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RESONANT NON-LINEAR RESPONSE OF
POINT CONTACT JOSEPHSON JUNCTIONS:
"P..L. Richards and S. A. Sterling
Inorganic Materials Research Division, Lawrence Radiation Laboratory,

Department of Physics, University of California,
- Berkeley, California

ABSTRACT

Experimental evidence is presented for feedback.narréwed far-
infrared responsevof'a point contacf.Josephson junctioh:which is
strongly coupled to a resonant cavity. The observed response shows
high sensitivity (NEP £ lQ—th/Vﬁg) and frequency selectivity (Q > 103).
A model is déscribed which relates this narrowed response to the non-

,'vlineartcoupling of the junction_current to a resonant cavity.
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Point contact junctions have been previouslyl'operated as broad-
band detectors of millimeter and submillimeter radiation by monitoring
the radiation induced changes in the zero voltage current. When such
a Junction is strongly coupled to a resonant cavity, current stepe2
appear on the I—V-characteristic at yoltages given by‘the Josephson
relation,3 2eV = ﬁw ; for the. resonant frequenc1es of the cav1ty,. o
We have observed that the height of,such current steps is extremely
sensitive to externally applied‘radiationvat the center of the cavity
mode. We find spectral sensitiyities correéponding_to a noise- equivalent

‘power of less than 1of1§ watts/vHz in a bandwidth of less than 0.0l cm__l

at 6 on L.
| Our eXperiménts Vere‘performed uaing theitechniquee of Fourier

Transform far infrared spectroscopy so that measurements could be

v made as a functlon of frequency in the millimeter and submllllmeter'

range. The output of a lamellar grating 1nterferometer with a Hg arc

source was conveyed to the cryostat through al.l cm i, d light pipe..

The light pipe terminated in a focus1ng cone with a 1. 6 mm 0pen1ng on

the_axis of a cylindrical caVity, typically k mm in'length and diameter,

which wae\immersed in liquidiHe at L. 2%, The point contact junction

was made from two Nb- w1res, pos1t10ned along the axis of the cav1ty,

one of which continued through the cone into the light pipe, prov1d1né

a coaxial coupling lead. _ . v o ' - P

The coupling between the cayity and‘the.Josephaon Junction produces‘
a current step on the lFV’characteristic whenever the ac‘Josephson "
frequency equals atcavity resonance frequency. Aseociated with this

step-ie a high differential resistance region connecting the step
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to the rest of thev(resistive) I-V characteristic. As the height of the
current step changes (due to the applied radiation, which 'is chopped at
33 cps) the high résistance region follows. The junction is biased with

a constant current. on the high differential resistance region next to

. the current step. _A change in the step height thus causes a change in

the de voltage bias, which'is detected with a lock-in amplifier and
recorded as a function of .the interferometer path. difference.
1Fig, 1 shows typical junction charactéristics._‘The upper trace

is the differential resistance of the junction. The trace goes to zero

~at V. =0 (the familiarviero voltage-current):and at * 393 uv (a cavity

dc

mode}step); ‘The high differentiai resistance region shows clearly:

The lower trace shows the junction response to broadband radiation -

(0 - %o cm_l). The major response occurs at the high resistance regions

. associated with the Cufrent»steps, " The large_Sighal ne_ar,Vdc ='0'is

the respoﬁée to broadband radiation, While jﬁst below the 393 pv‘step_f
narrowbaﬁd responée_is.seen.due to the cavity mode. .The strength of* this
lattérIresponsé.isbremarkable-since it.is_senSitive to less than one |
percent of the rf power.contributing to thevresponse near Vdc =>O.

Fig. 2:$hows thé.measured spectral response of the resonant junction

-biased near the cavity mode of Fig;.l. The peak response is at the

Josephéon frequéncy.correspénding fp the voltagé»of the current. step
and not the aéﬁual voltage bias. ‘Further, the -shape of the respbnSe__
is not dependént on fhe particular'bias sélected within a given.high
resistance regiop. Thus, neither the changes in bias voltage with external
radiation nor noise in the bias circuit is expected;to brqaden‘the

response peak.
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The shape of the peak Shown'in Fig; 2 is very nearly the

[gin o7 (y -v,.) A J/Qﬁ (v = v.) A §pectral window of the interfero-

0 Yo
meter for the maximum path diffgrepqe Amax = 5 cm employed, iﬁdicating
that the response width was small compared with the 0.2 en™t instrumental 3
resolution.h In this_éésé of a single narrow péak'dominating the sééctrum,
the raw data‘from‘the iﬁtérferometer_appgar-as a daﬁped cosine function
of path difference. Frém a direct measurement of the damping factor
. we plgce an upper limit of 0.01 cm_; = 300 MHz on the bandwidth. The
complete absence of harmonics on thé_compufed‘spectrum implies that
the response voltage is proportiqnal to the rf power (square law detector). -
The spectfél power‘density'entgring the cavity was estimated from
_measuremenfs of the intérfeféméter éutput and attenuation in the
coaxial coupler using a calibrated bolometer. Assuming a response band-
ﬁidth of ..01 cm_i.we computed an NEP = io-;hW//EZ.. A-sﬁaller bandwidth
would imply:a correspopdingly smaller NEP; This is a conservative
estimate since it is probable that only a few of the spatial modes
entering the cavity aCtually_couple'to'the point contacts.
The narrow bandwidth, high sensitivity and expécﬁed highspeed2 of

the observed responsé indicaté the ﬁtilit& of this effect as a
-practical deﬁector of millimeter and submiiliméter fadiation. In this
regard it shoﬁld be‘mentioned that the response peak is'stepwise tunablé
b& adjusting the voltage bias to the various cavity modes,‘or.céntinuously : /
tunable if the cavity size is changed. |

| The obsérvéd behavior of the cévitj mode responsé can be_understodd

1 by-extendihg the theory of Werthémers and Werthamer and Shapirb6ltb
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include the effect of.the applied rf power. The resonant cavity is
treated as a driven harmonic oscillator:

2.
- d d
dt2 dat c

21 a(t) = F(t). ().

Here Q(t) = 2eV(t)/h is the normalized voltage across the junction, 7y

the damping constant, and w, the resonant frequency. The cavity is
driven by both the Josephson current in the junction and the applied

rf power, so

4aI d

F(t) = A Frall vl cos(w¥ft*¢rf),’. : (2)
vhere I(t) = COS[Qdct +ift9(t')at']- » .- (3)

Here, A and B are constants measuring the strength of the.Josephson
current and its‘coupling to the cavity, and the coupling of the rf into

3 4 N . o —_+ 03 K] .
the cavity respectlvely. ercps(wfft ¢rf) is the (dimensionless)

-rf volta___,ge applied.7 A'useful analytical solution can be obtained by

assuming'a.narrov enough resonance that only one frequency component
of the Josephson current couples to the cavity. The rf voltage in the
cavity is calculated for w = wc'by assuming

[fatsat = 2 sinluy 4+9) | ()

where Z and .¢ are real. The dq.bias‘is‘aSSUmed equal to the rf

frequegcy (Qdc = w.p

)y and 7 and ¢ are found by solving (1) at the

fréquenpy w. After some manipulation we obtain.

[or5, (2)3,(2)1% = [23,"(2)(2 + T 2, peos(s

)
geoslt g - 4017 +

(3, () (ztand + T2, sinlo,p - 0DI° (5)
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. _ 2 |
and cos¢ = 2FJ1 7 [z + TlefCOS(¢rf - 9)] . (6)
where T = ’A/Ywrf measures the cbupling of the junction current to the ¢

rescnant mode, Fézr is thé external rf voltage coupled into the cavity,

£ &

and 0 = arc tan[(wf 2 _ wcz)/Yw] is the phase difference between the

f

response ftQ(tOdt'-and the driving term (3). J.(Z) is the first order

1

Bessel function of argument Z. From (3) and (6) we can show the

experimentally measured quantity, I to be

de’
Idé = %&ﬂz + I1lefCOS((brf - ¢))' (7)

From (5) and (6) we see that both Z and ¢ depend on Z. and.¢rf, the

f

. depends on the applied rf

amplitude and phase of the applied rf,’so Idé

both explici%ly, on'er, and implicitly through Z and ¢.

In order to obtain the. weak sighal response, we expand Idc in
powers of Z .. Terms 1inear in Z are also linear in cos¢__.. Over the
' - rf o rf : : rf
~ 1 sec duration of our measurement such terms-average to zero except
for the negligible amount of radiation within ~ 1 Hz of the feedback

- frequency. Terms quadratic in Zr represent square-law response of the

T
:déteétor; The calculated square-law résponSe is plotted in Fig.b3
és a fungﬁion of tan 6.with’F as a parameter.. For I' = O, the response Q
:is the same as fhaﬁjof the cavity fesonéhce mode. As T increases, the
fesponse sharpens and‘iévsingular for f >2.91 and W = wc'(tane = 0).
The sinéuiar response ariéés from a quadratic term proportional to
[Jl'(Z)]"3 which diverges when the cavity rf voltage saturates at.
‘Jl'('z): 0. - o " o . _ - 4
We can upderétand:thisjsingﬁlar response qualitatively by_considering

'the dependence of the ac current, Iw’ on I when wrf = wc.and er = 0.
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From Fig. 4 of Ref. 5 we see that When I' = 0, there is no ac voltage,

Z, across the Jjunction, and Iw has its maximum value. As T increases,

" so does . Z, and Iw decreases. When I reaches 2.91, Z saturates, and

further increase»in r_decreases Iw without changing Z;‘ That is, a
change in Im does not change Z. But.Zrf adds directly to Z and sovIw,.
and consequently’Idc,‘changes discontinuously.

We may consider the analogy to a regenerative receiver whose

spectral response is governed by positive feedback through a resonant

~circuit. The dependence of spectral width on feedback amplitude and

the singular responseb(oscillation) when the loop gain becomes unity
are essentially the same.as.found for coupled Josephson junctions.

The model discussed here is the simplest one which explains'the
important features of our data. Werthamer.and Shapiro have verified
f ='O,by.comparing
the predicted currents with exact calculations done by analogue computer

Our model assumes that the dc blas is set equal to the rf frequency,
Qdc = m¥ff .We have.investigated the somewhat.more general caée where
Q30 # w.p by adding arsecond term (with frequencyFQdc) to (4) and

solving (1) at w__. and Q. .- The effect of the feedback at w
rf. de o . rf

is,
however, small, and the response of the junction to Z f’is»essentially
that given in Ref. 6. Feedback is of course 1mportant at Q since

it generates the de current step Only where’Q .= do we get the

‘narrowed response’ observed experlmentally A correct calculatlon would
1nclude both the flnlte 1mpedances of the Junctlon and blas source

_and the proper blas, which is actually set to the peak in the differential

rf}‘
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Observation of the resonant response described above for junctions
biased near wc vrequires stroi;gly couple_t_i cavity modes (largeiT) which
produce pronounced steps oﬁ the I-V charécte;istic of the junction. 1In
adaition.to tﬂese modeé, 1e§s stfongly qoupied modes usually exist which
broduce no visible steps or weak steps with no observable sensitivity.
The exis%ance of even these weak modes,vhowever, strongly modifies the
broadﬁand response.of the zero-voltage current. This respopse is
computed by setting‘ﬂdévé 0, solving (1) at wgf, and Caiculating the

zero voltage critical current dependence on Zr Since Iw'='0, there

£
is no'junction—ca#ity féedback,_and'thé voltagé in the cavity Z = Flefcos 0.

 Since the measured quantity for small signéls,

J)2cos26- . (8):

1, =3 (2)=1-§ (2,

- “de o]
' cqntaing the Lorentzian resonance factor'cosee, the‘zero voltage o
réépénse (oécuring at + 100 uv in Fig..l) measures the'pow¢r=spectrum
in the cavity. This conséquence of our modei7 iszsuppofted by the
published data for the spectfal response of the zero voltage current
which we believe to be‘dominatEdy By resonances in the surroundings of
'the junctiéns even forvthé case of conical cavities.l |

| In the'exfériment descfibéd here the broadband zero-vOltage.response
showed peaks with Q f_lO af frequencies of strongly'COuﬁled'cavity modes .
These can be comparedeith the'nérrowed resbonse'peaks with Q'from 50
" to our resolution limit of lO3 when ﬁhe junééign waé biased heaf thé
corresponding‘cﬁrrent.step.- Such rgsponse_qarrowing correspoﬁds to
values‘of r> é.3. |

Evapdrated'film Jbéephsoh junctions_are known to show pronounced

current steps on their I-V characteristics due to stronglybcoupling
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internal resonant modes;9 They are. expected to show resonant response
in the microwave frequency region similar to that described here. The
well-known difficulties of coupling radiation to thin film junctions

may, in practice, limit their sensitivity.
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FiGURE CAPTIONS
Fig. 1(a) Differential resistance of junction plotted against de
.voltage bias; arrows indicate the cavity modes.
(b) Far infrared response of junction vs. de voltage bias.
Fig. 2 Spectral response of cavity mode current step. Response
peak at 6.3k em L.
Fig. 3 Response line shapes for varioué values of T plottéd.against

. _ 2 2 : . .
tan 6 = (wrf - wc )/erf'_ The response is normalized to

unity at tan 6 = 0 and is singular at w = w, for T 5 2.9.
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