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QUASILINEAR EVOLUTION OF THE TRANSVERSE INSTABILITY 

DRIVEN BY TEMPERA'lURE ANISOTROPY OF AN UNMAGNETIZED PLASMA 

Norman Webster Albright 

ABSTRACT 

The subject of this thesis is the quasilinear evolution of the 

transverse instability driven by the temperature anisotropy of an 

unmagnetized plasma. This instability was first studied by E. S. 

Weibel (Phys. Rev. Letters 1959), A. E. Stefanovich (Soviet Physics

Technical Physics 1962), and F. D. Kahn (J. Fluid Mech. 1962). 

Starting with a temperature anisotropic plasma, a spectrum of purely 

growing magnetic waves develops in k-space. These waves cause particle 

diffusion in velocity space. This leads to temperature isotropy and' 

thus to stabilization of the plasma. After a brief period of rapid 

diffusion, the anisotropy decreases with time like t-2/ 3. Simul-

taneously the wave spectrum 'shifts to lower and lower wave numbers, 

and eventually decays. . 

vi 
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I. INTRODUCTION 

The Transverse Instability 

The transverse instability is an instability in the low frequency 

transverse electromagnetic waves of a plasma, not in the high frequency 

transverse waves (modified light waves). It is driven by anisotropy 

either in temperature or in any of the even moments of the velocity 

distributions of either the electrons or the ions. 7 The contribution 

of a group of resonant particles to the current is an essential part 

of the instability. Let a denote the temperature anisotropy 

a = (T - T . )/T max m1n mean (I-l) 

The instability occurs for very low wave numbers 

(I-2) 

where we is the electron plasma frequency, vth is the mean electron 

thermal velocity~ and ~ is the inverse of the electron Debye length. 

The instability has very slow growth rates 

For an unInagnetized plasma the instability is purely growing. 

The circumstances under which a plasma will have a transverse 

instability are clarified by considering the 16 cases of Fig. I-l. 

InJthese cases we consider a plasma with different electron temperatures 

parallel and perpendicular.to a symmetry axis, Til and Ti • The 16 cases 

are for the absence or presence of a static magnetic field, B, along o 

the symmetry axis; TII-> Ti or Til < >Ti ; the k-vector along or 

1 
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perpendicular to the symmetry axisj and for the two transverse low 

frequency modes. Modes I and II refer to the modes I and II of the 

section on linear analysis. Numbers in parentheses are references. 

We note that the right circularly polarized wave corresponds to the 

magnetosonic-whistler-electron cyclotron branch of the dispersion 

relation, and the left circularly polarized wave corresponds to the 

Alfven wave-ion cyclotron branch. SMS and FMS refer to slow and fast 

magneto sonic waves. 

For B = ° we see that there are three unstable cases. In each 
o 

case, the region of unstable waves is 

_ \'T.l.. - T U I 1 / 2-To <..:Ie C 
1\ 

(I-4) 

These modes are purely growing. 

The addition of a static magnetic field causes two new instabilities 

to appear, the "firehose" and the "mirror" instabilities. However 

these are different kinds of instabilities. These instabilities 

require the presence of the magnetic field. They require the aniso-

tropy to exceed some critical value, whereas the other three unstable 

cases exist for small anisotropy. Furthermore these instabilities 

may be calculated with the double adiabatic equationsj resonance is 

not essential. We do not include the "firehose" and "mirror" as 

transverse instabilities, and we will not consider them further. 

The right wave instability involves a resonance between electrons 

and the electron cyclotron wave. This instability is very similar to 

Mode I and Mode II for kll. The region of instability islO,19 

2 
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where n is the electron gyrofrequency. The region of instability has 
e 

been modified by the presence of the static magnetic field. Also the 

instability now has a real part to its frequency. The region of 

frequencies for unstable waves islO,19 

- ~"T.l. - '") \n \ <.) . .L- ~ e 
('1"&,1. 1.1. 

(1-6) 

The growth rate however has been reduced~ It is exponentially small 

for small anisotropy.3,4 The magnetic field has had a stabilizing 

effect. 

For the left wave or ion cyclotron instability the situation is 

more complicated. For massive, isotropic ions this mode is stable. 

Finite mass, anisotropic ions are necessary for the instability which 

involves a resonance between ions and the ion cyclotron wave. 3,4,19 

The region of frequencies for unstable waves is19 

The critical frequency has the same formula here as in the electron 

cyclotron instability, except that ion parameters (temperatures and 

gyrofrequency) have been substituted for electron parameters. The 

other properties of this instability are similar to those of the electron. 

cyclotron instability. However the formulas describing the region of 

instability in k-space and the growth rate are much more complicated 

and involve both ion and electron parameters. Generally if a transverse 

instability exists for electron anisotropy, then the presence or absence 

of ion anisotropy makes very small changes. However if ion anisotropy 

is essential, then the presence or absence of electron anisotropy has 

a strong effect on the instability.19 

3 



The SMS instability is similar to the Mode I,. kl instability. The 

region of unstable waves is12 

Ti, -E I () '2. / 2. 0. ~ ~ c; T" 0'" --t! 
..L 

where 10 is a modified Bessel function, 

2. 2-
Eo - k r - '-

(1-8) 

(1-9) 

and r L is 

k
2 for crit 

the electron Larmor radius. The RHS of Eq. (1-8) is just 

Bo = o. ¥or instability both terms of the LHS must be less 

than the RHS. This requires E» 1 and thus 

(1-10) 

The region of instability has been narrowed by gyroradius effects. It 

no longer extends to k ::: 0, and k . t has been reduced.. We see that crJ. 

in all three cases, right wave, left wave, and SMS, the magnetic field 

has a stabilizing effect. 

Historical Survey 

The first reference to the transverse instability was by E. S. 

Weibel. l In this paper the electrons were described by the Vlasov 

equation. The ions were taken to be a fixed background. A distribution 

function of the form 

(I-ll) 

was assumed •. There was a static magnetic field, Bo' parallel to the 

preferred z-axis. A dispersion equation was obtained for the case k 

parallel to Bo and Ek perpendicular to k. The dispersion equation was 

4 
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solved for the special case of a two temperature Maxwellian distribution, 

for Bo ~ 0, and for very different thermal velocities, v1th » vzth • 

A purely growing mode was found with growth rate 

(I-12) 

He states that more detailed study shows that the perturbation is damped 

for large enough k. 

B. D. Fried2 commented on the above paper. He proposed a simple 

physical picture for transverse wave instability. He consi'dered fixed 

ions, B = 0, and a distribution function o 

A perturbation of the form 

( I-13) 

will perturb the two "current streams" of f. Curvature of electrons o 

in 5B causes a perturbation current which increases 5B with growth rate 

(I-15) 

R. Z. Sagdeev and V. D. Shafrano~calculated electron and ion 

cyclotron wave instability. A Vlasov calculation was made for the two 

cases of electrons plus fixed ions, and ions plus fixed electrons. A 

two temperature Maxwellian was used and the case kparallel to Bo was 

considered. For the ion wave assuming kvll« ill, PII « B;/Srr, ill « Di , 

and Re ill » Im ill they found that maximum growth occurred for 

( I-16) 
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where vA is the Alfven speed, and ni is the ion gyrofrequency. The 

corresponding frequency and growth rate were 

w = n. I T\\ - T.L I 
.. T\\ ~ 

(1-17) 

(1-18) 

where (J,)i is the ion plasma frequency. The instability occurs for Tl > Til. 

For the electron wave assuming kVII« (J,), PII « B~/8rc, (J,) < ne , 

Re (J,) » 1m (J,), and n2 « (J,)2 they found that at maximum growth the 
e e 

frequency and growth rate were 

(1-19) 

(1-20) 

In each case we have exponentially small growth for small anisotropy. 

It is stated that the cyclotron resonance condition is 

n = 0, ±l, ±2, ••• (1-21) 

However since no calculation was made for (J,) > n, we have no way of 

knowing if the wave is unstable in that case. 

The cases of electron and ion cyclotron wave instability are 

considered in the excellent review article by A. A. Vedenov, E. P. 

4 Velikhov, and R. Z. Sagdeev. This article reiterates the results of 

6 

the preceeding paper. ,'" 

A. B. Kitsenko and K. N. Stepano~showed that an anisotropic ion 
•.. 

distribution gives a cyclotron wave instability for 

k~ \ /r \..i.. and (1-22) 



,.. . 
. , 

where r L1 is the ion Larmor radius. The distribution function which 

they used was 

(1-23) 

where f(vlI) was a Maxwellian. The growth rates which they obtained 

were very different from those of Sagdeev et ale 
. 6 

The paper by A. E. Stefanovich was the first paper to state the 

region of instability for B = 0, and is the only paper to date which 
o 

has considered the case of a small static magnetic field. It is a very 

clear paper. He assumed a distribution function 

(1-24) 

and considered waves with k parallel to the preferred axis. For this 

general distribution function he found the region of ~nstability to be 

(1-25) 

where m2 is the plasma frequency for species s. For the case of a two 
s 

temperature Maxwellian Eq. (1-25) became 

(1-26) 

He then added a small static magnetic field parallel to the preferred 

axis. He again considered waves with k parallel to the preferred axis, 

and with m,n« kVllth" He noted that ion motion has an appreciable 

effect on the dispersion relation only if 

(
T.l.-TII) ~ 

Til 1. 
(1- 27) 
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and chose to avoid this case. The frequency and growth rate were then 

found fora two temperature Maxwellian to be 

(.,) ::: LT.l..-T..n.\ n 
\: \J. } e. 

1 = (~~/2 k~th ~~ t tT ~~"1- k\l/c.)~ } 

(I-28) 

(I-29) 

where only electron parameters are involved. Maximum growth occurs at 

k2. _ i. \T.l. -Til) '2/ '2 - 3 T (,.)e c. 
\\ 

with growth rate 

= ~~/"", "Il.b ~ T .... - TD~3/2 
1 i ,\1..7-,tJ e c \\\-) 

He stated that these formulas are valid only for small anisotropy 

(TJ..-TII\ « 1 
\: Til oJ 

and for weak static magnetic field 

that is for 

(I-30) 

( I-31) 

(I-32) 

(I-33) 

(I-34) 

The most general formulation of the stability condition for trans-

verse waves in a plasma with no static magnetic field was given by F.D. 

Kahn. 7 Assuming a distribution function with central symmetry 

(I-35) 

lie i'OlUld the neeessary conditions for stability are that 

8 
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(I- 36) 

and 

(I-37) 

be independent of e and ~.Anisotropy in any even velocity moment will 

cause instability (unless it is balanced by an intricate combination of 

anisotropies of all the other velocity moments). 

8 
In a second paper, F. D. Kahn considered an unmagnetized plasma 

with a three temperature Maxwellian distribution function for the 

electrons and fixed ions. For small anisotropy he found that the most 

unstable wave has k parallel to the axis of temperature minimum and Ek 

parallel to the axis of temperature maximum. He found the region of 

instability is 

which is similar to Stefanovich's result, Eq. (I-26). He found a formula 

for the maximum growth rate which is similar to Stefanovich's, Eq. (1-31). 

(I-39) 

where V is a moment of the distribution function and 

He also considered the case of an isotropic electron distribution 

and an anisotropic ion distribution. In that case he found the region 

of instability was 

( 1-40) 

9 



which for the same degree of anisotropy is a reduction of the region of 

instability by a factor (m /m.)1/2. The corresponding maximum growth e J. 

rate became 

(1-41) 

which for the same degree of anisotropy is a reduction in the growth 

rate by a factor (m /m.)3/2 • He considered the application of these 
e J. 

results to fluid flow. Ellipsoidal velocity distributions arise in any 

compressive, expansive, or shear flow. The resulting microinstability 

leads to enhanced diffusion. In particular viscosity is decreased and 

becomes dependent on the local velocity gradient. 

An interesting application of the transverse wave instability was 

considered in the paper by S. S. Moiseev and R. Z. Sagdeev. 9 They 

considered collisionless shocks for the cases p »p. and p > P e J. i rv e 

in an unmagnetized plasma. In the latter case the shock structure is 

determined by the transverse wave instability. They considered an 

anisotropic ion distribution and an isotropic electron distribution. 

They stated that this is unstable for 

(1-42) 

where x is the di~ection normal to the shock, and the wave has k parallel 

to z and oB parallel to y~ They found the nonlinear stabilization by 

equating the anisotropy driven growth to the nonlinear transfer of 

energy along the spectrum to shorter waves which are damped. They 

found that stabilization occurred at a value of oB for which the electron 

Larmor radius 'vas 

10 
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.... 

(1-43) 

They considered ion velocity space diffUsion and estimated the time 

required to make ions isotropic 

(1-44) 

where Vith is the ion thermal velocity. They considered hydrodynamics 

in the relaxation time approximation and thereby calculated the viscosity 

and the effect on shock structure. 

The paper by P. D. NoerdlingerlO is a comprehensive study of the 

region of instability for k parallel to a static magnetic field, B , 
, 0 

and for B parallel to the preferred axis of a two temperature Maxwellian o 

distribution. He applied a Nyquist type of analysis to the dispersion 

relation. He considered two cases: an anisotropic electrbn distribution 

with fixed ions, and an electron positron plasma with equal anisotropies. 

In the first case he found that for there are unstable waves 

for large enough B , but that these require resonance with particles o 

traveling faster than light. Therefore Tl < Til is . stable for fixed 

ions. For there are unstable waves for 

He estimated that the frequency of the maximum growing mode is 

(1-46) 

For the electron positron plasma he found a new unstable mode, a purely 

growing hydromagnetic wave for Til > Tl and 

11 



where the function G lies between 1.0 and 1.64. This is the IIfirehosell 

instability. 

For Tl > Til the boundary for unstable waves is only slightly 

changed. However the waves are now of two types, one which exists for 

n «(j) and the other which exists for (j) :S n. Graphs are given e e e e 

showing the separate regions. 

In the second paper, P. D. Noerdlingerll extends the above results 

to the case of a hydrogen plasma. The unstable region was graphed as 

B was parallel to the preferred axis 
0, 

of a two temperature Maxwellian, and k was parallel to B. For the o 

case Tl > Til ,there were two unstabl~ modes. One was similar to an 

electron plasma with fixed ions, and the other was similar to an ion 

plasma with fixed electrons. 

The case' Til> Tl was much more complicated. It was found to be 

unstable for 

(1-48) 

and to have growth rates of the order of a few tenths of the ion gyro-

frequency. The classical firehose result is instability for 

(1-49) 

He suggested that plasmas satisfying 

(I-50) 

probably have instabilities with growth rates much less than the ion 

gyrofrequency. 

12 
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H. P. Furth12 interpreted the transverse instability in terms of 

a Bennett pinch, and calculated several cases. "Two identical inter-

penetrating particle streams (as in a thermally anisotropic plasma) 

give rise to no net current flow, and therefore to no self-focusing 

field. The zero-order counter streaming of like particles gives rise 

to instability modes that correspond essentially to the formation of 

local first-order pinches~ The perturbation magnetic field is trans-

verse to the direction of streaming, and tends to concentrate particles 

that are moving in the same direction. The marginal stability criteria 

for all such modes can be interpreted in terms of Bennett's pinch 

condition. II 

In all the cases heconsidereo, there is an anisotropic species, 

denoted by subscript a, with a two temperature Maxwellian distribution. 

He assumed there is a neutralizing background species, denoted by 

subscript n, which is isotropic. The first case he considered was 

Bo ;:: 0, k perpendicular to Til' and 5E parallel to Til. (This is Mode I, 

Assuming m ;:: 00 he obtained for the region of instability 
n 

(I-51) 

For TI > Til the RHS is negative, so this case is always stable. 

Unstable waves occur only for Til > TI • For finite mass neutralizer 

the instability condition becomes 

(I-52) 

where 

13 



and F(A) is related to the complement of the error function 

11.'2.. 

F (I\.) =- 1t"2. A eJl.. errc (./\.) (I-54) 

At the boundary of the unstable region r = 0 and F(Aa ) = O. However 

for a cold neutralizer F(A) = 1. In this case the instability condi
II 

tion becomes 

(I-55 ) 

Thus for a = electron and n = ion there is negligible change from 

the previous condition. However for a = ion and n = electron the 

plasma is stable except for very large anisotropy. The neutralizer 

is considered cold if its thermal speed satisfies 

Vnth < r/k (I-56) 

for an unstable mode with growth rate r. 

The next case he considered had Bo parallel to Til' k perpendicular 

to Bo' and BE parallel to Bo. (This is SMS, k1 .) The instability 

condition was found to be 

(I-57) 

where 10 is a modified Bessel function, 

(I-58) 

and r L is the particle Larmor radius. For Til < Tl all waves are stable. 

Consider the case Tl < TH. For a = ion and n = electron the plasma 

is stable except for very large anisotropy. Let a = electron and 

14 

n = iOp. The malmn term may be dropped. The instability condition is ~ 



(I-59) 

For small or moderate anisotropy, Til '" Ti , both terms of' the LHS must 

be less than the RHS. This requires €» 1 and thus 

(1-60) 

The value of k which minimizes the LHS is 

2-
k'3 = (s 7(.(1'1.. ~e Til 

C l'Le TJ.. 
(1-61) 

Substituting this into Eq. (I-57) gives the instability requirement 

(1-62) 

Thus f'or instability the magnetic field must not exceed a maximum value 

given by Eq. (1-62). These results were applied to the Astron E-layer. 

The last case he considered was the "firehose" and "mirror" 

instability, conditions for waves with k-vector at an arbitrary angle 

e relative to the static magnetic field. For the "firehose" instability 

the most unstable waves have k parallel to Bo' and require Til > Ti and 

For the "mirror" instability the most unstable waves have k perpendicular 

to Bo' DB parallel to Bo' and require Ti > Til and 

(1-64) 

The first paper by R. N. Sudan13 considered anisotropic electrons 

with a two temperature Maxwellian distribution and a background of 

fixed ions. He considered waves with k parallel to a static magnetic 

15 



field, and found the electron cyclotron wave instability for Tl > Til· 

For the region of unstable waves he found Noerdlinger's condition, Eq. 

(I-45). He also calculates the growth rate 

1 = ,,'/'1. kv .. tT \\-I.1.)( k.1. ...: \) e'X.,?~ liT~ ~U: J 
II\;" '\ '1. \ k;, I 

.1. ~ '\flit" 

where k~ is the RHS in Eq. (I-45), that i~, it is the largest unstable 

wave number. Sudan's formula does not have the minus in the exponent, 

howeve r compare Eq. ( I - 65) wi th Sagdeev' s Eq. ( I - 20) • 

14 The second paper by R. N. Sudan ,was a relativistic calculation 

of the above results. For a nonrelativistic plasma he found the region 

of instabil~ty to be given by Eq. (I-45) plus small corrections. 

D. B. Chang15 studied the generation and amplification of whistlers 

(electron cyclotron wave) in an isotropic electron plasma with a non-

isotropic, relativistic.component and with a background of fixed ions. 

The relativistic Vlasov equation was used to calculate the case of k 

parallel to B. The results were applied to Jupiter's sporadic decameter o 

radiation by assuming that Jupiter's Van Allen belt contains relativistic 

electrons. 

V. D. Shapiro and V. I. Shevchenko16 made a quasilinear calculation 

for the changes in the longitudinal and transverse thermal energies and 

also the electromagnetic field energy of an instability due to an aniso-

tropic ion distribution function. There was a static magnetic field. 

They considered two cases, the "firehose" mode with k parallel to B , o 

and the "mirror" mode with k 1 »kll. Both instabili tie s are purely 

growing., If we denote 

y _ ("'1\ - 10.1. _ 

t>n (1-66) 

.,., 



.. 

and 

y * = (~J. - :10" _ 
\: ~\\ 

Then the "firehose" and "mirror" instabilities occur for· 

y>o and * Y > 0 

respectively. The calculation was limited to modes satisfYing 

which requires 

* Y« 1 and Y «1 

respectively. It was also assumed in both cases that 

and 

(1-68) 

(1-70) 

(1-71) 

In each case it was found that the wave spectrum did not disappear when 

the system stabilized. A spectrum of stationary magnetic waves remained. 

It was found that the energy in the final state wave spectrum was propor

tional to the initial values of Y andy*4 respectively. 

J. Rowlands, V. ·D. Shapiro, and V. I. Shevchenko17 solved the 

quasilinear equations for the ion cyclotron instability. They considered 

waves with k parallel to B and with o 

1« Ul and (1-72) 

They found the shape of the final distribution function, and found that 

a spectrum of stationary waves remained when the system had stabilized. 

They applied the results to an ion beam passing through the plasma. 

They assert that the instability can occur either for Tl > Til (normal 

17 
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Doppler effect) or for Til > Tl (anomalous Doppler effect). 

18 . c. S. Wuexamined the stability of transverse waves ~n an unmag~ 

netized plasma. He found the stability condition in terms of the 

distribution fUnction and evaluated this for a two temperature Maxwellian 

with k parallel to the preferred temperature axis. He found the insta-

bility condition to be 

(1-73) 

which is the same result as Stefanovich'sEq. (1-26). 

A. W. Trivelpiece and J. E. Scharer19 studied the electron and ion 

cyclotron instabilities for k parallel to Bo. For a two temperature 

Maxwellian, the dispersion relation becomes 

(1-74) 

where Z is the Plasma Dispersion Function, ill is the plasma frequency . s 

for species s, Vs is 21/2 times the parallel thermal velocity of species 

s, ill is the complex frequency, 

o.>± fir. 
\<. Vs 

where plus and minus refer to the right and left waves respectively, 

and n is the cyclotron frequency for species s (positive for ions, and s 

negative for electrons). 

They fO'l,Uld that fo.r Tl > Til unstable electron cyclotron waves 

exi st·· for frequenc ie s 

w < LT.L.-T" \ . \ n \ ::: tal "t 
'\ T 1. "le· e Con, 

(1-76) 

and for wave numbers corresponding to Noerdlinger's Eq •. (1-45). They 

18 



stated that maximum growth rate occurs for a wave with frequency slightly 

below ill "t' which agrees with Sagdeev's Eq. (I-19). They noted that crl . 

the electron cyclotron wave is never unstable above the electron cyclotron 

frequency. This wave is stable for Til > Tl for all frequencies and 

wave numbers. 

They found that for Tl > Til unstable ion cyclotron waves exist 

for frequencies 

(I-77) 

For cold electrons the region of unstable wave numbers is 

-\- (_TJ..- TII)2. n~ / c" 
\: Tl. A. 

(I-78) 

They found that cold electrons have a stabilizing influence on an unstable 

ion cyclotron wave, however thermally anisotropic electrons with 

Tl > Til have a destabilizing effect. 

20 G. Kalman, C. Montes, and D. Quemada made a comprehensive study 

of the transverse wave instability in an unmagnetized plasma. They 

assumed a two temperature Maxwellian distribution with Tl > Til. They 

found that each of the three low frequency modes can be unstable. Let 

e denote the angle between the k-vector and the TlI",axiS. They found 

that one mode is purely transverse (Mode II). It has ~ perpendicular 

to both k and Til. It is purely growing, and has maximum growth for k 

parallel to Til' e ~ 0
0

• 

The next mode they considered was quasitransverse (Mode I). It 

has ~ perpendicular to both k and Til. It is transversely polarized 

for e ~ 00 and o e ~ 90 • It is purely growing for 

19 



and· ( I-79) 

where e "t is approximately 450
• It is purely damped otherwise •. It crl 

has maximum growth for (Note this mode is also unstable for 

Til > T1, in which case maximum growth occurs for- k perpendicular to Til' 

e = 900
.) 

The last mode they considered was the quasilongitudinal ion-acoustic 

mode. It is longitudinal for e = 00 and o e = 90 . It is driven 

unstable by its coupling with the quasi transverse mode. Its growth 

rate is small compared to the transverse mode. This mode was studied 

for the case of equal ion and electron anisotropies 

and (I-80) 

This mode has a nonzero real part to its frequency for most values of 

k and e. 'l':b.e region of instability for a givenk value is 

(I-81) 

Interior to this is a region 

in which the real part of the frequency is zero. The authors gave 

graphs showing growth rate, region of instability, and polarization. 

Thesis Summary 

An infinite plasma with a bi-Maxwellian initial velocity distribu-

tion is considered. The electrons have a temperature maximum along the 

z-axis and a temperature minimum in the plane perpendicular to the z-axis. 

The case of small electron temperature anisotropy, a, is considered 

20 
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," 

0: = (Til - T1)/T « 1 mean 

Ion anisotropy is assumed to be small enough so that its effects may be 

neglected. A set of ordered equations is found based on a multiple 

time scale expansion of the Vlasov and Maxwell equations in pow~rs of 0:. 

Linear analysis shows that the unstable waves are purely growing 

and have growth rate 

r '" dkvthermal (I-84) 

The region of unstable waves is 

where (1) is the electron plasma frequency, and e is the angie between e 

21 

the k-vector and the z-axis. Maximum growth occurs for k-vectors lying 

,in the plane perpendicular to the z-axis, that is for e = 900
• Generally 

the longitudinal electric field is the same order as the transverse 

electric field, however the electric field becomes transversely polarized 

for e = 900
• 

A study of energy flow shows that the magnetic field energy density 

of the waves is of order 0:
2 times the kinetic energy density of the 

plasma. The electric field energy density of the waves is in turn of 

2 order 0: times the magnetic field energy density. This is because the 

real part of the frequency of the ,wave is zero, CL~d the imaginary part, 

r, is very small compared to kc. 

The quasilinear approximation consists of a pair of coupled equations 

for the magnetic field, Bk, and the average particle distribution function, 

f. f is broken into two parts o 0 



f(O) is defined to be the isotropic part of f at 
o. 0 

(1-86) 

t = 0, and f(2) is 
o 

the anisotropic part of f at t = 0. It is shown o 
that f(o) is constant. 

o 

shown to remain purely anisotropic for all time, that is the 

. 2 4 . (2) t of v , v , etc. with respect to f remain zero throughout i s o moments 

evolution. The coupled equations for Bk and f(2) have the form 
0 

·a 
l\c(t) Bk(*) (1-87) at Bkt*) -

0 ~(2.) S d3k \ Bk(t)\1. B(k;\J' ') ?>/ov) 
(u 

at (v,t) - ~o ('U',t.) 
() 

S ,3 a \8 \2. (l'-.. · .... ""'/~\1) (<.!o())r v ) + c:I k o~ k(1:) K, U , 0 I \. (1-88) 

22 

The equation for Bk is actually nonlinear. Although it is linear in the 

field, the growth rate Yk is a functional of fo which itself changes on 

the shortest time scale. That is, when the amplitude of the wave spectrum, 

IBk I2 , becomes large enough, fo changes significantly over one growth 

period. 

The B(k,v,O/ov) term in the,equation for f(2) is a diffusion term. 
o 

The diffusion coefficient for this term is a symmetric tensor. As a 

result this term satisfi~s an H",:,theorem. From this one finds that the 

plasma evolves to temperature isotropy within the quasilinear approxima-

tion under the influence of the B term. The B term is responsible for 

isotropization. The diffusion coefficient for the C(k,v,%v) term in 

the equation for f~2) is an anti symmetric tensor to lowest order in a. 

. An anti symmetric diffusion coefficient corresponds to dissipationless 

flow in velocity space. The C term is a perfect time derivative. The 

contribution of this term to f~2)(t) depends only on ~ at time t, and 

i'· 

. . 
" 



0' 

is independent of the state of the plasma at previous times. The C term 

therefore makes no contribution to the net change in f~2) from initial 

to final states, since the initial and final wave spectra are negligibly 

small. The equations for the evolution of a and ~ have been solved 

using a bi.:.Maxwellian model for f. The evolution of a may be broken o 

up into three distinct phases: an initial phase, a rapid phase, and 

an asymptotic phase. During the initial phase the wave spectrum grows, 

whereas particle diffUsion occurs very slowly at first, and hence little 

change occurs in the anisotropy. Eventually the amplitude of the wave 

spectrum becomes so. large that rapid particle diffUsion begins. This 

is due mainly to the C term in the equation for f which is larger than 
. 0 

the B term at first. The temperature anisotropy then changes rapidly 

until about half of the wave spectrum with smaller wave numbers is 

growing, and the half with larger wave numbers is decaying. This 

reduces the C term and makes it negative. The C term then partially 

cancels the B term. This ends the rapid phase. Particle diffusion 

then proceeds ever more slowly as temperature isotropy is approached. 

Asymptotic analysi s shows that the ani sotropy decrease s with time like 

-2/3 t • Simultaneously the wave spectrum shifts to lower and lower wave 

numbers, and eventually decays. The asymptotic phase is characterized 

by the wave spectrum shifting so as to always be about half growing 

and half decaying •. Shifting in this manner the C term continues to 

partially cancel the B term. If the C term were to become less negative, 

then f and hence a would change more rapidly. The spectrum would then o 

damp more quickly until the C term became more negative again. 

23 



B = 0 o 

B = 0 o 

TIl < TJ.. 

B I- 0 o 

B I- 0 o 

stable stable 

Right Wave,kll Left Wave,kll 

~Bk ~Ek 
Ek Bk 

stable (19) .. UNSTABLE (4, 12) 

"Firehose" 

~~ J--~ 
Ek . Bk 
UNSTABLE(), 19) stable(m.=oo ) 

~ 

UNSTABLE(J,19) 

FIGURE I-1 

Mode I,k.i. 

UNSTABLE 

k 

t Ek 

r Bk 

UNSTABLE (12) 

j Ek 

r Bk 

k 
stable (12) 

~Ek 
k . 

stable 

stable 

tBk 

~~ 
k . 

UNSTABLE (4, 12) 

"Mirror" 

24 



.. ' 

'. 

II. BASIC EQUATIONS 

Equivalence of Vlasov and Klimontovich Cumulant Hierarchies 

Define the microdensity for species s by 

NS(r, "',t) = E btr- r~u:)) b(v-'\t'A,(A;)) 
A.ES 

The microdensity satisfies the Klimontovich equation 

(II-I) 

(II-2) 

where the electric and magnetic fields are calculated from Maxwell's 

equations using the current given by 

}(r)t) = L, es'S cl'3,,,. 'V' \\\s(I',\I' ,t) (II - 3) 
s 

Let FS(r,r~) be the distribution function for a Vlasov fluid. It satis-

fies the Vlasov equation 

(II-4 ) 

where the fields are calculated using the current given by 

(II-5 ) 

Because of the similarity of the Klimontovich equation with the 

Vlasov equation, their cumulant hierarchies are similar. The cumulant 

hierarchy of an ensemble of Vlasov fluids 'lacks the particle-particle 

collision terms which are present in the cumulant hierarchy of an 

ensemble of pOint-particle plasmas. The relationship between the Vlasov 

and Klimontovich cumulant hierarchies has been studied in detail by 

R. C. Davidsono 2l We shall confine our attention to the Vlasov equatio~o 
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Basic Equations and Definitions 

We introduce the notation , 

(II-6) 

Our basic equations are the Poisson equation, the Faraday equation, the 

Maxwell-Ampere equation, and the Vlasov equation 

(II-7) 

~ Btr,*') = - <:: :r X E (,r,~) (II-8 ) 

:~ £ (\'",t) - c. ~)( B(r,t) + ~ 4?t~ )crv '\r F\r)v1t) == 0 (II-9) 

t~ + '\To fr ;- L\r,'V',t) 1 t=\r,v,t) = 0 (II-10) 

We define the space average of any quantity by 

(II-ll) 

Henceforth in any equation in which V occurs, the limit V ~ 00 will 

be implied but not written. We define the deviation of any quantity by· 

(II-12) 

Taking the space average of Eqs. (1I-7) through (II-l0) gives 

~ L\- 1(. es ~d.~V" 
~ Fe (V,t) 0 (I1-13) 

~ Bo(t) = 0 (1I-14) 

li Eott) + L 41t es ~ ~'IT '\J' F! ('U')*) -= 0 
S 

(II-15 ) 

(II-16) 



... . 

Subtracting Eqs. (II-13) through (II-16) fro~ Eqs. (II-7) through (II-10) 

gives equations for the deviations 

~ ~E(t",t) - Co ~ X COB(r,t) + ~ 4'ltes ~d.3" ". ~Fs(Y'~V',.~) = 0 

{~ + '\1'- :1' + LSo<.~,t)1 ~r\\,\'Il',t) + ~L\r,1f1t)'r~('\)',~) 

(II-17) 

(II-18) 

(II-19) 

= - bt:~r'l'IJ')t) ~ F\r)1r',~) + ~ ~ d.'dt ~L~(r,v'l*) bF'"(r1",,\t) (II-20) 
y 

We define the Fourier transform of a deviation by 

(II-2l) 

with inversion formula 

(II-22) 

In order to avoid any confusion, we shall use the subscripts k = 0 

and 0 respectively to distinguish between 1\.=0 (Fourier transform of 

a deviation) and B (space average). Our definitions require that o 

'Ch o(.:~) = E. _()(-A:) = LCi 
(\I', t) = F~ <'''', t) =- 0 

'Co: t\- \t:.() 1e=0 

We note that the Fourier transform of B,r~) is related to Bk(t) by 

D' 

j [B(r,t)] = Bk(k) + \'2.11".)'?> Slk) Ba (*:) (II-24) 

That is 

for k ~ 0 (II-25 ) 
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and 

for k = 0 (II-26) 

Evidently it is easier to deal separately with the deviations and the 

space averages. 

Using the ~ourier transform, Eqs. (II-16) through (II-20) may be 
I 

written 

:t i\ .. (t) = - i<:. k X E.k(t) 

~t. 'E~\.:It.) - ic.kx i\. t1l;) + I; 'tx~ Sc1.\r 'II' F~ t~.,"t) = Q 

{:t + ik." + L!t'lr,t) 1 F~('II",t) + L:tv,J.:) F:(Vlt) 

\ ~R. ~ s \ cl.'!i, I Ii. r-!. = - ~ ~1()'\ L\c_~'\I',*) ~ R. tv,t) + <i,~,o ~ (?:1t.~ w._t('U',t) r l ('I1~t) 

(II-27) 

(II-28) 

(II-29) 

(II-30) 

(II-3l) 

The last term in Eq. (II-3l) cancels the other integral term for k = 0 

and allows Eq. (II-3l) to be consistent with Eq. (II-23). Henceforth 

we shall drop the, last term in Eq. (II-3l) and restrict our attention 

to values of k ~ O. 

In the problem considered in this thesis there are no uniform 

fields or currents, and average charge neutrality holds. Thus 

Therefore Eqs. (II-13), (II-14), and (II-15) are satisfied. 
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III. ORDERING SCHEME 

Ordering the Equations 

The parameter in which we shall order our equations is the electron 

temperature anisotropy 

(T· T )/T _ (b2 _ a2 )/d2 
ex = II - 1 isotropic (111-1) 

where a and b are the perpendicular and parallel electron thermal veloc-

ities respectively. d is the thermal velocity which the electrons would 

have if their velocity distribution were isotropic 

(111-2) 

We shall assume that effects due to.the ion anisotropy may be neglected. 

The condition for the validity of this assumption will be given in the 

section on linear analysis. 

We shall order Eqs. (11-16) through (11-20), and then make a multiple 

time scale expansion of the corresponding Fourier transformed Eqs. (11-27) 

through (11-31). To simplify writing our equations we define two 

quantities 

(111-3) 

(III-4 ) 

Then Eqs. (11-16) through (11-20) become 

(111-5) 

.2.. bE Cllr 
(111-6) 
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• 
~B - C ~\'" X ~E.. (III-7) 

• 
bE (III-8) 

i\= + ~.~v- bF + (hR + ~S) r;. + (bR+ ~~) br - ~ Scl\-' ~bR + ~S)~r = 0 (111-9) 
I V 

where the dot denotes a/at. 

Linear analysis shows that the growing waves have growth rate 

1 N cxk cJ. (III-lO) 

and have wave numbers k given by 

to '2. '2. 
keN «c..)e (III-II) 

I 

where we 'is the. electron plasma frequency. Linear analysis further shows 

that Rlongitudinal _. Rtransverse. 
~ .- -k Using these we shall estimate the 

magnitudes of the various terms in our equations. For typical spatial 

gradients and time scales we take d/ar '" k and a/at", y. We begin 

by defining the dimensionless parameter € 

bB N (III-12) 

To estimate 5R we must take note of a property of v X %v. v X o/Ov 

operating on a spherically symmetric function of velocity gives zero. 

For example v X %v operating on a function of v2 gives zero. Now 

FO is equal to a spherically symmetric part plus a nonsymmetric part. 

The non symmetric part is 

5R '" € kd 

and 5R ..... a:e kd 

..... aF. 
o Therefore vX %v F '" aF • o 0 

Thus 

on something quite asymmetric, (111-13) 

onF o (III-14) 
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S· ha Elongo Rtranso th t t 
~nce our waves ve k ~ ~we may assume e wo erms 

in Faraday'sEqo (III-7) to be the same order 

• 
fiB 

\ 

_ - c 2.. x &~ 
~r 

Using this we may estimate oE 

and therefore 

from which it follows that 

but 

(III-15) 

(III-16) 

(III-17) 

(III-18) 

( III-19) 

We estimate the relative magnitude of the two field terms in the 

Maxwell-AmPere Eqo (III-8) 

(III-20) 

Therefore Eqo (III-8) may be ordered 

f,°E - c ~r X ~B + ~ q1te~ ~cl\' ". &Fs - 0 (III-21) 

oc.a(%t : 

Next we find the magnitude ,of of by usingEqo (III-21)~ Denote 

n = f a3v F = average density, and (III-22) 
00, 

oP = 4:rm e2/m = square of plasma frequency eo, (III-23) 

31 



If we multiply Eq. (III-21) by ke/m we obtain 

. (III-24) 

Hence 

N (III-25) 

These estimates yield the following ordering for the Vlasov Eq. 

(111-9), after dividing out the common factor a€kdF o 

iF + '\1.;I'"~F + 6R Fe. T ~S fa -t bR ~~ -t ~S br - ~ S~r (b1h bS)SF = 0 
'V 

of. : \ . . . . . . \ E: : IX.~ ) 

(III-26) 

The above estimates yield for the ordering of the Poisson Eq. (111-6) 

~. f>~ = (111-27) 

ex \~t : 
This says that to lowest order in a the RHS is zero. In the section on 

linear analysis we will find that this gives us an equation for ~ong. 

in terms of ~ 0 

We consider finally the ordering of Eq. (111-5). On the basis of 

the above estimates we order this equation 

Fo =- ~ ~~r (fiR + bS) of 
V . . \E:'4 : ex: ~') 

(III..;28) 

-1 This says that to lowest in € F does not change on the y time scale. o 

We will find that when F is expanded in powers of € o 

(III-29) 
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that F(2) does change on the y-l time scale. The change is caused by 
o 

the oRoF term. 

A precaution is to be ob-served in calculating velocity moments of 

Eq. (III-28) 

(III-30) 

If g(v) is spherically symmetric then integration by parts shows that 

the oRoF term gives 'identically zero because of the factor v x d/Ov. 

The largest contribution to this moment is the oS5F term, although in 

Eq. (111-28) it is higher order than the oRoF term. The ordered expan-

sion of a velocity moment of (III-28) is not equal to the moment of the 

ordered expansion of (111-28). g(v} must also be expanded. 

Estimating How Large € Becomes 

We define the following energy densities 

£\Wn -:-

f. - = 
~ 

From the energy appendix we have 

. 
tV oc ~ 

CJ.,L.\cAM 

The above relations hold nonlinearly. Thus we have 

;x ~ Jlv- ISBI'/S7t. N «.1\1.'1'\0 ~ a." 
V 

We integrate and take c: (t=O) ~ 0, then mag 

(III-3l) 

(111-32) 

(III-33) 

(111-34) 

(111-35) 
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t ~ cl~,.. 'M~(!:) \2. rv \ 6B(*.)\2. rv 81t at m 'no (~(A.)-l(o») . ~ 8?tClC 11\ no oc d,.L. (III- 36) 
-y 

where for 6a2 we have substituted its maximum value. Therefore 
i 
; 2.. . I~ bB('YY\Q:x)\ tV 

w; 2 ,Z-
c:.2. ex: Ci. N k"l.'2. 

oc c! (III-37) 

222 where we have used k c ~ a ill. Comparing Eq. (III-37) with (III-12) 
e 

we see that 

2 
€ (max) ~ a (III-38) 

Thus if we choose the ordering scheme 1/2 
€ = a then we shall be able 

to follow the evolution of our waves through their maximum amplitude 

and to their subsequent decay. 

Multiple Time Scale Expansion22,23,24,25 

We now consider a multiple time scale expansion of the Fourier 

transform of Eqs. (III-5) through (III-9). The customary practice when 

1/2 we have a function having multiple time scales, F(t,a t,at, ••• ), is 

to introduce new variables,. TO' Tl , T2 ••• , such that 

(III-39) 

then 

(III-40) 

However this is inconvenient if a is itself a function of time. There-

fore we choose 

(III-41) 

.. 



.. 

,10 

thus 

(111-42) 

At the end of a calculation, we equate the various time scales by 

t = t = t = t . = •• ~ 012 

We expand each of our functions in powers of a l / 2 

+ •.•• 

P = F(o) + p(l) + p(2) 
k k k k 

+ ••• 

~ = ~o) + ~l) + ••• 

~ = ~o) + ~l) + 

(111-43) 

(111-45) 

(III-~·6) 

where superscript (0) refers to the largest nonzero term in the expansion. 

Thus from Eqs. (111-25, 12, 16, and 10) I.e have 

F(O) ?,{'2.. ~~) 
~ 

N C$.. (III-48 ) 

8(0) \ ( '1. kd. ,",Co N OC 
. ~ e 

E(O) ex:. d. B(.O) 
ru c: ~ k (III-50) 

:2- '" oj:C) 
(I;. kJ (III-.5l) 

Using 

k'2.c.2. "2-
rv (/\. (..)e. (III-52) 

from Eq.(III-ll) we may eliminate k from the above expressions to obtain 
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(III-53 ) 

- C'(oc) (III-54) 

E
(O) . 

IN 
~ 

'1. d. l --1'2..)I/'l. 
(1.. C '1\0 1Tl 01. (III-55) 

2- 3/'l. 
~ l '\'\.01'1'1. J...' )\1'2.. rv ex. 

-a~~ 'tTI.c. 
(III-56) 

I 

k<l rv OCI/'l. e ( ~2.)\I'l. - '\'\.o-en me.. (III-57) 

I 
For initial conditions we choose 

F(O)(o) = the isotropic part of F (0) 
o 0 

(III-58 ) 

F(O)(O) is defined to be an isotropic distribution, all of whose moments, 
o 

(u2), (u4), etc. are the same as those of F (0). We shall see in the o 

section on qualitative considerations that this definition is unique. 

F(2)(0) = F (0) - F(o)(~) = anisotropic part of F (0) 
o 0 o· 0 

(III-59) 

Then the moments of u2, u4, etc. with respect to F(2)(0) are all zero. 
o 

F(l)(O) = F(3)(0) = F(4)(0) = ••• = 0 (III-60) 000 

F(o)(o) = F (0) 
k k 

F~l)(o) = F~2)(0) = •••. = 0 (111-61) 

:sfc°)(o) = ~(o) ~l)(o) = ~2)(0) = ••• ::: 0 (III-62) 

~o)(o) = ~(o) ~l)(o) = ~2)(0) = ••• = 0 (111-63) 

We shall find that our plasma evolves in the direction of velocity 

isotropy. The anisotropic part of Fo is largest at t =0 where it is 

of order a. There is thus no need for F(l) and we shall find that we 
o 

may take F(l) = 0 for all time. Likewise since F(o)(o) must be the 
o 0 



• 

final state of F , there is no need for F(o) to change on any time scale. 
o 0 

We shall find that we may take F(o) to be constant. 
o 

Substituting our expansions into Eqs. (11-27) through (11-31), and 

collecting terms of the same order in .al
/

2 
,. we obtain the fol:Lowing sets 

of equations 

o B(Q). • \ ~(6) 
ota k = - A.t. K X ~k (111-64) 

• (0) ( ... $'a) 
- kC.K X B\c,. -t ~ 41te~ ~d.~V" 'IT F", \: - 0 (111-65) 

(111-66) 

(111-67) 

(111-68) 

- i..c.kx B~ + ~ J1.7te<:, ~cl.?!'Ir' '\r F~<'\) :: 0 (111-69) 

°L. F(,') R(I1 r: l2) otQ\~l?) S<"'F(O) ("lQ)Fl\)+Crl1i ole) F{O)_ 0 (III-70) 
,,~'\T \c. + k' 0 + n. k' 0 + Ie. 0 + .) k 0 ) l't1t.)~ ~k.-l. 2. -

• LX £,1..'2.) = -AC.t\. 
\c. 

S r::{O) + . k- F(1.) 0('2.) F <'2.) + R<")Lt~) RlO)F('t) C'(1.'F(O) + C"(ll~(I) 
~t r k }.." k. + ~k () ~ {"" 0 + \c. 0 + ~\.c. 0 .)k' 0 
o· 

(III-71) 

(III-72) 

(111-73) 

(III-74) 

(III-75 ) 
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(III-76) 

(III-77) 

~ .2. F (,'2.) + £t F l" + 2-F<O) _ _..L ~ &: k Rt~) FlO) 
<!Ito () o~\ 0 ~'t'l. o· - V j ('Z.'It); -k \c 

(I1I-78) 

:2.. F~l)+ ••• + ~ 'flO) __ -LrJ.'?Ik (R(') F~()) R«))~~") 
~to 0 ~l:3 0 - V ll'l.TC\'!. \ ~'-. I.. + -k k 

(III-79) 

~ . 
.Q..F('\o) ••• +.£..F(a)~_.ltJ:\c (R~1.)t=:\O) R<"r:(\) R(O) Ft1.) ('to)F tO)\ 
o~C> 0 -\- at'4- 0 V .h'2.1t~\.1e ~ -T -Ic \( + -Ic Ie -+ ;)-Ie Ie) (III-80) 

.2. FtS) ••• s.~(,O) = _ ..:L ~ J.'!.\c. (ot~) ~(tI) "0 C'<'\) F(O) . ("to) fl')) 
oto () + +~~~ 0 '\[ Jt11t)~ \"-k \.. + + .;)_\( k + u_k \c.. (III-81) 

.2- F(~) . o. + g,. F(o)= _.l. (cl
4
k (R<~) F.~) 0.0 <:,('2.) FtO) 0 •• \ 

o1:() 0 + atE. t) \f )('2.1t)'3 \ _\<. \<. + + c.>_'-. \<.. + ) (III-82) 



IV. QUASILINEAR APPROXIMATION 

The Equation for F 
·0 

The quasilinear approximation consists of Eqs. (111-64) through 

(111-67) and (III":76) .. through (III-78). We consider now the evolution 

of F. Equation (111-76) shows that F(o) is not a function of t • o 0 0 

Integrate Eq. (111-77) on the to time scale. dF~o)/dtl is a constant 

on this time scale, hence F(l) will grow like 
o 

constant • t o 
(IV-l) 

Eventually F(l) would become comparable to F(o) contrary to the ordering 
00. . 

assumptions. This unwanted secular behavibr is suppressed by requiring 

(IV-2) 

from which it follows that 

(rV-3) 

Thus F~o) is not a function of tl and F~l) is not a function of to' 

Let us integrate Eq. (111-78) on the to time scale. R~~)F~o) is 

a function of to' however dF~0)/dt2 and dF~l)/dtl are constants on 

the t time scale. o These would therefore lead to secular behavior in 

F(2) • 
o In order to suppress this secularity we must require 

from which follows 

R(O) ftO) 
-\c. k 

(Iv-4) 
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If we had a problem with oscillating waves instead of purely growing 

waves, the to dependence of Fk would have been like exp -iQkto where 

~ is real. Since- R_k = I\. ' the two exponentials in the product 

R_kFk would have canceled leaving R_kFkconstant on the to time scale. 

The R_kFk term would then have contributed to secular behavior in F~2). 
To suppress the secularity we would have required F(2) to not be a o 

function of t. The R kFk term would then have determined either the 
I 0 -

tl dekendence of F~l) or the t2 dependence of F~o). 
ContinUing: with the case at hand, we integrate Eq. (Iv-4) on the 
I 

tl tifue scaleo OF(o)jOt 
o 2 is a constant on this time scale and would 

lead to secular behavior in F(l). 
o To suppress the secularity we must 

require 

£.. F(O) - 0 'at t 
0 

(Iv-6) 

from which follows 

.3- FP) - 0 
'a~, 0 

(IV-7) 

not a function of to' t l , or t 2, and F~l) is not a function 

Repetition of this analysis with higher order equations 
; 

leads to the conclusion that F(o) and F(l) are constant on all time 
o 0 

scales. From .our initial condition Eqs. (III-58) and· (III-6o) it then 

follow s that 

(IV-8) 

(IV-9) 
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The Equation for f( 2 ) 
. 0 

Since F(o) is constant and F(l) is zero, the lowest order piece of 
o o· 

the distribution function that undergoes change is F(2). We define 
o 

distribution functions which have the average ·density divided out 

and F (n) = . fen) 
k no k (IV-10) 

We solve Eq. (111-66) for F~o) and sUbstitute this intoEq. (IV-5). We 

divide the latter by n to obtain o 

(IV-ll) 

From Eq. (111-3,4) we have 

- ..!S ('\J')( B<"O)). L 
- "m.C \c av (IV-12) 

(IV-13 ) 

. (o)long £ Denote the amplltude of Ek by ek and denote a unit vector in the 

k-direction by k, then 

A. 
k (IV-14) 

We may solve Eq. (111-64) for ~o)trans 

(IV-15) 

Substituting these relations into Eq. (IV-ll) gives 

2-. (,<2.):. _ .1. ( d3
k ~ f"IJX BlO\.).::£. ..!... ~ ~ ('11 X e}~)). So ('L) 

~to 10 \[ ~ (2:1t)~ 1'\\(. \ -\t 0'11"-.'\1' l ~c \ \c. 0" 10 
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Consider the E~o)IOng contribution 

(~)C~~). :". ~.". ~.:" ~:) == (1fXB2~)':" ~.~ ~.~ (-1~ t~O) 

- ~~.(~x~) ~a't 1~) = 0 

where we have used 

5-(0) _ 

o 
(IV-18) 

( 0 ) long . ( 2 ) 
Thus Ek does not affect the evolution of fo • Equation (IV-16) 

is reduced to 

(IV-19) 

Note that the first term is odd in k and thus only the pole contributes 

to this term. The second term is even in k and thus only the principal 

value is nonzero., 

In the section on linear analysis we find that there are two modes, 

one growing and one damped for Til > TI • We ignore the damped mode and 

set 

and (IV-20) 

" where ~ is the unit vector for the growing mode and bk is the amplitude. 

Then Eq. (IV-19) may be written 

~ {5"1.)_ ·'e'2.. (cl"3k f\c(O)\'2.(, ~) ~ l. ( ..... ~).o ((t.) 
aXe, 1 0 ""7- V -m,1.c'2. ) (:2.1\)1· 1. Uk ,'\Sx l\ · ~ ~.'V' "" u~ ~'\J' 10 

I 

+ L'1. (b~ :ttlb",) (vx~)·:v k~" (kx\) . .:v ~~) } (IV-21) 
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In the second term we add the contributions from k and -k and divide 

by 2 

(IV-22) 

Thus Eq. (IV-21) becomes finally 

a it'2..)_\ e1. (ik 5 \ (,6)\2.( ") 0 1 . b) "0 ('1.) 
'b~ 10 - - V -m.2c.' J\'2..1t)~ 1. 810; "\SxBk·~ k.", (vxf\ • w 10 

+ _, 2-. \ 66)\2 f'\TXa),:2... ...L \kXa..). s.. t(O) 1. 
"2.k'l. ato \c. \ '-'\c. o'lf k.v '""1t~" b S (IV-23) 

Diffusion Equation 

An equation of the diffusion form may be produced by adding terms' 

of order a to Eq. (IV-19). First, since 

~ ((0) _ 0 
;:,xo 10 -

we mayadddf(o)/dt to the LHS. Likewise since 
o 0 

(IV-24) 

(IV-25) 

we may add f~o) to f~2) in the first term on the RHS. Adding f~2) to 

f(o) in the second term on the RHS causes a change only of order a in 
o 

this term. The result is 

(IV-26) 

This is clearly of the diffusion form. 

We shall add to Eq. (IV-26) another term of order a to simplify the 

symmetry. Equation (IV-II) from which we started contains the RR term 



and the RS term of the equation for Fo. As we have seen, the SR term 

of the equation for F 0 is of order 0: times the RS term. The part of 

the SR term due to ~ 0 }trans i ~ 
i 

The above term will cause only a change of order 0: when added to Eq. 

(IV-26). Finally since 

(IV-28) 

we may add f(o) to f(2) in (IV-27) with no change at all. The result 
o 0 

of adding these terms to Eq. (IV-26) is 

~ot ~~O) + (~)) - :". D.~ (f:) + (1.)) (IV-29) 
,I 

where 

O = ,\ e' (c!3k 5 ('\Jx~(O)) 1:.- (Vl( 8(0') 
- Y 11\,"1.;} J('2."It)~ 1 \ -k \.:.v ~ 

+ 1- -' r('\txtf"))(~)(~ 8(0)) - (\.r.x:Q.. ~O))('\f)(B(O)~ 1 
\? "'.'\1" ~ -k 'ale ~ \ ~to -k. ~ 'J (IV-30) 

If we separate the amplitude and unit vector of ~o), then D may be 

written 

D=-1. e.' rd~" r\B(O)I'2.~'\I'x~) ~ (vxSJ 
y If\.'c.'2. J('tlt)~ l k """k Iv'lr " 

+ 2'k'- k~" ~\. \~\2.l ( ... ~k)(~' s;)- (~. 6,.) ('<.8.;1J 1 (IV-3l) 

We note that the l~o)12 term of D is a symmetric tensor, whereas the 

a~ 1 ~ 0 ) 12 term is purely anti symmetric. Furthermore since the pole 
o 

prescription is that the contour of integration go under the pole, an 

additional factor of i is produced in performing J d3k in the symmetric 
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term. The consequence of this is that 

~ • nSym • ~ = positive definite form (IV-32) 

These results will be used in the H-theorem appendix. 

The Equation for ~o) 

We solve Eq. (III-66) for F~o) and substitute this into Eq. (III-65) 

Substituting R and S from Eqs. (IV-12) through (IV-15) yields 

. k -a(c)' + \' (,.)2.s r d'\,. 'U" i- r.l.. ('\rIC 50)). l.. [S(~ 
- ~~ x k 'i J k.V 1 c. k ~ 1 () 

where the square of the plasma frequency·is 

Consider the ~o)IOng contribution 

~ <i~'\)' '\1 -'-
k. 0 \-(0) - . ~ d~". "U" -'- k·'IT \ -l?) 1(0) 

k·'I1' ~'IT 0 k.v 0 

\ ~ '3 = -;r'2. chr '\l" ~~) - 0 

(IV-34) 

(IV-35) 

(IV-36) 

where we have used Eq. (IV-18) for f~o). Thus ~o)lOng does not affect 

the evolution of ~ 0 ). The equation for ~ 0 ) is reduced to 

(IV-37) 

where 
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(rV-38) 

and 

(rV-39 ) 

Notice that Eq. (IV-37) is nonlinear. Although it is linear in the 

fields, the term H2S~o) makes the equation nonlinear because f~(2) itself 

changes on the t time scale. Equations (rv-19) and (rV-37) form a 
. 0 

coupled pair of equations for the evolution of f~2) and ~o), and must 

be integrated simultaneously. 

IR(O)1 2 We can form an equation for the evolution of the spectrum -k 

by taking the scalar product of Eq. (IV-37) with (k X B:~)) 
2. 

c. (k)( 6,.). (kx~ •. ) 'B~~)I2. + L ~c:..s (kx e)· H • % \ 8(0)\' 
" ...... S \t 1.S k. " 

A 

where w~ have used bk and ~ to denote the amplitude and unit vector of 

~o) respectively. We shall find that H2s is odd in k since the principal 

value is nonZero whereas the residue of the pole vanishes. HIs on the 

other hand is even in k since only the residue is nonzero. Using. this 

information we evaluate Eq. (rv-4o) for -k, add the result to Eq. (IV-4o), 

and divide by2. The resulting equation is identical to Eq. (IV-4o) 

except for 

(b a b) ~ I (b ~ b b.2... l ) := ...L ~ \ B(O) 12 -k """0 I. .., _, ... to. L + "". D \ '2. ...... 01\.... '- ~ 0 v" Ie. 01\0 -I(, O~ 0 lor.. 
(rv-4l) 

" Finally since k is perpendicular to ~ we have 

(rv-42) 



.-

Thus Eq. (Iv-4o) may be written 

where 

(Iv-44) 

and 

The Equation for ~o)IOng 

We solve Eq.· (III-66) for F~o) and substitute this into Eq. (III-67) 

(Iv-46) 

Substituting R and S from Eqs. (IV-12) and (IV-13) yields 

Consider the integral 

(Iv-48) 

f(O) is isotropic. Therefore I must be proportional to k since it is 
o 

the only vector in I. Thus 

,.. ) '" \ r l {' (.0) Ak 1 = {",. I k -= - ka~ ~ cl" l' 0 (Iv-49) 

Consequently Eq. (Iv-47) may be written 

(IV-50) 
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where 

H~s - (IV-51) 

Thus ~o)lOng is given once ~o) is known. However as we have seen ~o)lOng 

is not needed to find the .evolution of f~2) and ~o). We shall investi

gate the polarization of the electric field in the section on linear 

analysis, and thereafter we shall not concern ourselves with the longi-

tudinal electric field. 



V. LINEAR ANALYSI S 

Expansion of a Bi-Maxwellian in Powers of a 
A A 

We introduce the coordinate system shown in Fig. V-l. We let 1, 2, 
A 

and 3 denote unit vectors along the principal axes. Throughout its 

evolution the plasma will have its temperature maximum along the 3-axis 

and its temperature minimum on the 1,2-plane. We consider a bi-Maxwellian 

distribution fUnction which has the same maximum and minimum temperature 

as the plasma. 

where 

2 
v 

(V-l) 

(V-2) 

The exponent may be decomposed into an isotropic term of order one and 

an anisotropic term of order a. 

where 

(v-4) 

In the energy appendix it is shown that throughout the evolution 

of the plasma 
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(V-5) 

(v-6) 

from which it follows that 

(V-7) 

(v-B) 

(V-9) 

. ri, J 

I .• ,jl, therefore 

, I 
. \.! 
~ I : ';' 

" i , 
1"1 .' 

(V-IO) 

The initial state of the plasma is assumed to be bi-Maxwellian with 
! 

negligible energy in waves. Now f(o)(t=O) is defined to be the isotropic o . 

part of f (t=o) and f(2)(t=0).iS the anisotropic part. Therefore 
o· 0 

(V-II) 

and 

f(2)(t=0) = ~ (2v2 - V~)fmax 
o 6d2 3 

(V-12) 

In the linear approximation f~2) is treated as a constant. This will 

be valid until sufficiently large amplitude waves have grown up. After 

that time f(2) will change on the t time scale along with the waves, o 0 

and the quasilinear description will be needed. 

'. 
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Performing the First Integration for Hl , H2, and H3 

We wish to calculate the fields in the linear approximation using 

Eqs. (IV-15), (IV-37), and (IV-50). To do this we shall have to calcu-

late Hl , ~2' and H3 • 

velocities 

It is convenient to introduce dimensionless 

u-:::; vld 

Then 

HI ~ ~ cl
3

'4 
'U. .2- ~ (0\ - ('I).) 

k.. 'U. a-u. o ' 

H :::. 
'2.. 

~ Q?'14. ~ \'U X .2..) 
\.;.."", ~v. 

t \,2.) 

0 
('\1) 

H = ~ ~d\" .-L <. '\}.I( :v.) 1~\~) 3 \<..u 

where 

<X. ( 2. 2.) [(0' 6" 2. 'U.?, - 'U.1. To (1.1.) 

Using 

a .L<'O) .f(0) 
0"," j (\ (1A) = - 1A 10 (u) 

the integrals Hl , H
2

, and H3 become 

t'" \ u} 
u;1.\'t U,U, ) . 

~l"," 
I \u) 

'\l'l. 
HI -~ () 1l 'U 'tA1.'U3 d 'k ' 1- 1.. 

• '\A. 
1)1. 'U;u~ Ul.u,?> '3 

(V-13) 

(v-14) 

(V-15) 

(v-16) 

(V-17) 

(V-18) 

(V-19) 

(V-20) 

(V-21) 

(V-22) 
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: I I',. 

.1 

i 
~ ~. 'I ~ .. 

~(O) \ U'~'~ -U'U 

~) ~ d"3'U,. 

. , 3 

H == oc. 
o \'U) "'t. 'I.A~ -1.l,'IA'l. 'U~ . 1. k-'IA. ! 2.. '2. 

U'2.'\A~ - 11, 'U~ 

(V-23) 

(Q) 

or. \ ~ ~O (v.) 
. ("Uz.U3 ., -l..l''UO ., 0 ) H =- - d\4. 

?> d \<.1.\ 
(v-24) 

Without loss of generality we may take k to lie in the 1,3-planeo Then 

u2 does not appear in the denominator and so we may integrate with 

respect to it. Performing the u
2 

integration yields 

o 
(V-25) 

o 

H?, =. oc. \<h"dU3 \ 
0 -'U~~ 

~J .L ~~ 0 
\.:.o'l.l 

0 -1.1 'UL. 
\ ~ 

(v-26) 

H~ - - 9£ ~ ~u d'll J... 'IJ, 'IA"3 ~ d ,~ \<o'U. 
(V-27) 

where 

(V-28) 

Performing the Second Integration 

We shall make the change of variables shown in Fig. V-2, ul u
3 
~ xz 

'" x = u·k '" z = u·n (V-29) 
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where 

Then 

where 

S ::: sin e 

A <' A 
n ::: K X 2 

C ::: cos e 

(V-30) 

(V-3l) 

(V-32) 

and e is the angle between the k-vector and the 3-axis. In terms of 

these variables 

and the various matrix elements become 

'U.~ = C 'X + S 'Z. 

-v."l..u = - S2.e ,? + (2.SC'2.-S3)'X2.~ + (2S'C-C'3)"z?-- SC'l.z.3 
I ~ 

(V-33) 

(V-34) 

(V-35) 

(V-36) 

(V- 37) 

(V-38) 

(V-39) 

(v-4o) 
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; ,I I i'/' 1 ,t:. r ... 
:!:" 11 ,,' i 

'! 

we may now perform the z integration 

( S'~'-+C'- 0 SC~_SC) . 
) d1G h (V-42) HI 

A. 

. se~-se 
\ - \e.a " 0 C~x2.+ S2. 

~; I 

(~ 
- S'C 1G~+('l.S~-elh~ 

~) H -= ~ ~d~ h- 0 (v-43) 
1 k 'X 

- SC2.x3 + ('Z.SC'-S3)~ 

(v-44) 

where 

(v-45) 

Performing the Third Integration 

All the matrix elements for H2 are well defined •. All the matrix 

elements for Hl and H3 are odd in x and thus have zero principal value. 

Only the pole contributes to Hl and H
3

• If we had Fourier transformed 

in time our resonant denominator would have been kx-m. For a solution 

evolving forward in time the w-contour of integration must be chosen to 

go above the poleo Therefore the contour for k or x integration must 

be chosen to go below the pole. With this pole prescription we have 

-1/2.. = ~ (~)' /1. 1t'.i h('X:-.o) ::. 1(l(t:I(.) ~ ~ (V-46) 

The integrals Hl , ~, and ~3 become 
I , 
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(e 0 -SOC) 1- (7tf'l. 1. (7(.)'h A 

H = kc! 2 0 I HI I -se 0 S2- kd. '2.. 

H 
- c.( \- 2.S'2.) 

~) I\. 

H ::::: oc 0 - ~H k k. 'Z.. 2.. 
S' (\- 2. S'2.) 

(v-48) 

. ~ $C t i)"7. 1 H = .4-

3 Kci (v-49) 

It is convenient to introduce a matrix representation of the operation 

Q X 

I\. -(~O HL\ =- k X '-

-C
O 
S 

-~ \ 
0) 

We shall need one other relationship 

The Normal Mode Equation 

(V-50) 

(V-51) 

We shall look for normal mode solutions. In anticipation that they 

will be purely growing we set 

(V-52) 

thenEq. (IV-37) becomes 

(V-53) 

We may now 'state the condition for which the effect of ion anisotropy 

on the dispersion relation may be neglected. This is 
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This condition is equivalent to 

0::. 
~ 

« 

(V-54) 

(V-55 ) 

which is very e~sily satisfied. Of course if we wished to calculate the 
I 

ion-acoustic wave, we would not be able to neglect the ion contribution 

to the mode equation. 
20 .. 

Kalman et ale have shown that this mode is 

basi~ally stable, but may be driven unstable by the unstable transverse 

mode. The growth rate of the transverse mode is y ~ akd. The coupling 

i 
between the ion-acoustic and the transverse mode is of order a. The 

growth rate of the ion-acoustic mode is thus considerably less than that 

of the transverse mode, arid we shall not consider it further. 

Continuing with the normal mode equation we disregard ion anisotropy 

and define 

I 

(~)\/'L 1~ / kailc \<.?.'2./ '2. + OC e + (V-56) f c.. we 

,. - k?.2/ '2.. c:. <..)e + «e (\-2st) + l~y/21\( /kd* (V-57) 

\" ::::. k'l..c'2.j (,.)7... 
e + ( ~ )'/2 ~~ / k ~ * (V-58) 

f- r - oce (V-59) 

s 2. sz. C"f+ yo k7...c' /<..)~ '2. ()'/2. I * + C oc.e + -;:. ~"k cl (v-6o) 

where d* is defined by 

_1 _ 
!* 

'2.. 

+ ~ .L 
de <.)'2. d.. e ;A. 

(V-6l) 

We note that if the rather mild restriction 
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(V-62) 

is satisfied then d* is equal to d. With these substitutions Eq. (V-53) , e 

becomes 

0) , (0) 

-~ • Bo =. 0 

This is an equation for the 1,2,3-components ofB. It is convenient to 

transform to an equation for the k,2,n-components of B since we have 

the side condition that Bk must ,be perpendicular to k. 

o 
I 
o 

C) ~ • 5(k,t, ... ) (v-64) 

Subs~ituting Eq. (v-64) into (v-63) and multiplying on the left by 

R -1 ( e ) give s 

( 0 

\ S~~ 
o 
o 
~ 

We evidently have two normal modes 

Mode (I): '" '" \: = 2 and 

Mode (II): '" A 

~ = n and 

q = 0 (v-66) 

s = 0 

Using Eqs. (IV-15) and (IV-50) we may determine the values of 

~o)trans and ~o)lOng corresponding to a unit ~mplitude ~o) vector • 

- i~k t B(O) E (0) 1-:t"o.1\5 - kc. x ~ k 
(v-68 ) 

C4}'2.. .t '2. 

1 SC C~.yt2. (1· B~)) It \Z~~ e
k 

- - L ~ cx. ... 
s kc:. ~~s 

(v-69) 
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The condition for the neglect of ion anisotropy in Poisson's Eq. (v-69) 

is 

(v-70) 

which may be written 

(V-7l) 

We assume this condition is satisfied and define 

(V-72) 

whereupon Eq. (v-69) becomes 

. 
(v-73) -t::.. 

~ 

Using the above relations we may describe our two normal modes. 
! 

For Mode I 

(V-74) 

(V-75) 

Elo)tr~~'3. _ _: ..1. ~ 
\.. -! "" kc. ... . (V-76) 

It follows from q = 0 that the dispersion relation is 

: For a > 0 (that is :for Til > T1 ) we have growth for 

and o ~ k ~ k(crit,e) (V-78) . 



59 

o Maximum growth occurs for e = 90. Polarization varies from transverse 

at e = 900 (maximum growth) to longitudinal at e = e(crit) (zero 

growth). For Mode II we have 

(V-79) 

E (c.) t.O'l'l.'t -
k 

0 (v-Bo) 

E<'O) Xro.n':. 1. 1 - k<:. \( 
(V-Bl) 

It follows from s = 0 that the dispersion relation is 

(V-B2) 

For a > 0 this mode is damped for all k and ,e. Electric polarization 

is purely transverse to Q. 

Discussion of the Dispersion Relation 

We shall henceforth assume that and shall omit the species 

subscript on de and ae • The growth rate of our unstable Mode I is 

We see that for a given value of e, the wave is unstable for 

o ~ k ~ k(crit) (V-B4) 

where k(crit) satisfies 
" 

In terms of k(crit) we may write the growth rate as 

o :::: c'- (2}'/'2. i 1.. 't 1 kd c..l! "it, 1 k (CrA.i:) - k J (V-B6) 
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• 
This is graphed in Fig. V-3. For a fixed value of e, Y reaches its 

maximum at k(Y max) which satisfies 

Thus .' 
k (1''11\.0.,,) ::; O. S 17 k (exit) (v-88) 

For a given value of k the .lave is unstable for 

900 ~ e ~ e(crit) (v-89) 

where e(crit) satisfies 

I,,' ,!:::, ' 
i' , , , 

". L ' (V-90) 

In terms qf e(crit) we may' write the growth rate as 

(V-9l) 
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VI. QUALITATIVE CONSIDERATIONS 

The quasilinear evolution of our plasma is described by Eqs. (IV-23) 

and (IV-43) for f~2) and l~o)12. Since our problem has cylindrical 

and reflectional symmetries, fo will be a fUnction of v~ and v~ only 

and 1~12 will be a fUnction of k~ and k~OnlY. However even with this 

simplifying knowledge, the coupled differential-integral equations for 

f(2) andIR(o) 12 are too difficult to solve directly. In order to study 
o KI 

the evolution of our plasma, we must choose a simplified model to repre-

sent it. This choice will be guided by a consideration of the qualita-

tive properties of Eqs. (IV-23) and (Iv-43). 

, i'l Dependence of the Growth Rate on the Distribution Function 
'j I" 

In this section we shall use Yk to denote 

1 == I e(C») ,-1. ~ ,e(O) \'l. 
k k ~to k 

(VI-I) 

which is of course twice the growth rate of B~o). Yk is given by Eq. 

(IV-43) • 

(VI-2) 

where 

(VI-3) 

and 

(VI-4) 

USing the coordinate system shown in Fig. V-l 
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k - 51+ C3 (VI-5) 

/\. A 
Bk -= 7... (vI-6) 

/\. /.'.. " " " 'Y\. - k x Bk - S 3 - C' (VI-7) 

where 

S = sin e and C = cos e (vI-8) 

From Eq. (IV-38) it follows that HI is constant. Since it is a constant 

we shall evalute it for a Maxwellian f(o). However for the other consid-.. 0 

erations of this section we shall not assume'that f(o) is Maxwellian or 
o 

that f is bi-Maxwellian. We shall only assume that f is sufficiently o 0 

close to a Maxwellian so that it may be expanded as a convergent sum 

of polynomials times a Maxwellian. For the above coordinate system, 

HI is given by Eq. (v...;47) •. Carrying out the matrix multiplication we 

find that 

whence 

Thus Yk is given by 

1\ 
'\'\.. 

A 
LJ • A r1, "'- . (VI-9) 

(VI-IO) 

(VI-II) 

Growing waves occur for G2 sufficiently negative. Y
k 

changes in time 

because G2 does. H2 is given by Eq.(IV-39). For the above coordinate 

system, G2 is given by 



/ 

(VI-12) 

because f~o) is isotopic and therefore contributes nothing. We have 

introduced the dimensionless velocity variable 

u = v/d 

and have denoted 

(VI-14) 

Expansion of the Distribution Function in Moment Excesses 

Since fo differs only slightly from fmax' we consider an expansion 

of the form 

(VI-15) 

where 

(VI-16) 
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The expansion in Eq. (VI-15) is reflectionally and cylindrically symmetric. 

The terms in the expansion are Hermite polynomials. We consider the 

moments of f and denote o 

.• 



~ 

.. 

(VI-17) 

Substituting f from Eg. (VI-15) and integrating by parts gives formulas 
. o. 

for the various moments. 

<I) - (VI-18 ) 

<u~) ~ <u~) \ -t '2. a.1 (VI-19) 

(u;') - \ + 2.. o..~ (VI-20) 

<u~) = < ~i) - '3 -\- \'2. a. \ 1- tLt 0..11 
(VI-2l) 

<~~> ::; '3 + \ 1 0... 3 -t '2-1t o....3'?> (VI-22) 

< u~ ti~) _ (-u2..u2 ) 
- '2. 3 - \ + '2. 0.\ + 2. a.'!l + 8 Q,1'3 (VI-23) 

< -u.~ ui) = \;- It 0., \ + 8o.u (VI-24) 

The excesses in the moments of f over the moments of f is given by o ~x 

various combinations of the a • n 

In the section on the ordering scheme, f~o)(t=O) wa~ defined to 

be an isotropic distribution all of whose moments, (u2)(o), (u4)(o), 

are the same as those of f (t=O). We have denoted 
o 

... , 

( 
~O) 

"WI. (:\.1.) I == (VI-25) 

Le.t us see what relationships exist between the a of f and the a(o) no n 

of f(o). Combining Egs. (VI-18) through (VI-24) we find 
o 

(VI-26) 



But for an isotropic distribution 

a,{O) 
\ 

(0) 

o.."?o 

therefore 

(0) 
- a. 

,\~ 

I 

- ~ (21,+ Q~) 
(0) 

<1." 

(VI-28) 

(VI-29) 

(VI-30) 

(VI-3l) 

(VI-32) 

(VI-33) 

which uniquely! specifies the distribution f(o)(t=O) in terms of f (t=O). 
! 0 0 

We shall now calculate G2 in terms of the an by using Eq. (VI-15) 

for f • o Carrying out the differentiation we obtain 
i 

s -! r 1-+ o.l(U.~,+'U42._'2.) + o...,.(1A.'2..3 - 1) 
CI - 'WlD. 'X 1. J 

whereupon 

( '0 .£...:) (("\ 
'U.?J ~,- 'U., o~ J 0 \'U./ = 

£~~1.l)ilA3['2.o.,1\ t'-\~\u; - \ 2.o.,,"U , t l\- ~\u\(\l~-\) t ,+Q.r!l'U\('U~-I) J 
i ' 

-'tl, Ll~3'U3+t.t(L\1.'IA"?o("'~+'U~-2) -\- Lto..33 u; - 1'2. o.'J 'U31 + ... 1 (VI-35) 
I' ~ 

I 
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2 replaces u2 -7 1. G2 then becomes 

1.l-z..(a.I-G.3) t \'2..(o..5'3-<t..,~J"'-I'U~ 

(VI-36) 

where 

(VI-37) 

We note that G
2 

is a function only of the anisotropy, that is a function 

of (al - a
3

), (a
33 

- a13 ), etc. Thus an isotropic change in f does 
0 

not affect G2 and hence will not affect the growth of the waves. This 

is an obvious consequence of the factor (u x a/au) which appears in 

the expression for G2 • 

To continue we make the change of variables given by Eqs. (V-29), 

etc. 

Then our integrands become 

'" z = n·u etc. (VI-38) 

(VI-39) 

"'7'U
3 
= S3C 'J(.'" + (S'+-3<52.ct ),lz. +jC;;C(C:t.-~2.),,1.l."2..+ (3$:ZCt-C~)~%'l_SC'\..'+ (vI-4o) 

til u~ =. g C~ x'" + (3S'LC"1_CL\) ,?z.. + 3 %C(S'2:.ct)~t.r.1..+( S~3S2.C1.")'X:z.3 -S'3C 7..1\- (VI-4l) 

and G2 may be written 

(VI-42) 

where the a are the combinations of the a given in Eq. (VI-36). We n n 

perform the z-integration and obtain 



(vI-43) 

where 

(VI-44) 

(vI-45 ) 

(vI-46) 

The x-integration yields finally 

which may be written in the form 

The symmetry of the 2nd and 3rd term is clarified by noting that 

(VI-50) 

The initial state of our plasma has a bi-Maxwellian f. Comparing 
'. 0 

Eq. (VI-34)'with Eq. (V-IO) we see that 

'\ (t=O) =- - ~oc.(t =0) 

~(t~O) = ~oc<*=c) 

(VI-51) 

(VI-52) 

(VI-53) 
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The growth rate for waves is proportional to -G2 • Therefore since the 

initial state of the plasma has 

o,,3(t=O) - a., (t= 0) - 1«; 
2-

~ (t=C) - o.,?,(t=o) = t<1 (ex'2.) , 
\I 

a. t~-=o) - Q (~=O) ::c (JC tt."to) 
n ,'33 

a spectrum of waves grows up which is peaked about 

(VI-54) 

(VI-55 ) 

(VI-56) 

2 where 28 -1 

is most positi~e and thus where G2 is most negative. We are interested 

in the subsequent growth and decay of these waves. We therefore note 

that for e == 900 

- G = 2. (~ -a.) -t 8 (<1, - a. ) + .. e, 
2. 3, 'I \~ 

(VI-57) 

Thus any changes in the anisotropy, whether in the temperature, the 

fourth moment, etc., can contribute to the growth and decay of waves 

o near e == 90 , whereas isotropic changes in the distribution function 

have no effect on the waves. 

Factors Affecting the Distribution Function 

If we introduce the dimensionless velocity u == vld, thenEq. (IV-23) 

for f(2) may be written 
o 

.2. .(\11.) _ \ e'l.. (J3k (\ \ !o)\' A 9 
oto ToW.) - - y.,..~l.)l'U~l\ccl 131(. ('I.IxB\C.).'O'I.\ 

The first term on the RHS is a diffusion term. The diffusion coefficient 

for this term is a symmetric tensor: sym 
D • The quantity cp.Dsym.cp is a 



positive definite form. As a result, this term satisfies an H-theorem, 

and its effect is discussed in the H-theorem appendix. Any anisotropic 

part of f(2) will eventually diffuse away. However because of the factor 
o 

(u X djdU), any isotropic part of f(2) is unaffected by this term. The 
o 

term (djdU.)nf(o) in the moment-excess 
~ 0 

expansion of f(2) will be an nth 
o 

degree polynomial in velocity times f(o). This term in the moment excess 
o 

2 expansion will diffuse at a rate proportional to n because of the double 

velocity derivative in the diffusion term~ Thus higher moments diffuse 

away more rapidly than lower moments. The diffusion term therefore has 

a smoothing effect on f(2). 
o 

We have seen that the diffusion coefficient for the second term 

on the RHS of Eq. (VI-58) is an antisymmetric tensor to lowest order in 

a. An antisymmetric diffusion coefficient corresponds to dissipation-

less flow in velocity space. We shall therefore refer to this term as 

a flow term. It is a perfect time derivative. The contribution of 

this term to f~2)(t) depends only on B~o) at time t, and is independent 

of the state of the plasma at previous times. This term therefore makes 

no contribution to the net change in f(2) from initial to final states, 
--. a 

since the initial and final wave spectra are negligibly small. (This 

term is large and positive for a short time, and small and negative 

for a long time in just the right proportions so that the integral of 

this term from t = 0 to t = ~ is zero.) 

The flow term may be written 

(flow term) d = (u X'du) • (some vector) (VI-59) 

It therefore follows that the moments (un) of the flow term 
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(vI-6o) 

are all zero. Thus no isotropic contribution to f(2) arises from the 
, 0 

flow term. Since f(2) is initially purely anisotropic, it remains so 
o 

forever. Thus the moments of u2, u4, etc. with respect to f(2) remain 
o 

zero forever. The final state of the plasma has no anisotropy because 

of the diffusion term. It follows that 

and thus the final state of the plasma has 

since f(o) is constant. 
o 

Expansion of the Flow Term in Moment Excesses 

(vI-61) 

(VI-62) 

In order to examine in more detail the effect of the flow term on 

f(2) we shall expand the flow term in moment excesses 
o 

If we consider moments of the flow term and denote 

(m(u) = f d3u m(u) (flow term) (vI-64) 

substituting the (flow term) from Eq. (vI-63) and integrating by parts 

gives formulas for the various moments 

( u.l ) Ilb J. ..,., 

(VI-66) 
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~v.i) - 32 b, + ~tt b\\ (VI-67) 

<u~) = \ 1.. h3 + 21.\- b33 
(vI-68) 

<u~u!>= ~b\ + 4-'03 + \b b\~ (vI-69) 

We have used ul in the above formulas because it is convenient not to 

choose coordinate axes for ul and u2 until after we interchange the 

order of the u and k integrations. If we now substitute the (flow te~) 

from Eq. (VI-58) into Eq. (VI-64) we obtain 

(VI-70) 

where 

(VI-7l) 

Equations (VI-70) and (VI-7l) have the u and k integrations inter-

changed. We may therefore choose the u-coordinate axes to depend on k. 

We choose the coordinate system shown in Fig. V-l which has k in the 

ul ,u
3

-plane. We then make the same change of variables as before 

x = iC.u A 

Z = n·u etc 0 (VI-72) 

whereupon 

(VI-73) 

(VI-74) 

(VI-75) 
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.. 

• 

Integrating by parts in ECJ.. (VI-6o) gives for ck(m) 

(VI-76) 

For the various moments, the expression in the curly brackets in ECJ.. 

(VI-76) become s 

('U.~>~ {~1.\'Z.~S2_7.SC%.) -z (-25("% +2;t.C2.)} (VI-77) 

(u.;) 4 1. ~'1. (2.."C~ + '2.S(1) - z. (2. <:;C~ + 2. z. S~) } (VI-7S) 

<"'i~ -+ t'l.l 'l'1.~ S~1._ '2SC ~z -T c\<]Y.f (-a:XS1:.1SC1) - .7.(- '2. SC" + '2. 7. c'l~1 (VI-79) 

<'U~) ~ t'Z.LC~1t"L+ lSC.u. + s\'1.][f(1.xc~+ 1.SC~)- z (2.SC~ + Z %. 51.)11 

< u~ u~> ~ { l,'1.;. s1.i - '2. SC Yo%. + c.'1.z.'1.1t f('2.1Ce"+ '2.. sex) - %. ("2.. ~C.i + 1.7. S~)] 

+ lC'L,,'1. +'2. ~c."7.. -+ s"l%.~t~ (1;c.S"1.- 25(,7.) - 7. (-2.SC~ -+ 'h"C"t~ } 

(VI-SO) 

(VI-Sl) 

We take f(o) to be Maxwellian and perform the y and z integrations to 
o 

obtain the expressions 

(VI-S2) 

(VI-S3) 

< '\.\.i>""" {'2..(\+S'l,.;'1.) tlS~?.C'-] - ~SC1. l- ~ sc -+ 2.s<::" 1 -+ 2C'1.t6Si-6C'l]} (vI-S4) 

<"U~} -+ t '2.cl~'1.l1C:t- 2S'1.] +45<:'" t. ~S>C - 2SC,,] ;- 'l.S1..[b<:''1._ b S '2.11 (VI-85) 

<'\.\.1 u~> -+ t (\+S1.y''2.)t"'2.C~ 2S1] -'2. ~c,.l~<,)c. - '2.. sc.1C-1 + c1. L ~t~ ~ s1.1 

-+ C1.~'1. \).5'"- t ct.l -t '2.. ~c.,. [- ~ St -+ '2.SC~] 4- S'l [~S~ b (2.11 (vI-S6) 
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We perform the x integration and obtain 

c ('U. 'l.) = t'Z .. c: 2. - "2. st} 
k .3 

C~}1I..1) = t2(\+~'L)(lSl.....ZC't);. \b S\1.. + 1.c.~(bS1.-Gct)1 

h f 1..( 't 2.) \~ c1.(1. -'- '2..S'l. (GC'l._I"S'2.)1 
C.k\'U.~) = l'2..C '2..C-'l.S + 0;:) -,- 0 5 

'\ (~'U~) = l <..\+~'l.)( "2.c.~'2.~1.) - '0 S1.C1. ;. C.2.(bC.'1._ ~ 5'2.) 

+ (7.. (2...S1._'2..C2.) - 8 S1..C'Z.. + S1.(GS'l.-bC,1..)J 

(vI-88) 

(vI-89) 

(VI-90) 

(VI-9l) 

We define functions dn(k) to have the same relationship to the ck(m) 

that the b have to the (m), namely 
n 

then 

and Eqs. (vI-87) through (VI-9l) may be solved for the d • 
n 

(\ - 1.. S1.) 

(VI-92) 

(VI-93) 

(VI-94) 

(VI-95) 

(VI-96) 

(VI-97) 

(vI-98) 



.. 

~ .. 

(VI-99) 

The spectrum of waves grows up peaked about o 
$ = 90 • We shall see that 

for typical initial conditions the spectrum is sharply peaked about 

o e = 90 • Therefore we may estimate b roughly as 
n 

= 

. ... .. ~ 

(VI-IOO) 

We note that ~ is positive when the wave spectrum is growing. From Eg. 

(VI-IOO) it follows that 

b, 
. t ~ (VI-IOl) 

b~ 
. 
= - ~ (VI-I02) 

b
ll 

• - ~ ~ (VI-I03) 

b"?,"?, 
. 

0 (VI-I04) 

b
l3 

. 
~~ (VI-I05) 

whence 

(b~ - '0,) . 
-~~ (VI-I06) 

(b,\ - b'3) 
. - ~~ (VI-l07) 

(b,~ - b3~) 
. 

*~ (VI-I08) -

Comparison of Egs. (VI-I06) through (VI-I08) with Eg. (vI-49) and Fig. 

VI-l show that all the contributions of the flow term to f(2) have a 
o 
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damping effect on the waves near o e = 90 • The moment-excesses generated 

by the flow t~rm all have effects with the same sign on the waves near 

o e = 90 • 

Resonant Particles 

; Waves grow up corresponding to every k-vector lying near the perpen-

dicular plane. Consequently every particle resonates with some of the 

waves, that is, has its velocity vector perpendicular to the k-vector 

of the wave. Let the angular width of the spectrum about the perpendicular 

plane be 6. Particles whose velocity vector lies within an angle 6 of 

the parallel axis will interact with more waves than particles whose 

velocity vector lies outside this cone. This causes particles with 

large vJl/vI · to diffuse more rapidly than particles with small VII/VI. 

This reduces Til and increases TI thereby causing stabilization. 

Note that the region of rapid diffusion, 6, is large. 6 is not of 

order a, rather 6 ~ 1. Thus we do not expect f to develop a structure 
o 

which varies over distances OV small compared to the thermal velocity. 

That is we expect that the distribution function should be describable 

by a smooth function. 

For a particular k-value, there is a resonant contribution to the 

current, jk' and a nonresonant contribution to the current. The resonant 

contribution is essential for the correct calculation of the growth rate, 

for it is the residue of the pole which is the coefficient of Y in the 

Eq. (IV-43) for y. The residue corresponds to the density of particles 

at v = 0, which does not change to lowest order. Thus the residue is 

constant to lowest order and the growth rate changes only as the anisotropy 

changes. The growth rate is not affected by the evolution of the resonant 



particles. If one neglected the resonant contribution to the current, 

but kept the OE/ot term in the Maxwell-Ampere equation, one would still 

obtain an equation for r. However the result would be completely wrong. 

This is precisely what happens in a fluid calculation of this instability. 

Rationale for a Bi-Maxwellian Model 

The distribution function should be describable by a smooth function. 

The smoother f is the fewer terms are required in the moment-exce ss o 

expansion. Anisotropy in any of the moments will eventually diffuse 

away, higher moments diffusing faster. The growth rate of the waves 

is determined by the moments of the bulk of the distribution function 
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and not by a special group of particles. Anisotropy in any of the moments 

will contribute to the growth and decay of the waves near e = 900
• The 

moment-excesses generated by the flow term all have effects with the 

same sign on the waves near o e = 90 • 

Anisotropies of all even moments have similar effects on the waves 

near e = 900
, and similarly all anisotropies diffuse away. We may 

think of the temperature anisotropy of a bi-Maxwellian as representing 

the combined anisotropies of the actual distribution. The bi-MaXwellian 

model is then a model of the II II lumped parameter type. Since the initial 

state of the plasma has a bi-Maxwellian distribution function, a bi-

Maxwellian model gives a rigorously accurate description of the period 

during which the wave spectrum grows up. The bi-Maxwellian model is not 

a rigorous description of the subsequent period during which the wave 

spectrum damps, however it possesses all of the essential qualitative 

features. 
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VII. QUASILINEAR EVOLUTION OF A BI - MAXWELLIAN MODEL . 

Quasilinear Equations for a Bi-Maxwellian 

In the energy appendix it is shown that for the exact evolution of 

the plasma the two temperatures are not independent to first order in 

a. Rather they are related by 

(VII-l) 

1+ '2.«.+ __ _ 
'3 (VII-2) 

Therefore in a bi-Maxwellian model the two parameters a2(t) and b2(t) 

may be reduced to one parameter a(t). 

Fora bi-Maxwellian model the spectrum evolution is given by Eqs. 

(VI-ll) and (vI-49) as 

where we have used Eqs. (VI-19) and (VI-20), ~nd the definition of a 

(VII-4) 

(VII-5) 

(vII-6) 

Equation (VII-3) and an equation for a(t) form a closed set of 

equations. To obtain an equation for a it suffices to take the moment 

of Eq. (VI-58) with u~.Then from Eq., (VI-20), (VI-94), and (VI-96) 

we have 
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(VII-8) 

It only remains to calculate the moment of u~ with the diffusion term. 
: 

This is 

- SJ.3tl '\k~ ~ ~~:2. )(~) {:cl \ B~)\1. (1AxB,,).:~ ~~u. \UxBk)· ~ 1 {"111) (VII-9) 

Tb first order in a, f~2) is given by Eq. (V-12) 

(t) \ ( 1. 2.) r (0) 
1 () t'IA) = '6 at 2. "-'3 -"U.J. i 0 (1A.) 

= ~ ex. (3 tl~ - 1.\.1.) f~} (u) (VII-IO) 

We take advantage of the fact that the u2f~o) term gives zero because 

of the factor (u X a/au) in Eq.(VII-9). Interchanging the u and k-

integrations, we choose the coordinate system of Fig. V-I. We then 

make the same change of variables as before 

x = 'k.u '" y = ~.u etc~ (VII-II) '" z = n·u 

whereupon 

(. ",\ '0 = 
\'UxB .... ).~ (VII-12) 

(VII-13) 

Integrating by parts once in Eq. (VII-9) gives for the diffusion term 

(VII.,.14) 

where 

\ ~. \ ( 1. "1. '2. 1.)( 1. '2. '1. '2. ~ (<.0) 
2oc:i.. jd'U. ~ ,Cx+2CS'X.t+S% S!t:-'2.SC-xz,+Cz.)J

o
(U) (VII-15) 
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Performing the y and z integrations yields 

where 

(VII-17) 

Since the integrand is odd in x, only the pole contributes. Hence 

Consequently the equation for a(t) is 

2 0 I e.' (d.S~ \ \ 8(0)\'- (.'i'1.C'2.. 6 (~ )1/'l.. rI..(~o) 
3' oto c:t.(*'o) - - V "",'1.c2. J ('1.:n:)3 k<l k il ... 

(VII-19) 

Dimensionless Scaling 

In order to analyze Eqs. (VII-3) and (VII-19)it is convenient to 

introduce dimensionless variables. We define dimensionless variables: 

K, A, T, and R(K) by 

k = k K o (VII-20) 

oc.(1\o\ - A oc(o) (VII-2l) 

~ 10 '0 
oto - ~ (VII-22) 

e.' 
\ B(~) \' - , R,K) 

-m.'L.c1.. (VII-23) 

Also we let 

r - <:.os e (VII-24) 



Then Ego (VII-3) becomes 

(VII-25) 

The most c~-;venient choice of scaling constants k and r is evidently o 0 

(VII-26) 

whereupon Ego (VII-25) becomes' 

(VII-28) 

substituting our dimensionless variables into Ego (VII-19) we obtain 

.b.1 «.(o).£. A = - -' k! r d~K ..L .L 'q R AJ."(I_l.I.1.) b (7t. ~" 0(0) A 
3 II oT V (·Z .. :~.)3 j K ~d J. I r- \ '2.) . 

Obviously the most convenient choice for the constant gis 

then 

and 

~ l.OC(O) 
3 0 

whereupon Ego (VII-29) becomes 

(VII-29) 

(VII-30) 

(VII-3l) 

(VII-32) 
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The physical significance of our scaling constants may be understood 

by noticing that 

(VII-34) 

(VII-3S) 

and that R is proportional to the magnetic field energy density: ~ (K). 
Lmag 

From Eqs. (VII-28) or (VII-3S) it follows that the region of growing 

waves is 

Maximum growth rate occurs for 

fA = 0 and 

Initial Energy Conditions 

l.A 
3 

(VII-36) 

(VII-37) 

The magnetic field energy density is a quantity of direct physical 

interest. We shall find an expression for it in terms of our dimension-

less variables. 

S iK R(K) (VII-38) 

Now 
3 m1... c'"L. t. 

( \<0 9r ) ( ~ octo) I( i") 1'Io "",c "'1"'\ 

-y (l:lt)"~ ~7t~'4 2. 1+1("'0 e; 

.~ 0<.( 0) . '\'to 1'Vt J..2. 
k'2. 2.. 
~ 

(J'2. 
e 

.!. 2. 1.. 
- :3 

<X:. (0) 'i\'WI.d, (VII-39) 



And the kinetic energy density is 

(VII-4o) 

We define the dimensionless variable M to be the ratio of the magnetic 

2 
field energy density to the kinetic energy density, divided by a (0) 

(vII-4l) 

We have mentioned in the section on the ordering scheme that M ~ 1 

when the wave spectrum has reached maximum amplitude. Let us see how 

large.M might be initially. We first consider the electromagnetic field 

energy in thermal e~uilibrium. For a box of length L the number of 

degrees of freedom for waves with wave number less than kl is 

degrees of freedom = (kl L)3 (VII-42) 

Let e denote the temperature then the total field energy in the box for 

waves with wave number less than kl is 

total field energy in box = e (kl L)3 (VII-43) 

Let Au = d/We denote the Debye length and A = n~ denote the plasma 

parameter', then the field energy density for wave s with wave number 

less than kl in thermal e~uilibrium is 

Cf;.~ld (thermo.l, /< < k, ) @ 1<,3 

2. t -I 3 d~ 2- tk1n. A' do'?, 3/2-
k3 ,,3 

~ ~A k, <.)3 - 3 c 3 
rt.. (0) , (J(,?'fo) ",,3 

~ e 

2. 
G/W,.. lC' (~ )3 3/2- (~)3 «.(0) (VII-44) 'T' 3 .~ 
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If we assume for initial conditions that the magnetic field energy density 

at T = 0 is the same order of magnitude as the above thermal equilibrium 

field energy density. 

then 

but from Eq. (VII-41) 

N 

_,/2. 
ex. (0) 

where we have taken our initial wave spectrum to be 

R(O,K) = Q = constant 

Comparing Eqs. (VII-46) and (VII-47) we see that 

-\ (d)3 -1{1.. 
Q N A \"C: ex:. (0) 

Thus, for example, the values 

A = 1000 

give 

d - = 0.1 c a(o) = 0.01 

The unstable wave have K< 1 and for them 

(VII-46) 

(vII-48) 

(VII-50) 

(VII-51) 

(VII-52) 
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Performing the ~ Integration 

When the initial wave spectrum has a very small amplitude compared 

to a later wave spectrum, then the initial spectrum shape is a less 

important determinant of the later spectrum shape than is the growth 

rate. For the growth rate has an exponential effect on the later 
J 

spectrum. 

(later spectrum) = (initial spectrum) ·exp(f dT-growth rate) (VII-53) 

Our initial wave spectrum is assumed to be quite small compared to our 

maximum wave spectrum. Therefore for simplicity we shall choose our 

initial spectrum to be 

R(T=O,K) -
i Q.= <.oY\sko..Y\t' t()r O~K~I 

l 0 for' \ < K 
(VII-54) 

The damped modes will never contribute significantly to the spectrum 

moments which occur in Eq. (VII-33). Consequently we have ignored them 

from the beginning. 

Equations (VII-28) and (VII-33) govern the evolution of our plasma_ 

We define 

.G - S: A dT (VII-55) 

and integrate Eq. (VII-28) in time to obtain 

(VII-56) 

Setting 

(VII-57) 



we integrate Eq. (VII-33) in cp and in time obtairiing 

.. (VII-58) 

If we let B denote the diffusion term and C denote the flow term and 

note that by definition 

A(O) = 1.0 (vII-60) 

then 

A(T) = 1.0 ~ B(T) - C(T) (VII-6l) 

where 

(VII-62) 

and 

(VII-63) 

The term R(O,K) makes negligible contribution to A, so we have dropped 

it from Eq. (VII-63). 

We now define 

(VII-64) 

. 2. 
R - . P ~?Gf ( - '2 G Kr ) 

and consider the Il-integration in Eqs. (vII-62) and (vII-63). In particular 

we consider the approximation 
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, I 

1')( ~ elK PC\() S t!J" e%.f<'-2.G-\-<rl.) == 
o _I 

I 00 

2.",SdK PCI<) Sdr e1Cf(-2G\<t'2.) (vII-66) 
o _00 

The LHS is the major contribution to c. In order that the error in 

calculating C give a negligible error to A through Eg. (VII-6l), the 

error must be small compared to 1.0. The error is 

00 
, 

En"Clt'" = 21t S'dK' PC\<.) 2. Jdr ~~'r(-2GKf"t) 
o , 

The ~-integral in the error is worse for small K values, however P(K) 

is peaked about middle K values. As T increases, G increases and the 

error becomes exponentially less. We may place an upper bound on our 

error by using the inequality 

for 1" ~ I (vII-68) 

From this it follows that 

flO ! 

2 ~ dr e~~( - ZG-Kf/-) = 
\ 

CD 

ext" (-2 G- K) • 2. 5 df eXf t - 2.GK (fl.-I) ~ 
. I 

<X) 

~ e"-r(-2.G-K)·2~dr e1'f t- 2GK Cr-I)1.1 
I 

Thus 

21C S'dK P(K) e'lCf'(-2.G-K) (1.:n.)!/z. (4Gl\r' {2. 
o . 

(VII-70) 

But 

I 

SclK KIll. e-x.f(-G\'(-K:?',) ~ (VII-7l) 
o i 

I 

We make the change of variable 

'2. 
~ = K (VII-7la) 



then 

QO 

S 
-1/'2.. 

d I'{ K ~')(>P\-GrK.)-
00 

2. ~ d~ u~'f (- G ,,'2.) ( )
112. ( -1/'2. 

..... '2.7t 2.G) (VII-72) 
o o 

Therefore 

312. ~1/2. 1/1- -'/'Z.. 11'2.. 2.. • 
eV"V"o"r ~ ('l.1t1 (4G) Q. (1..1t) ('2.<3) = 2. 7C. Q./G 14-.0Q/G (VII-73) 

For G ~ 10 

EY'ror (VII-74) 

At T = 10, B and C are still quite small so A ~ 1.0 and G ~ 10. 

Thus the error in calculating B and C which' results from extending the 

~-integration from 1 to 00 is already negligible when Band C are still 

quite small co~pared to 1. Fbr sufficiently small values of T the above 

approximation would not be valid. However for such times we have no 

need to calculate accurate values forB and C in order to find A. For 

we know them to be so small that A = 1.0. 

Using the above approximation, the ~ integrals for Band Care 

coo 

C -- ~ djJ (1- 2./0

) ~?C'f (-1GKr'Z.) - (21f,)'/?' (t+GKf'/'l,. {t- '2.(~c;.Kr'l . (VII-75) 
-«I 

B -+ Soodf" ~'l.-r4-) ~.'X.f(-2GKr2..) = (27t)'/?'(4-GK1
'
?. f 1-"3(L+GK)'l (VII-76) 

-00 

whereupon Band C become 

(VII-77) 

(VII-78 ) 

Performing the ~ integration for M yields 



I CQ 

M - ~ ('2.1t) r dK K 2. P(K) S df'\ e~f (- 2.GKrlJ 
q 0 -~ 

I 

- ~ (2:7r) SdK K~.PCK) (1.1t)"-z. (4GKf"l 
C) 

_ ..L (1.:rc.)3/2. G-'I2. 5i 
dK K"3/~ P(K) 

9 0 

(VII-79) 

Equations of Evolution 

In summary, our equations for the evolution of our plasma have been 

reduced to the following set. 

G= S" A d T 
o I 

P = Q e'X"f( G I~ - K~T) 
I 

A - 1.0 - B - C 

I o - Co G -112. ,S d K 1-<'- 1/2. fCK) 
o 

L - C
I 

C-"j/2. SId K K-
3/a P (K) 

o 

C - D - L 
T 

B - Bo 5 dT 
o 

G -I A (D - i L)-
I S dK K~/2. P(K) 

o 

where 

3 : 
8

0 
- ~1( - 1.\7<0 091 

Mo - ~("Z..rc)1J2. - 1.14-9 957 

(VII-8o) 

(VII-8l) 

(VII-82) 

(VII-84) 

(VII-86) 

(VII-8S) 

(VII-89) 

(VII-90) 

(VII-9l) 

90 



',:' 

91 

These equations were integrated simultaneously on a computer and the 

results are shown in Figs. VII-l through VII-4. 

As we have mentioned, the flow term, C, makes no contribution to 

the net change in A from initial to final states. OUr initial state is 

A(c) = \.0 (VII-92) 

B(c) -= C(o) = 0 (VII-93) 

Our final state, when the anisotropy has disappeared, must be 

A40 as T~ 00 (VII-94) 

c ......,. 0 as (VII-95) 

It therefore f~llows that 

B ~ 1.0 as (VII-96) 

Whence 

00 

B", ~ <IT G-\ A (1) - 1. L) \.0 (VII-97) 
o 

It is convenient to define the complement of B 

00 

B - 8~ S dT -\ ( '1) G A 'D-:z:.L (VII-98) 
T 

then 

B - \.0 - B (VII-99) 

and 

A - B - C (VII-100) 



Description of the Evolution 

Let us consider the system as described by the differentiated ver-

sions of Eqs. (VII-81) 'and (VII-82). 
I 

• p (VII-IOI) 

. .. 
A - - B 

• 
C (VII-I02) 

where dot means d/dT. Equation (VII-IOI) gives the spectrum growth rate 

as a function of K. Equation (VII-I02) says that the change in the 

anisotropy is due to two terms, each of which are functionals of the 

spectrum. B is the diffusion term and C is the dissipationless flow 
. 

term. The B term is responsible for isotropization.The C term causes 

some flow in velocity space, but the net effect of this flow on the 

distribution function as T ~ 00 is zero. The initial state, f (t=O), 
o 

is given. 
. 

The final state, f (t=oo), is determined by the B term. The 
o 

C term has a dramatic effect on the path through function space which 

fo follows in going from f (t=O) to f (t=oo). o 0 

. 
However C has no effect 

on what the final state will be. Equation (VII-33) shows that C is 

proportional to the growth rate, Y(K,~), averaged over the spectrum, 

while B is proportional to the angular width of the spectrum about the 

perpendicular plane. 

The evolution of the anisotropy, A, may be broken up into three 

distinct phases; an intial phase, a rapid phase, and an asymptotic 

phase. This is shown in Fig. VII-I, where A(T) is graphed on log-log 

paper. On this graph each of the three phases may be approximated 

wi th a straight line •. These three straight line·s have the equations 

92 
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A( initial) 
o = constant T = constant (VII-I03) 

A(rapid) = constant T- 3 •O (VII-I04) 

A(asymptotic) = constant T- 2/ 3 (VII-I05) 

.;;, The exact time at which one phase ends and another begins is somewhat 

arbitrary. A reasonable definition is: 
I 

that time for which the slope 

of A(T) lies halfway between the slopes of the straight lines of the 

two adjacent phases. With this definition the initial phase runs from 

T = 0 to T = 25. The rapid phase is from T = 25 to T = 42, and the 

asymptotic phase is for T > 42. 

During the initial phase the amplitude of the wave spectrum is small. 

Consequently Band C are small and therefore so is A. It follows that 

A changes very little while P grows. That is, the initial phase is a 

period of exponential wave growth with almost constant exponent. The 

wave spectrum grows up peaked about 

, '/2 {"3 A(~k~o1) } 0.577 (VII-I06) 

The spectrum grows for 

o < K < K(crit) = Al/2 (VII-I07) 

and damps for K larger than K(crit). 

Eventually the amplitude 'of the wave spectrum becomes so large that 

the temperature anisotropy begins to change rapidly. This is due mainly 
. . .. to the C term which is larger than the B term at first. A decreases 

rapidly until about half of the wave spectrum with smaller wave numbers 

is growing and the half with larger wave numbers is damping. Thus 



. 
although the spectrum remains large, C is drastically reduced. This 

brings the rapid phase to an end. A comparison of the evolution of 

A, B, and C with time is shown in Fig. VII-2. The wave spectrum and I . 

growth rate at T = 42 are shown in Fig. VII-3. The spectrum peak 

has shifted ~lightly to 

K - (G/3T)'/?. - 0.521 (VII-108) 

The spectrum continued to grow throughout the rapid phase, however the 

growth was no longer exponential. The magnetic wave energy, M, reached 

a peak at T = 40. M(T) is graphed in Fig. vn-4. 

After a small additional decrease in A, slightly less than half of 

the wave spectrum is growing and slightly more than half is damping. 

This makes C negative which partially cancels the B term. Changes in 

A then proceed over more slowly as temperature isotropy is approached. 

Simultaneously the wave spectrum shifts to lower and lower wave numbers, 

and eventually decayso The asymptotic phase is characterized by the 

wave spectrum shifting so as to always be slightly more than half damping. 
! . . 

Shifting in this manner the C term continues to partially cancel the B 

term. If C were to become less negative, then A would change more rapidly. 

The spectrum would then damp more quickly until C became more negative 

again. As time increases B is asymptotic to C since A approaches zero 

more rapidly than either B or C. Figure VII-4 shows that throughout 

the asymptotic phase M decreases somewhat faster than A. From the fact 

that A decreases like T- 2/ 3 we conclude that G grows approximately like 

Tl/3. Therefore the quantity Z 

(VII-109 ) 



should be approximately constant throughout the asymptotic phase. This 

is shown in Fig. VII:..4 •. The degree of constancy may be se#en from the 

following brief table 

T 

50 

70 

100 

150 

z 

60841 

6.870 

6.893 

6.913 

T Z 

200 6.924 

300 6.937 

400 6.944 

500 6.948 

We shall exploit this property in seeking an asymptotic solution to our 

equations of evolution. 
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VIn. ASYMPTOTIC ANALYSIS 

Asymptotic Expansion of §pectral Integrals 

We shall find asymptotic expansions for the integrals D, L, and M 

based on the sharpness of the spectrum. From Eq. (VII-83) 

Let K denote the K value for which the exponential has its peak p 

We define 

.A -
3/2. 

Z - GK--p 

whence 

(VIII-l) 

(VIII-2) 

(VIII-3) 

and K -_ ,,'/3 (-:lo\)-Ih 
, A \~ (VIII-4) 

We make a change of variable from K to x, where 

(VIII-5) 

then 

. (VIII-6) 

Thus 

I CD) 

(VIII-7) 

100 



· 101 

where 

(VIII-B) 

We make the transformation 

(VIII-9) 

then 

l(D) - (VIII-10) 

Equation (VIII-9) may be solved for x 

1 '2. ~ 3 
X. = 'j- b ~ + 72.. 'j + •.• (VIII-H) 

whence 

, )_I/?.. \- ~ J + 
\I 1. 

\ ~ 'X. - '2..1\- ~ + ••• (VIII-12) 

and 

ch. -
d'j 

15'2.. \ - "3 'j + '2..\f "j -t • . . (VIII-13 ) 

thus 

(1" 
d'j 

( )
-1/2. 

1+ 'X \ _ ~ ~ + ~ "j2 + ... (VIII-14) 

whence 

(VIII-15 ) 

It is obvious from Fig. VII-3 that the spectrum is essentially zero out-

side the interval K = (0,1). This means that we may take the limits of 

the y integration to be y = (- ~,+ 00). Then 



I '/2... -3/2 
- '2..."JC A 

Thus 

and therefore 

D -- i't'/2.. CAt":\ .... -2/3 e )-\/3 (2.'1) S\ S ,\-1+ 1 
v ~.A 3T e"'f '3" 1.. -to ii '" ... J 
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(VIII-16) 

.. 
(VIII-17) 

(VIII-18) 

(VIII-19) 

(VIII-20) 

We note that in the asymptotic region Z ~ 7.0 and therefore A ~ 18.5. 

Thus one term in our expansion should give better than 5% accuracy. 
I 

We now expand L using the above procedure. From Eg. (VII-84) 

(VIII-21) 

Thus 

I - 3/2. -lIt. 
L:; '2. Co Q c,. \{i' ~"f (~A) I (. L) 

:. ~ ~ Q )..-7/(; ( 3Ty1/3 ~?("'fl(~).) I \L) (VIII-22) 

where 

(VIII-23) 

We transform to the variable y then 

(VIII-24) 



From Eq. (VIII-ll) we have 

( ')- '3/t \'" 17 2. \+ ')c. :::. -::!.. 't.I + - 1.( + ... ' 
'2.. J ~ J ' 

I 

thus 

whence 

/(1/2.. ).-Ih l \ + ~~ A-I + .•• 5 

and therefore 

We now expand M the same way. From Eq. (VII-87) 

Thus 

M -= MCI Q C;-I/2. K;/2. ~?t"f(~I\) I eM) 

== Mo Q. ')..1/1.. (3'TY' ~?C.1'(~A) reM) 

where 

We transform to the variable y then 
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(VIII-25) 

(VIII-26) 

(VIII-27) 

(VIII-28) 

(VIII-29) 

(VIII-30) 

(VIII-31)· 

(VIII-32) 



From Eg. (VIII-ll) we have 

(\ + ,>,)3/2 _ \ -t i ~ + ~ ~ 2. + ••• 
I. 

thus 

3/z.. 7 f 'l... 
d", • (\+'X) - 1 + (; 1j - ~ 1 + ... 
d:J 

whence 

and therefore 

Combining Egs. (VIII-20) and (VIII-28) gives 

C = D-l. = C2. \~T)'/3 ,,_2./3 ~"1'(~A) t \-h A-'+"'} 

Cn - ~ L) - (2 (3\)1/3 ;..-2.13 ~f(~).) t \ - ~ ),-1 +. "1 

where 

A Theorem on Differentiation 

104 

(VIII-33) 

(VIII-34) 

(VIII-35) 

(VIII-36) 

(VIII-37) 

(VIII-38) 

We note that the defining integrals (VIII-10) and (VIII-23,) for 

I(D) and I(L) may be differentiated with respect to A. Itis further 

obvious that each of the dI/dA possess asymptotic power series expansions, 

which may be calculated in the same manner as the I's were calculated. 
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We therefore appeal to the following theorem from Erdelyi. 26 

Theorem: Let 

f(z) '" p(z) to N terms as z ~ 00 (VIII-40) 

where p(z) is an asymptotic power series 

",,(~) - a.. -+ (1., + ct1. + ... 
r - 0 -:z: 7.'2.. 

(VIII-41) 

(1) If f(z) is differentiable, and 

(2) iff'(z) possesses an asymptotic power series expansion, then 

f'(z) 'V p'(z) to N-l terms as z ~ 00 (VIII-42) 

The theorem allows us to differentiate our expansions for D and L 

term by term. 

The Differential Equation for A 

We differentiate Eqs. (VII-80), (VII-98), and (VII-lOa) with respect 

to T 

d 
dT C; 

d A _ 
clT 

d -
dT B 

A 

Q.B-jLC 
dT ~iT 

BoG'A \D- ~L.) 

Combining these gives 

We introduce the variable 

(VIII-43) 

(VIII-44) 

(VIII-45) 

(VIII-46) 

(VIII-47) 



and substitute 

G = s ')...1/3 

and 

.9.. _ 
~T 

-2. d 
s -ds 

then multiplying through by s3 yields 
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(VIII-48) 

(VIII-49) 

\ -2. 1./3 d C 3 -I -2./3 (-2.. d 2./"!)ln '3 L) 0 S 2.. sis A + S ~ + S S S). s:t SA \ - 2. :: (VIII-50) cit:. cis Q;> 0 o'!o 

We perform the differentiation and let prime, " denote d/ds 

( 'A'Ll?)" - 1. 52. ,,2/3 + s C' + Bt. ( \;- S A-I ~ ). ') (D -ll..) = 0 (VIII-51) 

We may now substitute our asymptotic expansions for C and (D - ~ L). If 

we denote 

C,- = 7(1/2.. C Q 
C) (VIII-52) 

then these become 

C -_ C ·S-I '\ - 2./3 (?.) S \ -I 1 
2. /\ ~%"P \3). l\ - Ti). -+ ••• (VIII-53) 

(D ~ iL) = C"2. s-I :\-2./3 e'l(-Pl~ A) t\- ~:fl+ ·.·1 (VIII-54) 

We substitute these expressions into Eq. (VIII-51) and multiply through 

by A. 2/3 

,\'2./3('\1/3)" _"s-~'\~/3 + 4.'\' ("')S (0 \'3)'\-1 } 
1\ /\ '-.1\ 3' 1\ C-z. e-x ~ ~). 1 \ + \.:)0 - \i A + ... 

+ c:,-\C2 e"£f\~A) {(~-\)-(1&o- :2.)1.-1-\-···1 = 0 (VIII-55) 
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Ordered Solution 

Our asymptotic expansions introduce a natural ordering into our 

differential equation. Since A is approximately a constant over a long 

time interval, we shall seek an ordered solution of the form 

where 

J. z. = cr( ).~\ ). 

Wi th this ordering we may make the following expansions 

- e ~"'f> L \ \ A(\ + ). ,)1 1. \ + ~ ~ 2. + . . . J 
').4/?l = A~/~ {\ + ~ A, ?:\ + ... } 

"l./?> \11.13)" = A:/'3 t\-t~A'').:\+'''1 \\+~A,).~'+···1" 

= '2.. ).,'/3:A" + ... 
:3 (\ , 

We 'denote 

and substitute these expressions into Eq. (VIII-55) 

(VIII-55a) 

(VIII-56) 

(VIII-57) 

(VIII-58) 

(VIII-59) 

(VIII-60) 

(VIII-61) 

(VIII-61a) 
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(VIII-62) 

We must now separate this equation into different orders. For large s 

2 Eq. (VIII-62) will be dominated by the two terms 3 ~iE and 

Therefore we take these terms to be of the same order. A numerical 

extimate shows that 2s-~4/3 is the same order as these two terms for 
o 

values of s corresponding to the beginning of the asymptotic region. 

However we shall assume that g ~1/3 ~rr is of order ~-l compared to 
3 0 1 0 

the preceding three terms. After we find a solution, we shall show 

that this assumption is valid. Our ordered equations are thus 

~o = constant 

(VIII-64) 

!:.,,1[3 "," ca ",\[3 -21\ '2. ,,' E + '2.. "'I' t:: f '2. "'I (r.I __ \\~)'\-o\.{ 
~ 1'.0 "\ -\- 3 "'0 s ,\ + "3 1\, "3 "', t;. l 3" "'2,. + u~ .. 1\ S 

(VIII-65) 

The solution of Eq. (VIII-64) is straightforward. We note that 

1 ),' E - 'E. (VIII-66) :3 I 

then 

E - eo 
-E-s e

l 
s -\ (VIII-67) 
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where 

(; -:: Be) - \ (VIII-68) 

and 

4 e =-
\ 

'2. A~/3 / (\- e) (VIII-69) 

eo is determined by the ~nitial condition~ at s = s • o We choose our 

initial conditions to be 

(VIII-70) 

(VIII-71) 

Then 

(VIII-72) 

and 

= £'(£.0) + (VIII-73 ) 

Having solved for E, we obtain A, G, and A through first order, but 

C, B, and M only through zeroth order. 

).~ A -+ A == o , t lo~ ( E I C7,. ) (VIII-74) 

G= S )..'Z../3 (VIII-75) 

A= -2. d s-2. ')..2./3 -\ ').-1/3 2~ ~ - G - ;- S 
,;);" ds 3 

. 52. ,,'l../'3 + -\ ~-\13 E' E-1 
= S (VIII-76) 
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Now 

E' :::. -\-f: -2-
- €: ~ ~ + e, S (VIII-77) 

therefore 

(VIII-78) 

whence 

C1( 'Xl) (VIII-79) . 

thus 

which shows that the dominant behavior of A is a T- 2/ 3 decay. The exact 

expressions for C, B, and M may be written 

(VIII-81) 

B - A + C (VIII-82) 

(VIII-83) 

Since we have not calculated A2, we shall neglect other terms of order 

A- l • Thus to zeroth order 

c • ).,-7.../3 5-\ E 
6 (VIII-84) 

B - A + C 

M ..:.. M. ("3 E. 
C6 

(VIII~86) 

C thus has a two component decay, T- l / 3 -e/3 and T- 2/ 3• The decay of B 
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is similar to that of C. B has the same T- l / 3 . -E!3 term as C but has a 

different T- 2/ 3 term. Thus as the faster T- 2/ 3 term decays away, B is 

asymptotic to C. Band C·decay more slowly than A. M decays faster 

-1-E/3 -4/3 than A. M has a two component decay, T' and T • 

We shall now show that ~ ",1/3 ",II is of order ",-1 compared to 
3 0 1 0 

~ ).1/3)." ).113 .i.(3:.)") = ).I'/?;. .s;l ( E ' E -\) 
:3 0 , 0 de;, "3 \ t> ds' 

L 'A"'3 d cr (S-I) - " '1'3 eYe S-2) 
0 oS 0 

(VIII-87) 

whereas 

2. A' E 
3 \ 

We compare 

't:,' -\-E: -2-- - ~ ~ 5 + e.,S 0 

~ ",1/3 ",II 
301 to the fastest decaying part of 

Thus the ",II term has the assumed order. 

A Second Order Correction 

(VIII-88) 

(VIII-89) 

We notice that s-~(.! B _l:..-)",-l in the second order equation 
3 0 12 0 

could be absorbed with (B - l)s-~ in the first order equation, and o 

that ~ ",'E(B - 13 )",-1 in the second order equation could be absorbed 3 1 0 12 0 

with ~ A.'E in the first order equation. Each of these second order 31 
terms are driving terms in the equation for "'2. Absorbing them in the 

equation for "'1 thereby simplifi.es the equation for "'2' HOI-leVer these 

terms are only part of the second order terms. We therefore would not 



expect including them in the equation for ~l to make ~l more accurate, 

if it were not for the following accident. Namely that (B - 1) is small o 
1 1 

compared to one. Consequently ('3 Bo - 12) makes a 10% change in the 

coefficient of s-~, which in turn determines the long time decay rate 

of E. These terms in the second order equation cause ~2 to compensate 

112 

for the inaccurate decay rate of the first order equation. Such an effect 

would eventually cause ~2 to become ·the same order as ~l' We therefore 

transplant these terms into the first order equation. The effect on E 

is quite simple. If we define 

(VIII-90) . 

and 

(VIII-9l) 

then 

(VIII-92) 

where 

(VIII-93) 

and 

(VIII-94) 

Discussion of the As~ptotic Phase of Evolution 

Numerical calculations were made ofE, ~, G, A, C, B, and Musing 

the asymptotic representations of Eq. (VIII-67), (VIII-74 to 76), (VIII-84 

... 



to 86), and using the second order corrected expressions for E and el • 

We chose T = 50 for our initial time and required o 
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(VIII-95) 

for our initial condition. Table VIII-l shows a brief comparison of the 

asymptotically calculated values with the exact values of A, G, A, C, B, 

and M. We see that C, B, and M are all well within the 5% accuracy 

expected of terms of order A- l • A, G, and A are all within the 0.3% 

-2 accuracy expected of terms of order A ,except for A(T=50). The 

asymptotic value for A(50) differs from the exact value by 1.1%. The 

point T = 50 is really too close to the beginning of the asymptotic 

phase to be described with 0(A- 2 ) accuracy. We see that by T = 60 

the inaccuracy in A has indeed been reduced to the' expected 0.3%. 

The graphs in Figs. VIII-l and 2 were made from calculations using 

the asymptotic expressions. In Fig. VIII-2 A, C, B, and 10M are graphed 

as functions of sis, that is, as functions of (TIT )1/3. As we have o 0 

. -1-E/3 -4/3 already mentioned, M decays fastest like T and T • A decays 

like T-2/3. C and B each decay like T- 1/3 -E/3 and T- 2/3 • A is reduced 

to 0.01, that is, 1% of its initial value by s = 5s = 26.5 or o 

T = 125T = 6250. M is also reduced to 0.00035 which is 1% of its o 

maximum value at s = 5s • o C and B are reduced to 0.01 at s = 50s o 

26 6 X 106. = 5 or T = .25 In Fig. VIII-l E and A are graphed as 

functions of sis. E relaxes like s-l to its maximum at o 

The maximum is at s = 3.94s • o Thereafter E decays slowly like 

(VIII-96) 

-E 
S 

Correspondingly A starts with a value of 17.9, reaches a maximum of 



18.35 and has declined to 17.35 by s = 1000s • o Al has thus risen from 

o to +0.45 and then declined to -0.55 by s = 1000s • o Our basic 

assumptions for the asymptotic expansion of the spectral integrals and 

for the ordered solution were that Ao = 0(18) »1 and Al = 0(1) etc. 

We see that these assumptions are indeed valid throughout the range 

s = s to s = 1000s and beyond. By the time these assumptions break o 0 

down A, C, B, and M will be negligibly small. We may estimate this 

time as follows. E decay~ like s-€ and will therefore eventually be 

reduced to 0(C2 ). When E is 0(C2 ) A will be 0(1) and our assumptions 

will have broken down. 

Equating 
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(VIII-97) 

gives 

(VIII-98) 

This in turn is equivalent to which is very remote 

indeed. 
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T A A(asymp) G G(asymp) ~ 

50 17.893 17·893 36·35 36·35 0.00 

100 18.096 18.078 - 0.018 46.14 46.11 - 0.03 
: 

" . 200 18.220 18.196 - 0.024 58 .40 58.35 - 0.05 

500\ 18.315 18.287 - 0.028 79·54 79.45 - 0.09 

T A A(asymp) !:::A C C(asymp) !:::C 

50 0.2541 0.2514 - 0.0027 0.5793 0.5820 + 0.0027 

100 0.1577 0.1573 - 0.0004 0.5224 0.5226 + 0.0002 

200 0.0989 0.0987 - 0.0002 0.4484 0.4486 + 0.0002 

500 0.0534 0.0534 0.0000 II 0.3508 0·3509 + 0.0001 

T B B(asymp) ci M M(asymp) tM 

50 0.8334 0.8334 0.0000 0.03120 0.03134 + 0.00014 

100 0.6801 0.6799 - 0.0002 0.01786 0.01773 - 0.00013 

200 0.5472 0.5472 0.0000 0.00970 0.00959 - 0.00011 

500 0.4042 0.4043 + 0.0001 0.00413 0.00407 - 0.00006 

T A A(asymp) !:::A 

60 0.2230 0.2221 - 0.0009 

.. 

TABLE VIII-l 
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APPENDIX A - ENERGY CONSERVATION 

We define the kinetic energy density for species s by 

[~ = (A-I) 

s 
To find the time rate of change of >". we use the Fourier transform 

Linn 

of the Vlasov, equation for F (III-5), and integrate by parts 
o· 

• C. s _ r d3,," -2.' ..... s""2 FoS = - (Jl" 1 ,""-,,.2. ..L \ d,3 k (RS t SS ) r"', 
1otA,.,.. j .1 '2. s -y l(t.1t)"3 _~ -Ie. r k 

, ~ l' ) :& 2. ( :: K d" ~~'\t ~ E +~x6\.~ fS 
- \f (.2;)'\ '- S """'~ -\c. c. -\o.}"avo ~ 

I ~ ~1.k. ~d'a". 
4-

~'S. = tZ .. 1()3 
1. e ",2 ~. \ E +:!. x B ) y 2.!. ~'\I" -k. Co -\. k 

- _I ~d~k ~d"V' e ... 11'. ( £_\r. -t ~)I. e:k. ') ~: V (·z.:~)"l 

I ) d"!"« ~ "3 '=> \ ~ o..'l\(, t~ .s (A-2) y <'''2..1'l)'~ E • 6'17" e '\t' F = =v (t.ll)!. ~ • ~\c. -k. S k 

As we have previously noted the R_kFk term is zero because v2 is spheri

cally symmetric. We define the kinetic, magnetic, and electric energy 

densities by 

E~ - 1t t~ (A-3) 

~ ~lr \ ~ B \ L / 'a1f. I ~ a'3k "2-

E. = - y ('Z.1t)~ \ Bk \ / S1f, (A-4) 
"WItI.1-

C . = ~ J ~?~ \ b E. \'~/ 'i1 'J( I In 2/ - V ('2.1t)'\ \ £" \ S'lt (A-5) 
~le(;. 

To continue our calculation, we eliminate the current by using the 

Maxwell-Ampere Eq. (III-8), and we eliminate k X E_k by using Faradays 

Eq. (III-7) 
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• • 
- -[ 

'1'>\11.1 
E. 

eRec. 
(A-6) 

For the case of the transverse instability we note that 

. 
..L B 
kc... ~ 

N 

Thus 

£ ex?.... ('\1"c~.,)2. 
e.tec N \ (A-8) 

The energy in the electric field is exceedingly'small compared to that 

in the magnetic field. 

We consider separately the kinetic energy of motion perpendicular 

"'-
to and parallel to the axis of temperature maximum. We let 3 denote 

the axis of temperature maximum. From the Fourier transform of the 

Vlasov equation (III-28) we have to lowest order in a that 

(A-9) 

and .. 

(A-10) 

. . th 2 2. h· 11 t . Slnce ne1 er vI nor v3 1S sp er1ca y symme r1C. 

is spherically symmetric so 



o (A-II) 

That is to lowest order in a 

& kin = 4, kin (A-12) 

and as we have seen, to lowest nontrivial order in a, ~ is given by Ycin 

= (A-13) 

Thus since Sk '" a lk 

and l-. "'a j 
Ckin C1 kin (A-14) 

. . 
Theref'ore since >g = - >: to lowest order in a Lma. Ckin 

. . 
~g '" a ~ kin (A-15) 

Thus an amount of' energy, 6.~, '" a ~in' f'lows f'rom parallel motion into 

perpendicular motion. However only a 6. Ci, '" a2 ~in of' it f'lows into 

the magnetic f'ield. 

Assume now that the ions do not participate in the energy f'low, 

and consider the electron temperatures. We def'ined d2 to be the mean 

thermal velocity at t = O. a2 and b2 are the thermal velocities 

perpendicular to and parallel to the axis of' temperature maximum 

respectively. Then 

2 
d2 

+ oa2 a = (A-16) 

b2 
= d2 + ob2 (A-17) 

2 2 ,,,here Da and Db are of 2 order aa • NOIv 
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(A-18) 

but 

(A-19) 

therefore 

(A-20) 

but 

(A-21) 

Let us define a so that 

(A-22) 

then 

(A-23) 

but 

(A-24) 

Thus to lowest order 

oc. =. oc (A-25) 

whence 

.. 
(A-26a) 

(A-26b) 



We now consider the energy relations for our ordered Eqs. (III-64) 

through (III-82). Recall that the order superscript refers to an expan

sion in powers of al / 2, and that X(o) refers to the lowest nonzerp 

order term in the expansion of X. We define 

= L 
s 

and 

teo) 

-1 = I f tl3k 
Y ('Z.1t)3 

E. (I) I J d3
k = y (Z1{)3 

~1' 

[u.) 
-<11-

I J dlk 
Y (2.1l.y~ 

. . . 
and 

.>(Q) = 
Le.J1e(. . . . 

I 2. 
'2 ""'s v 

\ B~)l~ / 87C 

I B(I)*. B(O) s(O) *" B(I' J / 
k k + \r.. • '" ~1t 

t B(2.)II'. 5(0) + B(IHI. B(I) + 
\c.. 1<.. k Ie. 

B(O)*. B(2) 5 
\c.. k. 

Then since F(o) is constant, and F(l) == 0 we have that 

(A-28) 

(A-29) 

/81(. (A-30) 

(A-3l) 

,c,~o) == constant = { (t==O) (A-32) 
~ln total 

,c~l) == 0 (A-33) 
~ln 

As we have noted all terms in the equation for F~n) which begin with 

R_k give zero contribution to the energy flow. Thus from Eqs. (III-78) 

and (III-79) 

."" E(2.) 
o = a Mo ~ (A-34) 

(A-35) 
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Using the ordered Vlasov equations for F (III-80 to 82), using the 
.0 

ordered Maxwell-Ampere and Faraday equations, and following the same . 
steps as in the above derivation for ~in we find 

= - (A-36) 

(A-38) 

Integrate Eq. (A-36) on the t o 
, ~ ~) 

time scale. &i~ and ~~ are 

functions of t , however ~t ~r. o OG2 A1n and a~l ~~~ are constants on the 

t time scale. These would therefore lead to secular behavior. o 

order to suppress this secularity we must require 

o 

In 

(A-39) 

Integrate Eq. (A-39) on the tl time scale, etc. From extension and 

repetition of this argument we conclude 

~ tCz.) - 2- C (2.) 

- = ~ E(Z) - 0 (A-40) o~t. kl" . ~'tl ~ at'4- k.;.. 

o [(3) - ... = ~ E. ("3) - 0 (A-4l) ~to kM1. ot3 K:...... 

~ ic(~) + [(0) 1 = 0 a.Jso ~ - 0 Q,o\~ '0 ::: a (A-42) 0*0 I ...... .... 0., o~ - C\'t;!,. I 

.£. 1(: ((I) 1 = 0 ~Rso 
o _ 

0 
b'te + ~tl - (A-43) 

-~ 
.£.. 1. c(~)+ c: (2.) S = 0 (A-44) oto ""'" -r'tlo.j 

• • 

'DE generalization to higher orders is obvious and we conclude that on 

all time scale s 
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~ (2.) = 0 
L~ 

CO) = 0 
L~ 

E. ('+-) + f.. (9) 

. k<.... ,.,~~ 
= 

c: (5) + [(I) = 
\W.,. _a., 

E (fO) + t.. C2.) :=. 

I<.\".. "",Q,3 

• • • 

0 

0 

0 

[(8) 
kN... 

+ t<'+) 
~ 

+ [(0) 

f' .I.f!c. 

••• 

- 0 

Thus we see again that ~lec '" cl ~g and ~g '" (i ~in. 
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(A-48) 

(A-49) 

(A-50) 



APPENDIX B - H-THEOREM 

The diffusion equation 

(B-1) 

satisfies an H-theorem with H given by 

(B-2) 

Thus 

- - S~\1 \~~). D· ~~~) 

= - S~v 

where DSym is the symmetric part of the diffusion tensor D, that is 

l' t DSym = 2 (D + D ranspose) (B-4) 

Now if cp .Dsym.cp is a positive definite form then H is negative definite. 

But H itself is positive definite. It follows that H must be zero in 

the final state to which the system evolves. Therefore the final state 

is characterized by 

(B-5 ) 

As we have already noted, the diffusion tensor given by Eq. (IV~31) 

does indeed yield a positive definite form. It therefore follows that 

the final state of the transverse instability must satisfy Eq. (B-5). 

Let us write 



s~". D =: - "x ""xv 
(13-6) 

and denote 

then 

(B-8 ) 

From Eq. (IV-3l) we have· for M 

\~I 1 S d '" 
(k.v= 0) 

\ BlO)\'l. ~ AB 
k UI<., k (B-9) 

Now because fo is axially symmetric, W lies in the plane perpendicular 
A 

to the symmetry axis. But Bk also lies in this plane. Therefore 

t . M· ~ = t (.O"S~o.~:t1 ~ d1.k \ 8~)\? (y. ~JL. (B-lO) 

(~.v:. 0) 

is positive definite and is zero only ifIB~0)12 is identically zero. 

Thus W·M·W will be zero if and only if either 

or (B-ll) 

However we know that if (v X d/dv)f is not zero, that is, if the aniso-
. 0 

tropy is not zero then the spectrum will grow for some k-values. Con-

versely if the anisotropy is zero all waves are damped so the spectrum 

eventually becomes identically zero. Thus we conclude that the final 

state of our system is characterized by both of the relations in Eq. 

(B-Il) • 
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APPENDIX C - RELATIVISTIC LINEAR ANALYSIS 

If we define the tensor 

then the relativistic Vlasov equation may be written27 

~ .2 + '\1".2... + §. .s.. I • 'E+ ~)CB)} r. =. 0 l 'M: ar '"" oV v \ c:. J 

We use the relation 

then 

~"". I,,' ( ~x B) - ( I 1t' :~ ). (1r x B) = l ( Iv' ;,,)x 1f 1· ~ 
- ((\_~1./c."l.fZ. t!r - ~~ ("'~)1 )("\J ] • ~ 

whereupon the relativistic Vlasov equation may be written 

We order the Fourier transform of Eq. (C-5) in a but not in vic. 

• L ~«)) e. d I L tO) 1.(0) e ( 1.1c t)I/?. 8<.0) ( a ) 1('1.) -.,;, 0 
.J.K.''\T + - -. • 1:. 1 - - \-v C. .,'\11( - -
. k. -- ov" " k 0 "M.t.. ' \." 0'1 0 

(C-l) 

(C-2) 

( C-3) 

(c-4) 

(C-5) 

Thus 

(c-6) 

We see that the ~o)f~o) term vanished identically as it did in the 

nonrelativistic calculation, because of the factor (v xojdv) and the 

property that f(o) is spherically symmetric. o . 

We substitute Eq. (c-6) into the Maxwell-Ampere Eq. (III-65). 
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o (c-7) 

We consider the ~o)lOng contribution 

(c-8) 

Each term has a k'v in the numerator to cancel the k·v in the denominator, 

thus this integral is of the form 

(C-9) 

(o)long . Thus as in the nonrelativistic calculation, Ek does not contr~bute 

to the equation for the evolution of ~o). 
We find E~o)trans from the Faraday Eq. (111-64), and substitute it 

into Eq. (C-7) to obtain 

k B(O) ~'l.. "2. 
\-\* • 

• 
c. x \co ;. ~ \-l *'. BCO

) ;. c..)e kx 'O~) :: 0 
c'2.. 1. k ~'I..c. , (C-10) 

where 

H* . 
'\ 1 'lJ' ~. I rO

) - A civ 
~.'" \ O'\l' V' 6 

( C-ll) 

and 

H* )0\1" V" ( 7../ 1.)"'L ( 0 ) ~(1..) - \-V' c.'U'x-
'2.. ~.~ ~V' 0 

(C-12) 

where the asterisk is used to distinguish quantities in this appendix 

from similar quantities which occurred in the nonrelativistic calculation. 
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The asterisk does not denote complex conjugation. Equations (C-IO to 12) 

are very similar to Eqs. (rV-37 ,to 39). 

The normal mode Eq. (C-IO~ may be written in the ~, 2, n coordinate 

system of Fig. V-2 more easily if we first multiply it by k X. 

where 

AA 

I\... = I - k 'k. 

J = k. x \-\* 
1... 2. 

We introduce the dimensionless velocity 

U ::: vld 

and define 

We write f(2)(u) in the form 
o 

(1.) ( C( ~ OC:~) ! (0) 
~ (11) = 2' 'U'!I - 6 u 10 tv.) 

o 

2 then only the u
3 

part contributes to J 2 

(C-13) 

(c-14) 

(C-15 ) 

(c-16) 

(C-17) 

(C-18) 

(C-19 ) 

(C-20) 
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We introduce the it, 2, n coordinates 

then 

where 

whence 

A 

Y == u·2 

222 2 
u==x+y+z 

it X u == yll - z2 

A 

3==c1t+Sn 

C == cos e and 

A 

3·u == Cx + Sz 

and 
A 

Z == u·n 

S == sin e 

A <' A A 

3 X u == - SYK + (sx - cz)2 + Cyn 

Using the above relations J2 may be written 

) ( '2..)' I?. r (0) .(C'~;-Sl.. \-E:.'U Jo<''IA) 

( C-21) 

(C-22) 

(c-24) 

( C-25) 

(c-26) 

(c-28) 

(C-29) 

Eliminating those terms which have an odd power of x, y, orz in the 

. numerator gives 
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(C-30) 

Likewise the tensor J
l 

may be written 

(C-31) 

We eliminate the odd powers of y and z, and perform the x integration. 

We denote 

and 

then J
l 

becomes 

222 w :::: y + z (C-32) 

(C-33) 

The integrals in Eqs. (C-30) and (C-34) may be done by introducing 

the expansions 

(C-35) 

(C-36) 

Then 

(C-37) 

and 

(C-38) 
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If we define 

II%.( ~*: k1.c.1./(.)! + cx.(\- 2Sl)~.\-lE::+···1 + (~) i/kd) t\~E:+···1 (C-39) 

s*: \lc2./tA)! + <X. C2. {\-~E+···1 +-(~)'/l(i/kci) ~\':"E+ ••• J (c-4o) 

(C-41) 

.... 
then the normal mode equation in the k, 2, n coordinate system becomes 

(C-42) 

We evidently have the same two modes as before 

.... .... 
q* 1\ = 2 and == 0 Mode I: (c-43) 

A 
A 

Bk == n and s* == 0 Mode II: (c-44) 

Equations (C-42 to 44) are similar to Eqs. (v-65 to 67). The relativistic 

calculation shows that the normal mode vectors are unchanged, and that 

.2/ 2 the dispersion relation has corrections of orderd /c • 

growth rate is .changed by 

That is the 

( 2/2 Yk relativistic) = Yk (nol1relativistic){l + O(d /c )} (c-45) 

For both Modes land II the relativistic terms decrease the growth rate 

fora given k-value and reduce the region of unstable waves. Relativistic 

terms have a stabilizing effect on the transverse instability. 
". 
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