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Joel Yellin
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These nbtes‘are detailed béckground material for a set of
lectures given at Lawrence Radiation Laboratory in the fali of 1968.
This is the second of three parts.v The first'andnthird'parts are
contained in UCRL-18637 and UCRL-18665, respectively. The last volume
deals mainly with J-plane phenomena, and was prepéred in co;laboration

with D. SiVers.
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: | L
IV. wx SCATTERING ... PCAC AND. CURRENT ALGEBRA
We use the notation of Section I, and first summarize the -

relevant results. Tn the notation of (1.6) we define the Adler point:
2 2 2 2 2 2
x, = (0,u5,e75 O,T,u,u) s (k.1a)

the Weinberg point:

w = (203 0u0u8) 5 S ()
the symmetry point:
x, = (4/3 ue, L/3 w2, %/BAuE; TS B
(k.1c)
the thfeéhpld point:
xp = 0,05 w0207 | ‘»<‘u.1d'>-

T

In terms of the amplitudes of Section ILB., the I = 0,2, s wave

scattering lengths are given by

8 =' -AI(XT)/2“ s : ‘ (h.2)
and the combinations of interest to us will be

R fk ao/a'g ) (5;85>
and

(3.82)
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The three'important relations we will use are:

(A) The Adler consisteney condition:

Ary) = B(r) = C(x) = O . )

(B) The low energy theorem )

a/dv Alt(x)'x=x. I = (s - w)

’ W 8th'
- T (h.4)
-(C) The o model relation
Atx) = o . B (4.5)
2 LA .

\Belation (4) fdilows from PCAC alone, while (B) follows” from the
su(2) @ su(2) algebra‘of axial charges,2 and (C) follows from the
assumption that the commutator

. J’ . .
A
0", Q"1 o &.. , | (4.6)
R ’13 .
transforms like an isoscalar.’ [In (4.6), D* is the isospin component
J
of the:divergence of the ax1al current dens1ty J A and Q is the

Jth component of the axial charge, A(t) J/-d3



“%- ' UCRL-1866k

CIV. A. The Adler nx Sum Rule®

We now turn.(4.4) into a sum rule for Alt(x). Defining
oy = %(s - u), and suppreséing for the moment any dependenceon pig,
we assume Ait(v, t), which is crossing odd, satisfies the unsubtracted

dispersion relation

S
1) - B — (.20)

A
where the dispersion integral has been folded over in the usual manner,

using the odd crossing property of Alt, and where Dlt is the

" discontinuity in v of A"

To turn (4.10) into a sum rule, we note (1.14) says

t 1 S s
A7 = - g(5A7 v 2AgT) o

RO
>

- + ’
= A(n+n —>ﬂ+n ) - A(x ﬂ+ —9ﬂ+ﬂ+ . (k.11)

"Using (4.2) in (4.1) and going to the s channel threshold X

- 7 D50, Crg) = 2805 Ceg) ]+ 5 )

2 ® ‘
= -2l = E%"J/[fﬂ,'Z?llzZ;ﬂ[D+ (V; 0) - (v, 0)] ,
' A-T _ .
o ’ (k.12)

~where D70 = ‘Disc, A(ﬂaﬁb ~¥ﬁaﬂb);‘dnd where we have used the fact
that ALS(XT) = 0 since it contains p waves or higher, and also taken

2

v = 2u°  at threshold f.r physical pions.
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Since  t = 0 at xT,-the unitarity relation (1.27) tells us

o | L e . . .
D(v, 0) = == B(s, B;"5 By )ogen(v) (4.13)
iwhere
' 2 22 o2 2 > 2 |
R = s + (plg) + (pg) ‘-QSplg - 2sp, -2p; P, - sh.lh)

For physical pions, v = s - 2u2 at t =0, and

B e R T (4.15)

If one initial and one final pion have zero mass -_as at xw -

y=s-p° at t= 0, and
22 - | .
R = (s-p7)" = v& . : . ~ (4.16)
If all k pions have zero mass, v =58 at 't =0, ahdv

R = s° = 42 . ‘ g L (4.17)

[In the PCAC-curreht aigebra game, internal pions are supposedbto keep-

their physical masses, so Yo = 24° in (4.10).7°
Using (4.15) in. (4.12), we get”

o]

P - )2

To use (L.4) we will have to go to x_, at which pbint v =0,

- v 3 B L3 . S
and both sides of (4.1) vanish. Since Al (X)/V|x=xw

o 6 - L as)

= 0, we define

»
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X . ) %; [EAOS(X) -- 5A28(x)]‘xzxw , : | (h.l9)

~and using (4.16), (4.12) and-(h.lB) take the forms '

o0

1 a - +

o= om =5 _% <b+ (V’ 0) - D, (v, OX>
8JT . o) 1% . .

21 )

v e A ORI R (1.20)

uHE :

il

a . I : . a .
where 0. is now the cross section for a zero mass « on a physical
: o . o ) o .

T
If we assume the error in extrapolating from X, to X is
small
X =L/ . : : (k.21)
Adler's result, (L.L4), gives, using the Goldbérger-Treiman
relation,
2 -
g, 2 »
: ~ 1 ~ 15 1 ~ 1
-x=<ﬂf_>(ﬁ> S S . - (4.22)
22 0 2 2’
, T M 2g, o0 3, 10u

where M ‘is the nucleon mass, g, is the renormalized xNN coupling
constant, and gy is the q2 - 0 limit of the axial current form

factor which multiplies ¥ 7, in (N]JHAIN).



. If one tries td'éaturéte;(h:l8)_ﬁith'the p(lf)'vand an e(bf):J
state, one géts5 ﬁ : L -
_ o g 2. g 27 o
1 ":'-';--X."—_- pmst BRE =% 1616 ». o (th)

- _ : — -t - ’
8ﬂfTE_2 o R £ mpz,_ .v‘_lG.T -

-where the o ard e widths,aré;j
. 3/2

_ fe AYE TR Y PR S , R
‘ _Eﬂﬂ R | S} 1 -- R (k.24)
oIt . ( T )(12 ) - m§2 T :

o |
i

and,

) ’ g 2 : 3m3 r = % T e -
S o B R R
IR o ' € C S

\
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IV. B. The I =2 Supercoﬁvergent Sum Rule

We want now to write a sum rule for Agt(x), which is crossing

even. The analcg of (L4.10) is then

co
t e 2 "dy! t
Ay (v, t) = = -%g“z——g D, (v, t) . (4.30)
0
For large v, we will assume
. . ; . o ) | : .
8, (v, 0) —> ", (4.31)

Y= ©
where c¢ 1s a constant and where w < -2. Inserting (h.51) in (4.30),
[s o]

D - t
lim v WA2 (v, 0) = ¢ = ==y vay Dgt(v, 0) ,

V—
0 .

(L.32)
so that ¢ = 0 for w < -2, and.we have the (sﬁperconvergent) sum
rule

ot ‘ o
~vdy D2 (v, 0) = 0 . (4.33)

Yo
If we saturate (L.33) with p and ¢, we get -

2, 2 2 2 2 2
(- w /mO )ugpﬂn K (me T H )genn =0 - (k.34)
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Experimentally,6
g 2 .
S Lo Lo, (h.35)
Lym 1657fx '
[
SO that (L.23) becomes
5, 2 2, | Ly
g /m. ~ & /. o (L.36)

prx P

Using (4.36) in (4.34), and neglecting u°,
moToA~ m - o (4.37)
The last two relations, on insertion into (L4.24) and (4.25) give

pran! T €nx

r_/r ~ 2/9 . - ' (4.38)
All this is equivalent to the approximate statement
. . ﬂ .
D,°(v, 0) o (B (z) - (z)) , -~ (4.39)

(times Im part of Breit-Wigner form).

We will compare (4.%9) with the I,

model for mx scattéring; below.

= 2 discontinuity in the Veneziano = -



[l

wJ

Following Weinberg,

L =0= ' UCRL-18664

IV.C. Scattering Length Relations

‘We have already mentioned the current algebra low energy theorem

~ 1 '
L = %(g%)-5%) T | (1.50)

‘In this section we will foeus our at@ention;on the quantity R = ao/ag.

3

we expand the amplitude to first order, about

A(x) 2 a+b(t +u) +es , ‘  (4.51a)
B(x)‘ = a +b(s +u) +ect , (L.51b)
C(x) 2 a+b(s+t)+cu . | (4.51c)

Linear terms in the pig cannot appear here because of the
symmetry properties of the amplitude and the relation (1.7). .
Using the three relations (4.3, L.k, L.5) we can immediately

compute R. Eguations (4.3) - (L4.5) give, using (4.51),

a + Epgb +c¢c = 0 , = _ (k.522a)
1 .
2(b - C) = - 5 = X 3 (h-.52b)
i 8xf ‘

a + pg(b +c¢c) = 0 . ' N (¥.53c)
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The solution of these equationé’ is .

b = 03 a =.:"CLl2"- :‘—-_-_*pg/_&rfng : : - . - ‘ (-)*_-5)4')
and . '
R = 3A(KT.) * B(XT) i c(XT)  _ 5a + lngc + 8p2-b . _1
B B(xp) + C(ij o 2a + 8u°b -2 -
| | o (k.55)
so that (4.50) now gives
1. = . U SR ' ‘
ao = -EL = rg;l' 3 a2 - 20“ . » ()4"56)
]
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V. SUM RULES IN THE VENEZIANO MODEL

We now. return to the model in which the t channel amplitude can

S

be written [cf (2.5)1,

- %—Fofa(s),a(u)] + % Folalt),a(s)]

'

+ 2 Folo(t),a(u)]

= & myfatt),om)] - Fyla(t),als)]

A, Fo[oc(sv)‘,:q(“}l)l ,
(5-i)
where, as Before,
Poy) - MEx LG o y)
We introduce the variables
T o= 1l-x-y, ' (5.2a)
N o= Ex-y) o | (5.2b)

2

'fIf a = l/?, b =1 GeV s =0y 7=1%, and n=v = %(s - u),

in Fo[a(s),a(u)] Fig. 5.1 shows the Mandelstam structure of

Fo[a(s),a(u)] in this event.
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We will formulate sum rules at fixed <+, and we therefore are
interested here in>the discontinuity in 7. To complete our set of

variables, -we introduce w, where
w+x +y = -g—; w - 1T = E . ' (5'3)

As will be shown in Part ITI, Fo(x,y) can be expanded in

- partial fractions as fo_ZI.'lows:7

Tm—' (-l)K (K + v)° 1 B 1

F(7)= )
o\ ¥ é_:_i,_r(lﬁ)F(T) Tlﬁu%(l-w)--KﬁL

—— ‘
- +-2-(l -17) ~-K

N | (5.4)
: R r(-K+z+-é—:)
Folw,yl £ Folw,x] = — —5
&~ r(x) r(r +3)
{1 1] T T
- K ks _K] = Z; o 1
.y o x k=i r(K) r(r + 3)
v s g b
-q+§(l-'r)-K ‘+n+%(l-'r)-K
(5.5)
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V.A. I =2 .Sum Rules

Y o °  Referring to Fig. 3.2 we see that. Fo[x,y] —- 0 faster than

. _any power, so according to Sec. IV.B. Agt, in the model, superconverges.
i ' . ‘

Up to factors of , the discontinuity arising from A2 can

be! read off from (5.4) and (5.1), and

D) = Y

() 5 (e [a(n + 2@ - 1) - K)
K=1 .

- 5(-n + %(1 - 1) -K)]. (5.6)

Defining Z = 1+ , We have

™

'
[ASH =
<.
'
o+

Dgt(ﬂ;T)' =3'%[Pd(zs) - P (2 )] 8(n - %)

+ BBy(z) - By(2)1B(n = B) w e k(g g, Mo on)e

(5.7)

(
in agreément with (h.}?). Consulting (5.6) or Fig. 5.1 we see that,
inthe p =0, a-= %, b =1 Gevf? ;ase, VAQF has zeros along
t = 0,-1,-2--- etc; Thé zero along t = O has'been associated with
the zero of Adler's consistency cénditiqn (h.j)gj'It forces the P, - Py
.l} | ' combination- in (5,7)31 Along :T = 0, ,Dgtkz 0O, and the superconvergence

is accomplished by having each degenerate set of states at a particular

‘mass cancel among themselves in the I = 2 sum rule. Let us- check
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and see that (5.6) reproduces Table I.l; Since thereare no I = 2

poles, D2t crosses into v
o
t. 1L s 1 s
Dym = 3Dy -3 Dy
© ™ . i . T : .
1 ' ol J
= 3) (20 +2) Bo() Bylzy) - B+ (1))
J=0 o
s
1 : - 1, \J
D INCESVENER) Py(z,) 30 - (1))
J=1 - L
~ (5.8) =
where the u, left-hand discontinuity, has been suppressed. Assuming
D2t t=0 = 0, -and that WE-have degenerate toWers, és in the médel,
at thé_lowest;mass tower,
lb(dV)-éb(IVJ =0 | ‘ (5.9)
3 0V 21 _ ’ "
while at the next mass, where spins 0,1,2 are possible
L, 5. S Ev (i) - 0 .
3 0, (0,v,) + < bo(z,vg) 5, (Lvy) = 0 . (5.10)
. B .
Equation (5.9) gives the 9/2 ratio for Penn/rpnn' At x =2,

the extra zero at T = -1, implies [, = bO(O,yé) = 0, so that
bo(2,v2)/bl(l,v2)-=>lo/9 = rfﬂn/rp’:n as'in Table I.1. The coefficients
of the various Legendre polynomials up to x =N = k4, and for the

p =0, a= 1/2,_'b =1 GeV-g case, are shown in Table 5.1.
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Tablé 5.1. COefficients.of the Legendre polynomials
contained in the model amplitude, normalized to

L=N=1. For N=4 c-= h-u/f(h).

h ¢ -85
2
5 2 785
o
2 -g- '1%' ¢ - 112/3
3 5  mog -
1 12 125_ ¢ - 208/5 |
T 0 0 1 0 Z .65
o 1 2 3 X
N ——>
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It'= 2 .Sum Rules for T<O0

As T gets negatlve, poles in F [x,y] begin to move out into

the unphy51cal double spectral reglon, as shown in Fig. 5.1, and the
;8 and u poles CrosSs. » _

“ ‘ We can check that each sum in (5. 6) stlll separately super-
converges. For 31mpllc1ty, oons1der T = =N, (N = 1,2,-3-) and take

any odd moment. Then we should have

a Y () s sae s - D) <o
J= (5.11)
Because we have chosen 1T = -N, the sum truncates at N, and

changing variables, (5.11) becomes

S(-1) o R ‘
Z X QQP“F(N“) _ 0, (5.12)

_Q:Q%(N-l)' r(%(N +1) - Q) I‘(§(N + 1 ) + Q?

‘showing the cancellation explicifly.

It = 2 Sum Rules for > 0. FESR.8-

We nOW'cons1der the lowest moment flnlte energy sum rule on

the right hand dlscontlnulty in (5 6),
U | |
~ndn Z(-l) B (K,'r) 6(n+—-K---) = 0 .
-U K=1

S

(5.13)
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We choose U so that the highest mass pole included has K = N.

~ (;%g+ N + % LU KL f% + N+ 1+ % .).‘The left-hand side of (5.13)
then becomes
'e —
: -1
%- E -DE 37 (r,r) (2 - 1+ 1)
K=1
= (—i)N>B—l(T,N) %(N + T)
1, \N | '
= 3(-1)7 T, (1)/r(@) . | (5.1k)
Equation (5.14) can be easily proved by induction. The sum
"changes sign and grows in absoluté value' as each'neW‘resonance is
_inéludéd, so that there are violent cancellations. If we give a finite
width to the resonances, we can always find a point intérmediate between
any pair of neighbbriﬁg resonances such that the sum vanishes. This
remains true for all the moments.
|
»
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From (5;1) and: (5.5), the I, = 1 model amplifude‘is

rGense Do rGen D G-

r(-1 - 3) | r(n - 3

K1
(5.15)
For T =0, (5.15) gives
rG-mrd  rGen
T T T
o rG-m rGemw]
= F(-E-) S 1 - 7—” T —~ n“ | - —(———71_,1 +Tl
_ (K +,§)_ (5.26)

N 1\
= @ |«
At = o, fhis gives the-Adler s sum rule for zero maSS‘piOns _

,F(K _%),-'

_ ep L3 5
- = T2+ = 4 = 4 +oeee
r(K) P - 3) 6.3

T =

K=t (5.17)

~_Z F(K+,T'+%) 1 » | 1 _ .. .
. r(t + %) r(x) '?n +.%(l:-"T) - K N+ %(l -T) ~X|

)

L/

&
;
)
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From (5.17) we see that in this model the sum rule is saturated

\

e 64% by (p,e); 11% by (f, o', €'); 5% by the g family, etc.
Let us find out how sensitive I is to changes in the pion
o : -
mass, W, and the intercept a. We define & = a - % s A= hpgb,
and expand (5.15) about A =% = 0, at Xqe We have
L 1 1 -
L . r(z -8 fr(z-25-»2) rz-x-29)
oubgr G(»,8) ‘: B T r(-0 - ) ) r(-o)
1
r(z - %) .
= Eﬁ SIixﬂk cos w O I'(L + n + B) r(%<; )
: 8 ‘ v o N
+ Ei%xﬂ_. [cos an T(1L + A + 8) r(% - -0) - p(% -8) (1 + gﬂ
(5.18)
" The polynomial approximation for TI(1 + z) giﬁes
r(t+z) = 1- a, % , (5.19)
with a; = +0.57.
 Using the duplication formula
222—1 1
' r(zz) = = r(z) r(z +3) , (5.20)
I (n)2
s : I owe get
1 .
rz -z _
—— = 1+ z(4n k4 - al) . (5.21)

(n)2
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“J=1

Finally
‘/’
a(x,d) = 1 +8(3 £nk +_;al)'¥ Nin b+ oo : - .
- TL _ o g
Z 1+ k.78 + 1.39\ + quadratic terms --- (5.22)
To first order in & ' and A\
~ aAE . e
' 2 2 ~ e~
For b = 1/50p" = 1 GeV and g =1, pL = x/25 = 0.125.
I, = 1 Sum Rules For 7> O. FESR.
If we go to positive 1, fhe'sums in (5.15) diverge because of
the t channel poles at T = 1/2, 3/2,.-«." The(diécontinuity in 1 is,
Cfrom. (5.15) ‘ ‘ -
o ;1 S ‘ \
~ - r(z+ T+ J) o '
TSl R R R EL GRS )
by r@) rG D) 2
(5.2&)
| Just as for the I = 2 case, we take U such that
N + % - % <U<N+1+ % = % , and for the zeroth moment finite
energy sum rule we have : : R ‘ e
v N rdscra) T (T + %) ©
1 t,. e N+1 2
1(J) 'I'(§ +°7T) () (r +§)

- (5.25)



-21- _ UCRL-1866k4

which one easily can prove by induction. If we expand in powers of
N, using (%.15), we have
+U 4,%+T . .(2 + T)(i + T)
an D, %(n,7) = { 1 +-2 2
T]l n) - N EN

; om‘%} ,

NI

_U (v +2) £z +3)

(5.26)

or, inserting oaf(t) = T+ %,'the right~hand side takes the familar

FESR form8

Na(t)+1 | ' la() + 1] aft) 1 .
Tal®) + 1T tlel®)] !:l - Lodt) oN oAt) } - (5.27)

At a(t) = 1 . (i.e., at t = mpg). this becomes

L2

N 1

Fl [l +ﬁ-+ ] ) (528)
so that we commit a 50% error if we choose to keep the leading trajectory
only on the right-hand side of the FESR, and take N = 2. ‘(Meaning we
keep the . o,f families on the left.) Let us see what happens on the
left if we keep only p and f. Rewriting the first term in (5.24)

as Legendre polynomials in Z we have
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Q..

w L : ‘ o :
, P(E + T+ ) ' 1 T
—— s +E-%-7)
r@ g+ 8
J:l 2 '
\“r
odge . A S | N
= (§+T)-6(n'2" 2)+(2f1—)(2+1‘) B(T] 5 )2) + ‘
1 ' 1 T
= 3P (z) + P (2)] 8(n -5 - 5)
3 : 2. . »
so that the resonances cancel in the backward direction, as' they
should. At 71 = %, the p and f ‘contributions to the left-hand side
of the FESR are, from.(5.29),-using z =1+ =28 T > |
. : ‘ x - &
1 11 1 . '
T3*g - & o . (5:30)
while the ¢ and o' -contribute
1. . .3.5 | L
7ol +,%" % = % , | , : (5.31)
making a total of 3, which checks with (5.36).
Therefore, while the exact relation reads 3 = 3, the FESR at da)
t = mp2 reads %z = 2, sinceﬁéompenSating errors have beeﬁ madé.' - .
N , , S,
= O sum rule, which is suspect in any case because we

'The It

have neglected the Pomeranchon, contains the oscillating object already



4
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associated with:the I = 2 sum rule. The same calculation as was
performed here for the I =1 case can be done for- I = 0, and is left

as an ‘exercise for the enterprising reader.
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VI. - SOME REMARKS ON THE UNIQUENESS OF THE VENEZIANO AMPLITUDE -

The general requirements one would like to make on the function

F(x,y) do not specify it uniquely. If we ask that: (i) F(x,y) ¥'F(y,x)3

o ~
(ii) F(x,y) has simple poles only at x andfor y = 0,1,2,-+-;
(iii) F(x,y) has Regge asymptotic behavior in the averagé sense
"discussed above; we gef an infinite class of functions. One such,
though not necessarily the most general one, is9
i m r(m+p-x)r(n+p-y)
F(x,y) = Cp : Tm +n +p - x- yJ. | , . (6.1)
m,n,p=0 ' oo
where the constants C . satisfy c™ o
1Y ' i3 Pt
Now we can make various general requirements on (6.1). If we
want no ghosts, for example, we kill the residue at x = O by
insisting ' L '
On ’
Y(O,y) = ) CO = 0 . (6.2)
. =R e
In (6.1) we can choose any finite number of couplihgs
arbitrarily.
Mandelsfémlo has poihted out that the alternate odd trajectories
in (6.1) may'bé'killed off if one likes; by a proper choice of the )
Cpmn. However none of the even trajectories - 2nd, U4th, etc. below o

the leading one - may be eliminated.
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Mandelstam's solution is

mn 1 '
- 6po 8 Tm[-E(x + 33 + 1)]

D = F(m T l) ’ (6-5)

and the new function in closed form is related to .the hypergecmetric

function 3F2, by.
F(x,7) = B(-x, =y) 0%, =y, 5+ 38 ¢ 1), + 51 - x - ¥)5 ) -
(6.4)
We can see fairly easily that trajectory number two cannot be eliminated
from (6.1), by taking the asymptotic limit in cos € = z and observing

that the y dependence cannot be eliminated.

. In the s channel, define, following Mandelstam,lo

w = X +

rol<

- 3G+ ), - (6.5)

where x = a(s), y =at), w= 5 Zt(t - Mue)b. Teking w — o in

(6.1) and using (3.15, 3.16) we have, defining £ = %(K + %3 + 2)
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lim F(x,y). = _;_ Z ¢, r(n +p - ¥) () E SNV

C.'Kt_n(y - n, m‘.+ n+p- %‘4‘ E) . (6.6)

In (6.6) we have interchanged summation ordersin order to
isolate powers of w. For k' even, the y dependence can never be

eliminated so that no cancellations are possible, while for k' ~odd

X
10
(

the y dependence in the ¢ 's cancels out that of the T functions,

and Mandelstam’'s solution 6.4) can then be chosen.
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' FIGURE CAPTION

Poles and zeros of F[d(s), a(u)], the I
5

for a:J-é’-,;'b = ereV- , .mﬂ - 0.

t
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= 2 amplitude,
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