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* ABSTRACT
Theoretical features of the many (twenty-six) fixed momentum

transfer dispersive sum rules which can be written for generalized nucleon
Compfon scattering'ampiitudeé (retérded‘products of vector currents) are
surveyed and the suﬁ rules put to experimental tést. Theoretical attention
is focused on the occurrence of right signature fixed poles in the angular
momentum plane, such asvthe jJg=1 fixed poles whose couplings are related
to electromagnetic form féctors by current‘algebra. Unitarity is used ﬁo

estimate the sum rule integrands in terms of data for the photoproduction

‘processes YN = nlN and YN = nA . Data limitations require that the sum

rules be cutoff at photon lab energy Elab = 1.12 GeV,

The main results dre as follows
(a) Reasonable evidence ,is presented that two time'component current
algebra sum rules involving the electric and magnetic isovector form factors
Gﬁv(t) and GMVGt) are correct for small spacelike -t . If they are
also to be correct for -t < ‘0;6 (GeV/c)2 then the p Regge pole must

choose nonsense at « = O and the associated wrong signature fixed pole
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there must be multiplicative. A time-space current algebra sum rule

2
2
¥

provably fails. - : o ot
,(b) The separaie isctopic components of‘fhe Drell-Hearn sun rule are
investigaﬁed. Those'ﬁiﬁh I-= O exchangé in'the t 'channel seem very
successful whereas the I = l"exchangé éum rule clearly-failsf' The
failure indicates an importent contribution of a hitherto‘unsquected
Py - 1" (17) rixed pole.

(c) Detailed resﬁlts on wrong.signature anti-algebra sum rules, on
'Regge—pole éum rules (FEGR's) and on sum rﬁles tesﬁirg conspiracy afe

presented,
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I. INTRODUCTION
Many fixed momentqm'transfer'diépersive sum rules can be wfitten
for-nucleon Coﬁpton amplitudes. These sum rules test various aséumptions
abou£ high-energy behavior and about the equal-time algebra of vector
cﬁrrent components. In fhis paper we survey theoretical aspects of these
sum rulesband report on a systemaﬁic attembt to saturate them, at several

t values, using presently available experimental data. Within the 1limit

set by the extent and accuracy of fhis data, our goal is to milk from

the sum rules all the theoretical interesting information they contain.
Since there is very little data on the Compton scattering pfocess

itself, We ﬁse the unitarity condition to éxpress thé integrands of the

suﬁ fulés in terms of amplitudes for the photoproduction of hadronic

states. .We include the contributions of the =N and, in gruder form,

the mwaN intermédiate states; Specifically wé use the multipole analyses

of N - =N 5y'Berends, Donnaéhié,‘. and Wéavérl and by Walker,e and a

3

modified Stichel-Scholz model for the prbcess YNI* itA.  This gives us a
description of the sum rule integrand which seems reasonably accurate up
to the laboratory energy El b = L 12 GeV (c.m. energy Jg = 1.73 GeV),
and we cut off our sum rules at this value. ”

Because of spin and 1sosp1n complex1ty there are 26 1ndependent

amplltudes for the generallzed Compton scatterlng process, and the use

-of photoproduction data decomposed into definite angular.momentum and

isospin components allows us to Study sum rules for all of them. We

S L
study the sum rules derived from current algebra, as well as super-

5

. . o 6 .
convergence relations™ and finite energy sum rules which give information

on Regge pole parameters and on the question of conspiracy. We are mainly
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interested in theoretical questions invblving the presence of fixed . =
Jj-plane poles. - ‘ ) ) _ ‘ : . g
Finite energy sum rules have been much used recently to study

6,7

mesoﬁ—baryonlscatﬁering where there are two iﬁportant advantages.
First gbod partial wave analyses‘exist,B at least for =N scattering,
up to the c;m; energy Jé = 2.19.GeV; and.second there is considerable
high energy dafa with ﬁﬁich to compare Regée pole predictions. In our
cése the low energy data are unfortunately crude, and there are'no high
ehergy expériments. -However, because we study photdp amplitudes with the
possibility of double helicity.flip, many of our sum rules are ﬁoré
convergent thén their analégues in'meson-baryon scattering. Further
ﬁe remark that the analysis of bolen, Horn, -and Schmid6”at cutpff
J; = 1.73,'idéntical to ours,gavé reasonablé results for the'couplings
of , the vp trajeétory; and we therefore havg’reason to hope for good resulfs
at thié cutof'f in the Compton case;9r.

| . The plan of the paper'is the following. For the benefit of‘geaders
primarily interested iﬁ the results, a summary of ﬁhe most important
results is given in Section II together with reférences to that part of
the téxf where séecific sum rules are discussed. The kinematics of
Compton’scattering ié bresented in Section IITI. Theoretical qpéstions
pertaining fo the sum rules are discussed in Secti¢n IV.: In Seétion v
we explain our treatment of the experimental data, and in Section VI we . Ny
present and discuss the results of our attempt to saturate thé sum rules.

Section VII is reserved for some final methodological comments, while some

necessary technical queStions are treated in Appendices.
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II.  MAIN RESULTS

lOur'main results are summarized here, although we Would‘caution
that a wrong impression of.the strength of our conclusions could well be
gained without some study of the quantitative behavior of the_sum rules.
The quickest way to proceed would be via Section VI.A, in whichvthe
graphical fermat of the results. is given, to the point of Section.VI
where the specific questions are diSCussed and the appropriate graphs
presented. |

Regge Pole Sum Rules: (VI.B)

From sum rules for amplltudes in Whlch the P, P', and A2
tragectorles couple to photons w1th hellclty fllp 2, we find the follow1ng
results. There is no partlcular evidence for 1mportant contrlbutlons to
the sum rule from rlght s1gnature flxed poles at J = O;lo Factorlzatlon
tests giue values ofvthevratio of the nucleon flip end nueleon‘uonflips
couplings of the traJectorles which agree with the values deduced from
meson- ~nucleon scatterlng, although there is an uncertalnlty of about
a factor of two in this comparlson. Our results are consistent w1th the
nonsense choosing ueehanism fof the A, at « (t) = 0.

11 AE

Current Algebra Sum Rules™ : (VI.C)

Two well-known sum rules can be obtained by studying the equal—

time commutators of ‘time components of the isovector current, taken

between states with nucleon helicity nonflip and flip (measured in‘the t

channel c.m. system). The uonflip sum rule, whose right hand side involves

the electrlc form factor G (t), c01n01des at t = -0 with .the sum rule

12
of Cablbbo and Radlcatl The flip sum- rule 31mllarly tests the magnetlc
13

form factor G (t) and seems to have been first written down by Muzinich.
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Our results indicate good agreement with current algebra
predictions near t =\O. At large momentum transfer (%t = -0.6) there H
is some evidencélfor a possible violation of currentvalgebra, although
we prefer an interpretation in which current algebra is valid. In this
interpretation the p trajectory chooses noﬁsense at ap(t) =0 éﬁd
has a singular coupling to the currents there. Because of the sihgular_
coupling the nonsense d:i.jpsllL associated with p exchange in Hadronic
processes are not present in the Compton amplitude.

| Both these sum rules.receive important contributions at low

energies from nonresonating.muitipoles; a fact which suggests that
theoretical'mddels15 in which saturation'occufs purely with resonances
may be unrealistic. We give some idea of the relative magnitude of
resonant and nonresonant contributions to the sum rules in Section VI.I.

A sum rule involving the commﬁtator of the time and space
components of the isovector current has been written down by Begl6 and
further studied by Adler and Dashen,u This sum rule hés somevpeculiar
features,LL and it is perhaps not surprising thatcxu‘numericél resﬁlts'

show that it is probably violated.

Anti-Algebra Sum Rules: (VI.D):

17

We use this name (see Section IV.B) for sum rules ' sensitive

to wrong signature fixed poles. We find evidence for wrong signature .
fixed poles (at Jj = 1) which couple strongly to Pomeranchuk and Ap
exchange. Tﬁe theoretical significance of such fixed poles has been

recently studied.18



Drell-Hearn Sum Rules: (VI.E)

Here we refer to sum rules for three differert isospin symmetric
ampliﬁudes with t-channel photon hélicity flip, antisymmetrized'in the
nucleon helicity indices. The sum rules are superéonvergence relations
(SCR's) which follow from the assumption that j = 1 fixed poles are
absent'in these amplitudes. At t = O, the sum of our three SCR's
coincide with the original sum rule written by Drell and Hearnl9 for the
aﬁomalous magnetic moment of the proton.

Our results indicaté that the two sum rules involving isoscalar

exchange are very well satisfied, but that the sum rule involving

" isovector exchange is badly violated. This last result was a surprise

. +-
to us, and seems to indicate an important contribution from a JPG =1

fixed pole.
One negative result which may be of some intérest is that neither -
of two sum rules sensitive to A1 exchange showed any evidence for this

Regge pole with an intercept near zero.  (See also Section VI.G)

Conspiracy Sum Rules: (VI.F)

By using a sum rule of Eagelsgo which relates the x° lifetime
to an integral involving a Compton amplitude we infer that the effective

it conspirator trajectory residue function Qc (t) in Compton scattering‘
: v T '
is a smooth function of momentum transfer near t = O. Unlike the photo-

production case we cannot write a sum rule sensitive to the t dependence
of the pion residue function itself, However, comparison of the t = O

value obtained from the conspiracy condition with the value at the n= pole

(known from the 7° lifetime) suggests a zero in Sﬁ near t = -mﬁe. The

behavior of both the pion and its conspirator are consistent with that found

in strong interactions.
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ITT. KINEMATICS

Using covariantly normalized states
. ) B 5 .
we define transition'amplitudes for all twb—body reactions
(p, X, !S‘l p, k) = (p, X, | P, &)

- L ' : ' .
+1i(2xn) e ) (p2+k2-pl-k1)T(p2,k2;_pi,kl) .
(2)

Differential cross sections are given by, ignoring the spin summation

T - lf(E,e)l2
(3)
: 1/2
£o= (BeE) T (a/py) T

where g = (pl + kl)2 and p; and Py are the center-of-mass momenta
of the initial and final states.
1Cohpton scattering amplitudes are relatedlto retarded products

of . currents by the formula

. NS N =R VR

)( ] dh 1k2 X<p2'e(xo) em.(X)’ Jvem.<o)]lpl>
| (i)

2 ' v - : .
where e /hﬂ = 1/137 We do not write explicitly the polynomial terms

which may be required on the rlghthand side of (4) to ensure covariance.
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The electromagnetic current operator J“ (x) can be decomposed

into isotopic singlet and triplet parts

.Juem.(x) L kao(x) . J"llzl,M=O(x) . ' , (5)

In general we are led to consider covariant amplitudes formed as in

Eq. (4) from the individual pieces Juo and Jul’M

with M= 1,0
and construct these amplitudes according to the following isospin
conventions.

_First we constrﬁct amplitudes Ti(iry, Iy) describing transition .
between normaliied states of totai s-channel isospin I built up from

nucleons and isoscalar (17 =»O) or isovector (Iy = 1) photons. There’

are five independent amplitudes. EFach TI(I’y, Iy) gives rise to a

- scattering

| ! ol . M ' L . , o )
(1", I,) C5 T',, I3 M'p, ML)C(5 I, I5 My M) (6)

in states specified by third component of isdépin forthe'nuclebn (MN) and .
photon (My)' The _C's are standard Clebsch-Gordan coefficients. Our

sum rules are written for the following combinations of the T_(I'

I
formed ly symetrizing or antisymmetrizing in the (t-channel) photon

y’ 17)

- isospin labels:

| - - 2>Tl/é(o’ 0)

T = (2/5)[Ti/2(l, ;) + 2 T3/2(1, 1)']

P oo @, 0 1) T, (0 0] |

.u . 1. 1/2 RV (7)
T (2/3)[1*5/2(1, 1) - T (1, 1)]

T @/3)n 0 1) - T G, 0)]
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Amplitudes 1 and 2 carry isospin O in the. t channel while amplitudes
'5, 4, and 5 carry isospin 1. The Compton scatterlng amplltudes of

~physical photons are related to ours by the equations

T(yp > 7p) + T(yn=»>yn) = T + T

(8)

L

T(yp > 7p) - T(rn = 7n)

To relate our amplitude T‘LL to that of the current algebra‘literature5

‘Wwe observe that Tbr is given by Eq. (4) with the commutator replacement

(3,5 ), 3,5 (0] — 3,60, 5,501 - 5,6, 5,0
o (9)
.Ehysical'Compton scattering data cannot be used tQ réSolve the

‘individual contriﬁution of Tlv and T in Eq. (8), or to-determine
the amplitudes in isospin segments 4 and 5. The reai parts of T2_ can
- conceivably be-measufed onlywin neutriﬁo processes. Eowever the
imaginary parts of . all amplitudeé are related unambiguoueiy by»unitarity
‘tQ.experimentally measurable photoproduction processes. Isospin segment
5 has very peculiar kinematies, discussed below, and does.not_seem to
have been mentioned ih the literatere.

We always express our sum rules in terms of regularized t~-channel

4

parity-conserving helicity amplitudes,El which are advantaéeous fof us

because they have simple analyticity and crossing properties and definite
i

t-channel quantum numbers. Direct channel helicity amplitudes

st\u TRV can be deflned from Eq. (4) by choosing nucleon states and

2
photon polarization vectors according to standard conventlons We

take the nucleon as "pafticle 1." We define t—channel helicity amplitudes



*

through the crbssingifelationsgj‘

: o ." ” >\3'-xl" 1/2 1/2 L
By, T T dwlzj(“‘ - X)%'B%(X)M%x'aexh;x'lxe

51 :  (20)
where’
cos x - {erm) (
(s - m”) (11)
. 2m (s - m ) + st
nX =
o (s - m2) vhm? -t

and the superseript i indicates a definite isospin amplitude formed

_according to Eq. (7)

For phy51cal photons, the klnematlc 51ngular1t1es of the

23,2
%7‘1 M

of Reference 23 depended on a simplification of the crossing relatlon

amplitudes have recently been obtained. The analysis

(9) using the time reversal constraint

B Me ),
M?;"W‘f‘g - - Prgirgy - ue)

where x.j = Ago- xj. An identical condition holds for our isospin
amplitudes 1 - 4 » and for these amplitudes the results of Reference 23

apply completely with the s1ngle exception that the S - u crossing

properties of isospin 4 amplltudes are oppos1te to those of 1sosp1n 1l -3

because.of photon antlsymmetry.
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We give here the exact definition of the amplitﬁdes for which

our sum rules are written in isospin segments 1 - 4. 1In terms of

reduced t-channel helicity amplitudes,

. ) NN ) PN N
~s 1 et g M1l g
P, T ez ) T g s Hgrimd,

(13)

we take the following combinations which are kinematic singularity free

in both s and ¢.

T R (U B <

B,Y - (t - ) [K.i%_.;_,l_l ?\f-l—;;l-lJ

b o ()P * (- 1) e [K%-%,l—l + Bz
B, = 51 (=) e [ Al ” K%%—%,ll

B51 _ t-l(hm? . t)i/éL'Ai%,ll + Kf%-%,ll

Bg = 267 2\%—-%;ll

(k)

The B'J.l(s,t)' ‘are independent ex_cept for the constraint condition at

t =0
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: . lim Bul‘('s)t) + (8m)_l(s - U) B6l(S,t) . = O» : (15)
A t -0 i_ : ‘ L :
w and other constraints at +t = hm? which are.not-relevant for our

analy51s n Appendix A we express the_Bji(g,p) in terms of s—éhannel
helicity amplitudes and Hbarn-Leader 5ihvériant amplitudes.

In isospin segment 5 the situation is different. Because of
antisymmetry an extra mihus sign muét be.inserted in the time reversal
condition (12), and this means that there are ohly two independent

nonvanishing's—channel helicity amplitudes WhichAwe take to be

MZ 1, and M1 . There is an analogous restriction, due to
21 -”2—1 : -l 21
charge congugatlon invariance to two nonvanishing t- channel amplltudes
> 5
Aéé,l 1 and A%-%;ll" The crossing re}ations simplify to
AS
’ = 1 M2
éé’l 1 213"21
(16)
A? 5 ‘
= l . .
3311 T M%‘-l,*z’l

The kinematic singularities-are-easily:dbtained and we choose the

following singularity-free amplitudes

5 _ e _1/211’_ —.‘, ..l . |
7 = i(-6)Y2(m" - ) o
, (17)
5 .-l , h -1/2 ,5 _~
B = - 't - .
8 .1 (m” - us) % i1

e

The amplitudes.’Bj_ “satisfy dispersion relations in the variable

vV = %(s.— u) which we write in the form
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IV. THEORETTCAI MATTERS

A. Analyticity and Asymptotic Behavior
The sum rulés which we study‘teSt both the anaIytiéity'propeftiés
and the high—energy'behaﬁior,of‘Compton»scattering‘amplitudes.,*Although
the”necessary analyticity--that un@erlying’the dispersion relations (18).
--can be pfpved rigorously ffom the axioms of qﬁantum field theory, there
is very little rigoroﬁs informafionvon the aSymﬁtotic behavior. We
review briefly here the'typéé of asymptptic:behaéiof.Which'our present
. incomp_lete thepretical knowledge suggests.“- |
* For pu:ely.hadropic procesées there .are some rigorous asymptotic
bounds on scattering amplitudes, such as the Froissart bound26 which can
"be_derived‘using analyticity and (s-channel) unifarity._'For most
.applications-this informaﬁion is insufficient, and it is;éustomary to
assume that;asymptoﬁic behavior iS»determined~by the singularitiés.in
the angular moﬁentum vﬁriable of anélytically continued t-channel partial
wave amplitudes; This hypothesis,‘called "Analyticity of the Second Kind"

27

by Chew, effectively means an asymptotic structure of mpvihg Regge poles

and cuts. N |
In theories with analyticiﬁy of thg second. kind, t-channelvunitarity
plays an important role in deterﬁining asymptotic behavior. Its role is
reviewed in fhe discuséion of this subsection and refereﬁCes to -the originél . =
literature are givén. ‘Further détails, important in understanding our _
fesults are precented in subsection C. | i
- Fixed polés in hadrbnic_amplitudes are severely.festricted by the

: 8 -
"t-channel unitarity condition,z2 - they are allowed only at angular

momentum values for which the unitarity cut is shielded by Regge cuts.
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Our present knowledge of this shielding mechanism29 indicates that fixed
poles occur because of the third double épectrai function present in
relativistic amplitudes and occur at wrong signature nonsense values of
angular momentum. Tﬁeée,fixed’poles do not contribute directly to

asymptotic behavior; although they may modify the behavior of Regge-pole
, . 17

residues in an observable way. = Schwarz sum rules | can be used to test

for the presence of these fixed poles.

Compton scattering amplitudes are an example of the general class

of "weak" amplitudes--those which never appear bilinearly in a unitarity
relation. Because of the absence of bilinear unitarity in the - s channel,
the F?oissart bound cénnbt be proved in‘the'usual way, and there is at
present no rigorous information .on high-energy behavior. Further the loss
of bilinear unitarity in the t channel meané_that fixed poles in the
angular momentum pléne are no longer réstficted. |

vNevertheless, it is intuitively attractive to assume Regge

asymptotic behavior for weak processes, and this was done in most early

50 31

work on Compton scattering” and on more'geperal weak amplitudes.

This Regge pole picture led to puzzling features in the Pomeranchuk

30

contribution’to physical Compton scattering” and in the interpretation

32 53)

of current algebra sum rules. Fixed poles (and Kronecker delta tgrms

-provided the‘solution to these puzzles.

The known ﬁechahisms fo? fixed poles in doubly weak amplitudes
are discussed in References 18 and 32, and we summarize them.here. By
doubly weak we mean four-point amplitudes with two hadrons and two currents
on external lines. In general such amplituaes wili have the j-plane

behavior of their Born terms because this behavior is not smoothed by the
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weak unitarity condition. In particular doubly weak amplitudés will have
fixed poles‘at nonsense integers of both signatures. Usually the strong'
interactions--i.e. higher-order graphs--modify the résidues of the

fixed poles so that they differ from their Born values. Modification
éan be expected for both right and wrong signature fixed poles even if
the third double spectral function .(dsf) vanishes, although the third
dsf mechanism will also contribute to wrong signature fixed boles of
weak amplitudes.

In general, therefqré, the theory tells us the locations of fixed
poles hutjsrrt powerful enough'ét‘present to predict their residues which
V depend on the details bf strong interaqtions. Sum rules, as we wiil see,
can be used to evaluate thélfixedfpole residues directly from the experi-
" mental data.

There are two ekceptions in'which the general theory does give
inf§rmation ébout the fixed polg residues. The first occurs in Compton
scatterinng Where,ﬁbecause of phéton masslessness, the Born terms of
some amplitudes have a singular coefficient‘of tﬁl. This may be observed
in_Tgblg.I fqrvamplitudes_ Bl, BB’ B5, B7, and Bé. Sincg other.contributions
~ to the amplitude are regular at t = O, thé residue of fhe fixed pole at
the highest nonsense point ié also singular at t = O and is determinéd
there by the Born term. This mechanism works in othér kinematical | s
configurations also.su Unfortunately, the corresponding sum rules reducé

v _ . : v

to simple identities at t = 0, to which only the Born terms cOntribute,

and are thus devoid of -interest.
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‘The second exception in which theory actually predicts the fixed
pole residue as a function of t concerns current algebra. It has been

52 that the well-known (and variously_credited) Adler-Dashen-Fubini-

shown
Gell-Man sum rules.implyvthat thé sum rule amplitudes have fixed poles
at J =1 and that the residues are given in terms of vector and axial
vector hadronic_form factqrs. An observed failure of the sum rules Wéuld
imply either (1) that the underlying algebra of currents must be modified,
or (2) that the assumpﬁions.necessary to.derive the sum rule from the
algebra are incdfrect,u or (3) both (1) and (2) are true. It may also be
possible to relate the_fesiduesvof fixed poles at J=0 and  j= -1
to properties of the current.aigebra.ll’l@35

We have stressed that the basic mechanism which permits fixed
pdles in weak amplitudes is the breakdown of bilinear unifarity.
Linear or weak unitarity still requires factorization‘fof Regge-pole
couplings to weak amplitudes as we show in subsection C. .One effect of
fixed.poleé is usually to make Regge-pble residues more.singular at

nonsense integers than they would otherwise be. This effect will be seen

clearly through our sum rules.

B. Sum Rules and Fixed Poles
The preceding arguments motivate us to assume that the typical
asymptotic behavior of the B (v,t)' amplitudes_is (with n denoting.

the crossing phase),

i (t) a1 o (8)a
B(v,t) ~ —'ZE: Gr(t)(e r» + Tr)(sin nar(t)) v T

M

- E: 7 (t)v-k [l>+ n(;l)k] + | ant) Vi1 + n(-1)"
k=1 k . L.—_'O ‘ (21)
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corfesbonéihg to Regge pblés (of leading signature T = n(—)x), right
signature fixed'poles:(at 3 - - k) and Kroneéker deltas (;t =N +m).
Wrbng signature fixed poles manifest themseives in (21) only in their
éffect on the Gr(t). We ignore possible Regge cuts because our sum
rules are not accurate enoﬁgh to distinguish between poles and cuté.
Nonleading Reége polé terms (20) cah easily be included invépin types 2
 aﬁd 3. o | |
The sum rﬁles we-use can now be derived &ery easily. lThe functions

vt B(v,t) are analytic in the cut v plane and therefore satisfy

e Sédv v B(v,t) = 0 o (22)

2xi

C

where C 1is the contour of Fig. i.' We evaluate the integral over the
semicircular portions approximately by using the asymptotic form (21) and
taking vc as the radius of tﬁe semicirclé.~ We collapse the contour to

the cut, separate out the Born contribution and obtain the resulting sum

- rule
. v ' - o, (t)+n-nl
' n 1 ° n 1 (vc)
-V clt) + = dav v Im B(v,t) = = Gr(t)
: : : : - o (t) +n-A+1
v T T
0 . . . ,
Fa () (23)
s s n-A - - . cro n-A
for n satisfying (=) = -7 , and a trivial identity for (-) = +T.
We remind the reader of our notation v = %(s - u), Vg = % t, and

B . 2. 1
Vo = 2mp + uo o+ 5 t.
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Notice that the Eﬁh moment ‘sum rule is sensitive only to the
fixed poleat J=AN-n -1, and tobally insensitive to possible‘
Kronecker delta terms. The latter, as we shall see, can be tested
using the dispersién relations (18) in which experimental values of the
real’part of the amplitude can be inserted.

Wrong signatur¢ sum rulés17 can be similarly derived by considering
an artificial amplitude g(v,t) with the same right-hand cut and the
negative left-hand cut of the correspohding B(v,t). Wrong signatﬁre
fixed poles manifest themselves in the asymptofic behavior of E(v,t).

The sum rule is derived by considering the integral of v B(v,t) Qvér

the contour’ C. For n satisfying (-)n-K = -1 the result is a trivial

' identity, and for (_)nax = +7 we obtain a sum rule identical in form

to (23) with Fn+l(t), as the asymptotic coefficient of the wrong

signature fixed pole termat j= A -n - 1. Therefore we can understand
Eq. (23) as valid for all integer n and festing right (wrong) signature
fixed pdles for (;)n—k = i T

Using an intermediate state expansion df the retarded product (L),
it is easy to see thét only the second term of the commutator contributes

to the left-hand cut of the amplitudes‘ B(v,t). It is therefore amusing

to note that the corresponding'signatured amplitude B(v;t) is formally

giveh by an anticommutator expression, and its fixed pole residues are
formally determined by equal time anticommutators. We refer to this
situation as anti-algebra.

i

The operation of the fixed pole mechanisms discussed above can -

© be clearly seen in Eq. (23). For amplitudes with singular Born term C(t)

the left side of the n = O sum rule is singular at t = 0. This
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singularitj must be matched on the righf side either by the fixed polev
residue Fl(t) or by thé contribution of a Regge polé satisfying
d(O) = A - 1. TIn nonvacuum channels, there is no indication of the
existence of Regge trajectories with the necessary properties, 6 aﬁd
we must expect a fixed pole at the highest nonsense point Jj=X -1
with residue singular af t =0. In vacuum channels, the Pomeranchuk
trajectory haé the required intefcept and the Born singularity can be
"matched either by the singular Pomeranchuk term on the right side of
(23)'or by a wrong signaturé fixed pole at J = 1. The sum rules can
be used to distinguish between these alternatives.

We-also observe that if a Regge trajectpry passes through the
nonsense integer a(to)»= A-n-1 for some t, and if G(to) £ 0,
the Regge pole term in gﬁh.moment sum rule has a pble at t = to. This
pole is not present on the left side of Eq. (23), because we are dealing
with.a nonsense or unphysical point, and it must fherefore be cancelled
by a similar pole in fhe fixed pole residue Fn(t). Current algebra
amplitudeé, where Fn(t) Vis a form factor with the p-meson pole, are an
example of fhié.meéhaniSm. |

| Cﬁribusly enough the fixed-pole residue function can have poles
at spacelike t values. If H G (t );é 0 (of GAQ'(t ) # 0) at the ﬁegaﬁive

t wvalue t. (or t ) where «o (t ) =0 (or o (t = 0), the j=0

© Ao
wrong (or rlght) signature fixed-pole residue develops a pole at to (or
tl) corresponding to the nonsense ghost state on the trajectory. In the

wrong signature case this is clearly a triumph of anti-algebra.
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C. Unitarity, Factorization, and Fixed Poles

In this subsection we discuss two principle results, both
essentially known. First we show thaf t-channel unitary requires
factorization for thé gouplings of Regge poles to both wéak and hadronic
channels. Proof of the absence of fixed poles requires a more stringent
form of unitéry satisfied only in hadronic amplitudes. Second we show
that fixed double poles should be expected at nonsense integefs in four-
point amplitudes with all lines weak. Knowledge of_this fact is required
to understand our results for the current algebra sum rules.

To prove factorization we generalize the argument given by Oehme,57
which requires only the analytically continued partial wave unitérity.
condition and the existence of a nondegenerate twd-particle threshold
pfeferably invélving stable hadrons. _In‘ TP = +1 amplitudes the necessary
threshold is provided by the nx  (d = +1) or K& (¢ ='t;) channels.

For 7P = -1 amplitudes the NN threshold is.nondegeneraﬁe. We will
use the XK channel for TP = +1° since it is present fof'both G
parities.

First let us introduce the TP = +1 parfial wave amplitudes
ajk(t,J) (evaluated on the physical sheet) where j and %k denote
channel indices, aécording to the following aééignment: J = l,KK;

'§ = 2,0 helicity nonflip; J = 3, NN helicity flip; § = Y4 77 helicity
nonflip; and J = 5, 77 helicity flip. Our argument applies to all weak
channels; although we restfict ouréelves,.for definiteﬁess, to the Y
channel which is doubly degenerate. |

Denote the analytic continuation of ajk(t,q) onto the sheet

. TI v
reached by continuing through the XK threshold by ajk(t,J). Since
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ajk(t,J) can be chosen symmetric in the channel indices, the requirement

of unitarity can be written

aak(t,J) (t J) = 2ip(t) 8 (t J)a (t J) ‘ (24)
where
Ve ® 1/2
p(t) = i “—fg‘li‘

AN

" and then reexpressed as the set of equation

8., (t,3) = a, (t,7) +

!, _ (25)
o j‘ |

o 23 p'aII(t I) a (t,J) - |
a., (t,J) = Jl(t J) o+ T , for 3 #£1, (26)
1-2ip all(t,J)
T 12ip a (t J) a (t,J) ,
a. (t,3) =,ajk(t,J) + |, for J,k £ 1.

1- 21 0apy (5,) ) (27)

) Régge poles occur in the foliowing Way. There is an anaiytic
trajectory function J = q(t) for which 1 - 21 p a{i(t,a(t)) = o.
It is easily seen that; as far-as the second terms iﬁ Egs. (25)-(27)
are concerned, the Regge pole appears in . all amplitudes of the coupled
channel gystem, and that itsvresidues factor. Therefore factorization

could be gpoiled only if the second sheet function a (t J) contained
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the moving pole at J =fa(ﬁ); This excéptional circumstance, corresponding
~to a zeré of the multichannel D function of rank higher than one, cannoﬁ
be ruled out., In the language 6f fhis probf it means that there is really
a second Regge poie miraculously with %he same trajectory oa(t) which
does ﬁot couple té the KK stabe but couﬁles to higher mass hadronic
channels. - : -  ' ; o In

this sense factorizaﬁion is the normal case. A similer proof of
factorization for TP = -1 ples can be constructed uéing an even simpler
set of»éhannels. | | | |

One important aspecf'of this argument is that weak and sbtrong

jal]

channels enter on equivalent footing. 7Proofs of -the absence of fixed
poles in multichannel systems require the existence of an intermediaie

38

state_fhreshold for each. external channel éonsidered and therefore
apply only to hadronic channeis.

. Iet 3 be a weak chénnel and k. be a hadronic chaﬁnel. It is
clear that Eqs. (26) and (27) permit thé,presence.of fixed,poleé'in_
doubly weak'amplitudes, ahd we have reviewed in subsection A several
arguments éhowihg that fixed poles actually are present at nonsence
integers. If we take both Jj and k fo be weak channels, Eg. (27)
stfongly suggests the presence Qf fixed double poleé éf nonsense integeré;

| Our interest in this_last pointvisrthe following. First we ovsevwve.

using (26) and (27), that fixed poles in doubly weak amplitudes at‘intégei

_ R o _
jo generally induce [a(t) - jo] ~ "~ factors in the Regge residues of

those amplitudes. Similarly fixed double poles lead to [a(t) - 3o)
factors in the Regge residues of completely weak four point amplitudes.

N

he p-mesor

¥

Our study of the current algebra sum rules indicates that t
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Regge pole couplingyin smooth and nonvanishing near t = -0.6 (GeV/c)g,
Whereas hadronic amplitudes generally exhibit the well-known nonsense zero
1k L ' :
(dip) there. This situation is consistent with factorization only

because singular 7Y couplings, corresponding to a fixed double pole

at j = O in the ¥y - 77 amplitude, are allowed..

D. Conspiracy

We turn our attention now to the conspiracy condition Eg. (15)
vwhich relates at t = O the a@plituds B), containing. TP = -1
trajectories in the t channel to the amplitudé B6. containing

TP = + 1. We suppress the isospin superscripts- in this discussion.
Since Eq. (15) holds identically in s, it imposes constraints on the
residues at t = 0  of these trdjestories. Either the couplings 'Gu(t)
snd G6(t)» vanish at t = O (evasion) or there exists pairs d;(t)
“and a+(#) of negative and positive TP tfajectories satisfying the,

conditions (of conspiracy)

]

a_(0) a, (0) |
. (28)
Gh(o) = - G6(O).
Sum rules for amplitudes Bh and B6 can, in principle, be
used to investigate possible conspiracies for the = (isospin segment 3)

and 7 (isospin segments l,and'E); One would simply explore the sum

rules as functions of t Tfor several moments to obtain a parameterization.

of the trajectories and residues. Although this technique has recently
59 it

been used to investigate conspiracy in the process 7N = =N,
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does not seem possible to use it for Compton scattering, at least with
presehtly available data. First thé BMB sum rule has A= 0 and
nosn = i; it diverges badly asymptotically, emphasizing‘the most |
inaccurate}y known part of the.déta. Second the BéB sum'rule, although
more'accuréte, is useful only near t = 0 for determining the parameters
of conspirator trajectories because importantvcontributions from non-
qonsbiring'trajectories_(such as AE) mix in away from that point.

Hence the only number which éan be determined from_the Bh and
Bé sum rules and associated with the pérameters of a.éingle Regge
trajectory with relative coﬁfidence is the value df the B6 sum rule
at t = O; However evén this number pfovides an interesting test of
conspiracy, through a sum fﬁle.of'Eagels,éo which we rederive here.to
incorporate recent clarification of the questions of conspiracy and of
the'relation between asymp#otic behavior énd subﬁractibns.

We start with the n = 0 sum-rule for B65(v,t) assuming

domination by a single Regge;pokaand a right signature fixed pole at

J = d:
Ve a(t)
) + = 30,4 - ()" '
g (8) + 3 | v In B (v,t) = a(t) =Tt F(t).
Yo . | (29)

Now set t = 0, evaluate the Born term using Table I, and reexpress the

continuum contribution using the conspiracy condition (15):

. . VC A 'v a(O)
"¢ [EKp_ B T ! - = | v Im B (v0) = G(0) alo) + F(0).

o ' o (30)
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We proceed with the derivation under two different assumptions. .

1. DPure Reggeism

' We assumé that the = meson liéé.on a Regge ﬁrajectory 'aﬂ(t)
which couple; to the Bh5 amplitude w;th strength Gﬂ(t). if' ':_
Gﬂ(O) #£ 0 then there is a conspirator aé(t) which_couples to B63
with strength Gc(t),vand these functions may be identified with the

Regge functions in Eg. (30). We set F(t) 0.

|

The amplitude BHB .has a pble-at t = mﬂ2 éorfesponding to the
no intermediate state in the +t channel}, The residue of the pole is
closely related to the lifeti@e of the ﬁo.” Using .Bu(v,t) = A3(v,t)
where .AB is the Hearn-Leader amPlitﬁdé’ and comparing the regidue'of
the pole in the ‘nééRegge polé term defined_in (él) with Egs. (2.8) and

(2.12) of Reference 20 we find

-26¢ (m°) -
—T 5 = ey m )
T Tr(mTr ) (51)
2, 2 6L 5
' (mﬂ ) m > T
e

where T 1is the ﬁo lifetime and gﬂﬁ is the NN coupling constant.

We assume that the =n Regge pole coupling Gﬁ(t) varies slowly with +t

so that

¢ (m?) % ¢ (0) . | (32)
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We use (2L4) to rewrite (30) (with F(t) = 0) as

. _ : ' T’ (O)'
t.hes. of (30) = -G _(0)lhmna (0)177 v, i
| 1 o (0)
¥ g (n Mbmn o' @) v T (33)

Using (31) we then obtain

2 5 '> g ¢
e
HE-(QKP +.Kp - Ky

ajl

- . |
e Im,BhB(v,o)

(34)

which' is the form of Pagels' sum rule apprépriate for pure Regge behavior.

2. Elementary =

Here we assume that Regge pole terms are unimportant on the right
"side of Eq. (30),; and that the sum rules evaluates the residue of the

J = 0 right signature fixedﬁpdb. If F(O) #'O , as our numerical result
' | - 53

shows, then the conspiracy condition requires a Kronecker Bjo term

in the amplitude B 5 with'asymptotic coefficient DO(O) = -4mP(0) at

t =.0. Webassume ‘that the Kronecker o,

Jo

t = mﬂ2 corresponding to the elementary ﬁo meson and that this pole

e

]

coefficient has a pole at

term dominates at © = 0. We then can write

SnF(0) ¥ g F(m?) O 35)
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and the sum rule (30) becomes

2
e 2
Ti;l'—l (EKP + K - K

= ;‘N\ Tﬂ/l' . - (36)

At preéent'practicable cuﬁoff energies one cannot distinguish
between (34) and (36), and therefore one cénnot directly probe the Regge
pole nature of the pion.in Compton scattering. The sum rule does provide
a check on the overall strength of the asymptotic structure corresponding
to the = meson and on the.assumption of smooth variation of the

effective ﬁ;pole residue. The sum rule for amplitude B in which the

7
- trajectory can be exchanged although J = O -is a nonsense point also
provides some information on conspiracy.

Sum rules similar to (34) and (36) can be written for the 1 :

meson. We refer the reader to Section VI for further discussion of our

results .on conspiracy.

B. Pblarizability énd Kfoneckér Deltasl
We. finally discuss a.iossible test for the presence‘of Kfonecker

delta terms in physical Comptoﬁ scattering émblitudes.
The amplitude Bli(v; t=Oj, in isospin segments 1 - 3, satisfies

the dispersion relation



-29-

(6] i
. 2 ! .. R
B, (v,0) = - a” me” P T ! (V’O)- ot gt VP
1 2 7t ' .2 2
o v v -V
0
(37)
IWhere we have included contributions of Kronecker deltas at .j =2 and
j,= 4. The nucleohfpole coefficiént is al = a2 = %-aa = 2. Using the
crossing relations (10) at % = 0, we find
52 B i(v 0) = m(Muw + M 'i )
1 . 1,21 21531
(38)
2 i :
= L4m fl-(v)

where fl(v) is the forward spin-averaged Compton scattering amplitude
of_ﬁhe classical era of dispersion relations.ho A power series expansion

about v = 0O gives
) . ~ - (39)

The parameter b~ is related quite simply to the energy derivative at

threshold of the forward unpolarized Compton scattering differéntial

47
cross section, l,hQ and to the sum of electrlc and magnetlc polarlzabllltles

of the nucleonl}3 by b Bt hﬁ(a + B ) Combining (37) - (59) and

“using the optlcal theorem, we find for the polarlzabillty sum:

' . . i
@+p) = % oo ) ¢ o (b0)
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This sum rule has long been known in the form with ci =0 .
(no Kronecker delfa) and has been used to constrain a two-parameter fit
to low energy Compton scattéring;uu Drellhe ha; récently emphasized
the importance of using Eq. (40) ﬁo test for the presence of the 632
term in the asymptotic behavior of protoﬁ Compton scattering.h5 .In this
case the total photo absorption cross section is known up to 6 GeV, and
the_rapidly convergent integral term can be quite accurately estimated__
from the data. "Ironically it is the’polarizability,éum, which could be;
~ determined in low energy (20 - 80 MeV) Compton scattering experiments,
_which is unknown. Thﬁé we ﬁave.here a situation in which measurément of
- a single low-energy parameter can answer an important qpéstion in high
energy physics, and we Jjoin Drell in urging active consideration of low
eﬁergy proton Comptoh-écattering eXperiments.

Our confribution to the qugstion of the Kronecker delta ferm
consists of the evaluation of the integral term in Eq. (40) in isospiﬁ

gsegments 1 - 3.
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V. TREATMENT OF EXPERIMENTAL DATA

The mosﬁ conspicuous feature of the nuecleon Compton process is
the lack of diréét experimental data. Since fhe sum rules (23) involve
only the imaginary parts of Compton amplitudes, we use unitarity to
express the integrands bilihearly in terms of hadfonic photoproduction
amplifudes.

The unitarity condition is shown schematically in Fig. 2. One
must sum the contributions from all intermediate states that are .
’energetically allowed; Experimentally the quasi-elastic (o) intermediate
. state dominatesh6‘up to photon lab‘energies (Elab) of 0.5 GeV, and
between 0.5 and l.lvGeV the inelasfic contribution is‘dominated by the
nnll  state in the configﬁration 7AW

7

In studies of sum rules for the processes =N —+ n«N, KN - KN,.

and oW - v, >0 BT

there is "experimental data" available for both real
and imaginary parts éf the amplitudes. 'This leads to two gdvantages which
we do not enjdy, First continuoué moment sum rules, involving real parts,
can be used. Second inelasﬁicity is automafically incorporated, and one

need not treat individually the contributions of different intermediate

states.

A. 1N Intermediate State

There have been many theoretical and phenomenological attempts

1,2, 48-50 yN-~ nN. Only two of

- to describe low-energy photoproduction,
these arevsufficiently compléte for our purposes, since we require a
description of photoproduction amplitudes which is accurate as to phase,

helicity and isospin dependence. The multipole analysis of Walker2 is a
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direct fit to the experimental data, up to photon energies of 1.2 GeV;

using a Born term, Breit-Wigner terms for known resonances, plus correction

terms. Berends, Donnachie, and Weaverl (BDW) have given a more theoretical

lab
GeV. Their results do not.fit the data as well as Walker but probably

treatment; bésed on dispersion relations, which extends only to E 0.5
contain a better estimate of the helicity and isospin structure of the
béckgrouhd. | o

In our éstimate of the =l contribution to Im B we‘calcuiéte
the integral upto 0.5 GeV using both EDW aﬁd Walker énd compare the two
evaiuatiéns. Above this énergy‘we use Walker's anélysis. in'the iow
’eneréy regién there is often serious discrepéncies bétwéen.tﬁe ﬁDW.and
Walkef multipoles, particularly for iséscalar photons. When.one calculates
ﬁﬁe experiﬁental do/dt for photopioduction this difference shows up-
moét'clearly in yn - 7 p where BDW predicts,a much flatter» t _distribﬁtion
<

than Walker for the energy range 0.4 < E S 0.5. The data used by

lab
Walker would appear to agree with his own analysié2 and not BDWlZ

To illustrate the importance of this difference we plot in Figs.
3-5 the values of % ImB at t =0 for threé sum rules of. particular

interest. One (B l‘L), the helicity flip current algebra amplitude, has a

3
small discontinuity at 0.5 GeV between the BDW and Walker analyses.

-The‘Drell—Héarn‘amplitude-involvihg two isoscalar photons (B2l) is badly
discontinuous while the discontinuity of B2§

in which isoscalar and isovector photons interfere, is intermediate between

, the Drell-Hearn amplitude

these two extremes.
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Both the BDW énd Walkér daté are eSsentially given directly‘in
‘terms of multipoies. To caléulate Im B for our sum rules, we use
Eq.(A;2)expressiﬁg the Bji ‘ih terms of s-channel helicity ampiitudes
and then decompose into partial waves. Then the partial wave unitarity

2,25

eqpatlon enables us to express the Compton scatterlng partlal wave
amplltudes in terms of photoproductlon multlpoles. |

There is, unfortunately, a technical difficulty in this appfoach
in that the box diagram of Fig. 6, leads to a divergence.of the partial
wave series for t < -0.28. This was countered by calculating:(in a
way too inelegant to reveal) the divergent part of Fig. 6‘and subtracting

its partlal wave decomp051t10n from the dlvergent series produced by the

photoproductlon multlpoles.

B, Inelastic Intermediate States

We must néw turn to the insertion of inelaétic intermediate
states in our unitarity sum. In the energy range of interest =N is
the most imporﬁant inelastic state and this is predominantly produced
in the quasi-two body state A .3,%6 Thus at 0.7 GeV nA is essentially

100% of the inelasticity while at Elab = 1.1 GeV it is more like

50 ~ 70%.

5 model

In order to déscribe N -+ nA_ we use the,Stichel-Séholz
which approximaﬁes51.the amplitﬁde by the s-channel nucleon Bofn term
and the u channel lA pole of Fig. 7; We chose to calculate these
graphs by fixéd t-dispersion relations “utilizing the knownvresidues.at
the ﬁoles. Then by gauge invariance the _t channel one =n exchange term
(Fig. 8) is automatically inéluded. This model fits the data well;near
= 0 both in do/dt and the density matrix elements P330 P31 pi,_l.

describing the decay of the A .
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This calculétiqn ignores the magnetic moments of the N and the
vA ‘Which are jimportant away from t-= O. Other obvious omissions are the
higher s-channel resonances, which can be estimated;.and the ﬁ—channel
resonances, which cannot, due to the unknown YA - N** coupling. One
effect .of these omitted terms is to destructively interfere with the |
Born terms of Fig; T, and reduce the calculated cross section. They
alsq introduce of course’ nonzero values into helicity and isospin states
not populated in the model of Fig. T. The relative size of these effects
may be estimated by eXamining_ yN - ﬂN_ at large lfl where thevmasé
difference of N and A becomes negligible and we.haVe similar kinematics.
waever, Wé contented ourselves with taking the amplitude of Fig. T énd
multiplying it by a form facfor F(t) determined so as to fit the
experimental values.of do/dt for =N - wA. This simulates the
destructive interference at largev‘ft[ of the omitted terms but not the
populstion of new helicity and isospin states. The helicity structure
thus obtained is essentially the same as that given by an absorption
model calculafion based on the oné-pion exchange gréph-(Fig. 8). Thus
Fig. 7, with form factor, already contains the most important effects

given by absorptive corrections. A typical F(t) at E = 0.85 GeV

lab

was given by:

fz(t) = 0.66 exp(-2.9t - 121:2).

It may be worth noting that in our modified Stichel-Scholz model -
for N - nA ) the amplitudes involving isoscalar photons vanish. We
‘expéct the isoscalar photon contribution to be small (because there is

no = exchange pole) and of the same order as many omitted effects
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in the isovector part. Such effects are difficult fo estimate.

In order to find the contribution to Im B of the nA state
we follow the same'procedure as for =N . Namely we decompose nN = A
_’info partial waves and use partial wave unitarity.22 We note thaﬁ the
diagram of Fig. 9, does not cause a divergénce of the partial ﬁave series
wmtil t R -1.2 - and 50 we need n6 special action like that necessary
for Fig. 6.

In order to deséfibe the inelasticity not produced in the =&
intermediate state we add incoherenﬁly the contributions of higher

resonances as in Fig. 10 multiplied by the factor

I - T
inel 7

I‘to’c

so as to geﬁ the fraction not already inéluded in fhe N . and =nA 'state55
Since we must use both the 9N -~ nﬁ' multipole analyses2 and the
N - #N phase shiftsg in order to exﬁract the 7N ~> N** coupling by
factorization, the incoherent resonance contribution is ambigﬁous because
of differences in the resonance mass and width parameters in Refs. 2 and 8.
There are further ambiguities due to our inaccurate knowledge52 of the
A partial widths Fn& -and because of defects in the treatment of
resonances in our model for 7N — nA . These ambiguities aré'taken into
account in our error analyéis.
Finally we would like to record a possibly more fundamental
objection to the simulétiqn of inelastic effects in weak amplitudes
using a resonance dominance model. In hadronic amplitudes iarge ﬁ-channel

contributions (such as our = .exchange in N = xA) violate the unitarity
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bound in the sikcﬁannelvand usually lead to an s-channel resonance

which can give an alternate descfiption of the t~channel phénomenon, In
weak processes such as photoproduction and Compton scattering, there is

no unitarity ﬁound and theré is less feason to believe tﬁat t-channel
exchanges can be reasbﬁably‘deSCribed by. s-channel resonances. We

realize thét vector dominance relates Compton scattering to strong processes

(e.g. ©oN - pN) Dut this only depends- the my'stery.55

C. Frrors in Evaluation of Sum Rule

We assigned errors to our sﬁm,rules by the following method.
Divide the contribution to the sum rule into ten pieces. Seven of these
coming from the =N intermediate state (namely Walker's 6 resonant

partial waves S.. P P D D

1 "1’ 733 1% 1%’

nonresonant partial waves) plus one piece each for the A and non-nA

_F15 plus the sum of

inelastic contributions. The last contribution is the nucleon form

4
Bl -

The error in the last is estimated from the dispersion in the various fits

factor needed for the fixed pole in the current algebra sum rules

of Ref. 5u. The first 9 qpantitiés were assigned preset errors ranging
from lO%_fbr'Well determiﬁéd.isovector photon couplings to 100% fbr some
isoscalaf éouplingé. The size of the discontinuityvbetween BDW and Walker
at 0.5 GeV was a help in judging these errors. The total error is found
by adding the above as pncorrelated errors to an error estimated from
assuming fhe disconfinuity at 0.5 GeV propagated over an s range

choseﬁ as 0.3 GeVE. |

Although this arbitrary method cannot be trusted to give more than

& rough indication of the error in any given sum rule, we might hope that

it does give an accurate picture of the relative errors of the sum rules

for different isospins, helicities and t values.
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VI. ANALYSIS OF SUM RULES

A. General Properties

We finaliy come to a description of our evaluation of the sum
rules (23). We have caloulated the Left-hand side of (23) for t
varying between O and ~0.9 and for all 26 sum rules correspondihg to
the various spin and isospin states. We have‘also taken different values
of n in the range 0 to 3, thus obtaining information about both right
and wrong signatﬁre fixed polés in.(23). - We have selected from these
the most interesting sum rules and present our results graphically in
Figs., 11-28. Before commenting on the significance of these resulté, we
will describe the meaning of the sundry qpantities plotted in the figures.
The integrals Iji(n) are defined to be the left-hand side of |

(23) evaluated in units such that A = ¢ = GeV = 1. Thus
v vc‘ o
av v Im le(v,t)

0 | (h1)

Al

A R OR

where the first term is the Born conmtribution.
Here the cutoff vc corresponds to a photon lab energy of 1.12
550

above which the.published data n shows our model for

Ttotar (7P)
Im Bji to be undoﬁbtedly wrdng. | ‘ _
In the graphs > represents the integrals Iji(n) ﬁith errors
estimatednas described in Sec. VC-. The integrals are evaluated'using
the BDW multipole arialysisl from thé.threshold ﬁo 0.5 GeV and Walker's
analysis2 above that energy. All the sum rules have also been evaluated

with Walker's multipoles for the whole energy range, elimiﬁating BDW,

Usually the difference between these evaluations is smaller than our
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estimated errors but where they differ significantly we also graph the
pure Walker evaluation of Ijl(n) which we denote by O .
The Born term contribution to Ijl(n) is represented by a solid

line where in the current algebra sum rules this also includes

Iy

&
1,2,5

the fixed pole contribution. In T, (1) +the dotted line indicates the

Born term without the fixed poie.

The lowest value n=n . (0 or 1) such that (23) is a right

signature sum rule is given in Table 1. 1In theory one may use the value -
: !
of I.7(n

j - +2) to estimate é valué>for the intercept «

i
in)/Ij (v in

of the Regge pole assumed to saturate both sum rules. However the presence’

of unknown fixed poles in Ijl(nmin +2) renders this dubious in our
case. Instead for sum rules Ijl(n # n ;) we plot the quantity (denoted

by 4 on the graph)

O -N+n . +1 n-n .
min ) min

jS(n) - — tim ) (1)
' -A+n+1

where for O we put the values already-kﬁown from thé aﬁalysié of sﬁrong
interactions. We ihclude generous errors in our knowledge of & 1in the
plotted errors of jS(n) . Ir jS(n) ahd Iji(n) differ significantly
it may indicate the presence of a fixed pole.

’In spiﬁ tyfe 2 we indicate ﬁith' X an estimate of the non-
asymptotic'parts of P, Pf, pb and A2 excﬁange.calculated from (195,

(20) and Appendix C as

@ - o)t (o +ng - 1) n-n
T T 2o @+n-2) 'c 3

N21<n> - ) (43)

where n, is the wvalue of noin for spin type 3 and the same isospin 1i.

3
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Finally in the conspiracy sum rules (spin type 6) we indicate
with a V symbol an estimate of the nonconspiring contribution

calculated from factorization as

ho) - =% X2 iy Paynte . o
2vc . : A

and we restrict to i =1, 2, 3 as i =4 has a (known) fixed pole.

For i=3 we havé i’ = 3, bwhile for i =1, 2 we take i' =2 as

being more reliéble than i' = 1 (because isovector photon couplings are

more accurately determined than isoscalar).

The méin tools in the aﬁalysis of our results are the sum rule
graphs just described. Perhaps the most important thing we are interested
in, is to discriminate betweeﬁ Regge pole and fixed pole éontributiohs to
the sum rules. TFor higher moment sum rules this can be done thrqugh
the quantity jS(n) of Eq.»(hQ). For some lowest ﬁoment (n=n_.)
sum rules we expioit the factorization propertyfof Regge yesidues (fhis
has already been used in obtaining (Lk4)). Fdr example, the amplitudes
Im Bl,i and Im BBi are dominated at high energy by, respectively, the
nucleon hel}city nonflip and nucleon helicity flip couplings of the same

Regge pole. If there are no fixed pole contributions to the sum rules

.t and I,° 5 then factorization (see Appendices B and c) requires

1 3
' o o

i i (4" - $)A!
5 /15 = N joN, = "é’i‘ﬁl" | (45)

where A' and B are the conventional nonflip and flip residues used

56

to describe =N and KN scattering. If the sum rule ratio agrees
| with the value calculated from hadronic processes, then we have evidence

suggesting that the fixed pole‘éontribution to these sum rules is unimportant.
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Another guantity which is sensitive to fixed pole contributions

to the sum rules is the effective trajectory ajl(n) (which is also a

N

function of t) defined numerically by

. VP B (v, )
a. (n) = (n-n-1) + < .

i (46)
J. ._ 7t IJl(n) .

where we average the numerator over energies E

‘ .88
15b betweenv 0 and

1.12 GeV. This quantity is the trajectory a(t) whose Reggefterﬁ
(as in (21)) both saturates the sum rule iji(n) and fits the imaginary
part data averagéd over the upper end of our integration rahge:' By
examing Egs. (21) and (23) one cén see the following. If aji(n) comes
out reasonably close in shape tojthe trajectory known to coupie_ﬁo the-
amplitude Bji , then this indicates that the fixed’pole in that ampiitude
is weak. However, if aji(n) turns out closer to the fixed pole value |
(N -n - 1) to which the sum rule iji(n) is sensitive, then we have
évidénce for a strong fixed pole which contributes td-the denominator in
(46) but not to the numerator since a fixed polerterm is purely real.
Graphs of the quantity aji(n) are used whenever:their aécuracy
allows useful information to be extracted. The plotted errors in the
‘graphs inélude those of Iji(n) and the dispersion obtained by varying .
the numerator in (46) over the energy range 0.88 to 1.12 GeV. Unfortunately
aji(n) is rather sensitive to errors in the parameterization of the data
near 1 GeV and depends on the dubious assumption of the Yalidity of Regge>
behavior at this low energy. For this reason evidence from the effective

@ graphs must be taken with a healthy grain'of'salt.v
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1,2,5

B, Regge Pole Sum Rules: T
1,5

'_Although right signature fixed poles can be present in the

amplitudes B’2?)
L3

would follow from the mechanisms discussed in Sec. IVA, for them to be

there is no compelling theoretical reason, such as

present. Therefore we might expect the right signature sum rules (n = 1,3)
for these amplitudes to be dominated by the P, P', and A2 Regge poles.
Further we should expect reasonable answers from these sum rules,

because they are at least as'conVefgent as the corresponding low moment

9

sum rules in =N and KN scattering.

If there are no j = 0 fixed poles,ﬁhen the n =1 sum rules

1,2,3
IJ)
1,5

of the p, p', and Ae,'and the quotient 111(1)/131(1) should reveal,

(1) should directly measure the photon (helicity flip) couplings

through Eq. (45), the same nonflip/flip nucleon couﬁling ratio obtained

by analyzing =N, XN, and NN elastic scattering. The current

mod.els7’56’57 for these amplitudes would lead us to believe that near
£t =0
A 1
) for P and P
(47)
A’ Lo ' 1
VB fpr .p‘ and A2 55

femembering our definifion of v is 2m iarger than.the usual
(s - w)/(im) . |

There is also some evidence that the aﬁplitude A' has an
additional zero for P' and A2 near t ~ -0.5 over and above that

needed to erase the ghost. The evidence for this zero comes from a.
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b7

photoproduction FESR for the A,2 while for P' the zero is

indicated by» N FESR's7 .and also by the structure in pE elastic
scattering near t ~ -0.5.58 The.work of Refs. 47 aﬁd 58 was clgimed,to
berevidenC¢ for the so-called no compensation mecﬁanism for the P' and
A.2 . This has an extrg zero in both the flip apd ponfliP cquplingé'but
in fact their analysis was most sensitive to the nonflip zero _

and fgr the AQ, aﬁ.leést, one can rule out the flip zeré from high
energy data for N - nN, and =N - nA . If this zéro is a true»effect
of the leading Regge trajectory, and not due to interference with

secondary trajectories, our sum rules should reproduce it.

1. P and P' Exchange Sum Rules: 11’2(1,3)
) 2

Here there are two possible isospin states, 1 and 2, corresponding
to isoscalar and isovector photons and one may expectvthe latter to be
more reliable. Thus in general the amplitudes involving isoscalar photons
will have rather small Im B because the resonance couplings of Walker

‘are larger for isovector than isoscalar photons and because our model for
thé inelasticity has a very small isoscalér part. Thus isospin 1 sum
rules tend to be dominated by their Born terms ﬁhich are not always smali.
Under such circumstances Eq. (46) predicts that the effective o will be
nearer the fixed pole value N\ - n - 1 than the intercept of the hoped
for'Regge pole. One should however note that BDW and Walker are not in
quantitative agreement (cf. Fig. 3) and such sum rules have a large

lab
of using Walker from threshold rather than BDW and as expected this leads

discontinuity at E = 0.5 GeV. 1In Fig. lla we have plotted the results .

to results showing a smaller deviation of Ijl(n) from its Born value.
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The nicest sum pule of this section is _Ila(l) shown in Fig. 12a.
The corresponding o (Fig. 12b) estimated as in (46) is in agreément
with an expected average P + P' intercept while even the higher moment
sum rule 112(3) (Fig. léc) shows agreement with Ile(l). Both resulfs
suggest that there is no important j = O fixed pole.

The corrésponding flip sum rule 152(1) (Fig. 1ka) is not so
spectacular with both aﬁe(l) (Fig. 14b) and 132(3)' (not shown) showing
less agreement with the P + P' and preferring a lower intercept.

The isoscalar photon sum rules Ill(l)-and 131(1) (Figs. 11 and 13)
do not provide striking evidence for or against a fixed pole at j = O.

From Eq. (45) we find at t = O
AL for P*fPF from isospin 1 ~ 0.6

vB (’-}8)

from isospin 2 ~ 0.3

which agree reasonébly wifh the =N result of 0.5. Of courée-it.is
guite possible that the faﬁio.cf P and P' ié very different in =l
and Compton scattering (and again it may differ here in the two isospin -
states). However this does not affect the above argument too much as high
energy data on ﬁtp polarization suggest56 A'/VB is similar for both
. P and P'. |

In fact59’6o one may atﬁempt to calculate the relative amount of
P and P’ iﬁ our amplitudes by using at +t - 0 the.linear combination

1

1,01 2 3 2 : .
=(I ~ = . .
2( 1 (l) + 1 (;) +_Il (1)) I (1) which only involves Ot otal

data known upto

2
data for the 9p state and combine it with the ¢

total.
55 -f 4

a -1 Qpr -0t

, oy o
7.5 GeV. If you fit the latter to Av ® (1 + c v ) subject to

the constraint provided by the finite~-energy sum rule one finds '
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0.65 gives c = 5.7 t 5.0

o = 1 Fpr =
ap = 1 A, = 0.5 gives ¢ = 2, % 9-9 .

Thus the closeness of oy and Qp, makes it difficult to

disentangle their separate éontributions but in any case £here is a

good simultaneous fit to the FESR and the %% otal data. Thié is in agreement
with our rougher estimates a, (l), 2(3) which also indicate there \
is no necessity for a large‘ J = 0 right signature fixed pole.

59,

our work also agreeé with that‘of Costa et al.6o and Creutz et al.
The latter aﬁthors stfeSs the importance ofllooking fora j=20 fixed
pole but it is strange that thej should use a sum rule (namely
Ill(j) + 112(3) + I15(5)), sensitive to j = -2 ‘fixéd'poles, as part
of their investigation. | |

2. A, Exchange Sum Rules: g (1)
2 1,3

Our results'are given in Figs. 15 and 16 and both the sum rules
and the effective « plots appear to be consistent with A exchange.
At t X -0.5 we expect a zero in I (l) and none in I 5(l) whlch

is not inconsistent w1th-our graphs. At t =0 we flnd from (h5)

AL _ 1
VB T T~ 15

whiéh is not ridicuious‘compared.with (47). (However see our comment
in VIE.) |

On thé basis of an argumeﬁt involying F/D ratios, factorization
3 |

and a crude evaluation (Born term only) of the I, 1) sum rule for the

' - _ ' 10
nucleon and its SU(B) partners X~ and = , Gross and Pagels have
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suggested that there is an importaﬁt J = 0 fixed pole in this sum rule.
From our more compleﬁe satﬁratioh of the pucleon sum rule andvﬁhe
associated effective « plot (Fig. 15b) we find no evidénce for a large
fixed pole (particularly if the BDW isoscalar photon multipolés are
correct). However our method is not very sensitive to this because of

the closeness of the A, intercept to zero. If our findings‘are to be

2
cbmpatible with Gross ahdvfageis then their fixed pole must couplé

predominantly to the strange baryons.
L
C. Current Algebra Sum Rules: I
~ 1,2,5

L
1,53

1. Time-Time Sum Rules: I

Here we study the sum rules obtained by taking matrix elements
of the equal time commutator of time components of the isovector current
between nucleon states with helicity nonflip, Ilh(o), and helicity flip,

412,13 previous

IBM(O). Although these sum rules are well known

. ¢ , |
evaluations 1 seem to have been solely concerned with Ilu(o) at t =20
where it coincides with the Cabibbo-Radicati sum rule.12

These sum rules have Born contributions which are infinite at

t = 0 and require the existence of a j =1 fixed pole to produce a

finite answer. (See Sec. IVB.) Current algebra, after the usual technical
assumptions, predicts that the fixed pole residues (as defined in

Eq.l(23)) are’
4

F. (%)

1 0)

-(2me2/£) GEV(t), in L
| : | (o)
-@?/6) 6, () I %(0) '

i

F.(t)

1 3
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where GEV(t) ~and GMY(t) are the usual electric and magnetic isovector

. G

form factors of the nucleon normalized to GEV(O) = 1 and
v _ .
M (O) " l :+ Kp - ‘ K:n .

For‘our test of these sum rules we first note that the ratio of
couplings of the p 'Regge pole at t = O can be estimated from =N
scattering as A'/VB ~ 1/20 , a number which is reduced by a factor of
2 >3 from its value at the p pole + = mp2 . If factopization holds

we must have for all +t (See Appendix B and Egs. (23), (45), and (49).)

Il“(o> + (eme®/6) 65" (%)

“3'3 B 22 T 5 v . - (50)
¢ bm® - % I (0) + (2e%/t) Gy () :

. | " b
In Figs. 17 and 18a the sum rules I, (0) ana 13 (0) are

plotted with the fixed poles of Eq. (49) subtracted off. If current
algebra has supplied us with the correct value of the fixed poles then
5 .

the resulting sum rules are superconveréent and for high energy cutoffs
the_data points should lie very near to the zero liﬁe of the figures.
Thus one is somewhat comforted that the data-pointelie in between

their generalized Born terms and zero.

Since the form factors have been subtracted off, the plotted
points of Figs.>l7,and 18a correspond exactly to the numerator and
denominator of the last factor of Eq. (50) and determine the p couplings
through Eq. (23). We see from the figures that the general character of

the sum rules is given by the Born minus fixed pole contributions. At

t = O we have for the (finite part of) these contributions



bl

-o;ozau(el.l - T7.05 —= 4 GEV(O))

. . > L
Born minus fixed pole of I, (O) Er

]

-0.026(15.7 ~ 7.05 ¢ V(o)) .

L
1" 1" 1" n 1
: 157(0) at M

(51)

Since EE o (O) X% 3,3 and EE' " (O) X 13, , h(O) exhibits
a large cancellation between the finite part of the Born term and the
derivative of the form factor. In Iy (o) this cancellation does not
occur. Therefore the smallness of the nonflip/flip ratio of the p
Regge couplings at t.= 0 is qpalitatively realized by the Born mings
fixed pole éontributioné to the sum rules. Noﬁé that in the o
dominance model for ,the form factors the ratio of the fixed pole
contrlbutlons at t = 0 is essentially the value A'/VB at the p pole.
The exact value of the right hand of (50) is in agreement, within the
errors, with the =N' scattering value at‘ t =0, Of course'one_éxpects
factorization to hold only to the exteht that a p! -contribution62 is
unimportant.

4

The agreement at t = O extends to nonzero t for Bl as

I, (0) remains small for all t . In this sum rule we expect the HBhIer
zerolu at t é -032 and this is exhibited in Fig. 17, while at ap(t) =

we expect a zero in the sum rule (for p choosing either sense or nonsense)
if ﬁhe vp > yy coﬁpling is regﬁlar and_no zero if it ié singular.. (See
Sec. IVC.) In our opinion.the aaﬁa slightly favors the latter alternative.
Unfortunétely the effective .a_ calculation (Eq.f(46)) for this sum rule

is of no use, because the sum rule is so small. We would 5e dividing by

a small number with large errors in (46). 1Incidentally, at t = O, Ilh(o)

is in agreement with earlier work6l both as to the value of the sum rule
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and the relative size of individual multipole contributions (see Table 3).

In iah(o) the situation is not so good at large t. The

effective trajectory th(O) (Fig. 18b) shows little égreement with the
expected p . shape.and the large value o< 1 for % < -0.5 would seem
to indicate that we should have subtraéted off a form factor of larger
modulus than (-2e2/t) GMV(t) . Taken at face value this is a violation

of current'algebra.. However it hinges on a rather delicate feature'of the

data., Thus Im B u(v!t), for E 1 GeV? changes sign near t = -0.5

3 lab
2%
due to the fact that the dominant resonant contribution (5 (1688))

63

vanishes, ~ and this sign change forces « M(O), calculated from Eq. (L6),

3
above the fixed pole value. Although the vanishing of thé resonance
contribution is perhaps expec:te‘d&L it does mean that the resultant
amplitudé depends delicately on the more uncertain parameters of Walker's
_ analysis,2 as well as our own dubious analysis of the inelastic contri-
‘bution. fhis, together with our theoretical bias, makes us prefer tp
ignore this apparent violation of current algebra.

Therefore, assuming that the currént algebra prediction of the
fixed pole is correct, we note the interesting point that IBA(O) has

no zero near < (t) = 0. If the p chooses sense at & = 0 we expect

o
a double zero if p = yy is nonsingular and a single zero if it is
singular. ‘The P éhoosing nonsense predicts one less zero than thé
above. Thus ouf sum rule predicts p choésingrmnsmse"with a singular
p.~ 7y coupling. If current algebra were wrong, the larger fixed pole

necessary to produce a better « 4(0) ~could also produce a zero in the

3
P coupling at ap(t) = 0.
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, _ | N
Finally we show the sum rule I h(l) and its associated a5 (1)

3

 in Figs. 18c and 18d. The sum rule is sensitive to a wrong signature
fixed pole at j =0 whichyis needed, if our interpretation of the p

in I h(O) is correct, with a singular residue at ap(t) = 0 in order

b)
to cancel the pole of the Regge term. It is evident from Fig. 18c that

something, presumably the fixed pble, has nicely cancelled the singularity
in the A contribution, Eq. (42), and has produced a sum rule with a

smooth variation in t . The effective « h(l) suggests o exchange

)

at small ]tf and, somewhat dubiously, since the sign change mentioned

in connection with I h(O) also occurs here; suggests the fixed pole vélue

3
at large |t|. Therefore IBA(l) is cértainlyAnot inconsistent with an

4
3

must admit I3u(l) 'is hardly a stringent test of that interpretation.

We do favor the interpretation that current algebra is correct. However;

interpretation that currént algebré.is corfect for I, (0), but one

it iS-ratheriremarkable, although hopefully cOincidental, that IBh(l)
and aau(l) are consistent with no Jj = O wrong signature fixed pole
and a p with a single zero in its residue function. Unfortunately .
as we have seen such a p is inconsistent with the n = 0 sum rule
unless you increase the Jj = 1 fixed pole from its current algebra
value (49).

We cannot-claim on the basis_of this work to have definiteiy
confirmed or refuted current algebra although we do favbr the former
alternative. First both the sum rules appear to be converging and
secondly, we obtain agréement near t =0 with the hypothésis of o]

dominance of the sum rules once the form factor terms are subtracted off.
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At large t , assuming current algeﬁra is right, we obtain the
intefésting prediction that p chooses nonsense.with a singular o=y
coupliﬁg which eliminates the Zeros found in P couplings to hadronic
?roéesses. In this picture of the 'é couplings the wrong signatgre
fixed pole at J=20 rplays very differéﬁt roles in weak and strong

rrocesses. In the strong case this fixed pole seems to be purely

29 17

"additive,""” giving zeros in the p-Regge term but spailing the Schwarz
sum rules. In the weak case it is "multiplicative" and fills in the

Zeros.

2. Time-Space Sum Rules Ieh(l) ' _ \

Using low-energy theorems and the assumption of an unsubtracted
dispersion relation Begl6 obtained a sum_rule for the amplitude Béh(V,t)
at t = 0. This sum rule was rederived and extended to all t by Adler
and Dashenu'using the equal~time commutator of the time and space
components of the isovector current and the infinite momentum limit.

One interesting property of this sum rule is that it is invalid in a

field theory ofvfree nucleons, because the infinite momentum damping
assumptions fail in that theory. On the basis of Regge theory (Appendix D)
the fixed pole (effectively at j=0) of th(V,t) can be calculated’

to-be .

F(t) = e? Gﬁv(t) + H(t) (52)

where the first term is the nonasymptotic contribution of the JPG =177

. ' L , :
fixed pole of B3 » and the second term is the contribution of a
| : ) -+ ' .
poss1bl¢ =0 fixed pole. If the current algebra derivations of

the sum rule are correct, then H(t) = 0 .
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We show 121‘(1-) 4in Fig. 19; and‘ ael‘(l) in Fig. 19b. The -
X's denote the nonasympﬁotic contributidns of the p trajectory which
Regge theory permits us to calculate from Iah(o) (see Appendices C'and D).
Thig contribution is mganingless near ap(t) = 0 because its singﬁlarity

65

there must be cancelled by a compensating trajectory. . The current
algebra fixed pole residue e_2 GMV(t)- is subtracted off and the
combined Born minus fixed pole is plotted as the solid line in Fig. 19a.

- The Born term alone is plotted as the dashed line to show the dominant

vV
Gy (t) term.

effect of the e2
_ If the current algebra fixel pole {zas correct then, at. least for
the mythical high energy cutoff, the data points <> would be expected
to lie near the zero_line in Fig. 1%a. 'Since the data points have a |
sign épposite to the p nonasymptotic term (near t =0 where the latter
might be trusted) and even lie on'the wrong side of the generalized Born
term, Fig. 1% suggests that ‘the current algebra.prediction is wrong and
that H(t) = e GMV(t) . '

However QEA(I) does not_supbort this inéerpretaﬁion near t = 0
and indiéates'gn effective intercept consistent with an X trajectory
(+T% = (+)™)  with 'qx(o) & -0.5 , instead of the fixed pole value:of
zero. Although the sum rule results are presumably more reliable than

~the effective « deterﬁinétion at our low cﬁtoff energy, we speculate
further on the X trajebtory;' Ifg ak(t) stays one unit below'the o]
upto t ® -0.6 it could well be the necessary compensatdr,:a possibility
which is suppofted by the faét_that the X coupling appérently has__
opposite sign to the o honasymptotic term. Thé‘wild behavior of a2u(l)

for -t > 0.4 could be due to a complicated cancellation between the p
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and its compensator. On the timelike side if ax(t) were roughly

1

parallel to ap one would expect a O"+ meson at reasonably low mass,
for which the lowest threshold decay channels are U4x and KK .

Further if u(l) is satisfied by an X trajectory, not a 0 @ fixed

12
" pole, this Regge pole will contribute wvia its nonasymptbtic term (see
Appendix D) to IBu(

0) . This effect is quite large (~ 25% of IBM(O))
at t = 0 but negigible at the crucial lérger Jt, values. ' |
In summary, although the sum rule Izh(l) seems to show thgﬁ
the current algebra prediction is incorrect; aﬁd-that the fixed pole
value is much nearer the free field theory value of zero, the effective
aeh(l) plot allows us to explain‘this on the basis of a large X

trajectqry contribution.

7

D. Antialgebra Sum Rules: Iijg(o), 1.7(0)

Current algebra furports to aésociate right éignature jg=1
fixed poles with the equal-time commutators of currents satisfying
pretty algebraic properties. In Sec. IVD we anticipated‘the proposal of
a fundamental algebra of anticommutators to describe wrong signature
fixed poles at J = 1. Of particular intefest are those sum rules which
share with Ii’B(O) the property of having Born terms which‘are singular
" at t = 0. In the current aigebra‘case this normalization condition on
the fixéd_pole, in terms of’the Born singularity, corresponds to current
‘conservation.

Because the singular Born térm mechanism (discussedAin Ref. 18
and our Sec. IVA) applies, the sum rules 13,5(0) and 175(0) are

guaranteed to exhibit wrong signature Jj = 1 fixed poles with singular -
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coupling strength at t =0 fixed by the Born term. Since isoscalar
photons with small cohtinuum contributions are involved, we also expect
that the fixed pole couplings at large |t| Tfollows the shape of the
Born term. In the case of_righﬁ signafure- J=1 fixed poles (if
current algebra is correcf) this is not true because the fixed pole
couplings display the marked t dependence of the form factors, Eq. (h9),

As a typical example we show 113(0) in Fig. 20. It is clear
that the data points <> follow the Born term (solid line) and lie far
from the A points calculated, Egq. (42), assuming no wrong signature
fixed pole. Beécause the continuum contribution is small; al3<0) would
clearly support the fixed pole interpretatibn.

Because the Pomeranchuk polev(with- aP(t) =1 at t=0) is

1,2
L3

fixed pole but can be satisfied by the Pomeranchuk Regge pole term with

 present, the sum rules I7’5(0) need not have a wrong signature j‘= 1
singular coupling at t = O. (112(0) is presented in Fig. 21.) The
lack of correspondence between the sum rule points <> and the P + P!
cqntribution A célculated from 112(1) definitely shows the exilstence
of a strong J =1 ~fixed pole,-and this interpretation is supported by
alg(o) (not shown). _ |
The interegting behavior of 112(0) at large It | should be
noted. Comparison of the data poihts <> with'the Regge contribution A
shoﬁs that the sum rule isfdomihated by the fixed pole term even for
ltl 2 0.6 . The fdct;that the wrong signature fixed pole couplings do
not decrease rapidly with increasing -t may be related to the presence
of left-hand cuts in>the wrong signature couplings not present in the

right signature case.



The formula

Op =21 e a'P(O)[ %Yg .. + % (1 + 1)), (53)

for the total photon cross section on hadfon targets of'hypercharge Y
and isospin I., was derived in Ref. 18 assuming pure Pomeranchuk pole
dominance. - Existence of the wrong signature j = 1 fixed pple’
invalidates this formula, at1least for nucleons. Equation'(55) is

very dubious on.other grounds, since, using factorization, one can
derive from it clearly erroneous results for the ratio of asymptotic

. total cross sections for any stfoﬁgly interacting system. Neither our
sum rules nor the factorization argument directly invalidates-the Weakef
hypothesis--namely absence of the Jj =1 fixed pole in 7ynx = ¥xn 'oﬁly--

used by Mueller and Trueman.

E. DfelleHearn‘Sum-Rules:' Igl-B(O)'

: o P o+
These sum rules are sensitive to right signature jP =1 fixed

poles in the amplitudes »le’B(v,t) . If conventional theory is'éorrect,
the fixed poles are absent and, since we have helicity flip A = 2 , the
5,67

amplitudes satisfy superconvergence relations. In explanation of the

!

phrase "conventional theory," we cite two facts. First, the assumption

65
of superconvergence for B v,t) is, at t = 0, equivalent  to the

o (
assumption, used in the original derivationl9 of the Drell-Hearn sum-rule;'
of low-energy theorem plus unsubtracted dispersion relation for the
forward spin flip Compton amplitude .fQ(V). Second, it would seem that

the superconvergent sum rules follow from the conventional algebra of

the time component of the appropriate isospin part of the electromagnetic
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current plus the usual technical assugptions of the infinite mqmenpum
method.u
Drel} and Hearn conéidered only ﬁhe proton sum rule obtained by
adding % (121(0) + 122(0) + 123(0)7_) , but, at the 'éost of using the
more uncertain isoscalar photon data, we investigate all three sum rules.
Normal parity contfibutions to" IEKV,t) are suppressed by one pOWer‘of

energy,69 and we therefore consider the abnormal parity trajectories

D and E as well as the normal P and P' in isospins 1 and 2

]

(I = 0 exchange) and the abnormal A1 and normal A2 in isospin 3

I

(I =1 exchange). We write schematically

1. 2(0) ~ v %’E(t)d + v aP,P'(t)-E
2 v c c :
, (54)
- a, (t)-1 a, (t)-2 S
125(0) ~ v Al + v AQ |
. - ¢ : ¢

indicating the asymptotic pdwers of the Régge pole-contributions.
On the basis of thé e#pected intercepts of these.Regge poles, ail

-three’sﬁm fules‘ghould superconverge at large cutdff energy. However
some doubt has been exbressed66 concerngné the cdnvergence of the .I =0
Vexchange suﬁ rules on the basis of Regge cut théory.‘ If there are
impqrtant abnormal parity componehts of £he two-Pomeranchuk Regge cut,
then to within logarithms we Would expect Im Bgl’g(v,t) ~’v_;v and the
corresponding sum rules wbuld.diverge. Note that a fixed pole would |
make Re 32 ~ V-l énd the sum rule iﬁtegrﬁl»would.still convérge.

. Our results ére presented in Figs. 22-2&. if'the superconvefgence

assumptions (rapid falloff of Im B 2)

o absence of fixed pole in Re B
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are satlsfled then at suff1c1ently hlgh cutoff the data p01nts_n
21
should lie rlght on the zero llne in- the graphs. The value “of 12 (0)
(Fig. 22) is very small and seems qulte satlsfactorygo w1th1n the large
errors (see Fig. 3 for the dlsturblng picture of Im B ) The sum

1%20

T e“"'é“(o) (Fig. 25) ‘shows &h impressive caficellation “bétiween
the Born term and the continuum for all t . The data points are
consistent with zero (within errors) even at,our»low cuﬁoff energy, and
the sum rule must be deemed a success.

In I23(O), Fig. 2&6, on the other hand, cqntinuﬁm anq Bdrﬁ term
reinforce, for both the pure Walker and the BDW plus Walker evaluations,
and produce a sum rule which gives no hint of the expected superconvergence.
This judgment is based on relative size of sum rule and Born contribution
rather than on the absolute size of the former. Although the rule of
thumb that the scale of a convergent sum rule is set by its Born term
has proven quite reasonable, it is not clear a priori thaf it should
be true, and it therefore bhecomes importaht to compﬁte' aéB(O).

In the context of this sum;rule, the question answered by the
effective & calculation can be rephrased as follows. What is the
trajectory shapé a(t) whose Regge term fits our observed sum rule
result at cutoff 1.12 GeV, but .would hopefully make the sum fule'super;
converge to the zero line at higher energieé?. It is clear from Fig.v2hb
thét aé5(o) exceeds even the Froissart bound for small t (it could
not prodﬁce superconvergence) and lies much higher than the-expecﬁed
aAl- or aA2 - 1 trajectories. Therefore the only way we can interpret

-

these results is to say that there is an important axial vector (JPG‘= 1)

fixed pole contribution.
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This is our most surprising result. Thé Dféll-Hearn sum rule
fails in the isospin segment where‘one would have least expected failure.
‘Such a fixed pole would invalidate eithér the usual current algebra or
the technical assumptions’necessary to dérive the covariant sumbrule
12?(0) from the antecedent equal time commutator.

Although this miserable fixed pole seriously challenges our

theoretical ideas, it seems to have one beneficial effect on our sum

rule results as follows. As shown in Appendix D, an axial vector fixed

pole with coupling A(t) to the amplitude B23 also contributes non-
asymptotically to B35 . We take— A(t) from 125(0), and assume that
its nonasymptotic effect in B 3 is not modified by a possible O+

5 1
fixed pole there (s(t) ‘in Egq. (D.l%)). We then recalculate at tf=.0
the nonflip/flip ratio (Eq. 45) for the A, Regge pole (assuming
domination of I

3

decreased value in better agreement, with the expected A’/VB of St}ong

5(1) by the A, and the fixed pole). This give a

interaction, than the previous value (calculated assuming A(t) = S(t) = 0).
We close this section by reminding any remaining readers that

the Drell-Hearn proton sum rule, obtained by adding our three isotopic

. 19 -
components, agrees with the original analysis 9 within errors.

F. Conspiracy Sum Rules: I6lf5(o), i75(1)

We have discussed the theory of these sum rules in See, IVD.
As pointed out by Pagelseo there is cancellation in 162(0)

between the continuum and the Born terms, with the result that both
1_1’2

N\

(0) (Figs. 25 and 26)'are‘consistént with zero at 't = 0. Thus

[}

we have evidence against a large conspiring pole with vacuum quantum
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numbers. Correspondingly there is no hope of using these sum rﬁles to
ébtain information on the 1 = 2y coupling.

For the pion conspirator sum rule. 163(0) (Fig. 27a) we confirm
Pagels' resulteo_at t = O but the flatness in t of a65(0) (Fig. 27b)
bears more resemblance to a right signature j =0 fixed pole thaﬁ a
Hon cdnspinﬂnr Regge trajectory. 1In fairness it must be said there is
1little reliable information from purely strong interactions on the slope
of the conspirator and recent70 photoproduction data suggest that the
intercept is essentially zero upﬁo -t =2 GeV2.

We note that determination of the no = 2y coupling through the
IﬁgelsAsum rule criﬁically invoives the assumption of smooth extrapolation
to t =0 of the ‘w-pole- term. In similar kinematic configurations
involving = exchange (e.g. 7p — ﬂ+n,_ np. pn), the n exchange amplitude
is more consistentwith the rapidly varying form '(me)-l(t + mﬂe)(t - mﬁE)-:L
near t =0 rather than the smooth pole form (t - mﬂ2)-l taken'by :
Pagels. It is not clear whether the rapidly varying form should apply
to doubly weak Compton scaftering since the succéss of the absorptive
model for =n exchange suggests that the rapid variation is connécted
ﬁith the strong interaction unitarity coﬁdition..

From our numerical result for I63(O) at t = 0, we obtain

through Eq. (36) the prediction T, = 2.5% 10-16 secs on the basis
. 0 '
of a smooth w-pole residue which would become a factor of 4 smaller
20, 52

if the rapidly verying term above were used, These two values

quite closely enclose the possible range of experimental values, although

the second possibility, rapidly varying pole term, would seem to-be

preferred on the basis of the wallet card value.52
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‘ 2
In principle we can test whether the zero at t = -m of the
rapidly varying term is the factorable zero of a n-Regge pole residue
2

by studying the sum rule ~I7 1), Fig. 28a, to which the n-Regge

trajectory should couple althoughvthére isno n poleat t = mﬁg
because of photon helicity flip. The sum fule shows no hint of a zero.
However any attempt to use this fact to speculate about =n meson
Reggeization would be thWarted by the fact that GY?(l) , Fig. 208b,
suggests an effective trajectory somewhat lower than =« . Although the-
zero in gquestion is suggested‘by simple it conspiracy models for

1

- +
np*>pn and yp>* = n, there is ample evidence from strong processes

that.(2 the zero does not factorizé.

G. Other Sum Rules (Spin Segments 4, 5, and 8)

Spin types 4 and 5 are too divergent for useful information to
be obtained from-oﬁr low cutoff. " We tried to use spin type 5 to predict
the nonconspiring contribution to spin type 6, through Eq. (L4k4), and

in
0)-
5 (0)

has an unknown fixed'poie at J = -1 necessary to cancel the singular

obtained only untrustworthy and useless results. The sum rule I

Bofn tern.

.Unfortunately Ihu(o) and I6u(l) have the same continuum but
different Born terms. Thﬁs»we need a fixed pole in one or both of them.
It is presumably in I6h(l) Because this has TP = + and it would then
- be the spihflip analogue of the I5u(0)« fixed pole. However the sum rules
(not showﬁ);vif‘anything; pfefe? the aésignment.of a fixed pole to 'Ihu(O).

Finally 185(1) (not shown) appears to exhibit a fixed pole at
j.= -1 'rathef than the hoped for Al Begge pole. We remember the A1

was also somewhat elusive in IéB(O).
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H. Polarizabilities

On integrating (LO) upto B = 1.12 GeV we find (assuming
c, = Q) the results given in Table 2. Here the column hesded Walker
uses his analysis. from threshold onwards while that headed BDW usés the
analysis of Ref. 1 from 015 to 0.5 GeV and Walker thereon. The last
row contains‘the proton's polarizability and is half the sum of the
first 3 lines. As described in Sec. IVE this and row 3 (isospin 3 which is
the differenée between the proton and neutron) may be hoped to be
measured,experimentaily.

55

From the published data”” on sigma total for photons on protons

we may estimate the contribution of the integral from 1.12 to ® for

the proton as follows. We get from 1.12 to 5.5; 0.9 x 10_1"3 cm5

)

(error ~ 20%) aﬁd from 5.5anﬁards S 0.2 x10"® cp’. The former
- comes frém diréét:integration and the latter from assuming sigma total
does not increase after 5.5 GeV. |

On méy tfy to estimaﬁe the integral from 1712 to @ for isospin 1
and 3 Ey assuming it to be dominated py the Regge polévsaturating
1'11(1) and 113(1) respectively. The result obtained is an order of

magnitude smaller than the difference between the two determinations

of the integral uptb 1.12.

L. Relative Importance of Different Intermediate States

In our graphical results we have only given the total integral
over Im B in (41). So as one may Jjudge the relative importance of the

contributions of various intermediate states we give in Table 3 the
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v
c
break-up of % J[ av v Im B for various sum rules. The columns
Y .
0
D
headed P33’ 15’ Dl5’ and  Fl5

the =N intermediate state in these spin and isospin quantum numbers.

~give the separate contributions of

This isolates the important resonances in our energy range. The
remaining confribution of the =nN state is in the rest column while
furthef columns give the inelastic and Born contributions to (41). The
resonant Sll and Pll contributions to'the rest column are small and
this qplumn thus represents nonresonant background which near threshold
gets large contributions from the photoproduction Born terms. 3Both
‘the total and nN columns are evaluated using the BDW analysis upto
0.5 GeV and Walker thereafter.

We woﬁld like té warn the reader that the first four =N columns
inglude the total contribution of these states integrated over the whole

energy range and not just the resonant portion. Thus in I h(O) the

3

.is much bigger than the resonant - D.. state but this

15 15

latter entry is large in Table 3 due to low energy contributions of these

resonant F

quantum numbers.
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VII. METHODOLOGICAL, COMMENTS

We discuss here some of the features, both desirable and undesirable,

of our analysis and make suggestions for possible improvements and related
future work.

FafteSts of the Drell-Hearn and current algebra sum ruleé,'which
derive from theoretical features particular to Compton amplitudes (e.g.
algebraic properties of conserved currents), it would be desirable‘to
relax the close dependence of our analysis on the Regge pole quel of
high-energy behavior. Although model-independent statements concerning
the validity of the sum rules could presumably be easily obtained if the
cutoff were sufficiently high, at the present cutoff we can séy only the
following. Adopting the phenomenological criterion that the scale of a

3

convergent sﬁm rule is set by its generalized Born term (Born minus
theoretically predicted fixed pole) it is clear from the figureé that the
I=0 exchange Drell-Hearn sum rule I22(0) and the time component
current algebra sum ruies :Ilh(O) and IBM(O) must be regarded as |
successful, while the I =1 Drell-Hearn sum rule 123(0) and the Beg
sum rule Igu(l) seem to be failures. To strengthen these statements

we have been forced, at this low cutoff energy, to explore‘the consistency
of our results with the Regge-pole parameters which have been obtained
from high-~energy data and FESR calculations on hadronic pfocesses.
Actually the exploration of the Regge pole model enriches our understandihg
of high-energy behavior. For example, we regard our results concerning

the lack of nonsense zeros in o Regge coupling:to the Compton amplitﬁde

as one of the more interesting facts which this analysis has revealed.

"
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Our study has‘beeﬁ handiéapped by the lack of generally accurate
estimates of the imagina;y parps of Compton amplitudes. In this situation .
it becomes crucial to study as many sum rules as possible iﬁ order to
obtain some feeling for the reliability of the results. For example, if
one studies five equally convergent sum rules and finds that four of
them go according to theoretical expectations and the fifth contains a
surprise, it is then rather difficult to explain éwéy the surpriselon
the basis of poor data.

It is, of courée, distressingvﬁhat we were forced to éutoff our
integrals at the dubiously asymptotic value of E . = 1.12 GeV. n
- spin segments 2 and B-this‘low cutoff was reflected in the quantitative
importance of the nonasymptotié‘terms in the Regge forﬁalism, suppressed
Dby a factor 1/v from the‘leadihg terms.

" Unfortunately it.éppéérs'very hard to extend our integrals

beyond E = 1.12 GeV as long as we use unitarity to estimate the

lab
imaginary part. Thus above ouf éutdff a multitude of.inelastic states
become important and one would have to make models of the spin énd
isospin structure of all of these to find the imaginéry part df the
general Compton amplitude.\ HenCeito extend our éutoff we would need data Oﬁ
Compton scattering itsélf but even this would nof allow us to probe the
. general isospin state. |

It follows that in theAfpreseeable future the main improvement
- in the evaluation of our sum rules must come from aﬁ improved treatment
of the region upto 1.12 GeV, and here the elastic (nN) intermediate

state is. dominant (see Sec. VI.I).
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It is rather disconcerting that different multipole analyses of
low-energy photoproduction experiments, and perhaps even.different
éxperiments, are inconsistent. An obvious approach which would hopefully
lead to an improved mulﬁipole_analysis'would be to combine the
theoretical treatﬁent of BDW.and the phenomenological method of Walker.
Thus one could formulate the dispersion theory with parameters,
representing its weakest poiﬁts, to be determined from a fit to the
data, Such a treatment would at least have.the virtue of incorporating
elementary theoretical constraints such as Watson's theoremYu'on the
phase of mﬁltipole amplitudes, which is not obeyed in purely phenomenological
analyses. It is also possible that the use of theoretical models far the
inelastic reactions 9N ? A and 7N = 1A would permit an approximate
incorporation of unitarity for photoprb&uction above the BDW‘cutoff

energy of E = 0.5 GeV.

lab

Since the gréateét discrepancy between BDW and Walker is in thev
isoscalar photon multipoles; it would be very useful to study the FE%R'S
for isoscalar photoproduction to determine whether the size of the
predicted Regge pole terms is compatiblé with the isoscalar component
of high-energy photoproduction‘which can be estimated from recent data.To
Such an analysis could determine whether isoscalar photon multipoles weréA
underestimated in Walker's analysis.

Since there is an experiment underway at CEA to measure the proton
Compton scattering differential cross sectiqnvin the 4-5 GeV energy range,
it would be inferesting to use the sum rules to:work up a Regge pole

prediction for this quantity. This could be done very easily with our

existing computer programs.
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APPENDIX A
We give here the relation of our_a.mplitudeé defined by Eqs. (14)

25

and (17) to the invariant amplitudes A, of Hearn and Leader”™” and

reduced s-channel amplitudes defined analogously to (l}),_,by

S T I S
. (sin Efes) , MX3KA§A1A2;

(a.1)

es)

M7‘5?\'h;>“.l.>\2 = (cos 5

We now list the expressions for the amplitudes Bji in which

for clarity we have omitted the isospin index i

5, = -3 (s - w7 (ay - A)® - ) 5 (4 - A) (s - W)
. .
= (s -m)E [.s-l-/2 (s +_m2) sin 2—5- 1y, 31
(W 2% i | ) )
TSk 7% 2 Tdpeh
B, = (us -7 (agls - w) v Rl - ) )
. ~ - 0 ~
= (s - 1112)-2 {M%l;%l + 2m s 1/2 sin2 —2§ M-lg-l;-':lg‘l
o CEL R LYY
B, = (m' - us)h (ag(t® - ) + 2 (s - wny - A))

_ 2~k 2,2 & _ -
= (s-m)  {(s-m) M%l;%l -2m\s (s - u) M%l;-%l

+ (m2t + (s - .me)(s + 3m2)) ﬁ-%l'-%l }

(A.2)
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A3

A . 2 ~

N 2, -1 | )
+5 Vs (_s - m ) {Mg%-l;%l + sin” S }
5t (A + A ) - ) - (A + A (s - w))
1t P o My T A ms -t
. L o2 -1/2 2, 40 2% =«
+s(s - m ) = {+s (¢ +m~ )M 1 . 1, - sin® ==
v , -5-1;31 2
2] S
2 s N
- 4m cos 5 '%_—l;%l ‘}
Au + A5'
*)
2,2 o 2% . -
~(s ~-m ) {2m 3/ s (ﬁ-%-l;%l - sin” 3 %-l,-%l)
e
L 2y ... 2 s &
+ 2(s +m”) sin > M3



-68-

APPENDIX B

In our study of ﬁhe»éum rules in Sec. VI we will need to know
the exact predictionS'thaf factorization of the Regge couplings makes
for our singularity;free amplitudes Bl = By . ;n this appendix we
outline a derivation of these condiﬁions'whiie in Apﬁendix c ﬁe give the
resulﬁant.exprgssions fér Gj(t), Hj(t) (defined in (19), and (20)) in
terms of singularity free vértéx functions. These.latter we will denote
by P P, for the phpton-phbton coupling ‘in nonflip (h) and spinflip
(f) states and NN, for the corresponding nucleon-antinﬁcleon couplings.
We will add a superscript ¢ if the pole conspires.T5

First we write our t-channel helicity amplitudes

( ~inQx ,
e + T)

. : . : . | | ! ' a
painy T T TRy R 7 T, Y
| | . (Ba)

While to include terms of order @ - 1 it is necessary to
{ ' .
multiply the resultant form (B.1) gives to the reduced amplitudes (13) by

A~ Q)

N
U O I ok ()

Whe?e A= max(|x13|, JKENJ)" xmin = min(lk15|, l&ehl))? Sign(Xl.3 A?h)"
- We will need (B.2) to derive the form of H(t) defined in Eq. (20).
(This is considered in greater.detail in Appendix D.)
We must now rémove the kinematic singularities from 7' which we

do first for the ¥ - ¥ coupling by defining



Tmo T v ER
(B.3)
' P
71T Ty
if the particle evades at t = O while if it conspires we put:
! C
N P i - P
711 1y-t F, |
(B.4)
! S c
4 1-1 = 1'V t Pf .

For the NN coupling we must consider separately TP = + and

TP = - _
(a) TP+ (nonconspiring) . 7'%% ;1 1 Nn/(“me _ t)1(2 |
| (8.5)
1 ‘ . . 2 \1/2
A S Nf/(lun -t)/
2-2 - .
(b). P+ (conspiring) 7';% = -\J-t» Nnc/(ﬁm? - t)l/é
| (B.6)
' . )2 \1/2
Vg = 100 o
(¢) P~ (nonconspiring)
(n) 7' f'i"\/-t N
(B.7)
(a)) 7'ii= N,
(i) 1P- (conspiring)
(x) y'a o= NS . - (3.8)

2
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Substituting (Bl = 8) into Egs. (14) and (17) we get the results
given in Appendix C.
We will wish to compare our ratio of spin nonflip to spinflip

couplings for P, P', p, and ‘A, exchange with those obtained from
. 56

analyzing strong interactions. -However it is conventional” to analyze

N and KN elasticAscattering in terms of invariant amplitudes A

and B which are related to our formalism by

/ z (B.9)
N /N = ——— . o ' B.9
f ‘n | ()Hng . t)A' | . .

The behavior of N and Pn

near o = 0. for various .
n, f : S

s T

sense-nonsense mechanism is given in Table k.
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APPENDIX C
Here we give the expansion of the functions Gjl(t) and Hjl(t)
of Egs. (19) and (20) in terms of the factorized vertex functions of

Appendix B. We omit the isospin index i in all these results.

(i) P =+ Contributions

Gp= Gy =07=6G=0 B o= Hy =M = B = Hg=Hy =By =

6, = 5 Ppot b ne pS]

Ho- - (22&.a) % [Nf<P} + N P°]

Gy = v, p, + Nfc P%C]

65 = - p + N°R°]

G = [t'yf B, o+ NS P

(c.1)

(11) 1P = - Contributions

L 7% %60 i B

Gy = Mp Pp

lﬂé = (- t)[(2 - a)fea) N P

¢, = -zn B + N° P °]

G, = - % [Ng‘Pf + 0 ° P

(c.2)
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APPENDIX D

The Jj-Plane Jungle in Spin Segmgﬁts‘Q and 3

Although the direct'connection established iﬁ Sec; II;B bétween
asymptotic terms of the amplitudeé B(v,t) (Eq. (21)) and conﬁributions
to the sum rules (Eq. (23)) is sufficient to understand most of the
physics contained in the sum rules, for some features it is necessary to
go farther into the Regéeization of parity conserving helicity amplitudes.
This is especially necessary fof spihs 2 and 3 because Regge Poles of both
parities.contribute and becéuse we have the additional complication of a
lérge nonsense interval in the Jj plane.

-Since the terrifying but straightforward details of Reggeization
a%e knbwn_65’76’77 for hadronic amplitudes, we concentrate here on effects
of fixed poles and on matters directly-connectéd with the interpretation
of our sum rules such as the nonasymptotic Regge contributions (Eq. (20))

and compensators.

We study'the amplitudes

A

A (v,t) t A (p.1)
L) = AL T AL -1
which differ from B2 3 by the kinematic factors of Eq. (lh), and the
b
 definite parity partial wave amplltudes
a J.(t) = Q 1 + ajll (%) | (p.2)
+ . 2-2;1 - ,l-l

defined in the usual way.22 After defining signatured partial wave

amplitudes, introducing rotation functions of the second kind78 and
performing the Mandelstam-Sommerfeld-Watson contour shift we obtain the

representation



R g-Fioo ( )
NI 1 23+ -inj
Ai(v,t) = Bri zgi 4 “Cos nJ (v +e )
= 3 ie
y j’ ey o IT(e) g
X 4ay (6) By (=) + &y (ﬁ) B2y« (D3)

2

We take t < 0 so that Regge poles satisfy Re a(t) < g- and do not
explicitly appear in (D.B), We have‘ignored'a discrete sum over half-
integral vélues because its terms are asymptoticall&‘(in V) weaker
than those we are’interestgd in and becuase they cancel out when further

shifts of the integration contour are made. The angular functions

appearing in (D.3) are given by

£ -A-l

. N L=l | 1—|>\+uf L
g5 (z) = ;[(l - z)/e]l‘/.2 o {[(l + z‘)/e]l/2 e ’ l(Z.)
_ |

- [n-p
o U - )1 (1 + 2)/21Y/2
| j
~3-1 ' |
X ey  (2) (D.4)

S .' . 8.
and the e functions differ from those of Andrews and Gunson7 by the

().

factor The scattering cosine 2z .is given by
2v

C T T R - R 0-2)
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For Compton amplitﬁdes with definite crossing, the signature,

parity and isospin are all correlated. See Tablel . For given T and

JF

P from the table the ay with subseript (-tP) venish.

The E functions have the asymptotic behavior (for A > |ul 2 0)

§

“ . ! - (D.6)

. . i~
B ()~ e(y) M=) ZJ'H% Lo PR o6

where g(j) and h(j) are regular (albeit zero for some A\ and W)

‘at integer values and f£(j) has the following behavior

£(5) ~ @ - jo)'l ‘mear  Jy =N A+l A+2, -
~ (5 - jo)'l/ev near gy = Inl, lwl+1, oo n-1
o~ regular ~° near g = o, 1, ---, ] -1
N | , O
~ (3 - 3) near  Jjy = -lul, -lul+1, e, 1
. . y-l/2 .
~ 0 'AJO) near Jdo © N, =N+ 1, cce, ‘l“l -1
~ regular : near Jo = A=l AN-2, ee--.

(p.7)
Although the leading term in the asymptotic series is regular near a

positive nonsense~nonsense integer, éubsidiary terms may be singular, as
is crudely shown in (D.6). The exact relation between the singular parts
of the E functions at reflected integers in the nonsense-nonsense

interval is
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. ) ~ A=l _ . -J-1
lim - (3 - ) Ku+( z) = =(-)"Tsign(m) im (3 - 3p)E, " (2)
3~ 3 | J 7 o

(D.8)

If fixed poles are present, then the partial wave‘amplitudeé

ad7(t) are expected to have the j-plane behavior of their Born terms,

namely
vaiT(t) ~  regular near Jo = 2 3 L
: -1/2 : .
(J - JO) near JO = 1
~ (5 - )-'l near ja = 0, =1
Jo O )
. -1/2 , .
(3 - 3o) ‘near  J§, = -2
. -1 .
~ -(J - JO) near JO = =3, "')"’

(D.9)

. where we have again epeciaiized to the particular helieity values,
A % 2, p=1, we are interested in. In the absence of fixed poles
the expected behavior is a factor of (j - jo) smoother at all nonsense
points (JO =~ l)
The s1ngular parts of the partlal wave amplltudes at the reflected

nonsenee—nonsense integers 'O 0 and JO = =1 are related by

. . ’ . c oy md=1(eT)
lim (5 -3y al (t) = lim  (§ - J,) al? ( T)(t-) . (D.10)
R 0" T+ S . 0’ 'z -
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This condition expresses the absence Qf fixed double poles at
3o = -1 and follows formally from the Froissart-Gribov definition;
and a mathematical relation, similar to (D.8), for the rotation functions.
Equation (D.10) implies that fixed poles occur in pairs at j = O and
j = -1 with residues satisfying (D.10) and that for every Regge trajectory
paésingvthrough a(t) = 0 with ndnvaﬁishing residue, there is a compen-
éafing trajectory?g of opposite parity and signature pﬁssing through
a'(t) = -1.

All of this technicality is necessary to understand what happens
in (D.B) when the vertical contour of integrétibn is shifted to the line
Re j = - g-. The double poles encounteréd do not contribute asymptotically
and 6bnoxious terms such as fixed powers in the imaginary part bf the
amplitude‘cancél bétween the J=0 and j = -1 contributions because

of the phenomenon of compensation expressed by (D.8) and (D.10). The

net result is a set of relatively simple expressions for the asymptotic

terms of the>amplitudes At(v’t) or B2 5(v,t) which we proceed to give.
. . ] 2
The current algebra amplitudes Bg 5(v,t) have asymptotic
’ .
contributions from iéovector'right signature fixed poles at JPG = l-+ .

-t ‘ - .
and O and from the p-Regge trajectory and a mythical X trajectory

, with T£G ='(+)"+ . We find
2 ' _ . —imzp(t) ’ N (t);e
BBA(v,t) R gff »QMV(t) v om) v - 6, (¢) (-1 +e ) 0

in 1t (t
sin p(_)

) 2 - a(t) (1 . eﬁ'mmx(t)) ;zx(t)-B
2 ax(t) | sin n aX(t) ’

- GX(t)(hm? -t

(D.11)
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th(v{t) < -eQIGMV(t) vZ . H(t) ve

—ina ()

2 - (t)’_ a (t)-3
(-1
+ t Gp(t) 20 (27 sinen a (t) v P
p . p N
-iﬁaxt (t)-2
1 O
- Gy (%) ;iz T aTE) v’ ) (D.12)

We have used current algebra to relate the residue of the l_+

fixed pole to the isovector magnetic formvfactor. Here - H(t) is
the coupling of a hypothetical O-+ pdle, and H'(t) is a kinemétic
:singularity free function which expresses the net contribution of the
nonasymptotic term of the 1™t fixed pole, and the 0™ rixed pole
and its compensator at VJP = (fl)f .

we havé not included explicitly ﬁhe effects of compeﬁsating

Reggé trajectories near « = -1 which are necéSsary to cancel the

singularity at ap(t) =0 in BellL and the possible singularity at
aX(t) =0 in B H .
’ L
Notice that the I, (0) sum rule is sensitive only to the

3
l-_ fixed pole, while the Izh(l) sum rulé has contributions from
both dMth) and H(t) . If current algebra is correct and the
infinite-momentum meﬁhod is valid for the commutator of one time and
.. one space component, then the resulting Beg sum rule predicﬁs8o that
'H(t)'E 0. From'the sﬁandpoint of cufrent algebralsts, failure of the Beg
sum rude would mean that either current algebra or the infinite momenﬁum

method is wrong. However, from the standpoint of Reggeologists, success
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of the IBM(O) sum rule and failure of the Beg sum rule would indicate
the existence of a 0 & fixed pole. However in aséeSsing the :Ieh(l)
sum rule one must be careful to take into account the possible effect
of an X trajectory contribution.

The iéospin symmetric amplitudes B;,3(v’t)’ i=1,2,3, have

+

asymptotic contributions from possible fixed poles at JP =1 and O+ .

We explicitly treat Eg 3(v;t) , to which the A, and A
2

trajectories contribute. ZILetting A(t) and S(t) denote the couplings

Regge

.of the 17 and o fixed‘poles; we find the asymptotic expressions

B23(v,t) v -2 A()vY + 281 (5)v™

e 2 - th(t) 1+ exp[-iﬂO@E(t)] VaAE(t)-§
R 20 (1) sin w a, (t)
A Ay
1+ expl-inay ()] o (8)-2 |
- G, (%) ol v o s - (D.13)
Al “gin =« aA (¢)
1
BBB(V,t) - (b - t)A(t)v“2 - 2s(t) v
| 1+ exp[-iﬁaA (t)] a (t)-2
-6, (8) 2 vz
2 sin = aA (t)

2

_ 2 -q (¢) -1 +.exp[-inaA1(t)] a, (£)-3
S (k- t)e, (&) 1 ' o
: A 2 (t) sin = O (t) ’
1 1

(D.1k)
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Here we have a situation opposite to that of the current algebra segment.
The Drell-Hearn sum rule 123(0)' is sensitive to the axial vector fixed
polé'only, while the sum rule :135(1) detects the combined effect of
 the axial vector and scalar fixed poles. In a derivation of these sum
rules based on quark model current algebra and the’infinite momentum
limit,.both fixed poles are absent. See Sections VIB.(Q ) and VIE for

our experimental results on this question.
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Tables 1A and 1B. Vital Statistics of the Amplitudes gjl(t)

The meaning  of the various quantities in Tables 1A and 1B are
as follows. . Bji(t) are defined in Egqs. (1k4) and (17). -nji and cji(t),
are defined by Eg. (18). In the cji(t') column L and k ~-are the
anomalous magnetic,momeﬁts of the proton and neutron réspecti&ely.

A is defined after Eq. (19). n .y, 1is the lowest value of n in

Eq. (23) for the latter to be a_righf signature sum rule. T, P, and G
are the signature, parity,_and G parity of the allowed Regge pole
exchanges. Plausible candidates for the latter are listed in the next
éolumn; here we have taken the meson quantum numbers-from thé customary
‘bible (Ref. 52).. Further in this colum cy, denotes the TP =+
partner of an m = 1 cbnSpirécy (Ref. 75) with the 1P = - Xc trajectory
of X quantum numbers. (X = 1, %, B). X by itself means non-

conspiring.
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Table 1A
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- Table 1B. (Cont. )
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Table 1B. (Cont.)
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Table 2. The'polarizability‘in the various isospin states (see Sec. VIH).

The. units are JlO_hB cm .

Isospin state ‘ ' Walker BDW
1 0.2 O.h4
2 ' o 25,6 : : 25.5

proton ‘ : 124 ' ' 12.
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~ Table 3. The break up of ‘Ijl(n) (defined in (41)), at t = 0, into

the contributions of various intermediate states as defined in VI.I.

nN  Intermediate State

Total Born Inelastic P, D, D, F Rest

33 15 15 15
1°(1) 125 0.08 0.7 039 0.1  0.0L 0.0  0.36
115(1) 0.12. 0.17 Q.oq8 0.  =-0.01 0.002 0.02 -0.07
L

I,7(0) 0.2 . 0.044 -0.00k  0.31 -0.09 -0.01  -0.02  -0.20

1.2(0) 0.06 0.358. -0.05 -ofh3i‘ -0,09 20.006 0.2 0.31
125(0) -0.09  -0.024 -o.oos» 0.  o.00 -o.ooé 0,01 -0.06
Isu(o) 1.2 2.0k -0;18 0.45 -0.32 -0.1 '-9.06 -0.65

- 152(0) 0.08 -0.97 015  0.55 -0.2 0.01 go.éoe ' 0.69 |

175(1) -0.04  -0.094 0.005 0. . 0.02 - -0.002 -0.002 0.02'
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Table 4. «a = 0 Sense-Nonsense Factors

Here we give the dependence‘at a= 0 of the nonflip (n) and

£ f
colums headed "No Fixed Pole" amly to the hadronic. NN vertex, and the

flip (£) residue P, P, N, N_ - defined in Appendix B. The

"Fixed Pole" column applies to the weak yy vertex. We do not give the
dependence, applicable for negative signature poles, corresponding to a

strong interaction fixed pole and a fixed double pole in'Compton'

scattering.
No Fixed Pole . Fixed Pole
Nomenclature Signature v Noﬁflip 7 Flip Nonflip Flip
: Choosihg sense - | 1 o4 | 1 1
Choosing nonsense + or - J& J& l/%& l/J&
Chew's meghaniém + - Jo oY ' l/J& : l/J&
No~compensation

mechanism + [¢ o i N 1
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Fig.

Fig.

Fig.

Fig.
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Fig.
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Fig. 10.

Fig. 11.
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FIGURE CAPTIONS

The contour C _ef-Eq. (22).
Unitarity condition in Cenpton:scettering;
The velue of l Im B 1 plotted agalnst photon lab energy. The
dotted line is the predictlon of BDW (Ref. 1) and the solid line
that of Walker (Ref. 2). »
The value of i Im'B 5 'plotted against pheton lab energy. The
dotted line is the predlctlon of BDW (Ref. l) and the solid llne
that of Walker (Ref. 2).

I

The value of l Im B5 : plotted against photon lab energy. The

dotted line is the predlctlon of BDW (Ref l) and the solld line

' that of Walker (Ref. 2).

A diagram causing a divergence of the pertial'weve series in the
(s,t) region of interest. |

The dlagrams considered in the Stichel-Scholz model (Ref. 3) of

N =+ A ., : \ |

The one pion exchenge contributlon.to yN - wA.

A diagram NOT causing a divergence of the ﬁartial ane series

in the (s,t) region of interést. B |

A diaéram fepresenting-our treatment of inelasticity NOT_due to

the =A state. | |

Pomeranchuk exchange nenflip sum rule (isoscalar photons)ai See

VIA for the graphical notaﬁion and VIB for'comments.

() The n=1 sumrule I %(

1 1).

(b) The corresponding effective .
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Fig. 12. Pomeranchuk exchange nonflip sum rule (isovector photons). See
VIB for comments.

(a) The n = 1. -sum rule 'Il?(l)f

(b) The effective « corresponding to (a).
2
1 ( ,
Fig. 15. Pomeranchuk exchange flip sum rule (isoscalar photons). See

(c) Thé n=3% sumrule I 3).

VIB for comments.

(a) The n = 1 sum rule IBl(l)';

(b) The corresponding effective.‘a .

Fig. 1k, QEbmeranchuk exchange flip sum rule (isovector.photonS). ‘See
VIB for comMénts. |
(a) The n = 1 sum rulé ’152(1);
(b) The éorresponding-effective.:a o

Fig. 15. YA,2 exchange nonflip sum ruie.» See VIB for comments.
(a) 'The n = 1.:sgm rule’ 115(1)T
(b) Thé corresponding effective a .

" Fig. 16. Ag'exchange flip sum rule. See VIB for comments.

‘ .(a) The n = 1 sum rule I 5(l). '

(b) The correspondlng effective o . v

Fig. 17. Nonfllp current algebra sum rule I (O) See VIC(1) for

| ‘comments. _
Fbig. 18.  Spinflip current_algébra sum rule. See VIC(l) for _comments;

3
(b) The effectlve o correspondlng to (a).

(&) The n =0 sum 'rﬁle I L‘(o) .

(¢) The n=1 wrong signature sum rule I (l)
(d) The effectlve 04 correspondlng tor(c)_.
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Fig, 19. The time-space currentvalgebraisum'rule. .See VIC(2):.for comments.
{a) The n =1 sumrule 121*(1).
(b) The correspénding éffective o .
Fig. 20. A, exchange nonflip wrong Signaturé sum rulé 113(0) . See
VIiD fér comments. h ' V ‘
%(

lo).

Fig.'Ql. Pomeranchuk exchsnge nonflip wrong signatﬁre suﬁ rule i
See VID for comments. | |

Fig. 22. Drell-Hearn sum rule IEl(O) (isoséalar phoﬁOnS); See VIE for
comments, | o |

%(

 Fig. 23. Drell-Hearn sum rule I

5 O)'(isoVector photons ). See VIE for

comments.
~Fig. 2L, ?rell-Heafn sum.rule‘(iéovector eichaﬁée). See VIE for cémments.
(a) bThe n = O‘ sum'rule IQB(O)'. | |
(b) .The_cérreéponding efféétive a .
Fig. é5. " 1 conspirator sum rule ‘161(0)'(isoscaiér photpns). -Seé VIF
for comments. | | |
Fig. 26. n cdnspifétof sﬁﬁ rule 162(0) (isovector phqtons). See VIF
for comments. 'b ' |
Fig. 27. Bl conspiratgrlsum rule. See VIF for comments.
| (a) The n = 0 sum'rﬁle I63(C). | |
(b) The corresponding effective o .
Fig. 28. % spinflip sum rule. Sée VIF forvéomments;‘
| | (a) The n = 1 sum rule .i%5(l).

(b)) The correspdnding effective a.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained In this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or -

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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