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ABSTRACT 

Theoretical features of the many (twenty-six) fixed momentum 

transfer dispersive sum rules Which can be written for generalized nucleon 

Compton scattering amplitudes (retarded products of vector currents) are 

surveyed and the sum rules put to experimental test. Theoretical attention 

is focused on the occurrence of right signature fixed poles in the angular 

momentum plane, such as the j = 1 fixed poles whose couplings are related 

to electromagnetic form factors by current algebra. Unitarity is used to 

estimate the sum rule integrands in terms of data for the photoproduction 

processes yN ~ rrN and yN ~ rr6 • Data limitations require that the sum 

rules be cutoff at photon lab energy Elab = 1.12 GeV. 

The main results are as follows. 

(a) Reasonable evidenc~_,is presented that two time component current 

algebra sum rules involving the electric and magnetic isovector form factors 

v v 
GE ( t) and GM (,t) are correct for small spacelike -t • If they are 

also to be correct for -t ~ -0.6 (GeV/c)
2 

then the p Regge pole must 

choose nonsense at a = 0 and the assoc~ated wrong signature fixed pole 
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there must oe tr.;.:ltiplicath-e. A tirne-space current algebra su.~11 ruJe i'\ 

probaoly fails. 

(b) The sep=:.rate isotopic components of the Drell-Hearn sum rule are 

investigated. Those with I = 0 exchange in the t channel seem very 

successf1..ll whereas the I = l exchange sum rule clearly .fails. The 

faih:re indicates a>c. importc.rd::. contribution of a hitherto 1.:rr:s:.:spected 

(c) Detailed results 0.::1 T..r.cong sig:1ature anti-algebra su;;1 rules) O:c'l 

Regge-pole sum rules (FESR' s) e.nd on SU'!1 rules testing co::1spiracy are 

presented. 

\/ 
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I. INTRODUCTION 

Many fixed momentum transfer dispersive sum rules can be written 

for nucleon Compton amplitudes. These sum rules test various assumptions 

about high-energy behavior and about the equal-time algebra of vector 

current components. In this paper we survey theoretical aspects of these 

sum rules and report on a systematic attempt to saturate them, at several 

t values, using presently available experimental data. Within the limit 

set by the extent and accuracy of this data, our goal is to milk from 

the sum rules all the theoretical interesting information they contain. 

Since there is very little data on the Compton scattering process 

itself, we use the unitarity condition to express the integrands of the 

sum rules in terms of amplitudes for the photoproduction of hadronic 

states. We include the contributions of the ~N and, in cruder form, 

the ~~N intermediate states. Specifically we use the multipole analyses 

of yN -+ ~N by Berends, Donnachie, 1 2 
and Weaver and by Walker, and a 

modified Stichel-Scholz3 model for the process )'N -+ ~6. This gives us a 

description of the sum rule integrand which seems reasonably accurate up 

to the laboratory energy Elab == 1.12 GeV (c.m.· energy .fs == 1. 73 GeV), 

and we cut off our sum rules at this value. 

Because of spin and isospin complexity there are 26 independent 

amplitudes for the generalized Compton scattering process, and the use 

of photoproduction data decomposed into definite angular .momentum and 

isospin components allows us to study sum rules for all of them. We 

4 
study the sum rules derived from current algebra, as well as super-

convergence relations5 and finite energy sum rules
6 

which give inform~tion 
on Regge pole parameters and on the question of conspiracy. We are mainly 
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interested in theoretical questions involving the presence of fixed 

j-plane poles. 

Finite energy sum rules have been much used recently to study 

meson-baryon scattering 
6, 7 where there are two important advantages. 

. 8 First good partial wave analyses ex1st, at least for rrN scattering, 

up to the c .m. energy .fs = 2.19 GeV; and second there is considerable 

high energy data with which to compare Regge pole predictions. In our 

case the low energy data are unfortunately crude, and there are no high 

energy experiments. However, because we study photon amplitudes with the 

possibility of double helicity flip, many of our sum rules are more 

convergent than their analogues in meson-baryon scattering. Further 

we remark that the analysis of Dolen, Horn, and Schmid
6

at cutoff 

.fs = 1. 73, identicaJ to ours, gave reasonable results for the couplings 

of, the p trajectory, and we therefore have reason to hope for good results 

at this cutoff in the Compton case. 9 

The plan of the paper is the following. For the benefit of r'eaders 

primarily interested in the results, a summary of the most important 

results is given in Section II together with references to that part of 

the text where specific sum rules are discussed. The kinematics of 

Compton scattering is presented in Section III. Theoretical questions 

pertaining to the sum rules are discussed in Section IV. In Section V 

we explain our treatment of the experimental data, and in Section VI we 

present and discuss the results of our attempt to saturate the sum rules. 

Section VII is reserved for some final methodological comments, while· some 

necessary technical questions are treated in Appendices. 

v 
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II. MAIN RESULTS 

Our main results are summarized here, although we would caution 

that a wrong impression of the strength of our conclusions could well be 

gained without some study of the quantitative behavior of the sum rules. 

The quickest way to proceed would be via Section VI.A, in which the 

graphical format of the results. is given, to the point of Section VI 

where the specific questions are discussed and the appropriate graphs 

presented. 

Regge Pole Sum Rules: (VI.B) 

From sum rules for amplitudes in which the P, P', and ~ 

trajectories couple to photons with helicity flip 2, we find the following 

results. There is no particular evidence for important contributions to 

the sum rule from right signature fixed poles at . 0 10 
J = • Factorization 

tests give values of the ratio of the nucleon flip and nucleon nonflip· 

couplings of the trajectories which agree with the values deduced from 

' 
meson-nucleon scattering, although there is an uncertainity of about 

a factor of two in this comparison. Our results are consistent with the 

nonsense choosing mechanism for the 

ll 
Current Algebra Sum Rules (VI.C) 

at a~ (t) = o. 

Two well-known sum rules can be obtained by studying the equal-

time commutators of time components of the isovector current, taken 

between states with nucleon helicity nonflip and flip (measured in the t 

channel c.m. system). The nonflip sum rule, whose right hand side involves 

the electric form factor GE(t), coincides at t = 0 with the sum rule 

of Cabibbo and Radicati.
12 

The flip sum rule similarly tests the magnetic 

form factor G (t) and seems to have been first written down by Muzinich. 13 
M 
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Our results indicate good agreement with current algebra 

predictions near t = 0. At large momentum transfer (t ~ -0.6) there 

is some evidence for a possible violation of current algebra, although 

we prefer an interpretation in which current algebra is valid. In this 

interpretation the p trajectory chooses nonsense at· ap(t) = 0 and 

has a singular coupling to the currents there. 

coupling the nonsense dips14 associated with p 

Because of the singular 

exchange in hadronic 

processes are not present in the Compton amplitude. 

Both these sum rules.receive important contributions at low 

energies from nonresonating multipoles; a fact which suggests that 

. 15 
theoretical models in which saturation occurs purely with resonances 

may be unrealistic. We give some idea of the relative magnitude of 

resonant and nonresonant contributions to the sum rules in Section VI.I. 

A sum rule involving the commutator of the time and space 

16 components of the isovector current has been written down by Beg and 

4 further studied by Adler and Dashen. This sum rule has some peculiar 

4 
features, and it is perhaps not surprising that our numerical results 

show that it is probably violated. 

Anti-Algebra Sum Rules: (VI .D) : 

We use this name (see Section IV.B) for sum rules
17 sensitive 

to wrong signature fixed poles. We find evidence for wrong signature 

fixed poles (at j = 1) which couple strongly to Pomeranchuk and A2 

exchange. The theoretical significance of such fixed poles has been 

recently studied. 18 
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Drell-Hearn Sum Rules: (VI.E) 

Here we refer to sum rules for three.differertt isospin symmetric 

amplitudes with t-channel photon helicity flip, antisymmetrized in the 

nucleon helicity indices. The sum rules are superconvergence relations 

(SCR's) which follow from the assumption that j ~ 1 fixed poles are 

absent in these amplitudes. At t ~ 0, the sum of our three SCR's 

coincide with the original sum rule written by Drell and Hearn19 for the 

anomalous magnetic moment of the proton. 

Our results indicate that the two sum rules involving isoscalar 

exchange are very well satisfied~ but that the sum rule involving 

isovector exchange is badly violated. This last result was a surprise 

to us, and seems to indicate an important contribution from a JFG ~ 1+-

fixed pole. 

One negative result which may be of some interest is that neither 

of two sum rules sensitive to ~ exchange showed any evidence for this 

Regge pole with an intercept near zero. (See also Section VI.G~ 

Conspiracy Sum Rules: (VI.F) 

By using a sum rule of Bagels20 which relates the 0 :n: lifetime 

to an integral involving a Compton amplitude we infer that the effective 

:n: conspirator trajectory residue function t3. (t) 
c :n: 

in Compton scattering 

is a smooth function of momentum transfer near t ~ 0. Unlike the photo-

production case we cannot write a sum rule sensitive to the t dependence 

of the pion residue function itself. However, comparison of the t ~ 0 

value obtained from the conspiracy condition with the value at the :n: pole 

(known from the :n:0 lifetime) suggests a zero in (3:n: near t ~ -m:n:
2

• The 

belmvior of both the pion and its conspirator are consistent with that folind 

in strong interactions. 
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III. KINEMATICS 

Using covariantly normalized states 

(l) 

we define transition amplitudes for all two-body reactions 

(p2 k2 lsi Pl kl) = (p2 k~ I Pl kl) 

-2 4 ' 
+ i(2:rr) 6 (p2+k2-pl-~)T(p2}k2j pl}kl) • 

(2) 

Differential cross sections are given by} ignoring the spin summation 

dcr 
a..n = 

f 

where s = 

2 
lf(E}e)l 

and p. and 
l 

of the initial and final states. 

(3) 

pf are the center-of-mass momenta 

Compton scattering amplitudes are related to retarded products 

of currents by the formula 

where e
2

/4:rr = 1/137. We do not write explicitly the polynomial terms 

which may be required on the right hand side Qf ( 4) to ensure covariance. 
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The electromagnetic current operator J em .. (x) 
1-1 . 

can be decomposed 

into isotopic singlet and triplet parts 

J em. (x) 
1-1 

I=O( ) I=l,M=O( ) = J X + J X • 
1-1 1-1 

In general we are led to consider covariant amplitudes formed as in 

E~. (4) from the individual pieces J 
0 and J l,M with M = ±1,0 

1-1 1-1 

and construct these amplitudes according to the following isospin 

conventions. 

(5) 

. ' 
First we construct amplitudes T (I r' I ) describing transition . 

I . 'Y 

between normalized states of total s-channel isospin I built uP from 

nuCleons and isoscalar (Ir = 0) or isovector (Ir = 1) photons. There 

are five independent amplitudes. Each TI(I'r' I'Y) gives rise to a 

scattering 

in states specified by third component of isospin for the nucleon (MN) and 

photon (M ). The C's are standard Clebsch-Gordan coefficients. r Our 

sum rules are written for the following combinations of the T1 (r'r' Ir) 

formed 1y S,)mileir:izii:g or anti symmetrizing in the ( t-channel) photon 

isospin labels: 

¥ - 2 T1; 2 (o, o) 

T2 = (2/3)[T1/ 2 (l, 1) + 2 T
3

/ 2 (1, l)] 

T3 = (2 -{3/3)[T1; 2 (o, 1) + T1; 2 (l, o)J 
(7) 

T4 (2/3)(T:3/2 (l, l) - T1; 2 (1, l)] 

~ = (2 -/3/3 )[T1/ 2 ( o; l) - T1/ 2 (1,, 0)) 
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Amplitudes l and 2 carry isospin 0 in the t channel while amplitudes 

3, 4, and 5 carry isospin 1. The Compton scattering amplitudes of 

physical photons are related to ours 'by the eq_uations 

T(yp ~ yp) + T(yn 4 Yn) 

(8) 

T(yp ~ yp) - T(yn ~ yn) ~ ~. 

To relate our amplitude T4 to that of the current algebra literature5 

we observe that is given by Eq_. (4) with the commutator replacement 

[Jflem.(x), Jvem.(o)J---;t [Jfl(+)(x), Jv(-)(o)J- [Jfl(-)(x), Jv(+)(o)J. 

(9) 

Physical Compton scattering data cannot be used to resolve the 

individual contribution of T1 and ~ in Eq_. (8), or to determine 

the amplitudes in isospin segments 4 and 5. The real parts of can 

conceivably be measured only in neutrino processes. However the 

imaginary parts of all amplitudes are related unambiguously by unitarity 

to experimentally measurable photoproduction processes. Isospin segment 

5 has very peculiar kinerriatics, discussed below, and does .not seem to 

have been mentioned in the literature. 

We always express our sum rules in terms of regularized t-channel 

parity-conserving helicity amplitudes, 21 which are advantageous for us 

because they have simple analyticity and crossing properties and definite 

t-channel q_uantum numbers. Direct channel helicity amplitudes 

~A4;~~ can be defined from Eq_. (4) by choosing nucleon states and 

22 
photon polarization vectors according to standard conventions. We 

take the nucleon as "particle l." We define t-channel helicity amplitudes 

1'\ 
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through the crossing relations23 

f.._ -f... 
-i(-1) 5 l 

l/2 l/2 . 
df...' A- (rr- X)~, f...... (X)M~f...' -f... •f...' f... 

l"l 3 5 3 4' l 2 

(10) 

where 

cos X 
2 ( 2-t 1/2 ~s + m L 
2 

(s - m ) \ 4m: - t (ll) \ 

[ (s 
2 2 t2 2m - m l + st 

(s - m
2

) 4m2 - t 
sin X 

and the superscript i indicates a definite isospin amplitude formed 

according to E~. (7). 

For physical photons, the kinematic singularities of the 

amplitudes A'J~;f...4~ have recently been obtained.
2

3,
24 

The analysis 

of Reference 23 depended on a simplification of the crossing relation 

(9) using the time reversal constraint 

== (12) 

where An identical condition holds for our isospin 

amplitudes l - 4 , and for these amplitudes the results of Reference 23 

apply completely with the single exception that the s - u crossing 

properties of isospih 4 amplitudes are opposite to those of isospin l -3 

because of photon antisymmetry. 
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We give here the exact definition of the amplitudes for which 

our sum rules are written in isospin segments 1 - 4. In terms of 

reduced t-channel helicity amplitudes, 

(13) 

we take the following combinations which are kinematic singularity free 

in both s and t. 

B2 
i 

B3 
i 

= [
Ai 
A1 r + 
2-2;1-1 

Ai ] A 11 -zz;l-1 

B4 
i 

= 

B5 
i 

= 

= 

(14) 

The Bji(s,t} are independent except for the constraint condition at 

t = 0 

"( ': 
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t ~ 0 
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0 (15) 

and other constraints at t .= 4m2 which are not relevant for our 
. i 

analysis. In Appendix A we express the B- (s,t) in terms of s-channel 
J . 

helicity amplitudes and Hearn~Leader25invariant amplitudes. 

In isospin segment 5 the situation is different. Because of 

antisymmetry an extra minus sign must be inserted in the time reversal 

condition (12), and this meahs that there are only two independent 

nonvanishing s-channel helicity am~litudes which we take to be 

charge 
5 

Au 
22;1-1 

"' and Mi. 1 .1..
1 

. There is an analogous restriction, due to 
2~ :2. 

conjugation invariance to two nonvanishing t-channel amplitudes 

5 
and Al l. 11• The crossing relations simplify to 

2-2J 

5 
An.l 1 

22J -
= 

= 

(16) 

The kinematic singularities are easily obtained and we choose the 

following singularity-free amplitudes 

v 

B 5 
8 = 

-1 4 -1/2 . 5 
-it (m -us) Ai 1 , 

2-2:11 

(17) 

i The amplitudes B; ·.satisfy dispersion relations in the variable 
- J 

1 -(s - u) which we write in the form 
2 
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IV. THEORETICAL MATTERS 

A. Analyticity and AsyiDptotic Behavior 

The sum rules 'which we study test both the anaJ.:ytici ty ·properties 

and the high-ener:gy behavior of. Compton· scattering amplitudes .. Although 

the necessary analyticity--that underlying the disper.sion relations (18). 

--can be proved rigorously f.rom the axioms of q_uantum field theory, there 

is very little rigorous information on the asyiDptotic behavior. We 

review briefly here the types of a$yiDptotic behavior which ·our present 

incomplete theoretical knowledge suggests . 

.. : For purely .hadronic processes there are some rigorous asymptotic 

b d tt . . t t Fr . t . d2 6 . ., oun s on sea er1.ng ampl1.. udes, such as he . o1.ssar boun which can 

be derived using analyticity and (s-channel) unitarity. For most 

appl.ications this information is insufficient, and it is customary to 

assume that asyiDptotic behavior is determined by the singularities.in 

the angular momentum variable of analytically continued t-channel partial 

wave amplitudes. This hypothesis, called "Analyticity of the Second Kind 11 

by Chew, 27 effectively means an asyiDptotic structure of moving Regge poles 

and cuts. 

In the.ories with analyticity of the second kind, t-channel unitarity 

plays an important role in determining asyiDptotic behavior. Its role is 

reviewed in the discussion of this subsection and references to the original ~ 

literature are given. 'Further details, important in understanding olir 

results are precented in subsection C. 

Fixed poles in hadronic ampli tude·s are severely restricted by the 

28 
t-channel unitarity condition, they are allowed only at angular 

momentum values for which the unitarity cut is shielded by Regge cuts. 
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Our present knowledge of this shielding mechanism29 indicates that fixed 

poles occur because of the third double spectral function present in 

relativistic amplitudes and occur at wrong signature nonsense values of 

angular momentum. These fixed· poles do not contribute directly to 

asymptotic behavior, although they may modify the behavior of Regge-pole 

residues in an observable way. Schwarz sum rules17 can be used to test 

for the presence of these fixed. poles. 

Compton scattering amplitudes are an example of the general class 

of 11weak 11 amplitudes--those which never appear bilinearly in a unitarity 

relation. Because of the absence of bilinear unitarity in the s channel, 

the Froissart bound cannot be proved in the usual way, and there is at 

present no rigorous information on high-energy behavior. Further the loss 

of bilinear tinitarity in the t channel means that fixed poles in the 

angular momentum plane are no longer restricted. 

Nevertheless, it is. intuitively attractive to assume Regge 

asymptotic behavior for weak processes, and this was done in most early 

work on Compton scattering30 and on more ge~eral weak amplitudes. 31 

This Regge pole picture led to puzzling features in the Pomeranchuk 

contributionto physical Compton scattering30 and in the interpretation 

of current algebra sum rules. 32 Fixed poles (and Kronecker delta t~rms33 ) 

provided the solution to these puzzles. 

The known mechanisms for fixed poles in doubly weak amplitudes 

are discussed in References 18 and 32, and we summarize them here. By 

doubly weak we mean four-point amplitudes with two hadrons and two currents 

on external lines. In general such amplitudes will have the j-plane 

behavior of their Born terms because this behavior is not smoothed by the 
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I 

weak unitarity condition. In particular doubly weak amplitudes will have 

fixed poles at nonsense integers of both signatures. Usually the strong 

interactions--i.e. higher-order graphs--modify the residues of the 

fixed poles so that they differ from their Born values. Modification 

can be expected for both right and wrong signature fixed poles even if 

the third double spectral function (dsf) vanishes, although the third 

dsf mechanism will also contribute to wrong signature fixed poles of 

weak amplitudes. 

In general, therefore, the theory tells us the locations of fixed 

poles but :is rot powerful enough at present to predict their residues which 

depend on the details of strong interactions. Sum rules, as we will see, . . . 

can be used to evaluate the fixed pole residues directly from the experi-

mental data. 

There are two exceptions in which the general theory does give 

information about the fixed pole residues. The first occurs in Compton 

. 18 scatter1ng where, because of photon masslessness, the Born terms of 

some amplitudes have a singular coefficient of 
-1 

t' . This may be observed 

in Table I for amplitudes B
1

, B
3
, B

5
, B

7
, and B8 . Since other contributions 

to the amplitude are regular at t == 0, the residue of the fixed pole at 

the highest nonsense point is also .singular at t == 0 and is determined 

there by the Born term. This mechanism works in other kinematical 

configurations also. 34 Unfortunately, the corresponding sum rules reduce 

to simple identities at t == 0, to which only the Born terms contribute, 

and are thus devoid of ·inte.rest. 
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The second exception in which theory actually predicts the fixed 

pole residue as a function of t concerns current algebra. It has been 

shown32 that the well-known (and variously credited) Adler-Dashen-Fubini-

Gell-Man sum rules imply that the sum rule amplitudes have fixed poles 

at j = 1 and that the residues are given in terms of vector and axial 

vector hadronic form factors. An observed failure of the sum rules would 

imply either (1) that the underlying algebra of currents must be modified, 

or (2) that the assumptions necessary to derive the sum rule from the 

. 4 
algebra are incorrect, or (3) both (1) and (2) are true. It may also be 

possible to relate the residues of fixed poles at j = 0 and j = -1 

1 b 
11,16,35 to properties of the current a ge ra. · 

We have stressed that the basic mechanism which permits fixed 

poles in weak amplitudes is the breakdown of bilinear unitarity. 

Linear or weak unitarity still requires factorization for Regge-pole 

couplings to weak amplitudes as we show in subsection C. One effect of 

fixe~ poles is usually to make Regge-pole residues more singular at 

nonsense integers than they would otherwise be. This effect will be seen 

clearly through our sum rules. 

B. Sum Rules and Fixed Poles 

The preceding arguments motivate us to assume that the typical 

asymptotic behavior of the B ( v, t) amplitudes is (with T} denoting 

the crossing phase), 

B(v,t) rv -

r 

. -i1(o; (t) -1 o; (t)-A. 
G (t)(e r + -r )(sin 1(o; (t)) v r r r . r 

00 

I 
k=l 

( ) 
-k k 

Fk t v [1 + TJ(-1) ] + 

M 

L I)m(t) 
m=O 

vmll + TJ(-l)m] 

(21) 



' -18-

corresponding to Regge poles (of leading signature T = ~(-)~), right 

signature fixed poles (at j = ~- k) arid Kronecker deltas (at j = ~ + m). 

Wrong signature fixed poles manifest themselves in (21) only in their 

effect on the G (t). We ignore possible Regge cuts because our sum 
r 

rules are not accurate enough to distinguish between poles and cuts. 

Nonleading Regge pole terms (20) can easily be included in spin types 2 

·and 3. 

The sum rules we use can now be derived very easily. The functions 

vn B(v,t) are analytic in the cut' v plane and therefore satisfy 

1 .r n 
2ni :P dv v B(v,t) = 0 

c 

(22) 

where C is the contour of Fig. 1. We evaluate the integral over the 

semicircular portions approximately by using the asymptotic form (21) and 

taking v as the radius of the semicircle. c We collapse the contour to 

the cut, separate out the Born contribution and obtain the resulting sum 

rule 

-vBn crt) +! 
\ 1f Jvc G (t) 

d v vn Im B ( v, t ) = ! I r 

v
0 

r 

a: (t)+n-~+1 
( v ) r 

c 

a: (t) + n - ~ + 1 
r 

(23) 

for n satisfying n-~ (-) = -T, and a trivial identity for 

We remind the reader of our notation 

2 1 
2mj..l. + j..l. + 2" t. 

1 
v = 2(s - u), and 

+T. 

.. 
·' 
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Notice that the nth moment sum rule is sensitive only to the 

fixed pole at j = ~ - n - 1, and totally insensitive to possible 

Kronecker delta terms. The latter, as we shall see, can be tested 

using the dispersion relations (18) in which experimental values of the 

real part of the amplitude can be inserted. 

Wrong signature sum rules17 can be similarly derived by considering 

an artificial amplitude B(v,t) with the same right-hand cut and the 

negative left-hand cut of the corresponding B(v,t). Wrong signature 

fixed poles manifest themselves in the asymptotic behavior-of B(v,t). 

The sum rule is derived by considering the integral of vn B(v,t) over 

the contour c. For n satisfying = -T the result is a trivial 

identity, and for n ~ (-) - = +T we obtain a sum rule identical in form 

to (23) with F 1 (t ), as the asymptotic coefficient of the wrong 
n+ 

signature fixed pole term at j = ~ - n - l. Therefore we can understand 

Eq. (23) as valid for all integer n and testing right (wrong) signature 

fixed poles for .f. T • 

Using an intermediate state expansion of the retarded product ( 4), 

it is easy to see that only the second term of the commutator contributes 

to the left-hand cut of the amplitudes B(v,t). It is therefore amusing 

to note that the corresponding signatured amplitude B(v,t) is formally 

given by an anticommutator expression, and its fixed pole residues are 

formally determined by equal time anticommutators. We refer to this 

situation as anti-algebra. 

The operation of the fixed pole mechanisms discussed above can · 

be clearly seen in Eq. (23). For amplitudes with singular Born term C(t) 

the left side of the n = 0 sum rule is singular at t = 0. This 
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singularity must be matched on the right side either by the fixed pole 

residue F
1

(t) or by the contribution of a Regge pole satisfying 

a(O) = ~ - 1. In nonvacuum channels, there is no indication of the 

existence of Regge trajectories with the necessary properties, 36 and 

we must expect a fixed pole at the highest nonsense point j = ~ - 1 

1-rith residue singular at t = 0. In vacuum channels, the Pomeranchuk 

trajectory has the re~uired intercept and the Born singularity can be 

matched either by the singular Pomeranchuk term on the right side of 

(23) or by a wrong signature fixed pole at j = 1. The sum rules can 

be used to distinguish between these alternatives. 

We also observe that if a Regge trajectory passes through the 

nonsense integer a(t0 ) = A - n - 1 for some t 0 and if G(t0 ) f 0, 

the Regge pole term in nth moment sum rule has a pole at t = t 0 . This 

pole is not present on the left side of E~. (23), because we are dealing 

with a nonsense or unphysical point, and it must therefore be cancelled 

by a similar pole in the fixed pole residue F (t). 
n 

Current algebra 

amplitudes, where F (t) 
n 

is a form factor with the p-meson pole, are an 

example of this mechanism. 

Curiously enough the fixed-pole residue function can have poles 

at spacelike t values. If GP(t0)f 0 (or G~ (t
1

,) f 0) at the negative 

t value t 0 (or t
1

) where ap(t0 ) = 0 (or a~ (t
1

) 0), the j = 0 

wrong (or right) signature fixed-pole residue develops a pole at t 0 (or 

t
1

) corresponding to the nonsense ghost state on the trajectory. In the 

wrong signature case this is clearly a triumph of anti-algebra. 
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c. Unitarity,_ Factorization, and Fixed Poles 

In this subsection we discuss two principle results, both 

essentially known. First we show that t-channel unitary re~uires 

factorization for the couplings of Regge poles to both weak and hadronic 

channels. Proof of the absence of fixed poles re~uires a more stringent 

form of unitary satisfied only in hadronic amplitudes. Second we show 

that fixed double poles should be expected at nonsense integers in four-

point amplitudes with all lines weak. Knowledge of this fact is required 

to understand our results for the current algebra sum rules. 

To prove factorization we generalize the argument given by Oehme,3 7 

which requires only the analytically continued partial wave unitarity 

condition and the existence of a nondegenerate two-particle threshold 

preferably involving stable hadrons. In TP = +1 amplitudes the necessary 

threshold is provided by the nn (G = +1) or KK (G = ±1) channels. 

For TP = -1 amplitudes the NN threshold is nondegenerate. We will 

use the KK channel for. -rP = +l· since it is present for both G 

parities. 

First let us introduce the TP = +1 partial wave amplitudes 

ajk(t,J) (evaluated on the physical sheet) where j and k denote 

channel indices, according to the following assignment: j = l;KK; 

j = 2,NN helicity nonflip; j = 3, NN helicity flip; j = 4, rr helicity 

nonflip; and j = 5, rr helicity flip. Our argument applies to all weak 

channels; although we restrict ourselves, for definiteness, to the rr 

channel which is doubly degenerate. 

Denote the analytic continuation of a.k(t,J) onto the sheet 
J " II 

reached by continuing through the KK threshold by a.k(t,J). Since 
J . 



ajk(t,J) can be chosen symmetric in the channel indices, the re~uirement 

of unitarity can be written 

where 

p(t) 
2 )1/2 - 4m 

. K 
t 

and then reexpressed as the set of e~uation 

all(t,J) 
II 

all(t,J) + 

II 
== aj1 (t,J) , for 

f
2i p a~i(t,J) ai~(t,J)l 

+ II , ' for 
1- 2i p a11 (t,j) J 

(24) 

(25) 

j ~ 1, (26) 

j, k ~ 1. . 

(27) 

Regge poles occur in the following way. There is an analytic 

trajectory function J == a(t) for which 1 - 2i p aii(t,a(t)) 0. 

It is easily seen that, as far as the second terms in E~s. (25)-(27) 

are concerned, the Regge pole appears in all amplitudes of the coupled 

channel system, and that its residues factor. Therefore factorization 

could be spoiled only if the second sheet function a~Ik(t,J) contained 
J 

0 
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the moving pole at J =·a(t). This exceptional circumstance; corresponding 

to a zero of the mc1ltichannel D function of rank higher than one) cannot 

be ruled out. In the language of this proof it means that there is reaJ.ly 

a second Regge pole miraculously with the same trajectory a(t) Hhich 

does not couple to the KK state but couples to higher mass hadronic 

channels. :::n 

this sense factorization is the normal case. A similar proof of 

factorization for TP = -1 ples can be constructed "J.sing an even sj_m:;Jle~c 

set of channels. 

One important aspect of this argument is t'b.at vieak and strong 

channels enter on equivalent footing. Proofs of the absence of fixed 

poles in multichannel systems req_uire the existence of an intermediate 

state threshold for each external channel considerea38 and therefore 

apply only to hadronic c'b.annels. 

Let j be a weak channel and k be a hadronic channel. It is 

clear that Eq_s. (26) and (27) permit the presence of fixed poles in 

doubly weak ampli tud_es} and we have reviewed in subsection A severe.l 

arguments shmv-ing that fixed poles actually are present at nonsence 

integers. If we take both j and k to be weak channels} Eq_. ( 2 7) 

strongly suggests the presence of fixed double poles at nonsense inte:;ers. 

Our interest in this last point is the follmring. First i.Je oosel'',·e, 

using (26) and (27)} that fixed poles in doubly vreak amplitudes at intege:c 

generally induce 
. . -1 

[a(t) - j 0J factors.in the Regge residues of 

those ampl{tudes. Similarly fixed double poles lead to 

factors in the Regge residues of completely \-Teak four point ampli t;)cles. 

Our study of the current algebra sum rules indicates tr.at the p-rr::;son 
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Regge pole coupling in smooth and nonvanishing near t = -0.6 (GeV/c)
2 

whereas badronic amplitudes generally exhibit the well-known nonsense zero 

(dip) there.
14 

This situation is consistent with factorization only 

because singular /? couplings, corresponding to a f:i.xed double pole 

at j = 0 in the rr 4 rr amplitude, are allowed. 

D. Conspiracy 

We turn our attention now to the conspiracy condition Eq. (15) 

which relates at t = 0 the amplitude B4 containing TP = ~1 

trajectories in the t channel to the amplitude B6 containing 

TP = + 1. We suppress the isospin superscripts in this dJ.scussion. 

Since Eq. (15) holds identically in s, it imposes constraints on the 

residues at t = 0 of these trajectories. Either the couplings a4(t) 

and a6(t) vanish at t = 0 (evasion) or there exists pairs a:..(t) 

and a ( t) of negative and positive rP trajectories satisfying the 
+ . 

conditions (of conspiracy) 

a_(o) = a (o) 
+ 

(28) 

Sum rules for amplitudes B4 and B6 can, in principle, be 

used to investigate possible conspiracies for the n (isospin segment 3) 

and ~ (isospin segments 1 and 2). One would simply explore the sum 

rules as functions of t for several moments to obtain a parameterization 

of the trajectories and residues. Although this technique has recently 

been used to investigate n conspiracy in the process rN ~ nN, 39 it 

I 



• 

-25-

does not seem possible to use it for Compton scattering, at least with 

presently available data. First the B 3 
4 sum rule has f.. = 0 and 

n . == l; it diverges badly asymptotically, emphasizing the most 
m~n 

inaccurately known part of the data. Second the B 3 
6 sum rule, although 

more accurate, is useful only near t = 0 for determining the parameters 

of conspirator trajectories because important contributions from non-

conspiring trajectories (such as ~) mix in away from that point. 

Hence the only number which can be determined from the B4 and 

B6 sum rules and associated with the parameters of a single Regge 

trajectory with relative confidence is the value of the B6 sum rule 

at t = 0. However even this number provides an interesting test of 

conspiracy, through a sum rule of Fagels, 20 which we rederive here to 

incorporate recent clarification of the ~uestions of conspiracy and of 

the relation between asymptotic behavior and subtractions. 

We start with the n = 0 sum rule for B63(v,t) assuming 

domination by a single Regge poJe and a right signature fixed pole at 

j = 0: 

1 
+-

1( 
+ F(t). 

(29) 

Now set t = 0, evaluate the Born term using Table I, and reexpress the 

continuum contribution using the conspiracy condition (15): 

2 2 2 lJm 
-e [2K + K - K ] -

p p n :n: 'f
v c dv 3 ) 

v-ImB4 (v,o = 

a(o) 
v 

G(O) _c __ 
:n: a(o.) 

+ F(O). 

(30) 
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We proceed with the derivation under two different assumptions. 

l. Pure Reggeism 

We assume that the 

1-rhich couples to the B 3 
4 

rc meson lies on a Regge trajectory 

amplitude with strength G (t). 
1( 

If 

a (t) 
1( 

G (0) f 0 then there is a conspirator a (t) which couples to B6
3 

J( c 

with strength G (t )J and these functions may be identified with the 
c . 

Regge functions in E~. (30). We set F(t) - 0. 

The amplitude B 3 
4 has a pole at 

2 
t = m 

1( 
corresponding to the 

0 rc intermediate state in the t channel.. The residue of the pole is 

closely related to the lifetime of the 0 
:rr •. Using 

where A
3 

is the Hearn-Leader amplitude, and comparing the residue of 

the pole in the rc0~Regge pole term defined in (21) with E~s. (2.8) and 

(2 .12) of Reference 20 we find 

- 2 G (m 2
) 

:T( :T( 

64 :T( 

m 3 
T 

1( 

(31) 

where T is the 0 -rc lifetime and grcN is the rcNN coupling constant. 

We assume that the :rr Regge pole coupling G (t) 
1( 

varies slowly with t 

so that 

G (m 2
) ~ G ( 0) • 

1( :T( 1( 
(32) 

• 



We use (24) to rewrite (30) (with F(t) - 0) as 

t.h.s. of (30) -G (o)[4rrura (o)r1 
:n: :n: 

a (o) 
:n: v 

c 

Using (31) we then obtain 

dv 3 - Im B4 (v,O) v ' 

4 g:n:N r. :n: m:n:~l/2 
2 ~ T 

m \ . :n: . ' 

a (o) 
v :n: 

c 

a (o) 
:n: v 

c (33) 

(34) 

w·hich is the form of Pagels' sum rule appropriate for pure Regge behavior. 

2 • Elementary :n: 

Here we assume that Regge pole terms are unimportant on the right 

side of Eq. (30), and that the sum rules evaluates the residue of the 

j = 0 right signature fixed pole. If F(O) l 0 , as our numerical result 

shows, then the conspiracy condition requires a Kronecker ojO term33 

in the amplitude B4
3 with asymptotic coefficient n0 (o) = -4mF(o) at 

t = D. We assume that the Kronecker ojO coefficient has a pole at 

2 0 
t = m corresponding to the elementary :n: meson and that this pole 

:n: 

term dominates at t = 0. We then can write 

(35) 
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and the sum rule (30) becomes 

2 2 2 1 
(vc .. 

dv 3 ( ) ~ (2Kp + K - K ) + I vIm B4 v,O p n :n: ) 
vo 

4 g:n:N ( :n: m \1/2 
:= 

2 \-:n:l. (36) 
m \. T I :n: 

At present practicable cutoff energies one cannot distinguish 

between (34) and (36), and therefore one cannot directly probe the Regge 

pole nature of the pion.in Compton scattering. The sum rule does provide 

a check on the overall strength of the asymptotic structure corresponding 

to the :n: meson and on the assumption of smooth variation of the 

effective :n:-pole residue. The sum rule for amplitude B 5 
7 

in which the 

:n: trajectory can be exchanged although j == 0 is a nonsense point also 

provides some information on conspiracy. 

Sum rules similar to (34) and (36) can be written for the ~ 

meson.· we refer the reader to Section VI for further discussion of our 

results on conspiracy. 

E. Fblarizability and Kronecker Deltas 

we.finally discuss a possible test for the presence of Kronecker 

delta terms in :physical Compton scattering amplitudes. 

The amplitude B1i(v, t=O), in isos:pin segments 1 - 3, satisfies 

the dispersion relation 
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i 2 100 2v' ImB
1 
i(v, 0) 

i a me 1 . 
dv' 

i + di 2 
B1 (v,o) == 2 

+-
,2 2 

+ c v :rr . 
v v - v 

0 
(37) 

where we have included contributions of Kronecker deltas at j == 2 and 

1 
j == 4. The nucleon-:]:lole coefficient is a1 == a2 == 2 a

3 
== 2. Using the 

crossing relations (10) at t = 0, we find 

where f 1 (v) is the forward spin-averaged Compton scattering amplitude 

of the classical era of dispersion relation~. 40 A power series exp3.nsion 

about v = 0 gives 

i 2 
a e bi v2 
-~ + (39) 

The parameter bi is related quite simply to the energy derivative at 

threshold of the forward unpolarized Compton scattering differential 

cross section, 
41

'
42 

and to. the sum of electric and magnetic polarizabilities 

of the nucleon43 by 4m2 bi == 4:rr(ai + ~i) • Combining (37) - (39) and 

using the optical theorem, we find for the polarizability sum: 

m 
2 
~ 

i 
c 

+ '%!' (40) 
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This sum rule has long been known in the form with i 
c = 0 

(no Kronecker delta) and has been used to constrain a two-parameter fit 

t 
.. ~ 

o low energy Compton scattering. 
42 

Drell has recently emphasized 

the importance of using Eq. (40) to test for the presence of the 5j2 

term in the asymptotic behavior of proton Compton scattering. 45 In this 

case the total photo absorption cross section is known up to 6 GeV, and 

the rapidly convergent integral term can be quite accurately estimated 

from the data. Ironically it is the polarizability sum, which could be 

determined in low energy (20 - 80 MeV) Compton scattering experiments, 

which is unknown. Thus we have here a situation in which measurement of 

a single low-energy parameter can answer an important question in high 

energy physics, and we join Drell in urging active consideration of low 

energy proton Compton-scattering experiments. 

Our contribution to the question of the Kronecker delta term 

consistsaf the evaluation of the integral term in Eq. (40) in isospin 

segments 1 - 3. 



V. TREATJ.\1ENT OF EXPERTh1ENTAL DATA 

The most conspicuous feature of the nucleon Compton process is 

the lack of direct experimental data. Since the sum rules (23) involve 

only the imaginary p:~.rts of Compton amplitudes, we use unitarity to 

express the integrands bilihearly in terms of hadronic photoproduction 

amplitudes. 

The unitarity condition is shown schematically in Fig. 2. One 

must sum the contributions from all intermediate states that are 

energetically allowed. Experimentally the quasi-elastic (nN) intermediate 

state dominates
46 

up to photon lab energies (Elab) of 0.5 GeV, and 

between 0.5 and 1.1 GeV the inelastic contribution is dominated by the 

nnN state in the configuration n6. 

In studies of sum rules for the processes nN _. nN, KN _. KN, 7 

and yN ~ nN, 39, 47 there is ''experimental data 11 available for both real 

and imaginary parts of the amplitudes. This leads to two advantages which 

we do not enjoy. First continuous moment sum rules, involving real parts, 

can be used. Second inelasticity is automatically incorporated, and one 

need not treat individually the contributions of different intermediate 

states. 

A. nN Intermediate State 

There have been many theoretical and phenomenological attempts 

1 2 48-50 . 
to describe low-energy photoproduction, ' ' yN _. nN. Only two of 

' ' these are sufficiently canplete for our purposes, since we require a 

description of photoproduction amplitudes which is accurate as to phase, 

helicity and isospin dependence. Tne multipole analysis of Walker
2 

is a 
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direct fit to the experimental data, up to photon energies of 1.2 GeV, 

using a Born term, Breit-Wigner terms for known resonances, plus correction 

terms. Berends, Donnachie, and Weaver1 (BDW) have given a more theoretical ~-

treatment, based on dispersion relations, which extends only to E = 0.5 lab 

GeV. Their results do not fit the data as well as Walker but probably 

contain a better estimate of the helicity and isospin structure of the 

background. 

In our estimate of the rrN contribution to Im B we calculate 

the integral upto 0.5 GeV using both BDW and Walker and compare the two 

evaluations. Above this energy we use Walker's analysis. In the low 

energy region there is often serious discrepancies between the BDW and 

Walker multipoles, particularly for isoscalar photons. When one calculates 

the experiniental dcr/dt for photopro1uction this difference shows up 

most clearly in rn __,. rr p where BDW predicts a much flatter t . distribution 

than Walker for the energy range 0.4 ~ Elab ~ 0.5. The data used by 

Walker would appear to agree with his own analysis2 and not BD~! 

To illustrate the importance of this difference we plot in Figs. 

3-5 the values of ! Im B at t = 0 for three sum rules of particular 
:JL 

4 interest. One (B
3 

), the helicity flip current algebra amplitude, has a 

small discontinuity at 0.5 GeV betwee!l the BDW and Walker analyses. 

The Drell-Hearn amplitude involving two isoscalar photons (B 1) is badly 
2 

discontinuous while the discontinuity of 3 B
2 

, the Drell-Hearn amplitude 

in which _isoscalar and isovector photons interfere, is intermediate between 

these two extremes. 
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Both the BDW and Walker dats. are essentially given directly in 

terms of multipoles. To calculate Im B for our sum rules, we use 

Eq. (A. 2) expressing the B i 
j 

in terms of s-channel helicity amplitudes 

and then decompose into partial waves. Then the partial wave unitarity 

. 22 25 
equation ' enables us to express the Compton scattering partial wave 

amplitudes in terms of photoproduction multipoles. 

There is, unfortunately, a technical difficulty in this approach 

in that the box diagram of Fig. 6, leads to a divergence of the partial 

wave series for t ~ -0.28. This was countered by calculating (in a 

way too inelegant to reveal) the divergent part of Fig. 6 and subtracting 

its partial wave decOmposition from the divergent series produced by the 

photoproduction multipoles. 

B. Inelastic Intermediate States 

We must now turn to the insertion of inelastic intermediate 

states in our unitarity sum. In the energy range of interest nnN is 

the most important inelastic state and this is predominantly produced 
3,46 

in the quasi-two body state ·n6. Thus at 0.7 GeV n6 is essentially 

lOa% of the inelasticity while at Elab = 1.1 GeV it is more like 

50~ 7o%. 

In order to describe nN ~ n6 we .use the,Stichel-Scholz3 model 

which approximates51 the amplitude by the s-channel nucleon Born term 

and the u channel !::::. pole of Fig. 7. We chose to calculate these 

graphs by fixed t-dispersion relations utilizing the known residues at 

the poles. Then by gauge invariance the t channel one n exchange term 

(Fig. 8) is automatically included. This moiel fits the data well near 

t = 0 both in dcr/dt and the density matrix elements P
33

, P
31

, P
3

_1 

describing the decay of the !::::. • 
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This calculation ignores the magnetic moments of the N and the 

6. which are important away from t = 0.- Other obvious omissions are the 

higher s-channel resonances, which can be estimated, and the u-channel 

** resonances, which cannot, due to the unknown yt:, ~ N coupling. One 

effect of these omitted terms is to destructively interfere with the 

Born terms of Fig. ~ and reduce the calculated cross·section. They 

also introduce of coursenonzero values.into helicity and isospin states 

not populated in the model of Fig. 7. Tne relative size of these effects 

may be estimated by examining rN ~ rrN at large It! where the mass 

difference of N and 6. becomes negligible and we have similar kinematics. 

However, we contented ourselves with taking the amplitude of Fig. 7 and 

multiplying it by a form factor F(t) determined so as to fit the 

experimental values of drJ/dt for rrN ~ rr6.. This simulates the 

destr~ctive interference at large It! of the omitted terms but not the 

population of new helicity and isospin states. The helicity structure 

thus obtained is essentially the same as that given by an absorption 

model calculation based on the one-pion exchange graph (Fig. 8). Thus 

Fig. 7, with form factor, already contains the most important effects 

given by absorptive corrections. A typical F(t) at Elab = 0.85 GeV 

wa.s given by: 

~(t) 0. 66 exp( -2. 9t 

It may be worth noting that in our modified Stichel-Scholz model 

for rN ~ ic6. , the amplitudes involving isoscalar photons vanish. We 

expect the isoscalar photon contribution to be small (because there is 

no rr exchange pole) and of the same order as many omitted effects 



in the isovector part. Such effects are difficult to estimate. 

In order to find the contribution to Im B of the ~ state 

we follow the same procedure as for nN • Namely we decompose rrN ~ ~ 

. t . t . 1 d t. 1 . t . t 22 1n o par J.a waves an use par J.a wave rmJ. ar1 y. We note that the 

diagram of Fig. 9, does not cause a divergence of the partial wave series 

rmtil t ~ -1.2 and so we need no special action like that necessary 

for Fig. 6. 

In order to describe the inelasticity not produced in the ~ 

intermediate state we add incoherently the contributions of higher 

resonances as in Fig. 10 multiplied by the factor 

r. 1 r~/\ 1ne J~ 

so as to get the fraction not already included in the rrN and ~ states. 

Since we must use both the 
2 

rN ~ nN multipole analyses and the 

nN ~ nN phase shifts
8 

in order to extract the ** rN --+- N coupling by 

factorization, the incoherent resonance contribution is ambiguous because 

of differences in the resonance mass and width parameters in Refs. 2 and 8. 

There are further ambiguities due to our inaccurate knowledge52 of the 

~ partial widths rn6 and because of defects in the treatment of 

resonances in our model for rN ~ n6 • These ambiguities are taken 1nto 

accormt in our error analysis. 

Finally we would like to record a possibly more fundamental 

objection to the simulati9n of inelastic effects in weak amplitudes 

using a resonance dominance model. In hadronic amplitudes large t-channel 

contributions (such as our rr exchange in rN ~ n6) violate the rmitarity 
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bound in the s channel and usually lead to an s-channel resonance 

which can give an alternate description of the t-channel phenomenon. In 

weak processes such as photoproduction and Compton scattering, there is 

no unitarity bound and there is less reason to believe that t-channel 

exchanges can be reasonably described by s-channel resonances. We 

realize that vector dominance relates Compton scattering to strong processes 

(e.g. pN __,. pN) but this only depends the mystery. 53 

C. Errors in Evaluation of Sum Rule 

We assigned errors to our sum rules by the following method. 

Divide the contribution to the sum rule into ten pieces. Seven of these 

coming from the rtN intermediate state (namely Walker's 6 resonant 

p3.rtial waves s11, P11, P
3
3' ~l3' D15, F15 plus the sum of 

nonresonant partial waves) plus o~e piece each for the rt6 and non-rt6 

inelastic contributions. The last contribution is the nucleon fQrm 

factor needed for the fixed pole in the current algebra sum rules 

The error in the last is estimated from the dispersion in the various fits 

of Ref. 54. The first 9 q_uantities were assigned preset errors ranging 

from lo% for well determined isovector photon couplings to 10o% for some 

isoscalar couplings. The size of the discontinuity between BDW and Walker 

at 0.5 GeV was a help in judging these errors. The total error is found 

by adding the above as uncorrelated errors to an error estimated from 

assuming the discontinuity at 0.5 GeV propagated over an s range 

chosen as 0.3 GevF. 

Although this arbitrary method cannot be trusted to give more than 

a rough indication of the error in any given sum rule, we might hope that 

it does give an accurate picture of the relative errors of the sum rules 

for different isospins, helicities and t values. 
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VI. ANALYSIS OF SUM RULES 

A. General Pro~erties 

We finally come to a description of our evaluation of the sum 

rules (23). We have calculated the left-hand side of (23) for t 

varying between 0 and -0.9 and for all 26 sum rules corresponding to 

the various spin and isospin states. We have also taken different values 

of n in the range 0 to 3, thus obtaining information about both right 

and wrong signature fixed poles in (23). ·We have selected from these 

the most interesting sum rules and present our results graphically in 

Figs. 11-28. Before commenting on the significance of these results, we 

will describe the meaning of the sundry quantities plotted in the figures. 

The integrals are,defined to be the left-hand side of 

(23) evaluated in units such that 1i = c = GeV = 1. Thus 

Vn i( ) dV Im B. v,t 
J 

( 41) 

where the first term is the Born contribution. 

Here the cutoff v corresponds to a photon lab energy of 1.12 
c 

above which the published data55 on o'total (rp) shows our model for 

Im B. i to be undoubtedly wrong. 
J 

In the graphs \) represents the integrals I.i(n) with errors 
J 

estimated as described in Sec. VC . The integrals are evaluated using 

the BDW multipole analysis
1 

from the threshold to 0.5 GeV and Walker's 

analysis
2 

above that energy. All the sum rules have also been evaluated 

with Walker's multipoles for the whole energy range, eliminating BDW. 

Usually the difference between these evaluations is smaller than our 



estimated errors but where they differ significantly we also graph the 

pure Walker evaluation of which we denote by 0 . 

~he Born term contribution to I.i(n) is represented by a solid 
J . 4 . 

line where in the current algebra sum rules I this also includes 
1,2, 3 

the fixed pole contribution. the dotted line indicates the 

Born term without the fixed pole. 

The lowest value n = n . (0 or 1) such that (23) is a right 
mJ.n 

signature sum rule is given in Table 1. In theory one may use the value 

of I.i(n . )/I.i(n . + 2) to estimate a value for the intercept a 
J mJ.n J mJ.n 

of the Regge pole assumed to saturate both sum rules. However the presence 

of unknown fixed poles in I.i(n . + 2) renders this dubious in our 
J mJ.n 

case• Inste'3.d for sum rules I .i(n f n . ) we plot the quantity (denoted 
J mJ.n 

by 6 on the graph) 

a - ~ + n . + 1 mJ.n 

a-~+n+l 

( 42) 

where for a we put the values already known from the a:r:.alysis of strong 

interactions. We include generous errors in our knowledge of a in the 

plotted errors of If and differ significantly 

it may indicate the presence of a fixed pole. 

In spin type 2 we indicate with X an estimate of the non-

asymptotic parts of p, pi, p and ~ exchange. calculated from (19 ), 

(20) and Appendix C as 

where 

(2 - a)t 
2a 

(a + n
3 

- 1) v n-n3-1 

(a + n - 2) c 
( 43) 

is the value of n . mJ.n for spin type 3 and the same isospin i. 
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Finally in the conspiracy sum rules (spin type 6) we indicate 

with a \1 symbol an estimate of the nonconspiring contribution 

calculated from factorization as 

- t 

2V 
2 

c 

a+ 2 
a ' (44) 

and we restrict to i = 1, 2, 3 as i = 4 has a (known) fixed pole. 

For i = 3 we have i' = 3, while for i = 1, 2 we take i' = 2 as 

being more reliable than i' = 1 (because isovector photon couplings are 

more accurately determined than isoscalar). 

The main tools in the analysis of our results are the sum rule 

graphs just described. Perhaps the most important thing we are interested 

i~ is to discriminate between Regge pole and fixed pole contributions to 

the sum rules. For higher moment sum rules this can be done through 

the quantity 
i 

Q. (n) of Eq. (l-l2). 
J 

For some lowest moment (n = n . ) ml.n 

sum rules we exploit the factorization property of Regge residues (this 

has already been used in obtaining (44)). For example, the amplitudes 

Im B1i and Im B
3

i are dominated at high energy by, respectively, the 

nucleon helicity nonflip and nucleon helicity flip couplings of the same 

Regge pole. If there are no fixed pole contributions to the sum rules 

I i and 
l 

I i , then factorization (see Appendices B and C) requires 
3 

(4m2 - t )A I 
2V B 

c 
( 45) 

where A' and B are the conventional nonflip and flip residues used 

to describe nN and KN scattering. 56 If the sum rule ratio agrees 

with the value calculated from hadronic processes, then we have evidence 

suggesting that the fixed pole contribution to these sum rules is unimportant. 



-40-

Another quantity which is sensitive to fixed. pole contributions 

to the sum rules is the effective trajectqry a.i(n) (which is also a 
J 

function of t) defined numerically by 

== (:>-. - n - 1) + 
vn+l Im B.i(v,t) 

I.i(n) 
J 

(46) 

where we average the numerator over energies Elab between 0.88 and 

1.12 GeV. This quantity is the trajectory a(t) whose Reggeterm 

(as in (21)) both saturates the sum rule Iji(n) and fits the imaginary 

pg.rt data averaged over the upper end of our integration range. By 

exam_ing Eq_s. (2·1) and (23) one can see the following. co:nes 

out reasonably close in shape to the trajectory kllown.to couple to the 

amplitude B.i, then this indicates that the fixed pole in that amplitude 
J 

is weak. However, if turns out closer to the fixed pole value 

(:>-.- n - 1) to which the sum rule I.i(n) is sensitive, then we have 
J 

evidence for a strong fixed pole which contributes to the denominator in 

(46) but not to the numerator since a fixed pole term is p~ely real. 

Graphs of the quantity a. i (n) are used whenever' their accuracy 
J 

allows useful information to be extracted. The plotted errors in the 

graphs include those of and the dispersion obtained by varying 

the numerator in (46) over the energy range 0.88 to 1.12 GeV. Unfortunately 

a.i(n) is rather sensitive to errors in the parameterization of the data J . 

near l GeV and depends on the dubious assumption of the validity of Regge 

behavior at this low energy. For this reason evidence from the effective 

a graphs must be taken with a healthy grain of salt. 
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Regge Pole Sum Rules~ r1'
2'3 

1 3 

Although right signature fixed poles can be present in the 

amplitudes there is no compelling theoretical reason, such as 

would follow from the mechanisms discussed in Sec. IVA, for them to be 

present. Therefore we might expect the right signature sum rules (n = 1,3) 

for these amplitudes to be dominated by the ~ P', and ~ Regge poles. 

Further we should expect reasonable answers from these sum rules, 

because they are at least as ·convergent as the corresponding low moment 

sum rules in nN and KN scattering.9 

If there are no j = 0 fixed poles,then the n = 1 sum rules 

r1' 2' 3 (1) shoDld directly measure the photon (helicity flip) couplings 
1, 3 

of the p, p', and ~' and the ~uotient I1i(l)/r
3
i(l) should reveal, 

through E~. (45), the same nonflip/flip nucleon coupling ratio obtained 

by analyzing nN, KN, and NN elastic scattering. The current 

models~ 56, 57 for these amplitudes would lead us to believe that near 

t = 0 

A' 
VB 

A' 
VB 

for 

for 

p and P' "" 1 
2 

"' 
l 

p and ~ 20 

remembering our definition of v is 2m larger than the usual 

(s - u)/(l.Jm) • 

(47) 

There is also some evidence that the amplitude A' has an 

additional zero for P' and ~ near t "' -0.5 over and above that 

needed to erase the ghost. The evidence for this zero comes from a 
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photoproduction FESR47 
for the~ while for P' the zero is 

indicated by 1tN FESR's7 and also by the structure in pp elastic 

scattering near 58 
t ""' -0.5. The work of Refs. 47 and 58 was claimed to 

be evidence for the so-called no compensation mechanism for the P' and 

A.2 •. This has an extra zero in both thE;! flip and nonflip couplings but 

in fact their analysis was most sensitive to the nonflip zero 

and for the ~' at least, one can rule out the flip zero from high 

energy data for 1tN ~ ~N, and 1tN ~ ~6 • If this zero is a true effect 

of the leading Regge trajectory, and not due to interference with 

secondary trajectories, our sum rules should reproduce it. 

l P d P I E ha s Rul Il
1

'
2
3(l,3) • an · xc nge urn es: 

Here there are two possible isospin states, 1 and 2, corresponding 

to isoscalar and isovector photons and one may expect the latter to be 

more reliable. Thus in general the amplitudes involving isoscalar photons 

will have rather small Im B because the resonance couplings of Walker 

are larger for isovector than isoscalar photons and because our model for 

the inelasticity has a very small isoscalar part. Thus isospin 1 sum 

rules tend to be dominated by their Born terms which are not always small. 

Under such circumstances E~. (46) predicts that the effective a will be 

nearer the fixed pole value A - n - 1 than the intercept of the hope~ 

for Regge pole. One should however note that BDW and Walker are not in 

~uantitative agreement (cf. Fig. 3) and such sum rules have a large 

discontinuity at E1~b = 0.5 GeV. In Fig. lla we have plotted the results 

of using Walker from threshold rather than BDW and as expected this leads 

i ' ) to results showing a smaller deviation of Ij \n from its Born value. 



.. 

The nicest sum rule of this section is r1
2 (1) shown in Fig. l2a. 

The corresponding a (Fig. l2b) estimated as in (46) is in agreement 

with an expected average P + P' intercept while even the higher moment 

sum rule (Fig. J2c) shows agreement with 2 r1 (1). Both results 

suggest that there is no important j = 0 fixed pole. 

The corresponding flip sum rule r
3
2 (1) (Fig. 14a) is not so 

spectacular with both a
3

2 (1) (Fig. 14b) and r
3
2 (3) (not shown) showing 

less agreement with the p + P' and preferring a lower intercept. 

The isoscalar photon sum rules r1
1

(1) and :S 1 (1) (Figs. 11 and 13) 

do not provide striking evidence for or against a fixed pole at j = 0. 

From Eq. ( 4.5) we find at t = 0 

A' for P +P' from is_ospin 1 "" 0.6 
vB 

from isospin 2 "" 0.3 
\48) 

which agree reasonably with the nN result of 0 • .5. Of course it is 

quite possible that the ratio of p and P' is very different in nN 

and Compton scattering (and again it may differ here in the two isospin 

states). However this does not affect the above argument too much as high 

energy data on n!p polarization suggest56 A'/vB is similar for both 

p and P'. 

In fact59, 60 one may attempt to calculate the relative amount of 

P and P' in o~ amplitudes by using at t = 0 the linear combination 

!(I 1 (l) 2 ( ) 3 ( ) ) 1 2 ( ) 2 1 + Il 1 + Il 1 - 2 Il 1 which only involves 

data for the ?'P state and combine it with the O'totaJ. data known upto 
55 ap-1 apr -ap 

7.5 GeV. If you fit the latter to Av (1 + c v ) subject to 

the constraint provided by the finite-energy sum rule one finds 



l = 0.65 gives c 5. 7 + 5.0 

l = gives c 2. 

Thus the closeness of ap and ap, makes it difficult to 

disentangle their separate contributions but in any case there is a 
.. 

good simultaneous fit to the FESR and the ~total data. This is in agreement 

with our rougher estimates a
1

2 (l), r
1

2 (3) which also indicate there 

is no necessity for a large j = 0 right signature fixed pole. 

. 6o 59 
Our work also agrees with that of Costa et al. and Creutz et al. • 

The latter authors stress the importance of looking for a j 0 fixed 

pole but it is strange that they should use a sum rule (namely 

l( ) 2 3 I 1 3 + I 1 (3) + I
1 

(3)), sensitive to j = -2 fixed poles, as part 

of their investigation. 

2. A
2 

Exchange Sum Rules : r3 · (l) 
l 3 

Our results are given in Figs. 15 and 16 and both the sum rules 

and the effective a plots appear to be consistent with A2 exchange. 

At t ~ -0.5 we expect a zero in . r
1
3(l) and none in r

3
3 (l) which 

is not inconsistent with our graphs. At t = 0 we find from (45) 

A' l 
VB 7 --. 15 

which is not ridiculous compared with (47). (However see our comment 

in VIE.) 

On the basis of an argument involving F/D ratios, factorization_ 

and a crude evaluation (Born term only) of the .r
1

3 (l) sum rule for the 

nucleon and its SU(3) partners 
10 

L: and :::: , Gross and Pagels have 

. 
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suggested that there is an important j = 0 fixed pole in this sum rule. 
. . 

From our more complete saturation of the nucleon sum rule and the 

associated effective a plot (Fig. 15b) we find no evidence for a large 

fixed pole (particularly if the BDW isoscalar photon multipoles are 

correct). However our method is not very sensitive to this because of 

the closeness of the A2 intercept to zero. If our findings are to be 

compatible with Gross and Pagels then their fixed pole must couple 

predominantly to the strange baryons. 

C. Current Algebra Sum Rules: 

1. Time-Time Sum Rules: 

Here we study the sum rules obtained by taking matrix elements 

of the equal time commutator of time components of the isovector current 

4 between nucleon states with helicity nonflip, r1 (0), and helicity flip, 

4 . 4 12 13 
r
3 

(0). Although these sum rules are well known ' ' previous 

evaluations
61 

seem to have been solely concerned with r
1

4(o) at t = 0 

where it coincides with the Cabibbo-Radicati sum rule. 12 

These sUm rules have Born contributions which are infinite at 

t = 0 and require the existence of a j = 1 fixed pole to produce a 

finite answer. (See Sec. IVB.) Current algebra, after the usual technical 

assumptions, 
4 

predicts that the fixed pole residues (as defined in 

Eq. (23)) l:i.re 

2 . v 
- ( 2me / t ) GE { t ) in 

(49) 
in 
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where GEV(t) . and GMV(t) are the usual electric and magnetic isovector 

form factors of the nucleon normalized to GEV(O) = l and 

l + K 
p 

K 
n 

For our test of these sum rules we first note that the ratio of 

copplings of the p Regge pole at t = 0 can be estimated from nN 

scattering as A'/vB ~ 1/20, a number which is reduced by a factor of 

2 --+ 3 from its value at the p pole 2 
t = m p If factorization holds 

we must have for all t (See Appendix Band Eqs. (23), (45), and (49).) 

A' 
v B 

c 
= 2 

4m2 - t 

4 
I
1 

(0) + 2/ v (2me t) GE (t) 
(50) 

In Figs. 17 and 18a the sum rules 11
4(0) and 1

3 
4(o) are 

plotted with the fixed poles of Eq. (49) subtracted off. If current 

algebra has supplied us with the correct value of the fixed poles then 

the resulting sum rules are superconvergent5 and for high energy cutoffs 

the data points should lie very near to the zero line of the figures. 

Thus one is somewhat cotnforted that· the data points lie in between 

their generalized Born terms and zero. 

Since the form factors have been subtracted of~ the plotted 

points of Figs. 17 and 18a correspond exactly to the numerator and 

denominator of the last factor of Eq. (50) and determine the p couplings 

through Eq. (23). We see from the figures that the general character of 

the sum rules is given by the Born minus fixed pole contributions. At 

t = 0 we have for the (finite part of) these contributions 



Born minus fixed pole of 

II II II II II 

-0.0244(21.1- 7.05 d~ GEV(O)) 

d v = -0.026(13.7- 7.05 dt GM (0)) 

(51) 

a large cancellation between the finite part of the Born term and the 

derivative of the form factor. In I
3
4(o) this cancellation does not 

occur. Therefore the smallness of the nonflip/flip ratio of the p 

Regge couplings at t = 0 is qualitatively realized by the Born minus 

fixed pole contributions to the sum rules. Note that in the p 

dominance model for,the form factors the ratio of the fixed pole 

contributions at t = 0 is essentially the value A'/vB at the p pole. 

The exact value of the right hand of (50) is in agreement, within the 

errors, with the rrN scattering value at t = 0. 

factorization to hold only to the extent that a 

unimportant. 

Of course one expects 

' t 'b t' 
62 . p con r~ u ~on ~s 

The agreement at t = 0 extends to nonzero t for 

I1
4

(o) remains small for all t. In this sum rule we expect the ~ohler 
14 

zero at t ~ -0.2 and this is exhibited in Fig. 17, while at ap(t) = 0 

we expect a zero in the sum rule (for p choosing either sense or nonsense) 

if the p-+ TY coupling is regular and no zero if it is singular. (See 

Sec. IVC.) In our opinion the data slightly favors the latter alternative. 

Unfortunately the effective a calculation (Eq. ,' (46)) for this sum rule 
' 

is of no use, because the sum rule is so small. We would be dividing by 

a small number with large errors in (46). Incidentally, at t ~ O, r1
4(o) 

is in agreement with earlier work61 both as to the value of the sum rule 
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and the relative size of individual multipole contributions (see Table 3). 

In I
3 

4(o) the situation is not so good at large t. The 

effective trajectory a
3 

4(o) (Fig. l8b) shows little agreement with the 

expected p shape. and the large value a~ 1 for t < -0.5 would seem 

to indicate that we should have subtracted off a form factor of larger 

modulus than 2/ v ( -2e t) GM ( t) . Taken at face value this is a violation 

of current 

data. Thus 

algebra. 

4 

However it hinges on a rather delicate feature of the 

Im B
3 

(v, t ) , for Elab ~ l GeV, changes sign near t = -0.5 

due to the fact that the dominant resonant contribution (;+(1688)) 

vanishes, 63 and this sign change forces a
3 

4(o), calculated from Eq. (46), 

above the fixed pole value. Although the vanishing of the resonance 

contribution is perhaps expected64 it does mean that the resultant 

amplitude depends delicately on the more uncertain parameters of Walker's 

analysis, 2 as well as our own dubious analysis of the inelastic contri-

bution. This, together with our theoretical bias, makes us prefer to 

ignore this apparent violation of current algebra. 

Therefore, assuming that the current algebra prediction of the 

fixed pole is correct, we note the interesting point that I
3

4
(o) has 

no zero near a (t) = 0. If the p chooses sense at a = 0 we expect 
p 

a double zero if p ~ rr is nonsingular and a single zero if it is 

singular. The p choosing nonsense predicts one less zero than the 

above. Thus our sum rule predicts p choosing nma:nse with a singular 

P ~ rr coupling. If current algebra were wrong, the larger fixed pole 

necessary to produce a better a
3

4(o) could also produce a zero in the 

p coupling at a ( t) = o. 
p 
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Finally we show the sum rule r
3

4
(1) and its associated a

3
4

(1) 

in Figs. 18c and 18d. The sum rule is sensitive to a wrong signature 

fixed pole at j = 0 which is needed, if our interpretation of the p 

in r
3

4(o) is correct, with a singular residue at ap(t) = 0 in order 

to cancel the pole of the Regge term. It is evident from Fig. 18c that 

something, presumably the fixed pole, has nicely cancelled the singularity 

in the 6 contribution, Eq. (42), and has produced a sum rule with a 

smooth variation in t. The effective a
3

4
(1) suggests p exchange 

at small /t/ and, somewhat dubiously, since the sign change mentioned 
I 

in connection with r
3

4(o) also occurs here, suggests the fixed pole value 

at large /t/. Therefore r
3

4
(1) is certainly not inconsistent with an 

interpretation that current algebra is correct for t
3

4(o), but one 

must admit r
3

4
(1) is hardly a stringent test of that interpretation. 

We do favor the interpretation that current algebra is correct. However, 

it is rather remarkable, although hopefully coincidental, that r
3 

4(1) 

4 and a
3 

(1) are consistent with ~ j = 0 wrong signature fixed pole 

and a p with a single zero in its residue function. Unfortunately. 

as we have seen such a p is inconsistent with the n = 0 sum rule 

unless you increase the j = 1 fixed pole from its current algebra 

value (49). 

We cannot claim on the basis of this work to have definitely 

confirmed or refuted current algebra although we do favor the former 

alternative. First both the sum rules appear to be converging and 

secondly, we obtain agreement near t = 0 with the hypothesis of p 

dominance of the sum rules once the form factor terms are subtracted off. 



-50-

At large t ~ assuming current algebra is right, we obtain the 

interesting prediction that p chooses nonsense with a singular P ~ rr 

coupling which eliminates the zeros found in p couplings to hadronic 

processes. In this picture of the p couplings the wrong signature 

fixed pole at j = 0 plays very different roles in weak and strong 

processes. In the strong case this fixed pole seems to be purely 

''additive, "29 giving zeros in the p-Regge term but spoiling the Schwarz17 

sum rules. In the weak case it is "multiplicative" and fills in the 

zeros. 

2. 4 Time-Space Sum Rules: I
2 

(l) 

Using low-energy theorems and the assumption of an unsubtracted 

dispersion relation Beg16 obtained a sum rule for the amplitude B2 
4
(v,t) 

at t = 0. This sum rule was rederived and extended to all t by Adler 

and Dashen
4 

using the equal-time commutator of the time and space 

components of the isovector current and the infinite momentum limit. 

One interesting property of this sum rule is that it is invalid in a 

field theory of free nucl~ons, because the infinite momentum damping 

assumptions fail in that theory. 

the fixed pole (effectively at 

On the basis of Regge theory (Appendix D) 

4 
j = 0) of B

2 
(v,t) can be calculated 

to be 

(52) 

where the first term is the nonasymptotic contribution of the 

fixed pole of 4 
B
3 

, and the second term is the contribution of a 

-+ 
l 

· bl Jro -- o-+ poss~ e fixed pole. If the current algebra derivations of 

the sum rule are correct, then H(t) = 0 • 



4 4 
We show I

2 
(1) .in Fig. 19a and a

2 
(1) in Fig. l9b. The 

X's denote the nonasymptotic contributions of the p trajectory which 

4 
Regge theory permits us to. calculate from· I

3 
(0) (see Appendices C and D). 

This contribution is meaningless near a (t) = 0 because its singularity ', ' p 

there must be cancelled by a compensating trajectory. 65 The current 

algebra fixed poie residue e2 GMV(t) is subtracted off and the 

combined Born minus fixed pole is plotted as the solid line in Fig. 19a. 

The Born term alone is plotted as the dashed line to show the dominant 

effect of the e
2 

GMV(t) term. 

If the current algebra fixEd pole was correct then, at least for 

the mythical high energy cutoff, the data points (> would be expected 

to lie near the zero line in Fig. 19a. Since the data points have a 

sign opposite to the p nonasymptotic term (near t = 0 where the latter 

might be trusted) and even lie on the wrong side· of the generalized Born 

term, Fig. 19a suggests that 'the current algebra prediction is wrong and 

that H(t) -~ -e2 GMV(t) • 

4 However a 2 · (1) does not support this interpretation near t = 0 

and indicates-an effective intercept consistent with an X trajectory 

(·TR} -- ( + ) -+) ( ) "" with ·ax 0 ~ -0.5 , ins~ead of the fixed pole value of 

zero. Although the sum rule results are presumably more reliable than 

the effective a determination at our low cutoff energy, we speculate 

further on the X trajectory. If·. ax ( t) stays one unit below the p 

upto t ~ -0.6 it could well be the necessary compensator, a possibility 

which is supported by the fact that the X coupling apparently has 

opposite sign to the p nonasymp~otic term. 4 The wild behavior of a2 (1) 

for -t > 0.4 could be due to a· complicated cancellation between the p 
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and its compensator. On the timelike side if ox.Ct) were roughly 

parallel to a P one would expect a -+ 0 meson at reasonably low mass, 

for which the lowest threshold decay channels are 4n and KKrr • 

Further if is satisfied by an X trajectory, not a -+ 
0 fixed 

pole, this Regge pole will contribute via its nonasymptotic term (see 

4 4 
Appendix D) to I

3 
(0) . This effect is quite large (- 25% of I 3 (o)) 

at t = 0 but negigible at the crucial larger ltl values. 

In summary, although the sum rule I 2 
4

(1) seems to show that 

the current algebra prediction is incorrect, and that the fixed pole 

value is much nearer the free field theory value of zero, the effective 

c:x2
4(1) plot allows us to explain this on the basis of a large X 

trajectqry contribution. 

D. Antialgebra Sum Rules: 

Current algebra purports to associate right signature j 1 

fixed poles with the equal-time commutators of currents satisfying 

pretty algebraic properties. In Sec. IVD we anticipated the proposal of 

a fundamental algebra of anticommutators to describe wrong signature 

fixed poles at j = 1. Of particular interest are those sum rules which 

share with I~, 
3 

( 0) the property of having Born terms which are singular 

at t = 0. In the current algebra case this normalization condition on 

the fixed pole, in terms of the Barn singularity, corresponds to current 

conservation. 

Because the singular Born term mechanism (discussed in Ref. 18 

and our Sec. IVA) applies, the sum rules Ii,
3

(o) and I
7
5 (o) are 

guaranteed to exhibit wrong signature j = 1 fixed poles with singular 
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coupling strength at t = 0 fixed by the Born term. Since isoscalar 

photons with small continuum contributions are involved, we also expect 

that the fixed pole couplings at large !tl follows the shape of the 

Born term. In the case of right signature j = 1 fixed poles (if 

current algebra is correct) this is not true because the fixed pole 

couplings display the marked t dependence of the form factors, E~. (49). 

As a typical example we show I
1
3 (o) in Fig. 20. It is clear 

that the data points <> follow the Born term (solid line) and lie far 

from the 6 points calculated, E~. (42), assuming no wrong signature 

fixed pole. Because the continuum contribution is small, a1
3 (o) would 

clearly support the fixed pole interpretation. 

Because the Pomeranchuk pole (with ap(t) = 1 at t = 0) is 

present, the sUm rules . I 1' 2 (o) need not have a wrong signature j = 1 1,3 

fixed pole but can be satisfied by the Pomeranchuk Regge pole term with 

singular coupling at t = 0. (I
1

2 (o) is presented in Fig. 21.) The 

lack of correspondence between the sum rule points () and the P + P' 
. 2 

contribution 6 calculated from I 1 (1) definitely shows the existence 

of a strong j = 1 fixed pole, and this interpretation is supported by 

2 a1 ( 0) (not shown ) • 

The interesting behavior of I 1
2 (o) at large ltl should be 

noted. Comparison of the data points <) with the Regge contribution 6 

shows that the sum rule is ·dominated by the fixed pole term even for 

It I ~ 0.6 . The fact, that the wrong signature fixed pole couplings do 

not decrease rapidly with increasing -t may be related to the presence 

of left-hand cuts in the wrong signature couplings not present in the 

right signature case. 



The formula 

(53) 

for the total photon cross section on hadron targets of hypercharge Y 

and isospin I , was derived in Ref. 18 assuming pure Pomeranchuk pole 

dominance. Existence of the wrong signature j = 1 fixed pole 

invalidates this formula, at least for nucleons. Equation (53) is 

very dubious on other grounds, since, using factorization, one can 

derive from it clearly erroneous results for the ratio of asymptotic 

total cross s~ctions for any strongly interacting system. Neither our 

sum rules nor the factorization argument directly invalidates the weaker 
I 

hypothesis--namely absence of the j = 1 fixed pole in y:rr -+ yrc only--

used by Mueller and Trueman. 
66 

E. Drell-Hearn Sum Rules: I 1-3(0) 
2 

These sum rules are sensitive to right signature 
p + 

j = 1 fixed 

poles in the amplitudes B21~3 (v,t) • If conventional theory is correct, 

the fixed poles are absent and, since we have helicity flip f.. = 2 , the 

amplitudes satisfy superconvergence relations. 5' 67 In explanation of the 

phrase "conventional theory," we cite two facts. First, the assumption 

68 
of superconvergence for B2 (v,t) is, at t = 0, equivalent to the 

assumption, used in the original derivation19 of the Drell-Hearn sumrule, 

of low-energy theorem plus unsubtracted dispersion relation for the 

forward spin flip Compton amplitude f 2 (v). Second, it would seem that 

the superconvergent sum rules follow from the conventional algebra of 

the time component of the appropriate isospin part of the electromagnetic 
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current plus the usual technical assumptions of the infinite momen~um 

4 
method. 

Drell and Hearn considered only the proton sum rule obtained by 

adding ~ (I2
1 (o) + I

2 
2 (o) + I 23(o)) , but, at the cost of using the 

more uncertain isoscalar photon data, we 'investigate all.three sumrUles. 

Normal parity contributions to B
2
(v,t) are suppressed by one power of 

energy, 69 and we therefore consider the abnormal parity trajectories 

D and E as well as the normal P and P' in isospins 1 and 2 

(I = 0 exchange) and the abnormal ~ and normal A2 in isospin 3 

(I = 1 exchange). We write schematically 

I 1,2(0) 
2 ' 

· a_u E(t)-1 
v ' c 

a~(t)-1 
"' v + c 

+ 
ap P' (t)-2 

v ' c 

a~ (t)-2 
v 

c 

(54) 

indicating the asymptotic powers of the Regge pole contributions. 

On the basis of the expected intercepts of these Regge poles, all 

three sum rules should superconverge at large cutoff energy. However 

' 66 
some doubt has been expressed concerning ~he convergence of the I = 0 

exchange sum rules on the basis of Regge cut theory. If there are 

important abnormal parity components of the two-Pomeranchuk Regge cut, 

then to within logarithms we would expect 
l 2 -1 Im B

2 
' (v,t) "' v . and the 

corresponding sum rules would diverge. Note that a fixed pole would 

make Re B "' v -l 
2 

and the sum rule integral would still converge. 

Our results are presented in Figs. 22-24. If the superconvergence 

assumptions (rapid falloff of Im B2, absence of fixed pole in Re B2 ) 



are satisfied, then a.t sufficiently high-cutoff the data points 

should lie right on the zero line ir.. the graphs. The value-of _I2
1

(o) 

-(Fig. 22) is very small and seems q_uite satisfact?ri0 within the large 

errors (see Fig. 3 for the disturbing picture of 
---1 -

Im B2 ) • The sum 

rule r22 (o) (Fig. 23) shows an impressive·ca.ncellaticm19, 20 betwe-en 

the Born term and the continuum for all t • The data points are 

consistent with zero (within errors) even at. our low cutoff energy, and 

the sum rule must be deemed a success. 

In I2
3 (o), Fig. 24a, on the other hand, continuum and Born term 

reinforce, for both the pure Walker and the BDW plus Walker evaluations, 

and produce a sum rule which gives no hint of the expected superconvergence. 

This judgment is based on relative size of sum rule and Born contribution 

rather than on the absolute size of the former. Although the rule of 

thumb that the scale of a convergent sum rule is set by its Born term 

has proven q_uite reasonable, it is not clear a priori that it should 

be true, and it therefore becomes important to compute a2
3 (o). 

In the context of this sum rule, the q_uestion answered by the 

effective a calculation can be rephrased as follows. What is the 

trajectory shape a(t) whose Regge term fits our observed sum rule 

result at cutoff 1.12 GeV, but would hopefully make the sum rule super

converge to the zero line at higher energies? It. is' clear from Fig. 24b 

that a
2

3 (o) exceeds even the Froissart bound for~ small t (it could 

not produce superconvergence) and lies much higher than the expected 

- l trajectories. Therefore the only way we can interpret 

these results is to say that there is an important axial vector 

fixed pole contribution. 

. . . . . . . . • •. ,.,t." ,.·, 
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This is our most surprising result. The Drell-Hearn sum rule 

fails in the isospin segment where one would have least expected failure • 

Such a fixed pole would invalidate either the usual current algebra or 

the technical assumptions necessary to derive the covariant sum rule 

r2
3(o) from the antecedent e~ual time commutator. 

Although this miserable fixed pole seriously challenges our 

theoretical ideas, it seems to have one beneficial effect on our s.um 

rule results as follows~ As shown in Appendix D, an axial vector fixed 

pole with coupling . A(t) to the amplitude B 3 
2 also·contributes non-

asymptotically to B 3 
3 

. We take A(t) from I23 ( 0 ), and assume that 

its nonasymptotic effect in B 3 
3 

is not modified by a possible 0+ 

fixed pole there (s (t) in E~. (D.l4)). We then recalculate at t = 0 

the nonflip/flip ratio (E~. 45) for the ~ Regge pole (assuming 

domination of r
3
3 (1) by the A2 and the fixed pole). This give a 

decreased value in better agreement, with the expected A'/vB of strong 

interaction, than the previous value (calculated assuming A(t) = s(t) = 0). 

We close this section by reminding any remaining readers that. 
·. . 

the Drell-Hearn proton sum rule, obtained by adding our three isotopi"G 

components, agrees with the original analysis19 within errors. 

We have discussed the theory of these sum rules in Sec. IVD. 

20 2 
As pointed out by Bagels there is cancellation in r 6 (0) 

between the continuum and the Born terms, with the result that both 

I __1, 2 
( 0) (Figs. 25 and 26) are consist~nt with zero at .· t = 0. Thus 

0 . 

we have evidence against a large conspiring pole with va.'cuum ~uantum 



numbers. Correspondingly there is no hope of using these sum rules to 

obtain information on the ~ ~ 2r coupling. 

For the pion conspirator sum rule r6
3(o) (Fig. 27a) we confirm 

Pagels' result20 at t = 0 but the flatness in t of al(o) (Fig. 27b) 

bears more resemblance to a right signature j = 0 fixed pole than a 

lion conspirator Regge trajectory. In fairness it must be said there is 

little reliable information from purely strong interactions on the slope 

of the conspirator and recent 70 photoproduction data suggest that the 

intercept is essentially zero upto -t = 2 GeV2. 

We note that determination of the 0 rr ~ 2r coupling through the 

Pagels sum rule critically involves the assumption of smooth extrapolation 

to t = 0 of the· rr-pole·term. In similar kinematic configurations 

involving rr exchange (e.g. + rp ~ 1( n, np ~ pn), the rr exchange amplitude 

is more consistent with the rapidly varying form (2m 2 r 1 (t + m 2 )(t - m 2 )-l 
1( 1( 1( 

near t = 0 rather than the smooth pole form (t - m 2.)-1 taken by 
1( 

Pagels. It is not clear whether the rapidly varying form should apply 

to doubly weak Compton scattering since the success of the absorptive 

model for rr exchange suggests that the rapid variation is connected 

with the strong interaction unitarity condition. 

From our numerical result for 

through Eq. (36) the prediction 

r6
3 (o) at t = o, we obtain 

-16 2.5 x 10 sees on the basis 

of a smooth rr-pole residue which would become a fa~tor of 4 smaller 

if the rapidly varying term above were used. 
20 52 

These two values ' 

quite closely enclose the possible range of experimental values, although 

the second possibility, rapidly varying pole term, would seem to be 

preferred on the basis of the wallet card value. 52 
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In principle we can test whether the zero at t = -m :rr 
2 

of the 

rapidly varying term is the factorable zero of a :rr-Regge pole residue 

by studying the s~ rule .I 5 (1) , Fig. 28a, to which the :rr-Regge 
7 

trajectory should couple although there is no :rr pole at 
2 

t = m :rr 

because of photon helicity flip. The sum rule shows no hint of a zero. 

However any attempt to use this fact to speculate about :rr meson · 

Reggeization would be thwarted by the fact that a7~(1) , Fig. 28b, 

suggests an effective trajectory somewhat lower than :rr • Although the 

zero in ~uestion is suggested by simple conspiracy models for 
71 

np--+ pn and + YP --+ :rr n , there is ample evidence from strong processes 

that72 the zero does not factorize. 

G. Other Sum Rules (Spin Segments 4, 5, and 8) 

Spin types 4 and 5 are too divergent for useful information to 

be obtained from our low cutoff. · We tried to use spin type 5 to predict 

the nonconspiring contribution to spin type 6, through E~. ( 44), and 

obtained only untrustworthy and useless results. The sum rule I
5

4
(o) 

has an unknown fixed pole at j = -1 necessary to cancel the singular 

Born term. 

Unfortunately I 4
4(o) and I 6

4(1) have the same continuum but 

different Born terms. Thus we need a fixed pole in one or both of them. 

It is presumably in I 6 
4

(1) because this has TP = + and it would then 

be the spinflip analogue of the I
5

4(o), fixed .pole. However the sum rules 

( ) . d 1 to · I
4
4(o). not shown., if anything, prefer the assignment of a fixe poe 

Finally I8
5(1) (not shown) appears to exhibit a fixed pole at 

j = -1 rather than the hoped for A1 Regge pole. We remember the A1 

was also somewhat elusive in I 2
3(o). 



· H. Polarizabilities 

On integrating (4o) upto Elab = 1.12 GeV we find (assuming 

c. = 0) the results given in Table 2. Here the column headed Walker 
~ 

uses his analysis from threshold onwards while that headed BDW uses the 

analysis of Ref. 1 from 0~5 to 0.5 GeV and Walker thereon. The last 

row contains the proton's polarizability and is half the sUm of the 

first 3 lines. As described in Sec. IVE this and row 3 (isospin 3 which is 

the difference between the proton and neutron) may be hoped to be 

measured experimentally. 

From the pubiished data55 on sigma total for photons on protons 

we may estimate the contribution of the integral from 1.12 to oo for 

the proton as follows. We get from 1.12 to 5.5, 0.9 
4 . 

(error- 2o%) and from 5.5 onwards -~ 0.2 x 10- 3 cm3. The former 

comes from direct integration and the latter from assuming sigma total 

does not increase after 5.5 GeV. 

On may try to estimate the integral from 1.12 to oo for isospin 1 

and 3 by assuming it to be dominated by the Regge pole saturating 

r1
1 (l)ani r13(1) respectively. The result obtained is an order of 

magnitude smaller than the difference between the two determinations 

of the integral upto 1.12. 

I. Relative Importance of Different Intermediate States 

In our graphical results we have only given the total integral 

over Im B in (41). So as one may judge the relative importance of the 

contributions of various intermediate states we give in Table 3 the 
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break-up of 
l Jvc 

dv vn Im B for various sum rules. The columns 
:rr 

headed p33' 
vo 

Dl5' and Fl5 give the separate contributions of Dl3' 

the :rrN intermediate state in these spin and isospin quantum numbers. 

This isolates the important resonances in our energy range. The 

remaining contribution of the :rrN state is in the rest column while 

flrrther columns give the inelastic and Born contributions to (41). The 

resonant s11 and P11 contributions to the rest column are small and 

this column thus represents nonresonant background which near threshold 

gets large contributions from the photoproduction Born terms. Both 

the total and :rrN columns are evaluated using the BDW analysis upto 

0.5 GeV and Walker thereafter. 

We would like to warn the reader that the first four :rrN columns 

include the total contribution of these states integrated over the whole 

energy range and not just the resonant portion. Thus in r
3

4(o) the 

resonant F
15 

.is much bigger than the resonant·· n
15 

state ~ut this 

latter entry is large in Table 3 due to low energy contributions of these 

quantum numbers. 
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VII. METHODOLOOICAL COMMENTS 

We discuss here some of the features, both desirable and undesirable, 

of our analysis and make suggestions for possible improvements and related 

future work. 

For tests of the Drell-Hearn and current algebra sum rules, which 

derive from theoretical features particular to Compton amplitudes (e.g. 

algebraic properties of conserved currents), it would be desirable to 

relax the close dependence of our analysis on the Regge pole model of 

high-energy behavior. Although model-independent statements concerning 

the validity of the sum rules could presumably be easily obtained if the 

cutoff were sufficiently high, at the present cutoff we can say only the 

following. Adopting the phenomenological criterion that the scale of a 

convergent 73 sum rule is set by its generalized Born term (Born minus 

theoretically predicted fixed pole) it is clear from the figures that the 

I= 0 exchange Drell-Hearn sum rule I2
2

(o) and the time component 

current algebra sum rules I1
4(o) and I

3
4(o) must be regarded as 

successful, while the I = l Drell-Hearn sum rule I 23(o) and the Beg 

sum rule I 2 
4(1) seem to be failures. To strengthen these statements 

we have been forced, at this low cutoff energy, to explore the consistency 

of our results with the Regge-pole parameters which have been obtained 

from high-energy data and FESR calculations on hadronic processes. 

Actually the exploration of the Regge pole model enriches our understanding 

of high-energy behavior. For example, we regard our results concerning 

the lack of nonsense zeros in p Regge coupling to the Compton amplitude 

as one of the more interesting facts which this analysis has revealed. 



Our study has been handicapped by the lack of generally accurate 

estimates of the imaginary parts of Compton amplitudes. In this situation 

it becomes 'crucial to study as many sum rules as possible in order to 

obtain some feeling for the reliability of the results. For example, if 

one studies five equally convergent sum rules and finds trmt four of 

them go according to theoretical expectations and the fifth contains a 

surprise, it is then rather difficult to explain away the surprise on 

the basis of poor data. 

It is, of course, distressing that we were forced to cutoff our 

integrals at the dubiously asymptotic value of Elab = 1.12 GeV. In 

spin segments 2 and 3·this _low cutoff was reflected in the quantitative 

importance of the nonasymptotic. terms in the Regge formalism, suppressed 

by a factor 1/v from the leading terms. 

· Unfortunately it appears very hard to extend our integrals 

beyond Elab = 1.12 GeV as long as' we use unitarity to estimate the 

imaginary part. Thus above our cutoff a multitude of inelastic states 

become important and ope would have to make models of the spin and 

isospin structure of all of these to find the imaginary part of the 

general Compton amplitude. Hence to extend our cutoff we would need data on 

Compton scattering itself but even this would not allow us to probe the 

general isospin state. 

It follows that in the ,foreseeable future the main improvement 

in the evaluation of our sum rules must come from an improved treatment 

of the region upto 1.12 GeV, and here the elastic (nN) intermediate 

state is dominant (see. Sec. VI. I). 
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It is rather disconcerting that different multipole analyses of 

low-energy photoproduction experiments, and perhaps even different 

experiments, are inconsistent. An obvious approach which would hopefully 

lead to an improved multipole analysis would be to combine the 

theoretical treatment of BDW and the phenomenological method of Walker. 

Thus one could formulate the dispersion theory with parameters, 

representing its weakest points, to be determined from a fit to the 

data. Such a treatment would at least have the virtue of incorporating 

elementary theoretical constraints such as Watson;s theorem74 on the 

phase of multipole amplitudes, which is not obeyed in purely phenomenological 

analyses. It is also possible that the use of theoretical models far the 

inelastic reactions rN -+ :n: .6 and :n:N -+ :n:-6 would permit an approximate 

incorporation of unitarity for photoproduction above the BDW cutoff 

energy of Elab = 0.5 GeV. 

Since the greatest discrepancy between BDW and Walker is in the 

isoscalar photon multipoles, it would be very useful to study the FESR's 

for isoscalar photoproduction to determine whether the size of the 

predicted Regge pole terms is compatible with the isoscal~r component 

of high-energy photoproduction which can be estimated from recent data. 70 

Such an analysis could determine whether isoscalar photon multipoles were 

underestimated in Walker's analysis. 

Since there is an experiment underway at CEA to measure the proton 

Compton scattering differential cross section in the 4-5 GeV energy range, 

it would be interesting to use the sum rules to work up a Regge pole 

prediction for this quantity. This could be done very easily with our 

existing computer programs. 
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APPENDIX A 

We give here the relation of our amplitudes defined by Eqs. (14) 

and (17) to the invariant amplitudes ~ of Hearn and Leader25 and 

reduced s-channel amplitudes defined analogously to (13) by 

(A.l) 

We now list the expressions for the amplitudes in which 

for clarity we have omitted the isospin index i • 

= ( 2)-2 ( -1/2 ( 2) . 2 
9

s s - m s . s + m s~n 2 

+ m{Mi1 . .1.1 . a , a 

= ( 2) -2 A -1/2 2 8 
S A 

s - m (M_all ,·_all + 2m s sin -2 M1 1 21;-21 

4 . -1 2 1 
(m - us) (A6 (4m: - t) + 2 (s - u)(A4 - A

5
)} 

( 2-4 22A -r:-' A 

s - m ) ((s - m ) ~.1.1 . .1.1 - 2mvs (s - u) M.1.1 .1.1 a ,a a ;-a 
= 

+ (m2
t + (s - m

2
)(s +3m

2
)) M .1.1 . .1.1 } -a ,-a 

(A.2) 



2 e "' . s M 
s~n - 1 1 

2 2-1; -21 

B
5 

== t-1 ((A
1 

+ A
2

)(4m2 - t) - (A4 + A
5

)m(s - u)} 

+s(s _, m2 )-2 (+s-1 / 2 (s + m2 )(M .1. 
1 

.1.
1 

- sin2 98 M1 · 1 ) 
-2- ; 2 2 2-1; -21 

B6 A4 + A5. 

2 -2 
- C s - m ) c 2m y-.; eM: .1. 1 . .1.1 -

-2- '2 

2 9 "' 
. 8 M1 1 ) s~n 2 2-l; -21 

2 -3 
s(s - m ) 

2 · 2 9 "' 
+ 2 ( s + m ) sin 

2
8 M.1. 

1 
. .1.

1 
} • 

2- ,2 
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APPENDIX B 

In our study of the sum rules in Sec. VI we will need to know 

the exact predictions that factorization of the Regge couplings makes 

for our singularity-free amplitudes B
1 

- B8 . In this appendix we 

outline a derivation of these conditions while in Appendix C we give the 

resultant expr~ssions for Gj(t), H. (t) 
J 

(defined in (19), and (20)) in 

terms of singularity free vertex functions. These latter we will denote 

by Pn Pf for the photon-photon coupling in nonflip (n) and spinflip 

(f) states and Nn Nf for the corresponding nucleon-antinucleon couplings. 

We will add a superscript c if the pole conspires.75 

First we write our t-channel helicity amplitudes 

(e -i:na + -r) 
2 sin :na exp[i:n('1_3 - ~4)/2] • r'~~ r'~~-..4 va 

(B.l) 

While to include terms. of order a - 1 it is necessary to 
( 

multiply the resultant form (B.l) gives to the reduced amplitudes (13) by 

1 (B.2) 

where A. = max( 1~3 1, lt-..241 ), · A.min = min( 1'1_3 1, 1~ 4 1.) )( Sign ('1_3 ~4) • 

We will need (B.2) to derive the form of H( t) defined in, Eq. (20). 

(This is considered in greater detail in Appendix D.) 

We must now remove the kinematic singularities from r' which we 

do first for the r - r coupling by defining 



I 

= t p 
n 

'Y 1..:.1 = pf 

if the :p:~.rticle evades at 

I 

i f-t 'Y •.. = 
11 

I 

iFt 'Y 1-l = 

(B.3) 

t = 0 while if it conspires we put: 

p c 
n 

(B.4) 

p c 
f 

For the NN coupling we must consider separately TP = + and 

TP = - • 
I 

i N /(4rl - t)1/ 2 
'Y.U. -

22 n .. 
(a) TP+ (nonconspiring) 

I -l{-t N/(4m2 _ t)l/2 
'Y 1 = 

1 
2-2 

(b) . .-P+ (conspiring) I -Ft N c/(4m2 _ t)l/2 'Yli = 
22 n 

I i N//(4m2 - t)l/2 "!..!....!.. = 
2-2 

(c) TP- (nonconspiring) 

I 
i'Ft N 'Yli 

22 n 
( T() 

(A ) 
1 

I 
'Y 1 1 = 

2-2 

(d) TP- (conspiring) 

(rc) 
I 

'Y li = 
22 

Nf 

N c 
n 

(B.5) 

(B.6) 

(B.7) 

(B.8) 



Substituting (Bl ~ 8) into Eqs. (14) and (17) we get the results 

given in Appendix C. 

We will wish to com);8re our ratio of spin nonflip to spinflip 

couplings for P, P', p, and · ~ exchange with those obtained from 

analyzing strong interactions. However it is conventiona156 to analyze 

rrN and KN elastic scattering in terms of invariant amplitudes A' 

and B which are related to our formalism by 

The behavior of N 
n,f 

VB 

and P f near n, 

sense-nonsense mechanism is given in Table 4. 

(B.9) 

a = 0 for various 
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APPENDIX C 

Here we give the expansion of the fUnctions and H.\t) 
J 

of Eqs. (19) and (20) in terms of the factorized vertex functions of 

Appendix B. We omit the isospin index i in all these results. 

( i) -rP = + Contributions · 

Gl 
l 

[Nn Pf t N c p c = + 2 n f 

H2 = - (2 - 0:) 
t [Nf pf + N c p c] 

20: f f 

G3 = [Nf pf + N c p CJ 
f f . 

G5 = - [N .p + N c p CJ 
n n n n 

' 

G6 = [t Nf pn + N c P c] 
f n 

(C.l) 

(ii) -rP = - Contributions 

G2 = Nf pf. 

~ = (l~m.2 - t)[(2- o:)/2o:] Nf pf 

G4 
l [t N p N c p c] = - 2 + n n n n, 

G7 
l 

[Nn Pf N c p c) = -- + 2 n f 

as l 
Nf.Pn = 

2 
(C.2) 
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APPENDIX D 

The j-Plane Jungle in Spin Segments 2 and 3 

Although the direct connection established in Sec. IIIB between 

asymptotic terms of the amplitudes B(v,t) (Eq. (21)) and contributions 

to the sum rules (Eq. (23)} is sufficient to understand most of the 

physics contained in the sum rules, for some features it is necessary to 

go farther into the Reggeization of parity conserving helicity amplitudes. 

This is especially necessary for spins 2 and 3 because Regge poles of both 

parities contribute and because we have the additional complication of a 

large nonsense interval in the j plane. 

Since the terrifying but straightforward details of Reggeization 

are known65, 76, 77 for hadronic amplitudes, we concentrate here on effects 

of fixed poles and on matters directly connected with the interpretation 

of our sum rules such as the nonasymptotic Regge contributions· (Eq. (20)) 

and compensators. 

We study the amplitudes 

A 

± A 11 
-22;1-l 

(D.l) 

which differ from B2,
3 

by the kinematic factors of Eq. (14), and the 

definite parity partial wave amplitudes 

j 
+ a_g.;l-l(t) (D.2) 

22 defined in the usual way. After defining signatured partial wave 

amplitudes, introducing rotation functions of the second kind78 and 

performing the Mandelstam-Sommerfeld-Watson contour shift we obtain the 

representation 



A ( v" t) 
+ 

1 
= 8rti 

·.·. J t+icn 
3 . --leo 
2 
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dj (2j + 1) ( 't' + e -i1rj) 
cos :n:j 

j. { a;'(t) E;l+(z) + a~'(t) E~1_(z) 1 (D.3) 

We take t ~ 0 so that Regge poles satisfy Re a(t) < ~ and do not 

explicitly appear in (D.3). We have ignored a discrete sum over hB.lf

integral j values because its terms are asymptotically (in v) weaker 

than those we are interested inand becuase they cancel out when further 

shifts of the integration contour are made. The angular functions 

appearing in (D.3) are given by 

-j-1 

X e (z) 
-A.f.l. 

(D.4) 

and the e. functions differ from those of ~drews and Gunson78 by the 

(-) A.-fl. factor The scattering cosine z ,.is given by 

2V 
z = (D.5) 
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For Compton amplitudes with definite crossing, the signature, 

parity and isospin are all correlated. See Tablel • For given T and 

P from the table the ajT with subscript ( --rP) vanish. 
± 

The E functions have the asymptotic behavior (for~~ 1~1 ~ 0) 

E~ ( z ) "' f ( j ) j-~ J + 
a.W_ -2 

+ O(z - 4)1 z il . z 
~+ 

t J J v (D.6) 

'"' 
O(z - 4)} E~ ( z ) "' f ( j ) ~(~- j) j-~-1 

1 1 + h(j) -2 z . 1 z + 
~- j J -

'• 
1./ 

where g(j) and h(j) are regular(albeit zero for some ~ and ~) 

at integer values and f(j) has the following behavior 

j = 0 
)i. , ~ + 1, ~ + 2, 

( . . )-1/2 
J - Jo near jo = 1~ I, I~ I + 1, ... ~ - l 

"' regular near j = o, 1, ... ' I~ I - 1 
0 

j = 0 -I~ I, ~I~ I + 1, 
' -1 

( . . )-1/2 
"' . J - Jo near j = -~, -~ + 1, ... 

' -I~ I 0 

"' regular near j 0 = -~ - 1, -~ - 2, .. 

- 1 

(D.7) 
Although the leading term in the asymptotic series is regular near a 

positive nonsense-nonsense integer, subsidiary terms may be singular, as 

is crudely shown in (D.6). The exact relation between the singular parts 

of the E functions at reflected integers in the nonsense-nonsense 

interval is 
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= ( . ) -j-1( ) 
j - Jo E"-~+ z 

(D.8) 

If fixed poles are present, then the partial wave amplitudes 

a~~(t) are expected to have the j-plane behavior of their Born terms, 

namely 

ai-r (t) "' regular near jo == 2, 3, 4 

(j . )-l/2 
Jo near jo == l 

"' (j jor·l near jo = o, -1 

(j . )-1/2 
Jo ·near jo = -2 

"' (j . )-1 
- Jo near jo = -3, -4, 

where we have again specialized to the particular helicity values, 

A. = 2, ~ = 1, we are interested in. In the absence of fixed poles 

the expected behavior is a factor of (j - j
0

) smoother at all nonsense 

points (j
0 
~ 1). 

The singular parts of the partial wave amplitudes at the reflected 

nonsense-nonsense integers 

= 

j = 0 and 
0 

jo = ~1 are related by: 

( . ) -j-1(-~)() 
j - Jo a+ t (D.lO) 



This condition expresses the absence of fixed double poles at 

j
0 

= -1 and follows formally from the Froissart-Gribov definition, 

and a mathematical relation, similar to (D.8), for the rotation functions. 

Eq_uation (D.lO) implies that fixed poles occur in pairs at j = 0 and 

j = -1 with residues satisfying (D.lO) and that for every Regge trajectory 

passing through a(t) = 0 with nonvanishing residue, there is a compen

sating trajectory79 of opposite parity and signature passing through 

a'(t)=-1. 

All of this technicality is necessary to understand what happens 

in (D.3) when the vertical contour of integration is shifted to the line 

R . 3 eJ=--. . 2 The double poles encountered do not contribute asymptotically 

and obnoxious terms such as fixed powers in the imaginary part of the 

amplitude cancel between the j = 0 and j = -1 contributions because 

of the phenomenon of compensation expressed by (D.8) and (D.lO). The 

net result is a set of relatively simple expressions for the asymptotic 

terms of the amplitudes A±(v,t) or 

The current algebra amplitudes 

which we proceed to give. 

have asymptotic 

J PG = 1-+ contributions from isovector right signature fixed poles at 

and -+ 0 and from the p-Regge trajectory and a mythical X trajectory 

, with PG 
1"' 

4 
B
3 

(v,t) 

(+)-+ We find 

v ) -1 
GM (t v -

~iroa (t) a (t)-2 
-3 ( ) ( -1 + e · P ) v P H'(t)v -Gpt -

sin 1t a (t) 
p 

2 2 - O)c(t) 
- GX(t)(4m - t) 2 ax(t) 

(1 + O)c(t)-3 
v 

' sin 

(D.ll) 



-2 v H(t) 
-2 v 

-i~a (t) a (t)-3 
(-1 + e P ) v p 

sin ~ a (t) p 

sin ~ ox(t) 

ox(t)-2 
v (D.l2) 

We have used current algebra to relate the residue of the 

fixed pole to the isovector magnetic form factor. Here . H(t) is 

-+ 
1 

the coupling of a hypothetical 0-+ p~le; and H'(t) is a kinematic 

singularity free function which expresses the net contribution of the 

nonasymptotic term of the -+ 1 fixed pole, and the -+ 0 fixed pole 

and its compensator at Jp = (-l)- • 

We have not included explicitly the effects of compensating 

Regge trajectories near a = -1 which are necessary to cancel the 

0 in B
2

4 and the possible singularity at singularity at a (t) p 

ox(t) = 0 in 
4 

B3 • 

-+ 
1 

both 

Notice that the I
3

4(o) sum rule is sensitive only to the 

fixed pole, while the I 
4

(1) sum rule has contributions from 
v 2 
~ (t) and H(t) • If current algebra is correct ·and the 

infinite-momentum method is valid for the commutator of one time and 

. 8o 
.one space component, then the resulting Beg sum rule pred~cts that 

H(t) = 0. From the standpoint of current algebraists, failure of the Beg 

sum rule would mean that either current algebra or the infinite momentum 

method is wrong.
4 

However, from the standpoint of Reggeologists, success 
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4 
of the r

3 
( 0) sum rule and failure of the Beg sum rule would indicate 

the existence of a 0-+ fixed pole. 
4 

However in assessing the . I2 (1) 

sum rule one must be careful to take into account the possible effect 

of an X trajectory contribution. 

The isospin symmetric amplitudes B!,
3

(v,t), 

asymptotic contributions from~ossible fixed poles at 

i = 1,2, 3, have 

P + + J = 1 and 0 • 

We explicitly treat B~13 (v,t) , to which the A2 and A
1 

Regge 

trajectories contribute. Letting A(t) and S(t) denote the couplings 
. .· + + . 
of the 1 and 0 fixed poles, we find the asymptotic expressions 

B2
3 (v,t) ~ -2 A(t)v-1 + 2S'(t)v-3 

3 B
3 

(v,t) ~ -

2 -a~ (t) 1 + exp[-i~aA2 (t)J 

+ t GA.- (t) 
-~ 2 aA

2 
(t) sin ~ a~ (t) 

- G~(t) 

-1 + exp[-i~a:~ (tH 

·. sin ~ a A ( t) 
1 

(4m2 - t)A(t)v-2 - 2S(t) -2 v 

- GA (t) 
2 

1 + exp[-i~a:A (t)] 
2 

sin ~ aA (t) 
2 

a: A ( t)-2 
v 1 

a (t)-2 
v ~ . 

a~ (t)-3 
v 

' 
(D.13) 

2 - aA (t) 
(4m2 - t)GA (t) 1 

-1 + exp[-i~~ (t)J aA (t)-3 
_____ __...;;;;..._._ v 1 • 

. 1 2 aA (t) 
1 

sin ~ aA (t) 
1 

(D.l4) 
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Here we have a situation opposite to that of the current algebra segment. 

The Drell-Hearn sum rule r2
3 (o) is sensitive to the axial vector fixed 

pole only, while the sum rule r
3

3(l) detects the combined effect of 

· the axial vector and scalar fixed poles. In a derivation of these sum 

rules based on ~uark model current algebra and the infinite momentum 

limit, both fixed poles are absent. See Sections VIB (2 ) and VIE for 

our experimental results on this ~uestion. 
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Tables lA and lB. Vital Statistics of the Amplitudes B.i(t) 

The meaning of the various quantities in Tables lA and lB are 

as follows. B.i(t) 
J 

are defined in Eqs. (14) and (17). 

are defined by Eq. (18). In the C . i ( t) 
J 

column ~ 
p 

and 

T} • i and C . i ( t ) 
J J 

~ are the 
n 

anomalous magnetic moments of the proton and neutron respectively. 

A. is defined after Eq. (19). n . is the lowest value of n in 
m~n 

Eq. (23) for the .latter to be a right signature sum rule •. T, P, and G 

are the signature, parity, and G parity of the allowed Regge pole 

exchanges. Plausible candidates for the latter are listed in the next 

column; here we have taken the meson quantum numbers from the customary 

bible (Ref. 52). Further in this column eX denotes the TP = + 

partner of an m = 1 conspiracy (Ref. 75) with the TP = - X trajectory 
c 

of X quantum numbers. (X = T}, rr, B) • X by itself means non-

conspiring. 

.• · 
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Table lA 

Amplitude 
i 

A. p G Regge Pole ... T]. n . 'T 
_L m~n 

B 1 
P, P' 

+ 2 1 + + + 1 
c

1
/ "-'t) 

B 2 
P, P' 

+ 2 1 + + + 1 
CT] ( "-'t) 

B 3 + 2 1 + + 
A2 

1 
c ("-'t) 

J! 

B 4 
p 

2 0 + 1 
cB("'t) 

B 1 
+ + D,E(?)("'so:-2 ) 

2 0 2 
P, P' C ("-'t S0:-3) + + + ' T} 

B 2 
+ + D, E( ?)("'so:-2 ) 

2 0 2 
P, P' C ("-'t S0:-3 ) + + + ' T} 

B 3 
+ Al ("' S0:-2) 

2 0 2 
+ A2, c ("' t s 0:-3 ) + 

J! 

4 + + ? 
B· + 2 1 2 

c ("-' t so;-3) + P, B 

+ + + P, P' ( o:-2) 
B 1 c "' s ' T} + 2 1 

3 
+ + D, E(?) ("-' S0:-3) 
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Table lA. (Cont.) 

Amplitude i 

"' 
p G Regge Pole "" l nmin 

.,. 

P, P' ( a-2) 
B2 

+ + + c "' s ' Tj + 2 1 
3 + + D, E(?) (- sa-3) 

+ + A2, 
( a-2) 

B 3 
c "' s 

+ 2 1 
1( 

3 + Al (- 5a-3) 

+ ( a-2) 
B 4 p, c - s 

2 0 B 
3 + + ? 

B l 
4 + 0 1 + + Tj (--- t) Tic 

B2 
4 + 0 l + + Tj (- t) . Tic 

B 3 + 0 1 + 1( ( ... t) 1( 4 c 

B 4 0 0 + + B (-v t) B 4 c 

B l 
5 + 0 l + + + P, P', CTj 

B2 + 0 1 + + + P, P', c 5 Tj 

B 3 + 0 1 + + A2 ' c 5 1( 

B 4 
5 0 0 + p ' CB 
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Table JJ\.. (Cont.) 

Amplitude i 
(-.. p G Regge Pole '"' l n . 1" 

m~n ',... '· 

~ B 1 1 0 + + + P, P' (-v t) c 6 . Tj 

B 2 1 0 + + + P, P' (--- t) c 6 Tj 

B 3 1 0 + + A2 (--- t) c 6 :rr 

B4 
6 + l 1 + p ("- t) cB 

B 5 +· 2 l + :rr ' :rr 
7 c 

B 5 
8 + l 1 + 



Amplitude 

Bl 
1 

B2 
1 

B 3 
1 

B 4 
1 

Bl 
2 

B 2 
2 

B 3 
2 

B 4 
2 

B 1 
3 
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Table lB 

2 
2me 
-- + t 

2 
_ 2me + 

t 

Born Residue c.i(t) 

2 2 
f.- (1 - (1 + K + K ) ] 
~ P n 

2 2 
_ 4me + e [l _ 

t 2m 

2 
K )2 e 

(K + 
- 4m2 p n 

2 2 e (K K ) . 
- 4m2 -p n 

2 
(K 2 K 2) e 

-2m2 -p n . 

2 2 e 
(K K ) 

4m2 
-p n 

2 2 
K + K ) - ~ (1 + 

t P n 

2 (1 + K. - K ) ] 
P n 

e2 2 - -(K +K) 
4m2 p n 

v, 



'" Amplitude 

B2 
3 

B 3 
3 

B 4 
3 

Bl 
4 

B 2 
4 

B 3 
4 

B 4 
4 

"D 1 
.u5 

B 2 
5 
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Table lB. ( Cont ~ ) 

Born Residue C.i(t) 

' 2" 2 
- ~ (1 + K - K ) .,. ~ (K - K / 

t p n 4m2 p n 

4e2 2 2 2 
.:.. - (1 + K ) - ~ (K - K ) 
. t p 2m2 p n 

2e2 2 2 
~t (1 + Kp - Kn) + ~ (K - K ) l!m2 p n 

1 2 
-me (1 + K - K) 2 p n 

2 
me (1 + K ) 

p 

2 2 4 m3 e 2 me [1 - + (1 + K + K ) ) t- 2 p n 

4m3 e 
2 "2 

(1 + K - K )
2

) me [1 + -t 2 p n 



Amplitude 

B 3 
5 

B 4 
5 

B 1 
6 

B 2 
6 

B 3 
6 

B 4 
6 

B 5 
7 

B 5 
8 
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Table lB. (Cont~) 

Born Residue C. 1(t) 

8 m3 e2 2 2 2 
- me [(1 + K ) - K · + 1] t p n 

1 2 . 2 
2- e [(1 + K - K ) - l) 

p n 

- -
2
1 e

2 
((1 + K - K )

2 
- 1) . p n 

- e2 
K /(mt) 
n 

-~ K /t n 
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Table 2. The polarizability in the various isospin states (see Sec. VIH). 

. -43 3 
The units are 10 em • 

Isospin state· Walker BDW 

1 0.2 0.4 

2 25.6 25.5 

3 -1. -2. 

proton 12.4 12. 



-96-

Table 3·. The break up of I. i(n) (defined in (41) ), at. t = 0, into 
J 

the contributions of various intermediate states as defined in VI.I. 

rrN Intermediate State 

Total Born Inelastic p33 D13 Dl5 F15 Rest 

Il2 (1) 1.25 o.o86 0.27 0.39 0.1 0.01 0.04 0.36 

I13(1) 0.12 0.17 o.oo8 o. -0.01 0.002 0.02 -0.07 

I1 4(0) 0.02 0.044 -0.004 0.31 -0.09 -0~01. -0.02 -0.20 

I22(0) 0.06 0.358 -0.05 -0. 43' .,.o~09 -0.006 -0.02 0.31. 

I23 (0) -0.09 -0.024 -0.005 0. 0.01 -0.002 -0.01 -0.06 

I3 4(0) 1.2 2.04 -0.18 0.45 -0.32 -0.1. -0.06 -0.65 

Il(o) o.o8 -0.97 -0.15 0.53 -0.02 0.01. -0.002 0.69 

If(1.) -0.04 -0.094 0.005 o. 0.02 -0.002 -0.002 0.02 
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Table 4. a = 0 Sense-Nonsense Factors 

Here we give the dependence at a = 0 of the nonflip (n) and 

flip (f) residue p ' n N ' n 
defined in.Appendix B. The 

columns headed "No FixErl P~Jr aJllly to the hadronic NN vertex, and the 

"Fixed Pole" column applies to the weak 'J'Y vertex. We do not give the 

dependence, applicable for negative signature poles, corresponding to a 

strong interaction fixed pole and a fixed double'pole in Compton 

scattering. 

No Fixed Pole Fixed Pole 

Nomenclature Signature Nonflip Flip Nonflip Flip 

Choosing sense l a 1 l 

Choosing nonsense + or .fa ~a l/.fa l/~a 

Chew's mechanism + ~a afa 1/~a 1/~a 

No-compensation 
G 

mechanism + a l l 



-98-

FIGURE CAPI'IONS 

Fig. l. The contour C of Eq. (22). 

Fig. 2. Unitarity condition in Compton scattering. 

Fig. 3. The value of ! Im B 1 plotted against photon lab energy. 
1( 2 The 

dotted line is the prediction of BDW (Ref. 1) and the solid line 

that of Walker (Ref. 2). 

Fig. 4. The value of ~ Im B2
3 plotted against photon lab energy. The 

dotted line is the prediction of BDW (Ref. 1) and the solid line 

Fig. 5. 

that of Walker (Ref. 2). 
. 1 4 . 

The value of ; Im B
3 

plotted against photon lab energy. The 

dotted line is the prediction of BDW (Ref. 1) and the solid line 

that of Walker (Ref. 2). 

Fig. 6. A diagram causing a divergence of the partial wave series in the 

(s,t) region of interest. 

·Fig. 7. The diagrams considered in the Stichel-Scholz model (Ref. 3) of 

Fig. 8. The one pion exchange contribution to 'N ~ ~. 
Fig,; 9. A diagram NOT causing a divergence of the p:~.rtial wave series 

in the (s,t) region of interest. 

Fig. 10. A diagram representing our treatment of inelasticity NOT due to 

the ~ state. 

Fig. 11. Pomeranchuk exchange nonflip sum rule (isoscalar photons). See 

VIA for the graphical notation and VIB for comments. 

(a) The n = 1 sum rule r1
1(1). 

(b) The corresponding effective a. 
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Fig •. J2. Pomeranchuk exchange nonfli:p sum rule ( isovector photons). See 

VIB for comments. 

(a) The n = 1 sum rule ·r1
2 (1). 

(b) The effective a corres:ponding·to (a). 

(c) The n = 3 sum rule 

Fig. 13. Pomeranchuk exchange fli:p sum rule (isoscalar :photons). See 

VIB for comments. 

·'· 

(a) The n = 1 sum rule r
3

1 (1) • 

(b) The corresponding effective a . 
\ 

Fig. 14. Pomeranchuk exchange fli:p sum rule (isovector.:photons). See 

VIB for comments. 

(a ) The n = 1 sum rule 

(b) The corresponding effective a •.. 

Fig. 15. A2 exchange nonfli:p sum rule. See VIB for comments. 

(a) The n = 1 sum rule r13 (1)~ 
(b) The corresponding effective a . 

Fig. 16. ~ exchange fli:p sum rule. See VIB for comments. 

(a) The n = 1 sum rule r
3
3(1). 

(b) The corresponding effective a . 

Fig. 17. Nonflip current algebra sum rule 
4 

I
1 

( 0). See VIC(l) for· 

comments. 

Fig. 18. S:pinfli:p currentalgebra sum rule. See VIC(l) for comments. 

(a) The n = 0 sum rule 4 r
3 

( 0) . 

(b) The effective , a corresponding to (a) • 

(c) The n = 1 wrong signature sum rule I3 4(1) 

(d) The effective a corresponding to (c) . 
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Fig. 19. The time-space current algebra sum rule. See VId(2) for comments. 

(a) The n = 1 sum rule 
4 I

2 
(1) . 

(b) The corresponding effective a . 

Fig. 20. ~ exchange nonflip wrong signature sum rule r1
3(o) ~ See 

VID for comments. 

Fig. 21. Pomeranchuk exchange nonflip wrong signature sum rule 2 I
1 

( 0) . 

See VID for comments. 

Fig. 22. Drell-Hearn sum rule r2
1 (o) (isoscalar photons). See VIE for 

comments. 

Fig. 23. Drell-Hearn sum rule r2
2 (o) (isovector photons). See VIE for 

comments. 

Fig. 24. Drell-Hearn sum rule (isovector exchange). See VIE for comments. 

(a) The n = 0 sum rule r 2
3 (o) • 

(b) The corresponding effective a • 

Fig. 25. 'I) conspirator sum rule r6
1 (o) (isoscalar photons). ·See VIF 

for comments. 

Fig. 26. 'I) conspirator sum rule r 6
2 (o) (isovector photons). See VIF 

for comments. 

Fig. 27. 1( conspirator sum rule. See VIF for comments. 

(a) The n = 0 sum rule 
3 .. 

!6 ( 0). 

(b) The corresponding effective a . 
Fig. 28. rc spinflip sum rule. See VIF for comments. 

(a ) The n = 1 sum rule 

(b) The corresponding effective a. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect ~o the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, '·'person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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