.NE.999) EX = O~ . 
FX = I. + YCl)*YCS)**2 
IF CFX.LT.O.~)GO TO I 

C EX = EXP(-YC7)*YCB» 
SKI = C S K * Y C S )) * *<! 
CKA = (1. - (SK*YCS»**21/ALOGCSK*YCS» 

C COMBINATION OF PARAqOLA A~D NONoARA30LA. 
C THE FOLLOWING EOUATIONS ARE. 

C 1. EOUATION OF MOTION AT q = 0 

C 

F(l) = (2.*ALPHA*EX*YCS1**2)**2 + 4.*ALPHA*Y(2)*YC5)**2*EX + Y(2)* 
1*2 - WCO**2 + SUMO . . 

I 2. THE MATCHING OF VELOCITIES AT AN INTERFAC~ 
F(2) = Y(2)/FX**2 - Y(4) 

C 3. THE MATCHING O~ TANGENTIAL STRESSES AT AN INTERFACE 
F(3) ~ ALPHA*EX + Y(ll*yc2)/FX**3 - O.5*R~U*(GA~A/CK*C2.*SK**2 + 

lCKA/Y(5)**2)*YC6) + Y(3)*YC4» ~ FF3 

C 4. MASS BALANCE FO~ A JET 
F(4) = O.S*ALPHA*Y(S)**4*EX + O.S*Y(2)*YCS)**2/FX - 0.5 

C 5. ~ASS gALANCE FOR A SRROUNDING FLUID. 
F(5) = 2.*CGAMA*Y(6)/CK)*(CI./SK - YCS) -O.25*SK**2*(1./SK**4 -

1 YCS)**4) + 0.5*YCS)**2*(1. - SKI) + 0.2S*(I. - SKl)*CKA/SK**2) + 
2 O.5*YC4}/YC,) - FF5 

C 6. MOMENTUM 9ALANC~ ~OR A JET 
F(6) = 2./3.*ALPHA**2*Y(S)**6*EX**2 + 2.*ALPHA*Y(2)*EX*(Y(S)**4/FX 

1 - ALOGfFX)/Y(I)**2 + Y(SI**2/(Y(II*FX» + 1./6.*(YC2)**2/YCl»*CI 

" 

I 
~ 
\Jl 
\Jl 

I 
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c 
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2. - I./FX**~) - 2./3. +SU~l 

7. MO~~NTUM ~ALANC~ FOR A SURROUN~ING FLUID 
" . 

AN EXPO~~NTIAL INTEGRAL IS APPROXIMATED. 
EEl IS AN EXDONENTIAL INTEGRAL TI~ES EXP(Y(3)*Y(5)**2) 

P = Y(3)~Y(5)**2 
IF (P.LT.1.) GO TO 11 
Al = 8.5733287401 
A2 = l8.')59Q16973·) 
A3 = 8.6347608925 
A4 = J.2677737343 
~1 = 9.5733221454 
B2 = 25.6~29561486 
83 = 2I.09965~')927 
84 = 3.9584969228 
EEl = (P**4 + AI*P**3 + A2*P**2 +A3*P +A4)/(P**4 + Bl*P**3 + 32* 

IP**2 + 93*P + 94)/P 
GO TO 12 

11 AO = -~.5772l566 
Al = 0.99999193 
A2 = -0.24991055 
A3 = 0.05519968 
A4 = -').00976004 
A5 = 0.0')107857 
EEl = EXP(P)*(-ACOG(P) + AO + Al*P + A2*P**2 + A3*P**3 + A4*P**4 

1+ A5*P**5) 
12 G~l = 2.*(GAMA*Y(6)/C~)**2*((1. -S~1)/SK**2 + (1. - SK1**3)/(3.*S 

1 K * * 2) + O. 2 5 * ( C K AI S K ) -:HI· 2 * ( 2. - SKI -* ( A LOG ( S '< 1 i ) * * 2 + 2. * SKI * A L·O G (5 K 
21) - 2.*SK1) - (1. - SKI**2)/SK**2 ~ (CKA/SKk*2)~(J.25*SK1**2 - o. 
35*SK1**2*ALOG(S~1) - 0.25) - (CKA/S'<**2)*(S(1 - SK1*ALOG(SKI) - 1. 
4) ) .' 

G :v12 = 2. * ( GA'~ A * Y ( ;) / C K ) * ( Y ( 4 ) / Y (3) - (S K / Y ( 3) ) * * 2 -l:- Y ( 4 ) * ( 1 .""- + Y ( 3 ) * 
1Y(S'**21 - J.5*(C(A*Y(4)/Y(3) I*CALOGCSK1) + ~~l)) 
F(7) = GMI + GM2 + J.25*Y(4)**2/Y(3) - SU~2 - FF7 

:: 
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IF (ND.NE.999) F(6) = F(6) + RRHO*F(7) 

SU~F = F(1)**2 + F(2)**2 +- F(4)**2 + F(S)**2 + F(6)**2 
IF (N~.NE.999) SU~F = SU~F ~ F(6)*~2 

RETUR~ 

1 PRINT 2 
2 FORMAT(9HFX.LT.O.J) 

END 

~~ ~ 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United S~ates, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­

" tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission II 
includes any employee or contractor of the Commission, Ot employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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