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DIFFERENTIAL ANALYSIS OF
MAGNETIC FIELD MEASUREMENTS WITH APPLICATIONS

Jonathan D. Young
Lawrence Radiation Laboratory
University of California
Berkeley, California

Summary

This report describes the use of cubic spline

fitting to compute, for the median plane z = 0,
the vertical magnetic-field component,
B(u, w, 0) and its first, second, and third partial
derivatives from a set of measurements of B at
mesh points (uj, w The arguments (u, w) may
be either rectlhne r (x, or polar (€, R).

The results of the fitting are used for a
third-order approximation of the field compon-
ents By, By, and B, at any point (u, w, 2z) within
the domain of measurement for (u, w) and for
small z. These field components are used in the
equations of motion for tracking charged particles
through the magnetic field. In particular, the
application of this process to the magnetic field
of the Bevatron (Berkeley) is discussed.

Introduction

Median field measurements of the vertical
component, B(u, w, 0) of a magnetic field are
usually available only on a relatively coarse and
often nonuniform mesh. Some interpolation and
approximation of differentiation must be applied
to these measurements to compute B and its
partial derivatives for use in a third-order ap-
proximation of the field components B, By, and
B, at specified points (u, w, z). 1 These field
components appear in the equations of motion of
a charged particle through the magnetic field.

Cubic spline fitting provides for interpola-
tion and approximate differentiation up to third
order for a function of one variable when the func-
tion values are known only for discrete (not '
necessarily uniformly spaced) values of the argu-
ment. 2 Although the median plane vertical com-
ponent of the field is a function of two variables,
separation may be possible:

CB{u, w, 0) = g(u) - f(w)

or, in turn each of the arguments mé.y be held
fixed and B, with the one fixed argument,.
treated as a function of the nonfixed argument:’

Bu, wi, 0) = 83w

Blu, w, 0) =B (w) .

"This work was done under the auspices of the U. S.

The fitting can be applied to g and f or to B(J)

_ and B() to compute values for each of these func-

tions and its first three derivatives with respect
to its argument.

" Cubic Spline Fitting

Properties

Let h(u) be any function, h, of any variable,
u, whose values, h;j, are known only for a distinct
and increasing set of points:

ui, i=1,1 with I =3
and whose terminal first derivatives

hiE h’ (u1) and hI = I)
are known (or can be stipulated). The cubic
spline fit, s(u) for h, has the following properties:
1. The function s(u) is defined for the interval
[ g uI] .
2. On any subinterval [ u;, uj+1], s is a cubic
in u. .
3. Known values for h are fitted exactly --

s; = s(ui) = hi’ s =3 (ui) = h1

and si = s” (up) = hi.

h’ (u

4. On the whole interval [ u,, u;], s has
continuous first and second derivatives.

5. The third derivative is piecewise continuous
(from 2, s””7 is constant on each subinterval
(u;, ui+1); i=14,1-1),

Construction
From Properties 2 and 4 above, we deduce

st +d s’

disioq T2l Hdy y)syhdy Ly sty

i-1

=3{d(sy -8y /Ay +dy (s - s/dy
fori=2,1-1, where d, -u.. Inaccor-
dance with Property 3, we suts%ltute the known
values of h;, h}, and hi for the s,, s, and sI a
system of hnear equations to solve for s%, i = 2,

I -1, This system is tridiagonal with diagonal
dominance; hence, it is always determinate. 3

Atomic Energy Commission.
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The values of s, s°, s°7, and s are

readily determined for any point u in any sub-
interval [ wi, uj+1l by (uy, sy, s)) and (a1,
Si+1, si+1). The values, s and Si can be de-
termined from (uy_4, syj_q, si-q) and (uy, sy, si).
We can find an interpolative value of h and esti-
mated values for h”, h"“, and h"’” at any

ue [ ug, ur] by assuming that these are equal re-
spectively to s, s7, 877, and 5777 at u

Fitting Field Measurements

Polar Mesh

Where the median-plane vertical component
of the field is expressible as the product of a
function of radius alone and a function of azimuth
alone (this is the case in each quarter section of
the Bevatron with 1.°8 =< 8 =< 88.°2), we have

B(6, R, 0) = g{(0) + £{(R).

With a set of measurements .= f(R,);

i=2,1-1, we assume that for some sujfficiently
small Ry and sufficiently large Ry that {4,
1., f;, and fi are all zero. We can then fit a cubic
spline through the points (Ry, f;): i =1, I. Values
for f, {7, £, and £777 can then be estimated for
any R in | Ry, RI]

With a set of measurements g; = g(6j);j =1,

- J with J > 3, 6 measured in radians for later con-

venience, we must make a careful estimate

g1 = g°(€4) and 7= g“(67). Then, we can con-

struct a cubic spline fit for g, and values for g,
“, 8”7, and g can be computed for any € in
64, QJ] .

Values for B and its partial derivatives up to
third order for any point, (8, R), in [ €4, GJ]
X[ Ry, RI] can be readily computed from:

B =gf,

aBﬁae=g’f, 8B/OR =g f,

3 2B/8 62 =g""f, 0 2B/0 60 R=g’f", d 2B/5 R2
e

93B/8 628 R = g™ £,

8 3B/8 @3 =§”’f, =g
R 83B/aR3=¢g

£
838/ 08 =g'f"”, £777 .

Rectilinear Mesh

Separation of the rectilinear variables, (x, V),
is not often practical (usually not possible). When
the vertical component B has been measured on a
complete rectangular grid (x;, y;}; i =1, I= 3;
J=1, J =3, we can, for each fixed j, use the
values : '

= 80 = Bx, vy

and carefully estimate the terminal derivatives

with respect to x, -

B = U )

and G)
B i ‘ (1)

then construct the cubic spline fit of B(J), ob-

taining Bi(J)’E BU) (x;) fori=2, I - 1.

Il

Similarly, for each fixed X, we use the

values

(i) (i) =
B:”’= B ) = B(x., v.),
; (v;) = Blx;, v,
to estimate terminal first derivatives with re-
spect to y and construct the cubic spline fit of
B{1), determining the remaining first derivative
values at the yje

At the grid points (xi, yj); i=1,Tand j=1,7J,
we can now set
9B/0x = Bij)' and 9B/dy = BJf”’ )
Interpolation and higher-order differentiation is
discussed later.

Sometimes (as was the case in the Bevatron)
the measurement grid is not rectangular. For
one of the rectilinear variables, say vy, for some
setof y;;j =1, J= 3, we may have a set of mea-
surements B(xij, yj); ij =1, IJ = 3. For each
fixed j, we use the values

(= gl =
Bij = Bi (Xij) = B(Xij’ yJ.).
estimate terminal derivatives, and construct a
cubic spline fit for each B J),  We select some set
of x, x3;i =1, I = 3 with

X, = max X, .
and ! PR
xI = m?n XIj .
J
We then inter(polate on the cubic spline to obtain
J

values for B (Xi)’ then set
- gl
-B(Xi’ yj) =B (xi),
which gives us values for B on the rectangular
mesh (x;, y.). We can now proceed as outlined in

)
the pr evioud paragraphs.

(i Now, from the cubic spline fits of B(j)(x),
B 1)(y) on the complete rectangular mesh, we

compute at 99.5:h gri.d point (Xi’ }l)) values for
B(l)", B.(l) , B.(J)", and BgJ “? and set
j j i i
8%B/ox% = Bin)” 8°B/0x°> = Bgi)”‘
32B/ay2 - B(i_])// 33B/3y3 - B(ji)l/r

The méixed third partial derivatives,
9 3B/E-) xdy~ and 83B/8 x& 9y cannot be obtained
di_)}‘ectly from the spline fit. The assumption that
9°B/9xd y“ is constant over the subintervals,
(,Xi'- Xj44)31 =1, I -1 for each fixed j; j=1, J
gives

<] 3B (%0 y.)
axcly2 o
2 2
9°B 3 "B
e (%, ., V.) - —5 (x., v.)| /[ %, -x.],
ayZ it1” 7j ayZ i’ 75 it1 i

-

‘&



and we may set

3 3

B

8B ey yp) = Iy
dxdy I axdy

Similarly, for j =1, J - 1, with each fixed i;
i=1,1

GZB (., y ) -
3X2 i jt1
and for J

8’8 _8’B )
TR A L) A
9x 0y

S & YO /iy

3x28y

There are several ways to compute
ZB/axay at grid points. One is to expand
BB/ay from (xj, Y_]) to (x1+1 yJ) for each j andfor

i=1, I -1 and solve for & B/Sxay (x , ¥

J
2 SN
%8y i’ Yj
=3B 8B
= [By CITOT SV b (Xi’yj)]/hi
3
[
- |n, ——2-’?-— (0 ) | /2
ox~dy J
where h i41 ~ X Then set
By 2By
oaxay 1Y dxoy “I1-1"7j
3
8°B
+h — (X, V) .
S I L
We now have for every grid point; (Xi' v.);

i=1, Iandj=1, J, values for the median-plane
vertical field component B and all its partial
derivatives up to third order.

For any nongrid point (x, y)in [ x,, x;] .
X[ yy, YJ] there is some i, such that X;<"x< x,
and somé j such that y; < y < Yi+ We can w11]tc
expansions for B and ils first and second deriva-
tives from (x;, y.) to (x, y) terminating with the
third der1vat1ves at (x. Third derivatives at
(x, y) may simply be set gqual to their counter-

- parts at (x yj).

Field Components Off Median Plane

The nonvertical components B, and B_ are
zero in the median field. From the scalar poten-
tial, it can be shown that they are odd functions of
z.2 On the other hand, the vertical component is

an even function of z, agsuming the value B in the
median plane (z = 0). With small z, we may use
a third-degree approximation:

3

Bu(u, W, 2) ?Au z + Cu z

3

Bw(u, w, z) = AW z + CW z

2
Bz(u, w, z) = B(u, w, 0) + Cz z°,

where the coefficients A _, C , and C,
are functions of (u, w w‘fuch are Vgefmed below
for polar variables (6, R) and rectilinear vari-
bles (x, y), respectively.

Polar Variables®

Expressing the scalar potential in polar co-
ordinates and differentiating to obtain field com-
ponents yields:

4 8B
AG(G’ RY = R 30
3
1 {1 8B 1 a%B
c.6, R) = -+ {1 %
0 6 |R3 23 2 800K
L4 2’
R 56%R
9B
AR(G, R) "aR
3.3 - 2
Cplo, R = - g &0 4 5 23
R aR
Li(2’s _@)-2_ 2°B
rR®\se%or 9B/ R aRr?
2 2
con- 22y gp.ete)
R e OR

where all terms on the right-hand side are evalu-
ated at (€, R, 0).

The field components are computed by using:

_ 3
B@(é‘, R, z) = AG(

BR(G, R, z) = A

6, RYz+ C_(6, R) z

e
(6, R) 2+ Cp(6, R) 2°

2

BZ(Q, R, z) = B(f, R, 0)+ C(€, R) z".

Rectilinear Variables

From the scalar Fotentlal in rectilinear co-~
ordinates, we obtain:

_ 8B
AX(X’ v) -y
3 3
1] 8’8  2°B
C_(x, y) = - +
* 1o axayl
9B
A (x, = —
yo ¥ =5y :
, 3 3
R A R
O9x 0y oy




3% . 928
72t
0x oy

1
C(x, y) = -3

with terms on the right evaluated at (x, y, 0).

Then the field components are computed by
using:

3
BX(Xs Vs z) = AX(X: Y) z + CX(X, Y) Z
By(x, y, z) = Ay(x, y) z + Cy(x, V) z3
B_(x, y, 2) = Blx, y, 0) + Cz°.

Computer Codes

Computer codes SPYGTH, SPBVFR,
SPYBYT, SPXTBY, and SPYTBX have been writ-
ten in FORTRAN 66 for the CDC 6600 which use
an existing (Berkeley) library subroutine,
SPLYND, to construct spline fits of various
Bevatron measured field data. The computer
code, BEVORB, tracks particles through the
Bevatron magnetic field as expressed by the
spline fits. This -)de has subroutines for inter-
polation of the spline-fit results. The equations
of motion are expressed with x or 8 as indepen-
dent variables (valid when other momentum com-
ponents are small compared with py or py). A
Runge-Kutta process of fourth order with input
integration steps is used.

Descriptions, listings, and card-input decks
are available from the author. It should be real-
ized that thesé codes were written explicitly for
the Bevatron. However, our experience has been
that they can be readily modified for other mag-
netic field configurations.

Conclusion

Computer results of tracking particles
through the magnetic field of the Bevatron have
been in consistently good agreement with actual
results in the accelerator. Since the code,
BEVORB, obtains all of its field component in-
formation by the methods described in this arti-
cle, we feel we have strong empirical evidence of
the validity of this application of cubic spline fit-

ting.

The cubic-spline-fitting curve is, in general,
less likely to have extreme local curvature which
may appear when high-degree polynomial fitting
is used. Any fitting method involving least
squares may introduce considerable distortion of
derivative estimates. Local fitting (such as cubic
fitting on each set of four successive points) does
not preserve continuity of derivatives nor involve
any global properties of the data. The cubic
spline fit is consistent with the third-order ap-
proximation of the field components. If indicated
by the data, other third-order splines, such ag
the hyperbolic Spline4 or damped cubic spline
could be used.

In our experience on the Bevatron field, the
cubic spline fit makes available in useful form

the information contained in measurements with
very little distortion.

References

1. J. Young, Lawrence Radiation Laboratory
report UCID-3144, 1968 (unpublished). : v

2. J. Young, Numerical Applications of Cubic
Spline Functions, Logistics Rev. 3 [ 14], 9 (1967).
3. G. Birkhoff and C. R. DeBoor, Piecewise
Polynomial Interpolation and Approximation, in
Approximation of Functions, Henry L. Garabedian,
Ed. (Elsevier Publishing Co., Amsterdam, 1965),
pp. 164-168.

4. J. Young, Numerical Applications of Hyper-
bolic Spline Functions, Logistics Rev. 4 [ 19],

17 (1968). .

5. J. Young, Numerical Applications of Damped
Cubic Spline Functions, Logistics Rev. 4 { ZOT ,

33 (1968). N

-



¢

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
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