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These notes are detailed background material for a set of 

lectures given at Lawrence Radiation Laboratory in the fall of 1968. 

This is the second of three parts. The first and third parts are 

contained in UCRL-18637 and UCRL-18665, respectively. The last volume 

deals mainly with J-plane phenomena, and was prepared in collaboration 

with D. Sivers . 
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IV. nn SCATTERING ... PCAC AND CURRENT ALGEBRA 
1 

We use the notation of Section I, and first summarize the· 

relevant results. In the notation of (1.6) we define the Adler point: 

the Weinberg point: 

x w 

the symmetry point: 

the threshold po~nt: 

2 2 2 2 
(~ ,O,~ ; O,~ ,O,~ ) 

(.4.1a) 

(~.lb ) 

(4.1c) 

. (4.1d) 

In terms of the amplitudes of Section LB., the I 0,2, s wave 

scattering lengths are given by 

(4.2') 

and the combinations of interest to us will be 

and 

L 

) 
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The three important relations we will use are: 

(A) The Adler consistency condition: 

(B) The low energy theorem 

(c) The cr model relation 

A t(x) = 0 
'2 w 

1 
- --'-2 

8,rf 
11 

o 

1 
[v - , '2( s - u) ] 

,Relation (A) fdllows from PCAC alone, while (B) follows: from the 
I ' 

(4.4) 

(4.5) 

SU(2) ® SU(2) 2 algebra of axial charges, and (C) follows from the 

assumption that the commutator 

. Aj 
[D\ Q, ] oc °ij (4.6) 

transforms like an isoscalar. 3 [In (4.6), Di is the isospin component 

of the divergence of the axial current density J A 
"iJ.' 

Aj 
and Q is the 

J.th component of the axial charge, ~A (t) = J d3x :!-a A. ] 

• 

• c 

• 
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,'.IV. A. The Adler J[n 2 Sum Rule 

We now turn (4.4) into a sum rule for t A
l 

(x). Defining 

v == ~(s - u), and suppressing for the moment any dependence on Pi 
2

, 

t we assume Al (v, t), wpich is crossing odd, satisfies the unsubtracted 

dispersion relation 

t 
A

l 
(v, t) 

t 
dv' Dl (v', t) 

,2 2 
v - v 

, (4.10) 

where the dispersion integral has been folded over in the usual manner, 

using the odd crossing property of 
.. 

discontinuity in t 
v of Al . 

t 
Al ' and where D t 

1 
is the 

To turn (4.10) into a sum rule, we' note (1.11+) says 

A t 
1 

_ ~(5A2s 2A s) 1 s o +, 0 + '2 Al' 

+ - + - + + + + 
A(lT IT ~ IT IT ) - A(n IT ~ IT :n: ) 

Using (4.2) in (4.1) and going to the s channel threshold xT' 

where ab 
D. 

= 

(4.11} 

, 

(4.12) 

that Als(~) '" 0 sinCe it contains p waves or higher,' and also taken 

r, 2 v :::: c_1l at threshold flT physical llions. 
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Since' t ° at x.r' the unitarity relation (1. 27) tells us 

D(v, 0) 

where 

For physical pions, 2 
v = s - 2~ at t = 0, and 

2 
= v 

If one initial and one final pion have zero mass - as at 

2 
v s - ~ at t ~ 0, and 

R (s' - ~2)2 2 
:= := V 

If all 4 pions have zero mass, v := S a.t t = 0, and 

R 
2 2 

- s v 

(4.14) 
I 

x -w 

(4.16) 

(4.17) 

[In the PCAC-current algebra game, internal pions are supposed to keep 

their physical masses, so Vo = 2~2 in 

4 Using (4.15) in (4.12), we get 

. 2 
(4.10).] 

(4.18) 

To use (4.4) we will have to go to xw' at which point v = 0, 

.and both sides of (4.1) vanish. Since AIS(X)/vlx=x = 0, we define 
w . 

• 

• 

• 
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x 

and using (4.16), (4.12) and' (4.18) take the forms' 

where 

b 
rc . 

x 

L
oo 

1" ,ds 
22 
8rc 2 s - 11 

411 

, 

is now the cross section for a zero mass 

UCRL-18664 

(4.19) 

(4.20) 

a rc on a physical 

If we assume the error in extrapolating from Xw to x.r is 

small 

(4.21) 

Adler's result, (4.4), gives, using the Goldberger-Treiman 

relation, 

1 1 

1011
2 (4.22) 

where M is the nucleon mass, gr is the renormalized rcNN coupling 

constant, and gA is the q2 0 limit of the axial current form 

factor which multiplies in 
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If onet~ies to saturate (4.18) With the p(l~) and an €(b+) 

state, one gets5 

i 
2 8n: fn 

= - ·x. -

2 
g 

pnn· 
4n m· 

p 

2 + 

. where the p ar:.d € widths. are .. · 

and, 

r
e1T1f 

- = 

. 3m 3. 
€ . 

~ 

, (4.23) 

(4;24) 

1 

f-~r 

• 

• 

• 
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IV. B. The I = 2 Superconvergent Sum Rule 

t 
We want now ito write a sum rule for A2 (x), which is crossing 

even. The analu; of (4.10) is then 

v'dv' t(, t) 
,2 2 D2 v, 

For large v, we will assume 

:=", W' 
--7~ CV 

v~ 00 

v - v 

where c is a constant and where w < -2. Inserting (4.31) in (4.30), 

lim -w t v A2 (v, 0) c = 
2 _w_2jOO 

- - v 
. Jf 

. vo 

t 
vdv D2 (v, 0) 

v~ 00 

so that c o for w < -2, and we have the (superconvergent) sum 

rule 

If we saturate (4.33) with p and E, we get 

(1 _ [l2/m 2)4g 2 _ (m 2 ... J.l2)g 2 
p pJfJ1 E . EJ1J1 

o 



Experimentally, 6 

1 
2 

gp:n:J1 
"4 . 2 

~ +--"':::' 
l6:n: f:n: 

2 
:n:m 

p 

so that (4.23) becomes 

2 
~ g" /4 E:n::n: " 

-8-

, 

Using (4.36) in (4.34), and neglecting 

2 2 
m ~ m 

p E 

2 
~ , 

UCRL-18664 

(4·37) 

The last two relations, on insertion into (4.24) and (4.25) give 

All this is equivalent to the approximate statement 

, 

(times Tm part of Breit-Wigner form); 

We will compare (4.39) with the It = 2 discontinuity in the Veneziano 

model for :n::n: scattering, below. 

.. 
. : 

• 

• 
• 
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IV.C. Scattering Length Relations 

We have already mentioned the .current algebra low energy theorem 

1 
l0l-l 

(4·50) 

In this section we will focus our attention-on the quantity R = aO/a2 . 

Following weinb~rg,3 we expand the amplitude to first order, about 

x = 0, 

A(x) ~ a + b(t + u) + cs , 

B(x) ~ a + b(s + u) + ct 

C(X) a + b(s + t) + cu 

2 Linear terms in the Pi cannot appear here because of the 

symmetry properties of the amplitude and the relation (1. 7). 

Using the three relations (4.3, 4.4, 4.5) we can immediately 

compute R. Equations (4.3) - (4.5) give, using (4.51), 

° 

2 (b - c) 1 
X (4·52b ) == 2 8n f 

T( 

2 
a + [..t (b + c) ° (L! ·53c) 
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The solution of these equations is. 

b = 0; 

and 

R = 

222 
a = -cfl .. == -fl /8rrfrr 

3A(x.r) + B(x.r) + C(xT) 
B(x.r) + C(x.r) 

so that (4.50) now gives 

UCRI>-18664 

\) 

2 2 
~ 5a + l2fl C + 8flb = 

2a + 8fl2b 

7 
- '2 ' 

• 
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V. SUM RULES IN .TEE VENEZIANO MODEL 

We now return to the model in which the t channel amplitude can 

be written [cf (2.S)], 

t :x:. 

~here, as before, 

FO(X,y) = r(l - x) r(l - y) 
r(l - x - y) 

We introduce the variables 

1 - x - y , 

1 
.Tj = 2"(x - y) 

I 

(S.l) 

(S·2a) 

(S .2b) 

. / -2 If a = 1 2, b = 1 GeV , ~ = 0; l' = t, i 
and Tj = v = 2"(s - u), 

in FO[a(s),a(u)] Fig. 5.1 shows the Mandelstam structure of 

Fo[a(s),a(u)] in this event. 
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We will formulate sum rules at fixed L, and we therefore are· 

interested here in the discontinuity in ~. To complete our set of 

variables,we introducew, where 

. .3. 
w + x + y =:= 2' 

As will be shown in Part 

partial fractions as follows: 7 

(Xl K 

w - L 

III; 

1 
= 2" 

FO(X'y) 

[~ FO(X'y) ~ (-It r(K + L) 1 
= 1 L . r K) r(L) + -(1 - L) K=l 2 

(Xl 

=[ 
K=l 

1 r(K + L + -:) .. , 2 

r(K) r(L + ~) 

(Xl 

= L, 
K=l 

r(K + L + ~) 
. 1 

r(K) r(L + 2) 

can be expanded in 

1 
+ 1 ..; K -~ + -(1 -2 

. [--_~-+--"-~-( l_l __ -L-) ---K ± -~-+......".~-( l....;;l;;"'_-L-) ---K J . 

L) -K] ,. 

• 

• 
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V.A. I = 2 Sum Rules 

Referring to Fig. 3.2 we see that FO[X'y] -to faster than 

. any power, so according to Sec. IV. B. t 
A

2
, in the model, superconverges. 

t Up to factors of n, the discontinuHy·arising from A2 can 

be; read off from (5.4) and (5.1}, and 

(Xl 

I: (_l)K B-l(K+T) [6(T] + ~(l - .~). - K) 

K=l 

Defining 
2T 

Zs = 1 + --1 ' 
x - 2 

in agreement with (4.39). Consulting 

in the I..l = 0, 
1 

a = -, 
2 

b = 1 GeV-2 

1 
- 6(-T] + 2(1 - T) - K)J . (5·6) 

z 
u 

2T 1 + -_. , we have 
1 

y - -
2 

(5.6) or Fig. 5.1 we see that, 

t case, A2 has zeros along 

t == 0,-1,-2"· etc. The zero along t = ° has been associated with 

11 the zero of Adler's consistency condition (4·3)· It forces the Po - Pl 

combination in (5 ~ 7 ) .. AlongT == 0, D t = 0, 
2 

and the superconvergence 

is accpmplished by having each degenerate·set of states at a particular 

mass cancel among themselves in the I=:2 sum rule. Let us check 
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and see that (5.6) reproduces Table 1.1. Since there arena I 2 

poles, D2t ~rosses into 

D t . !D s _ ! D s 
230 2 1 

00 

_ l.\' 
3L 

.. ' 
00:. 

where the u, left-hand discontinuity, has been suppressed. Assuming 

D2
t lt =0 = 0, and that we have degenerate towers, as in the model, 

at 'the lowest mass tower, 

° 
while at the next mass, where spins 0,1,2 are possible 

(5·10) 

Equation (5.9) gives the 9/2 ratio for r /r . At x = 2, €n:rr pnn 

the extra zero at 'T = -1, implies rE' = bO(0,v2) = 0, so that 
n:rr 

bO(2,v2)/bl (1,v2 ) = 10/9 = rfnn/rpi.n· as in Table 1.1. The coefficients 

of the various Legendre polynomials up to x = N = 4, and for the 

[.l = 0, a = 1/2, -2 b = 1 GeV case, are shown in Table 5.1. 

• 
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Table 5.1. Coefficients of the Legendre polynomials 

contained in the model amplitude, normalized to 

-4/ L = N = 1. For N = 4, c = 4 r(4). 

4 c . 73 8/5 

3 It c' . 73 . 8/5 

2 d. 25 c . 112/3 2 16 

1 1 d. L.. c . 208/5 2 16 

L 0 0 1 0 5 c . 64/15 Ib 

0 1 2 3 4 

N :> 

• 

• 
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It = 2 Sum Rules for '! < 0 . 

As '! gets negative, poles in Fo[x,yJ begin to move out· into 

the unphysical, double spectral region, as shown in Fig. 5.1, and the 

sand u poles cross, 

We can check that each sum in (5.6) still separately super-

converges. For simplicity, consider '! =. -N, (N = 1,2, . ~. ) and take 

any odd moment. Then we should have 

Because we have chosen '! = -N, the sum truncates at N,and 

changing variables, (5.11) becomes 

1 
-(N-l) 5: .,' 

j 

Q,2P+l r(N + 1) 

showing the cancellation explicitly. 

I 2 1 f FE·S'R.8 t = Sum Ru es or'! > o. 

= 0 , (5.12) 

We now consider the lowest moment finite energy sum rule on 

the right hand discontinuity in (5.6), 

06 

L 
. 

K 1 ,. 1 T 
(-1) B- (K,T)' 5(~ + ~ - K - ~) = 0 

K=l 

v' 

• 
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We choose U so that the highest mass pole included has K = N. 

1 T 1 T ) (';'2'+N+2" ~ U ~ -'2+ N + l +2' .) The left-hand side of (5.13 

then becomes 

N 

~L K -1 (-1) B (T,K)(2K - 1 + T) 
K=l 

Equation (5.14) can be easily proved by induction. The sum 

changes sign and grows in absolute value' as each new resonance is 

included, so that there are violent cancellations. If we give a finite 

width to the resonances, we can always -find a point intermediate between 

any pair of neighboring resonances such that the sum vanishes. This 

remains true for all the moments . 

• 
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V.B. The It = 1,0 Sum Rules 

From (5.1) and (5.5), the It::: 1 model amplitude is 

1 T '1 r(- - ~ + -) r(- - T) 
2 " 2 2 

'! 
r(-Tl--) 2 

,(IT) ,(1 ) 
r 2 + T)+ 2 r 2 - T 

, T 
r(T)- 2) 

- K 

1 
1 

T) + 2(1 - T) 

For '!::: 0, (5.15) gives 

1 1 r(- - T)) r(-) 2 ',2 
r( ~11) 

r(- - T)) r(- + T)) , ,[ 1 ,1] 
- r(~ - T)5 ,- r(~t~) 

00 

L 
"K:::l 

r(K + ~) 

reI<) r(~) 
"{ . } "2'T) ,,' 

122 
(K -2") - T), • 

At T) = 0, this gives the' Adler JUT sum rule for zero mass pions 

00 

L 
K::::l 

( 1 r K - -) 2 

r(K) r(~) (K - !) 
2 2 

'2 1 3 5 =- + '3 + 20 + 5b + 

.. 
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From (5.17) we see that in this model the sum rule is saturated 

64% 1ly(p,E); 11% by (f, p', E'); 5% by the g family, etc. 

Let us find out how' sensitive L is to changes in the pion 

mass, and the intercept a. We define 2 
A. = 4fJ. b, 

and expand (5.15) about A. = 5 = 0, at xT. We have 

L 
2fJ.bgll 

1 r(- - 5) 2 {r(~ -
r( -5 

1 
r('2- A, -

r( -5) 

r(~ - 5) {sin 1lA. ----' cos 
re re A. 

re 5 r(l + A. + 5) r(~ ~ A. - 5) 

sin reO + ---:..;-
TCA. [ 

. 1 1'· 
cos 1lA. r(l + A. + 5) r('2 - A. - 5) - r('2 - 5) r(l + 

(5. 18) 

The polynomial approximation for r(l +z) gives 

() we get 

r(l + z) "V' 1 - a z 
1 

, 

Using the duplication formula 

r(2z) 1 
r(z) r(z + '2) , 
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Finally 

G(",,5) 

~ 1 + 4.725 + 1. 39",+ qua~atic terms··· 

To first order in 5· and . '" 

.. 

It = 1 Sum Rules For T > O .. FESR. 

If we go to positive T, the sums in (5.15) diverge because of 

the t channel poles at l' = 1/2,3/2; .... The diScontinuity in 11 is, 

from. (5.15) . 

D t 
1 t 

J=l 

1 r(2' + T + J) 

r(J) r(~ + T) 
[0(11 + ! - ! - J) +5(-11 + ! - ! - J)] ·2222 

Just as for the. I = 2 case, we take U' such that 

l' IT 1 
N + 2' ~ 2' < U < N + 1 + 2' - 2" and for the zeroth moment firite 

energy sum rule we have _ 

1 r(2' + T + J) 

. r(J)r(~ +T) 

. 1 
TN+l (T + 2') 

. r(N)( T + ~) 

o 
, 
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which one easily can prove by induction. If we expand in powers of 

N, using (3.15), we have 

or, inserting 1 
a(t) = T + 2' the right-hand side takes the familar 

8 FESR form 

. [a(t) + IJ r[a(t)] [
"1 + [a(t) + IJ q(t) + ... ,]" 

- 2N ' " 

At a(t) 1 "" (Le., at 2 t 0= m ) this becomes 
p 

1 
+-+ 

N 
... ] (5. 28) 

so that we commit a 50% error if we choose to keep the leading trajectory 

only on the right-hand side of the FESR, and take N = 2. (Meaning we 

keep the" p,f families on the left.) Let us see what happens on the 

left if we keep only p and f. Rewriting the first term in (5.24) 

as Legendre polynomials in z we have s 
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r(~ + 1" + J) 00 

L OCT} 
1 T 

J) +-

r(J) ref + 1") 
2 2 

J=l 

= (1 _ .. ) ( 1 1") (1 )·(3 ) R( 3 1") '2+1" OT}-2'-'2 + '2+1" '2+1" uT}-'2-'2·+··· 

, 

so that the resonances cancel in the backward direction, as· they 

should. At 1 
1" = '2' the p and f contributions to the left-hand side 

of the FESR are, from (5.29),using 

1 3 1
3
.1= !I. , 4. 3 +'8 ~ 

while the € and p' contribute 

21" 
z=l+--l' 

x - '2 

making a total of 3, which checks with (5.36). 

(5·30) 

(5·31) 

Therefore, while the exact relation reads 3 = 3, the FESR at 

t = m
p

2 reads fI;;;; 2, since· compensating errors have been made. 

The It = 0 sum rule, which is suspect in any case because we 

have neglected the Pomeranchon, contains the oscillating object already 

~ 

~' 
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associated with the I = 2_ sum rule. The same calculation as was 

performed here for the I = 1 case can be done for- I = 0, and is left 

as an-exercise for the enterprising reader. 
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VI. SOME REMARKS ON THE UNIQ,UENESS·.oF THE VENEZ!ANO AMPLITUDE 

The general requirements one would like to make on the function 

F(x,y) do not specify it uniquely. If we ask that: (i) F(x,y) = F(y,x}; 

(ii) F(x,y) has simple poles onlJr at x and/or y = 0,1,2,"'; 

(iii) F(x,y) has Regge asymptotic behavior in the average sense 

. discussed above; we get an infinite class of functions. One such, 

though not necessarily the most general one, is9 

F(x,y) C C mn r(m + p - x) r(n + P - y) 
p rem + n + p x- y r , (6.1) 

m,n,p=O 

where the constants 
mn . . . mn nm 

C . sahsfy C = C . 
P P P 

Now we can make various general requirements on (6.1). If we 

want no ghosts, for examp~e, we kill .the residue at x = 0 by 

insisting 

y(O,y) C On 
o o 

In (6.1) we can choose any finite number of couplings 

arb i trarily . 

.(6.2) 

.. 10 
Mandelstam has pointed out that the alternate odd trajectories 

in (6.1) may be killed off if one likes; by a proper choice of the 

C. mn. However hone of the even trajectories - 2nd, 4th, etc. below p 

the leading one - may be eliminated. 

.. 
\i ... " 
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C
mn 

p 
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dm + 1) 

and the new function in closed form is related to the hypergeometric 

function 

F(x,y) 

(6.4) 

We can see fairly easily that trajectory number two cannot be eliminated 

from (6.1), by taking the asymptotic limit in cos 9 = z and observing 

that the y dependence cannot be eliminated. 

. . 10 In the s channel, define, following Mandelstam, 

w (6·5) 

where x = a(s), y = a(t), Ta.king w -7 00 in 

(6.1) and using (3.15, 3.16) we have, defining 
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2: 
00 

'lim F(x,y) L C
rnn r(n + p - y) (_w)y-n-k 

'v' p 
w~ 00 

m,n,p=O k=O 

"'-I' 

ck(y - n, m + n + p _ I + 
2 s) 

00 00 k' 

L ~ ~ 
(_w)y-k' C rnn 

r(n +p - y) 
~ P 

k'=O m,p=O 

ck'_n(y - n, m+ n +:p - ~,+ s) (6.6) 

In (6.6) we have interchanged summation orders in order to 

isolate powers of w. For k' even, the y dependence can never be 

eliminated so that no cancellations are possible, while for k' odd 

they dependence in the ck's cancels out that of the r functions, 

10 ' 
and Mandelstam's solution (6.4) can then be chosen. 
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, FIGURE CAPTION 

Fig. 5.1. Poles and zeros of F[CX(s), cx(u)], the It = 2 amplitude, 

for a = ~, 
-2 . 

b = 1 GeV ,. m = O. 
'IT 
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-----Zeros 

---Poles 

==='=-': Bose lines 

Fi.g. 5.1 

~-==-_ x ±1 = 1-:: T= 0 

x+y=2 T=-I 
-~---------

____ ® X+1.=3_T=-2 

_______ x+.l=4 __ T=-3 

______ ~+y~5 __ T=-4 
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