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ABSTRACT 

Using the multiperipheral integral e~uation at zero momentum 

transfer, we construct a model in which the dynamical interrelation 

of Regge poles and cuts can be studied. Chief attention is paid to 

the region near J = 1 in an elastic forward amplitude. A consistent 

solution is found in which the Pomeranchuk pole appears at J = 1 - a, 

with a ~ 0.01, while the AFS branch point appears at J = 1 - 2a. To 

a good approximation the pole residue corresponds to the inelastic part 

of the total cross section, while the integral over the AFS cut corresponds 

to the elastic cross section. 
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I. TI~TRODUCTION 

The relationship of Regge cuts and poles remains uncertain, 

with regard to both relative strength and relative location. Recently 

it was realized that the multiperipheral integral equation may be able 

l 
to shed light on the matters, and we here report a preliminary inves-

tigation of the Regge singularities in a forward amplitude, employing the 

model of Chew and Pignotti
2 

(hereafter designated CP) to suggest a 

simplified kerne~ and inhomogeneous term for the integral equation. The 

chief emphasis here will be on the region near J = l in an elastic 

amplitude, but the model can be extended to lower J regions and to 

inelastic amplitudes. 

II. THE FACTORIZABLE. MODEL 

The multiperipheral equation derived in Ref. 3, after projection 
' 4 . 

onto angular momentum J , · · takes the form 

B"J' (t I J) a,o J 
dt B "J(t,J) G"J"J' (t,t',J), 

a 

(ILl) 

with the absorptive part for the forward elastic process ab .... ab given 

by 

(II.2) 

The superscript "J (or y') labels a particular "input" Hegge pole, 

while t (or t') labels the squared momentum transfer associated with 
. 5 

that pole. The kernel G"J"J' (t,t',J) includes the internal coupling 

between adjacent poles "J and y' , together with the Regge "propagator" 

associated with y' • For our model we assume the factored form 
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G'Y'Y' (t,t',J) = , (II.3) 

where 

J (t) = 2 a (t) - 1 , 
'Y . . 'Y 

(II. 4) 

a (t) being the "input" Regge trajectory associated with 'Y • We are 
'Y 

keeping in (II.3) only that J dependence associated with the leading 

·pole resulting from. the projection of Formula (D-5) of Ref. 3. This 

projection actually contains additional J singularities and a more . 

.complicated t' 6 dependence, but the most essential characteristics 

are represented by (II.3) if g'Y ( t) is taken to be a funct;ion that does 

not vanish at t = 0 and that decreases rapidly (e.g., exponentially) 

as t ~ -oo • The corresponding form to be assumed for the inhomogeneous 

term in (II.l) is 

B'Y I ( t I J) 
a, 0 ' 

'Y' = A. 
.a J-J,(t') 

'Y 
(II.5) 

If (II.5) is substituted into (II.2) one gets the well-known AFS cut 7 as 

a "Born approximation" to :the absorptive :t:art. Evidently the solution 
' ·~. 

to (II.l) may be written as 

(II. 6) 

with 

b 'YI (J) 
..,~ L bar(J) p'Y(J) ~-.rr' , = A. + a a (II.7)· 

'Y 

if Lo p'Y(J) = dt 
[~{(t)]2 
J - J (t) 'Y . 

(II.8) 
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In order to construct the absorptive part, we also need the "end 

' vertex" function Gb/ (t'), which for consistency with the above should 

be taken to be 

(II. 9) 

The final result is then 

(II.lO) 

with b 1 ' (J) the solution of the linear algebraic equation (II.7). 
a 

Since the fQnctions · p1 (J) have no poles, the poles of Aab(J) 

evidently coincide with those of b l(J) 
a and thus with zeros of the 

determinant Ia .. ·., - p1 (J) t.11 1 I . Note that these pole locations are 
II 

independent of the iiexternal" indices a, b •. Assuming linear input 

trajectories, the function ,_p1 (J) may be rewritten as 

= 

where 

= 

1 
:rc 

:rc 

2cx' 
I 

dJ' 
J' - J 

' 

' 
(II.ll) 

(II.l2) 

exhibiting the branch point at J = J (0) 
I 

and the associated cut along 

the negative real axis running to J = •oo. For convenience we shall 

choose the normalization of the functions g1 (t) to be such that 

J (II.l3) 
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or in other ·words, such that. 

1 
Jl 1 

J:r(o) 

dJ 1 Im p Y ( J 1 ) = 1 • 

-oo 
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(II.l4) 

Note tbat a rapid- falloff of the functions gy (t) as t -+ -oo produces 

a corresponding rapid decrease of Im py (J) as J -+ -oo. 

A second important property of the function py(J) is the infinite 

logarithmic branch point at J = J (0): 
"! 

1 

J -+ J (0) 
y 

z;:- .tn 
"!_ J 

where 

-1 !. Im py [J ( 0) ] 6 - ~ "! Jl "! 

1 [gy ( 0) ]2 • = 
f 

2a 
"! 

The general structure of Aab(J) 

' 

then is that it is 

analytic function of J , with branch points at the various 

(II.l5) 

(II.l6) 

a real 

J (o) 
"! 

(associated cuts running to the left), poles at zeros of the aforementioned 

determinan~ and an asymptotic behavior easily inferred from (II.7) and 

(II.lO) to be tnat _of the -i'Born approximation": 

J ~ CD +I 
"! 

(II.l7) 

Corresponding to (II.l7) is the sum rule 



1 
:n: 

max 

f 
J (0) 

-co 
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Im Aab (J) dJ + 

\-· 
f• 

l--­
y 
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sum of residues of poles 

on physical sheet 

(II.l8) 

This rule will be helpful in assessing the reiative importance of po::es 

and cuts. 

A final general remark concerns the factorizability of pole 

residues. From (II.7) we see that if a pole occurs at 

that 

b 'f I (J) 
a 

then the dependenc'e of 

J-+ a. 
]. 

i. Y' 
r a 

i Y' 
r a 

J - a. 
]. 

, 

on the two indices a 

J = a. , such 
]. 

( II.l9) 

and y' will 

factorize. It fo+lows from (II.lO) that in the corresponding residue 

of Aab (J) the dependence on the two indices a and b will factorize. 

III. STiirGLE INPUT POLE 

With a single input pole the solution· of Eq. (II. 7) is 

b (J) 
a 

A a 
1 - /...p(J) , (III.l) 

the superscript y becoming superfluous. The corresponding absorptive 

part is 

"-a \ p(J) 

1 - /... p(J) 
(III.2) 
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Remembering (II.l3) and (II.l5), if A> 0 there must be a pole of 

on the real J axis to the-right of J (0) = J. ; this can be 
'Y J.rl 

shown to be the only pole on the physical sheet. 

Two limiting situations are especially interesting: 

l. so large that the pole falls into the region 

where p(J) can be approximated by 

p(J) "' . "' 

where, evidently, J. 
~n 

becomes 

the pole occurring at 

a out 

l 

' J - J. 

< 
"' 

~n 

J. 
~n 

The absorptive part 

J-J -f;. in 

J. 
~n 

+ A ' 

' 

J - J. >> 6 . . ~n " 

(III.3) 

in this region then 

(III. 4) 

(III.5) 

with residue Aa ~ • This residue exhausts the sum rUle (II.l6), 

leaving zero average weight for the cut discontinuity. The cut in the 

total absorptive part is thus much weaker than that in the "Born 

approximation." 

2. so small that the pole falls into the region J - J. << 6' 
~n 

where p(J) can be approximated by (II.l5). ~e pole residue here is 

approximately 
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(a: - J. ) ' 
~n 
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(III. 6) 

which approaches zero as a:-+ J. 
~n 

In this limit, then the cut carries 

the full weight and the pole is negligible. 

If ~ is negative (as is possible for inelastic amplitudes) 

there are no poles on the physical sheet, but if -~ is sufficiently 

large there will appear a complex pole on the next sheet near to the cut. 

In particular, if the po~e occurs in the region where 

then in this region (on the upper side of the cut) 

p(J) 1 
.,. 

J - J. 
~n 

i T)(J) ' 

J - Re J >> 6., in 

where T)(J) as given by (II.l2) is very small compared with the first 

term. The condition 1 - ~p(a:) = 0 requires that Im p(a:) = 0 , or 

Im a: = - Re T)(a:) IY. - a: 1
2 

~n 

(III. 7) 

so the negative imagi~ary displacement of the pole is small. The real 

part of the pole position is given by 
.{ 

Re a: t ~ J. + ~ ou ~n 
(III.8) 

and the residue is approximately ~a ~ , exhausing the sum rule. The 

cut is then negligible except in the vicinity of the pole, where the 

discontinuity can be approximated by a delta function with integrated 

strength ~a ~ • 
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IV. THE CP TWO- mPUT-POLE MODEL 

A more realistic model for forward elastic amplitudes, 

proposed by contains two input trajectories, 

represent_the P~eranchuk and ~in to represent all lower trajectories. 

The internal coupling matrix is positive definite (since each term in 

the iterated solution of the integral equation is a separate partial 

cross section) and has the form 

2 2 
gM gp 

1'1' 1 

/-.. 
' 

(IV.l) 

2 
0 gp 

leading to 

(IV.2) 

Notice that at a zero of the denominator of (IV.2) the numerator takes the 

factored form, 

[ M P 2 P [ M P 2 p, M 
1-..a + 1-..a gp P (a)] fo + ~ gp P (a)]p (a) (IV. 3) 

Let us suppose that 
in · 

2~ (o) - 1 lies sufficiently below J = 1 

so that near J = 1 

1 

J - J 
M 

. ( 
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Multiplying numerator and denominator by J - JM then brings (IV.2) to 

the form 

where 

Nab(J) 

D(J) ' 
(IV.3) 

N (J) ~ )... M "-- M 
ab a ·o (~aM "lop+ ~ap ~)gp2] pp(J) 

(IV.4) 

and 

4 p 
~ .. J - ao - gP P (J) ' 

if 

a = J + 
0 M 

(IV.6) 

Let us assume that the highest:..lying zero of D(J) occurs at a 

value J = a , where 1 - a << 6.p • This point must be reexamined later 

for consistency, but if accepted it allows us to write 

1 -z:;- (IV.7) 

for J near a. Now Jp= 2 apin(o) ~ 1, so if we require that 

a in(o) = a , we have the determining equation for a , p 

6. 
0 = D(a) ""' a - a - E .en 

p (IV.8) 
"' 0 1 -a ' 

4 
D' (a) 

€ 
where € = gp /~. We may also note that "' 1 + 1 It "' - a 

follows that a
0 

< a < 1 • 

Now it was shown by CP that gp
2 << 1 (they estimated gp

2 ~ 0.02 

on the basis of measured diffractive dissociation cross sections as well 
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as Deck-model calculations1 while an estimate for 6p can be obtained 

from a typical momentum transfer width 6t together with the Pomeranchuk 

slope 

Thus, if the Pomeranchuk slope is anywhere near a II II normal value, the 

value of E will be very small. 
I ' 

For example, if a p ~ 1 -2 GeV , 

6t ~ 0.2 Ge!, and 
2...., . 

gp "' 0.02 , then The value of a then 

has to be extremely close to 1 in order for the logarithm in (IV. 8) to 

play an significant role. 

Two characteristically different situations may be envisaged. 

' The dynamically more· "natural" situation is when E << 1 - a. In that 

case a~ a0 and D'(a) = 1 . The pole residue is then 

...., A. M "-- M 
a ·o ' 

to be compared with 1he sun rule value A. aM \ M + A. a p ~ p • The missing 

part A.a p ~p .evidently resides in the cut. In this small situation, 

in fact, the absorptive part can be.written 

+ (IV.lO) 

since the M and P channels are almost decoupled. One can furthermore 

identify the pole contribution with the inelastic part of the total cross 

section and the cut contribution with the elastic part, a decomposition 

' 8 
suggested some time ago by Freundand O'Donovan. 

_) 
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Note that although we have assumed 1 - a >> € , if E ~ 10-3 

this condition is satisfied for 1 - a ~ 10-
2 

Needless to say a 

deviation from unity of the order 0.01 would not have been noticed. 

Note further that at moderate energies (say 20 GeV lab) the cut, 

with an average position ~ 1 - 6./2 , bas a typical integrated 

strength of ~ 1/4 that of the pole. Thus a pure-pole phenomenological 

fit would place the effective pole at 

"' t (1) 1 (1 
.6p 

) aeff + --"' 4. 2 

1 ~ (IV.ll) == b 

We rec:all the Cabibbo et al. 9 assignment of l - aeff ~ o. 07 , which 

would correspond to .6.p ~ 0.6 , a reasonable value. Of course as the 

energy increases the ratio of elastic to inelastic cross section 

decreases and the effective pole position approaches that of the true 

pole. 

A different possibility might seem to be 1 - a << E • In 

that case the residue of the pole is much less than the sum rule value, 

so the cut carries most of the load. Close examination, moreover, reveals 

the existence of a complex pole near Re a = a0 which carries a residue 

~ ;..aM ~M .· • Hence this pole, which was not included as one of our 

input poles, dominates over the one at a ~ 1 , and we are in trouble 

with self-consistency. 

One might try to avoid this inconsistency by supposing a0 to 

lie so far below 1 as to have no connection with the Pomeranchuk 

pheno~enon; instead the pole near a
0 

could be identified with the 
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input meson pole.· The difficulty with such an approach lies in the 

fact that the pole near a
0 

has residue ~ f... aM "oM , leaving f... a p \ p 

for the integrated weight of the singularities near J = l (recall the 

sum rule II. 6). Now /l.a P ~p corresponds to the elastic part of the 

total cross section (see Fig. l). so the situation we are considering 

is an unrealistic one in that the total cross section becomes almost 

entirely elastic at high energies. 
' 

This last result can be understood much· more directly. To see 

it in its simplest form let us return to the single-trajectory model 

of a self-consistent w;eakly coupled Pomeranchuk trajectory. With 

2 gp small we have a weak-coupling situation, in which the AFS diagram 

of Fig. l dominates over those with additional particles in the 

intermediate state. Hence the total cross section is almost entirely 
2 

elastic. This argument is only a rewording of that given by CP, that 

the single weakly coupled trajectory model conflicts with observed 

multiplicities. 

The intermediate situation when l - a is of order € leads 

to the same sort of consistency problem in which the leading pole fails 

to represent most ~f the cross section. This difficulty is avoided only 

for the first case discussed, in which € << l - a . 

V. SUMMARY AND DISCUSSION 

The most satisfactory of the models we have considered is a 

variation of the two-trajectory model of Chew and Pignotti, which we have 

shown to be a self-consistent solution of a factorizable model of the 

multiperipheral integral equation. It turns out that this solution is 
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practically identical to the weak-coupling limit where the internal 

2 
coupling of the Pomeranchuk vanishes, r gp = 0. The forward amplitude 

(see Eq. IV.lO) takes the form of a Pomeranchuk pole, whose residue 

corresponds to the inelastic part of the total cross section, plus the 

10 
AFS cut, which corresponds to the elastic part. The most significant 

effect on this model of the small but non~nishing 0.02 is to 

prevent the Pomeranchuk intercept ap(O) from being exactly equal to 

unity. 

Ma.ny readers will be disturbed on esthetic grounds by a Pomeranchuk 

intercept that. is not exactly at J = l. The presence of a small parameter 

l - ap(O) is indeed surprising in hadronic physics, but when one recalls 

that we have already been forced to introduce one small parameter 

the second one comes as less of a surprise. Since it seems impossible 

for the internal Pomeranchuk coupling to be exactly zero, 2 theorists 

must look for a different kind of simplicity. Perhaps the most promising 

direction is to link a variety of phenomena which suggest the presence of 

small parameters. 

One su9h phenomenon is the apparently small role of the Pomeranchuk 

trajectory in bootstrap models of the finite-energy sum rule or Veneziano 

type (this is obviously related to the smallness of 2 
gp ), as well as the 

zero-resonance-width approximation on which such models generally depend. 

It is an established and not at all understood fact, in other words, that 

hadron coupling constants are small. We assert that this smallness is no 

less mysterious than the smallness of l - ap(O), and we ·suggest that the 

two mysteries may be related. 
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FIGURE CAPriON 

Fig. 1. The AFS elastic contribution to the unitarity sum. 
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