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ABSTRACT

' Using tﬁe multiperipheral integral equation at zero ﬁomentum
transfer, we cpnstruct a model in which the dynamical interrelation
of Regge poies and cuts can be studied. Chief attention is paid to
the region near J = 1 in an elastic forward amplitude. A consistent
solution is found in which the Pomeranchuk pble appears dt Jd =1 - a,
with a < 0.0l,.while the AFS branch point appears at J =1 = 2a. To
a good approximation the pole residue corresponds to the ineiaétic part

of the total cross section, while the integral over the AFS cut corresponds

to the elastic cross section.
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I. INTRODUCTION

The relationship of Regge cuts and poles remains uncertain,
with regard to both relative sfrength and relative location. Recently
it was realized that the multiperipheral‘integrél equation may Be able
to shed light:on the matters,l aﬁd we here report>a préliminary inves~
tigation of the Regge singularities in a forward amplitude, employing the
model of Chew and Pignotti2 (hereafter designated CP) to suggest a
simplified kernel and inhomogeneous terﬁ for ‘the integral eqpation._ The
chief emphasis here will be on the region near J = 1 in an elastic
amplitude, but the model can Be extepded to lower J regions and to

inelastic amplitudes.

II. THE FACTORIZABLE MODEL
The multiperipheral equation derived -in Ref. 3, after projection

onto angular momentum J z%'takes the form

| 0
Y v 7!
B (£,0) = B (+,3) « > at Bay(t,J) 77 (s,41,3),
Y =00
(11.1)

with the absorptive part for the forward elastic process ab = ab given
by

— 0

( > [ 7' ? 7' !
AL (I) = /) at' B.” (¢',7) &/ (¢') . (IL.2)

y! -QD '
The superseript 7 (or 7') 1labels a particular "input" Regge pole,
while t (or t') labels the squared momentum transfer associated with

. s 1 R

that pole.5 The kernel G’/ (t,t',J) includes the internal coupling
between adjacent poles » and 7' , together with the Regge "propagator"

associated with ¥' . TFor our model we assume the factored form
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0=

| 4 AN
7' g ft} g (t 2 _
A Jd = Jy’ t! ’ . o (II'B)

]
a7 (t,6',3)

where

| J7(t)‘ 2.0 (t) -1 , o (I1.4)
ay(t) ‘being the "input" Regge trajectory associated with 7 . We are
keeping in (II.B)‘only that J dependenée associated with the leading
‘pole resulting from. the érojection of Formula (D-5) of Ref. 3.' This
projection actually contains additional J singularities and a more
\complicatéd t! dependence,6 but the most essentiél cﬁaractefistics
are represented by (II.3) if ‘gy(t) is taken to be a function that does

not vanish at t = O and that decreases rapidly (e.g., exponentially)

as t = -, The corresponding form to be assumed for the inhomogeneous

term in (II.1) is

y' . ‘ )
7' (g = 2 ._Lﬁﬁj'_Ly
Ba’o(t ,J) = Aa 7 Jy’ Y (I1.5) .

If (II.5) is substituted into (IT.2) one gets the well-known AFS cut ! as
a "Born apﬁroximation" to.the absorptive part. Evidently the solution

to (II.1) may be written as

y! . _ y1 £ ' :
B, (t',J) = b, (J) 7 Jy' Y s (11.6)
with
1. " 1 . 1 )
.7 (I) = N+ > b 7(3) o7 (3) N7, (IL.7)-
a, a - : a .
7

if 0

o7 (3)

]

4 2
at %ﬁtiﬁf%f) . | (11.8)
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_3..

In order to construct the absorptive part, we also need the "end
1
vertex' function Gb7 (t'), which for consistency with the above should

be taken to be
! . yt o oyt '
G (¢ ) = N g (). (11.9)

The final result is then

A, (3) = 2 o’ (3) bay'(J)_kby' , - (I1.10)
, ' 7! ’ ' :
with ba7’(J) the solutioh of the linear algebraic equation (11.7).
Since the functions ' p’ (J) have no poles, the poles df_ Aab(J)
evidently coincide with those of bay(J) and thus with zeros 5f the
deterﬁinant ,6.5

ry!

independent of the hexternal" indices a,b . : Assuming linear input

1
- o7(3) N7 | . Note that these pole locations are

trajectories, the function @p7(J) may be rewritten as

J_(0)
) 1 4 Im o7 (J7)
o’ (J) = = aJ' —, . (Ir.11)
J' - J '
00
wWhere : 2
¥ S ¥ J -7 (0)
Im p'(J) = - — g "-—";Z'—‘ s (I1.12)
ol -2

U4
“exhibiting the branch‘point at J ='J7(O) and the associated cut along
the negative real axis running to J = «c0. For convenience we shall
choose the ﬁormalizafion of the functions gy(f) to be such that

T3~ 3, - (11.13)
J > o
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or in other words, such that.

'Jy(o)

2P

aJ! Im o’ (3') = 1. (II.14)
-w ! ‘

Note that a rapid- falloff of the functions g (t) as t - -co produces
a corresponding rapid decrease of Im p’ (J) as J = -oo.
A second important property ofﬁthe function py(J) is the infinite

logarithmic branch point at J = Jy(O):

A

o7 (3) o~ Z%—',@n [ AR (11.15)
J-=J(0) Ty J -J_(0)
Y : Y
where :
e W N - |
A, = -~Inp [Jy(O)] , (11.16)
= 2 g (0.
o0 7
4

- The general structure of Aab<J) then is that it is a real
analytic function of J, with branch points at the various J_(0)
(assqciated cuts running to the left), éoles at zeros of the aforementioned
detefminant;énd an asymptotic behaviof easily inferred from (II.7) and

(II1.10) to be that.of the "Born approximation”:

5 1 § AN

A(J) ~ — A . (17.17)

ab T w Jd. A a Kb
7 . :

Corresponding to (II.17) is the sum rule
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“5m
Jmax(o.) |
- % Im‘Aab(J) dJ + sum of residues of poles
T K on‘physical sheet
_ Y BN N )
= L e N - (mad)
5 .

-This rule willvbé helpful in assessing the relative importance of poks
and cuts.

A final general remark concerns theifactorizability of pole
residues. From (IL.7) we see that if a pdle'occurs at J = ai , such

that

1 f
1
r 7

(11.19)

then the dependence of lra7 on the two indices a and 7' will
factorize. It follows from (II.10) that in the corresponding residue

of Aab(J) the depaukmce'on the two indices a and b will factorize.

III. SINGLE INPUT POLE
With a single input polé the solution of Eq. (IT1.7) is

S
a

ba(J) - TR - ' (I11.1)
" the superscript 7 becoming superfluous. The corresponding absorptive
part is o |
. A, N e(d)

A -(J) . — .
' 1-xo(J)

(I1I.2)

§
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-64

‘Remenbering (iI.15) and (IT.15), if A > O there must be a pole of
Aab(J) on the'real J ‘axié fo the.right of Jy(O) = Jin ; ﬁhis can be
. shown to be the only poie on the phyéical‘ sheet.

Two limiting situations are especial;y interesting:
1. N so large that the pole falls into.th; region J»— Jin > A,

where p(J) can be approximated by

p(J) &% ——m , o (T11.3)
- J - J,
. in
where, evidently, jin 5 Jin . The absorptive part in this region then
becomes
: ‘ A , o :
Aab(J) ~ ——-—%—L i _ (IIT.4)
Jd-J,. - X :
in
the pole occurring at
Nd, o+ - .
. Iin oo . (I11.5)

with,reéid;e N, Xb . Thié residue exhausts the sum rule (II.lé),
leaviné zZero éverage Ygight fér the cut discdﬁtinuit&. The>cut in thg
total absérptive part-is thus much weaker fhan that in the "Born |
_approxiﬁation.“ |

2, ‘K so small that the pole_falls iﬁﬁo the region J -'Jin < A,
where p(J) can be approximéted by (II.15). The bole residue here ié

approximately



UCRL~18681

..7-
| A
NN ;\5 (o - Jin) , (I11.6)

which approaches zero as o — Jin . In this limit, then the cﬁt carries
ﬁhe full weight and the pole is negligible.

If N is negative (as is poésible for inelastic amplitudes)
there are no poles on the physical sheet, but if -\ 1is sufficiently
1argé there will appear a complex pole on the next sheet'near_to the cut.u

In particular, if the pole occurs in the region where J

- >>
in RevJ . A,

then in this regioh (on the upper side of the cut)
) '»-N l . !
p(3) ¥ —— - i),

in
where n(J) as given by (II.12) is very small compared with the first
term. The condition 1 - Ap(®) = O requires that Im p(@) = 0, or

2
In ¢

- Re n(a) ,j;n - al
‘ o (IT1.7)

2

v _ s
- 1(Re a)(Jin - Re a? ,

so the negative imaginary displacement of the pole 1s small. The real
part of the pole posiﬁion is given by
o ~ J + ' ITT.8
Re aout Jin A ( H )
and the residue is approximately ka Kb ,vexhausing the sum rule. The
cut is then negligible except in the vicinity of the pole, where the
discontinuity can be approximated by a delta function with integrated

strength Xa Kb .
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IVv. THE CP TWO-INPUT-POLE MODEL

UCRL-18681

A more realistic model fdr‘forwardlelastic amplitudes,

proposed by CP,  -contains two input trejectories,

4represent the Pémeranchuk and aM}n to represent all lower trajectories.

in
aP to

The internal coupling matrix is positive definite (since each term in

the iterated solution of the intesral equation is a separate partial

cross section) and‘has the form

€p
. }\77' = s (Iv.1)
0
vleading to
@ - Mo <J>+x s me(l-gMp () + (" +x“>§>g (330" (3)

l—gM o(J) - gP o(J)o(J)

(Iv.2)

Notice that at a zero of the denominator of (IV.Q)'the numersator takes the

factored form,

2" gy 0T @10+ 8T gy 0@ @)

' s ' in, |’ L
- Let us suppose that 20, (0) - 1 1lies sufficiently below J =

so that near J = 1 ‘

og) ¥ —

(1v.3)

1
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Multiplying numerator and denominator by J - EM then brings (IV.2) to
the form

_ N (J) : ,

AL () v e, (1v.3)

D(J)
wWhere
~ A M. M P. P M., P P. M 2 P
Nab(J) ~ >\a xb * “a xb (7 - O‘O) * (Ka Xb * ”a Xb )gP o (J)
(IvV.4)

and

D(J) R J -0y -gp 0 (J), (Iv.5)
if _

= o ,
Qg = Iy gy - (1v.6)

Let us assume that the highest-lying zero of D(J) occurs at a
value J =Q , where 1 -~ << AP'. This point must be reexamined later
for conSistenéy, but if acceptéd it allows ﬁs to write

S ,Zn,—-A—Ii—- - (Iv.7)
Sp J - Jp

for J near o . Now Jp =2 aP}n(O) -1, so if we require that

oH(I) =

aI}n(O) = & , we have the détermining equation for o ,

' A
P
= ~ - - €
-0 D(@) » « % In T (Iv.8)
where € =g A/AP . We may also note thét D' () ~.l b — It
P o 1 -

follows that ao <a<l.
Now it was shown by CP that gP2 << 1 (they estimated ng x 0.02

on the basis of measured diffractive dissociation cross sections as well
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as Deck-model calculatiopsz‘while an estiméte for AP can be .obtained
from a typical momentum transfer'width-'ét together with the Pomeranchuk

slope aP'

Ay B 2 (At) a'p

Thus, if the Pomeranchuk slope is anywhere near a '"normal"” value, the
value of € Wlll be very small. For example, if o P ¥ 1 GeV‘-2 R

% 0.2 gerf 2 5 3 |
At = Uiz GeV, and 8p < O o2 ’ then €X ;10 . The value of « +then
has to be extremely close'to_ 1 in order for the logarithm in (IV.8) to
play an significant role.

Two characteristiéally different situationsbma& be envisaged.

N .
The dynamically more "natural” situation is when € << 1 - @. In that

case O ”'ao and D'(x) =1 . The pole residue is then
: g g Lp
‘ M P =p- P P . ~ MM
At " AP 1T -cxj) (E% 39 1-a, ~ 5a My
o e (1v.9)
: ' M, M ., P_P C s
to be compared.w1th1he su rule value K Kb’ + %a kb. . The missing

part Ka? KbP evidently resides in the cut. In this small gE? situation,

in fact, the absorptlve part can be written

A_(J) = ﬂ N "P(J) (1v.10)

ab ~ T ea a v P Yo
‘since the M and P channels are almost decoupled. One can‘furthermore
identify the pole contribution with the inelastic part of the total cross

section and the cut contribution with the elastic part, a decomposition

suggested some time ago by Freund .and O'Donovan.
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Note that although we have assuméd 1-a> e, if e~ 107
this condition is satisfied”for l-a 5 lO-2 . ~ Needless te eay a
deviation from unity of the order 0.01 would-not have been noticed.
Note_further that at moderate energies (say 20 GeV iab) the cut,
with an average position ® 1 - AT/E , has a typical integrated
strength of ® 1/4 that of the pole. Thus a pure-poie phenomenological .

fit would place. the effective pole at

o _pp ¥ ,3:(1) + 11:__<1-

(Iv.11)

o

We recall the Cabibbo et al.” assignment of 1- o pp

would correspond to 'AP X 0.6, a reasonable value. Of course as the

X 0.07 , which

energy increases the ratio of elastic fo inelastic cross section
decreases and the effective pole poeition approaches that-ef the true
pole, |

A different possibility might seem tobe 1 -~a << €. In
that case the regidue of the pole is much less than the sum ruie value,
sd the cut carries most of the load. Close examinetidh, moreover, reveals
the existence of a complex pole near Re O = % which cerfies a fesidue
X AaM KBM*' ance thie pole, which was not included as one of our
input poles,.deminates over the one at & % 1, and we are in trouble
with self—consistency.

One might try to avoid this inconsistency by supposing D to
lie so far below 1 as te have.no connection with the Pomeranchuk

phenomenon; instead the pole near O could be identified with the

0
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input meson pole.  The dijficulty with such an approach lies in the
fact that the pole near vao has residue = .%aM KﬁM s legving' xaP ka
for the integrated weight of‘the singularities near Jv= 1 (recall the
sum rule II.6). Now %aP be corresponds to the glastic part of the
total cross section (see Fig. 1). so the situation we are considering
is an unrealistic one in that the total cross section becomes almost
entirely e}astic at high energies.

This last result can be understodd much more directly. To see
it in its simplest form let us return to the éingle-trajectory model
of a self-consistent‘weakly coupled Pomeranchuk trajectory. With
gP? small we héﬁe a weak-coupling situation, in which the AFS diagram
of Fig. 1 dominates ovér those with additional particles in the
intermedigte state. Hence the‘total cfoss section is almost entirely
elastic., This argument is only a rewording bf that given by CI;2 that
the singie ﬁeakly coupléd-trajectory model conflicts with obser?ed
multiplicities.

The intermediate situation when 1 - @  is of order € leads
to the same sort of conSistenCy problem in which tﬁe leading pole fails»

'to'represent most. of the cross section. This difficuity is avoided only

for the first case discussed, in which e¢ << 1 -0 .

V. SUMMARY AND DISCUSSION
The most satisfactory of the models we have considered is a
variation of the two-trajectory model of Chew and Pignotti, which we have
 shown to be a self-consistent solution of a factorizable model of the

multiperipheral integral equation. It turns out that this solution is
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practically jdentical to the weak-coupling limit where the internal
coupling of the Pomeranchuk vanishes, rgP?_= 0. The forward amplitude
(see Eq. IV.10) takes the form of a Pomeraﬁchuk pole, whose residue
corresbonds to the inelastic part of the total cross section, plus the
AFS cut, which corresponds to the elastic part.lo The most significant
effect on this model‘of the small but nonvanishing gP? ~ 0.02 is to
prevent the Pomeranchuk intercept aP(o) from being exactly equal to
unity.

Many readers will be disturbed on esthetic grounds by a Pomeranchuk
'intercept that‘iS‘not'exactly at J = 1. The presence of a small parameter'.
1 - aP(O) is indeéd surprising in hadronic physics, but when one recalls'
that we have already been forced to introduce one.small parameter gI? ”
the second one comes as less of a surprise. Since it seems impossible
for the internal Pomeranchuk coupling gr? to be exactly zero,2 theorists
musf look for a différent kind‘bf simplicity. Perhaps the most promising-
direction is to link a variety of pheﬁomena which suggest the presence of
small parameters, | |

One sugh phenomehon'is the apparently small role of the Pomeranchuk
trajectory in.bootstrap models of the finite-energy sum rule or Veneziano
tyﬁe (this 1is dbviously related to the smallness of gP?), as weli as thé
zero-resonance-width approximation on which such models generally depend.
It is an established and not at all understood fact, in other words, that
hadron coupling constants are small. We assert that this smallness is no
less mysterious than the smallness of 1 = aP(O), and we suggest that the

" two mysteries may be related.
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FIGURE CAPTION

Fig. 1. The AFS elastic contribution to the unitarity sum.
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