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ABSTRACT

The crossing matrix of the helicity amplitude for a production

-process 1s worked out with the conventional definition of helicity

states. This crossing matrix has the same form in different c.m.

frames except for pafticles moving along the z axis, which have

additional phases. It can thus be used for successive crossings.

Generalization to N-to-N' processes is discussed, and application to

the Regge formalism is considered.
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I. INTRODUCTION
The crossing matrix, which relates the direct channel and the
cross channel helicity amplitudes, has been calculated in a two-body-

to-two body process (2-to-2) by Trueman and Wick,l Muzinich,2 and

" Cohen-Tannoudji, Morel, and Navalet.5 Capella} using a technique

introduced by Mbussa‘and Stora5 and utilized by CMN,3 has derived the
crossing matrix through an unconventional definition of helicity states.
By his definition Capella avoids certain phase angles in the crossing
matrix. Ffom the péint of view of a cdnventional helicity6 definition,
Capella's helicity states are defined in an "unnatural" frame, though
the frame has not yet been worked out explicitly. On the.other hand,
the boost used in CMN-'S5 paper can easily be shown to coincide with

the conventional boost in the c.m. frame. The advantage of the

conventional approach is shown by considering two successive crossings

as in Fig. 1. The total crossing matrix from the direct channel (d)

to the. second crossed channel '(cz) is composed of two sub-crossing

matrices, one from the channel (d) to (cl) and a second from (cl)
to (cg), together with a transformation matrix to connect the frame
used to caiculate the crossing matrix frgm (a) to (cl) and the frame
used to calculate the crossing matrix from (cl) to (Cg)' For
Capella's method the transformation matrix will be very complicated
and has not been wofked oﬁt in his paper. If we calculate the two
crossing matrices in the same frame, then we don't neéd to perform

the transformation. But for one of the two sub-crossing matrices, the
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simplicity of Capella's result will disappear and it must be calculated
independently. Of course, since Capella’s,definition of helicity states
is not the conventional one, the crossing matrix from Capella's method
and that from the conventional definition of helicity states not only
differ in form but also have a different physical interpretation. 1In
this paper we consider the crossing matrix of the conventional helicity
amplitudes for a 2-to-N process, and obtain a result from which we can
easlly write down two or more successiye crossings.

In Section II, we start from the analytic properties and the
crossing relation of the spinor amplitudes (M functiog’8) for a 2-to-~3
process, and then dériﬁe the crossing matrix. The method to calculate
tﬁe crossing matrix is Qiscussed and the pfocess with two successive
crossings is alsc considered. The results are then generalizable to a
Deto-N procéss. In Section III, the explicit expressions for the
crossing angles and the transformation matrix due to change of the -
éhoice of x-z 7plane are worked out for a 2-to-3 process. They are
easlily generalized to a 2-to-N process. In Section IV,_some applica-
tions of the crossing matrix are discussed. In particular, we consider
the case when the direct channel helicity amplitude, dominated by
exchange of cross channel Reggeons and/or saturated by the direct channel
regsonances, can be expressed in terms of the double Régge terms of the v
appropriate cross channel helicity amplitude through the crossing
matrix. In the Appendix, the asymptotic expressions of the crossing
angles when the total enérgy goes to infinity are written down.

explicitly.
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II. KINEMATICS AND CROSSING MATRIX
Consider the process a +b -1 +2 + 3 (sab channel). The
particle state 1 is deséribed by its four momentum Pss spin =h
and the helicity xi, We define the c.m. frame of Sab channel such
that the incoming particles a and b move along the z axis and the
crossed particle 1 1is in the x-z plane with a positive x component

of its'momentum. Later on we will show that a different choice of the

x-z plane will result in a difference of the phase factor. The

“invariant variables are defined as

\

R 2 _ . o
Sab = (pa + pb) > le = (pi + pJ) = sk (lJJ)k =1,2,3 CyCllC) >
(1)
t,= (0 D)5 gy = (0 mp)P 2t . (4,0 22,3, i437)
ia i a’ ’? ib i b J ? 222 )
We choose Sap?  Syp0 325, tla’ and t5b as independent variables.
The four momenta 1 in the c¢.m. frame of the Sab channel are
parametrized by
D, = ma(cqsh ®,, 0, 0, sinh aa),
Py = mb(cosh &, sinh oy sin n, O, sinh of cos ),
P, = ml(cosh 0, sinh o, sin 6,, 0, sinh oy cos Gl) s (2)
D; = mi(cosh 0, sinh o cos 6, sinh o; sin 6, cos ¢i’

sinh o sin 6, sin §,) ,

(i = 2:5)
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The invariant variables are related by

2 2 2 o .
big Fhiy TSy = WM, tTmToam o+ S 5 .(l,J,k = 1,2,3 cyclic) ,
t + % + s - m 2 +m 2 + m= 2 + t
ia(b) © Yja(p) T Siy T M 3 a(b) kb(a), (3)
S, + + s = 22 + 2 Fm° o+ '
12 T Spz TSy =M Ty T Sy

‘The cross chamnel a + 1 Db + 2 + %3 1is called the tia channel.

We shall calculate the crossing matrix between s and tla channels.

ab

The crossing matrices between any other two channels can be obtained :
either by similar methods or by crossing twice. The four momenta are
denoted by q, and parametrized by (ai, 5&, 5i) in a similar way as

in the Sab

channel c.m. frame.
Before calculating the crossing matrix we have to make the

3,k

following two assumptilons: (a) There exists an analytic domain such

that the spinor amplitude can be continued analytically in the invariant
variables from the physical region of the Sob channel to that of the

btia channel with all four momenta fixed on the mass shell. (b) The

~spinor amplitude Mx N (plp2p5;papb) satisfies the crossing

Pohs 3N,
relation9 :
(s_.) . (£, ) : ’
ab o la
or v (DapopLsp.p ) = (-1) X (-, P,P2 5P, D)
Mxlxng,xaxb 1PoP3 3P, Py . beXQXB’xaxl PP 3P, Py

()

The phase label o is unity if the two crossed particles are fermions

357

and zero otherwise. The spinor amplitude is defined to transform
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under a complex Lorentz transformation A as

(t1,) ' b | 52 s
) === P> W oD-, )
MXbX >K X A xb)b Xghg XBKB
(tla)v ®a | 51
X M= = — = (#p) D= . (A) D= . ~(A) (5)
>\2>\5 AN AN MM ?
(s9) Sap)
and similarly for M (p). The spinor amplitudes M (p) and
(t,.) _ (s_y) (£, )
VAR (p) are related to the helicity amplitudes H 87 ana w P
respectively by
(550 1 So
H (p) = L_ D=, (L &) D= (L e)
\lXQXB,KaKb x Xl%l pl XEKQ Pg
I, o) ) ) () )
X D- L M- — = == p) D— L L ,
X3K3 pB >“]_>‘2>\5’>\a)‘b aa P MM Py
(6)
and
(tla) *b %2
H : @) =L _ b “(I-e)d-. (i )
Motz 3hg M X MM Pl MM Po
(t,.) s s
5 _ la’ = arr 1
’ DX5K5 (L €) kaE B’K (») Diéxa (Lpa) D;ikl (Lii) ’

where € = i02 (02 is the Pauli matrix), and the boost Lp is
: i

uniquely defined through the equation
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e—l¢iJ5 -1@iJ2 —1aiK

I = e e 5. (8)

We now continue Eq. (6) from the physical region of the tlé channel

to that of the Sab channel along the path stated in the assumptions.

The discussion of the analytic properties of the amplitudes under the

z

2

continuation in CMN's paper” is also applicable to a 2-to-3 process.

At any point on the generalized Mandelstam diagram12 of a five-body

process in the physical region of s channel, there existsll one

ab

. . -1 . .
unique complex Lorentz transformation A which carries the continued

¢ 05 5. 5° 0 C} to the set

set of four momenta ({z} = [pa » P, s Py s Py s Py

{z} = {Pa: Py TPy Pos P5} ,» Since zi-zj = zi-zj for 2, and zZs

in the barred and unbarred sets of four momenta, respectively. From
Egs. (4), (5), (6), and (7) we have

(s,

\
By (Sapo 8900 Spzs Bpgs o)

Mo = AaFhs, ~Ao +S FAL =S, A, s
b -1
= (07 L _ (I R e )
&) 1™t R
s, , s
2 -1 3 -1
X D — (L AL )D-— (1, AL )
STVRTN _ N N
272 5° Po' ThgThs p3c Pz
(t,.)
la
FoOHg (8407 5107 Sp32 Brgs By)
S S
-1 b -1
X o= AL ) D= (T AL ) o, (9)
Mata 2.¢ o oMy 7. Py
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(s, C(t,)
where H : and 'H are the c.m. helicity amplitudes of Sa1

and tla channels respectively. In Eq. (9) there is an overall-phase

factor n(s> undetermined, as shown in Ref. 3. We have two kinds of

techniques to calculate the crossing angles. One is used by Trueman-
Wickl and by MUzinich,g and. the other by CMN5 and by Capella.u We
shall use the latter method. The boost Lab(i) in the 5.1 channel

in Ref. 3 is defined as

Ly (D48, M, Ty ) = fag/m, m(3), (1), ng(2)) L (10)

: o o o o .
where (%, Ny Mos nB} is a standard tetrad and
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It

11
_ v _p O _abl)}g .
€uvpo @ % 4 ///[G (a b1l (for 1
_ v o) o fabi ] .
L “uvos Y2 b 4 ///Q}<a b i) (for i

N~

a,b,1)

2,3)

9579, qj.qz Qe
i k) _ . . "
(}<£ mn/ det 9 9y qj U G "y ’
9% 9579 9 (11)
mHq +aq) - [a.-(a, + 0]
. i g b i ‘ra b1
nB(l) = - 1 2
>
m [q (a, +a )]2 - (e, +q)f
1 itra b i ‘a b
: L\ V \P o] .
m (1), oo Mo(B)7 5(1)7 ag"/m
the four momenta qi's being in an arbitrary frame in Sab channel.
The nj(i)'s are orthogonal to each other and normalized to positive
- or negative unity depending on whethér they are space-like or time-like.
Similarly Lab(i), in an arbitrary frame-in the tla channel, is
defined by
o o o o - - . - . -
Lal(l){t) nl) 7]2: 713] = {qi/ml, T]l(l): ng(l)’ 715(1)} b (12)
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M ' L
-y —p =0 al iyl? .
{ _€uvp0 q qlp 95 /[G (a 1 l>} (for i = 2,3) ,

- /. a ! 1
nB(l) = = s 2 (15)
n (3, @, +)° - 0@, +5)°
i i ‘7a 1 i ‘*a 1
- s _ = (s\V T a0 T O
nl(l)u - €HVDG ng(l) T]B(l) qi /mi
' o . CM, . CM, . .
By explicit calculation we can show that L, (i) and L, (i) in
the c.m. frames of s and t channels with the plane of particles

ab la

a, b,vand 1l as x-z pléne are equal to Lp and L§ respectively;
i i
i.e.,

= 15 . (14)

This is the essential reason why we define ng(i) and ﬁg(i) in

Egs. (7) and (9) different from Capella's definition.h Further,

the relation between the continued Lalc(i) and L§ ¢ can be written
i
as

Crsy _ =1, My=cy _ -1
L, (1) = A7 L, 7 (p") = & LE . - (15)
1
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It means that the crossing angle L C-lA L is equal to

_ D _ i
Lalc(i) . Lab(i), and we will calculate the crossing angle from
C(.)‘l

L i

al Lab(i)' Thus the method introduced by MY is applicable

to a 2-to-3 process. For 2-to-N processes a +b -1+ 2 + -+ +N
and a + 1 b + 2 + -+ 4N, L, and L still have the forms
given by Egs. (10)-(13) except that the index i runs from 2 to N

and the invariant variables si and ti are redefined as

2

, by = (gt Py - 0;) . (1a)

We note that in the above discussion we choose the x-z plane
in Sab and tla channel as the plane specified by the particles
a, b, and 1. If we choose the =x-z planes as the plane specified by

the particles a, b, and 2 in the s channel and the plane of

ab

a, 1, and 2 in the t channel, then we only need to change the
: la ’

definition of n,(i) (i = a,b) and ﬁé(i) (i

I

a,l) to

: 1
. _ v _p o0 <a b2 ]2 .
np(1), fvoo Y2 Wb % //[G ab? (for i =a,b),

(16)

it

: ) —v=-p=o0 alz ] ‘
(1), Cvpe 4o G 9 //[G('a 12 (for i =a,l)

The difference of the crossing matrices for two different scattering

planes will be calculated in the next section explicitly. The result
~igs
is such that we add a phase factor e 5 only to the particles
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- moving along the z axis in a certain channel, where ¢ is the angle
required to rotaté from one x-z plane to another. For the particles
not moving aléng-the z axis, nothing is changed. By this observation,
it is straightforward now to write down the crossing matrix for a
process with two éuccessive crossings, as in Fig. 1. The total
crossing matrix C 1is Jjust C = CerE’ wheré Cl is the crossing

matrix from channel (d) to (Cl) with the plane abl as the x-z

plane and C, 1is that of channel (Cl) to channel (C with " al2

2)

as the x-z 7plane. The Wigner rotation r 1is to change the plane

al2 to alb in channel (Cl).
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IIT. CROSSING ANGLES
Following CMN? the Lorentz transformation

-1
. C . .
;{,(¢) =L, (1) Lab<l) can be expressed as

LR, 5, % %) = (ef m@), (), (), an

where € = -1 for 1 =1,b and € = 1 otherwise. For the particles
a,2, and 3, 5((i) is é pure rotation, while for the crossed particles
b and 1 it is a pure rotation plus a complex Lorentz transformation
which introduces- at most a factor (_l)gs-' The most general rotation

R(i) is
R(1) = exp(-it;J5) exp(-1¥;d,) exp(-it,J5) . : (18)

We can calculate the angles (gi, ﬁi, ni) by computing the values of
various (%k’ R(i)%z). The representation function D of a rotation
group only depends on cos wi’ and the formula for (%k, R(i)%£>’s
places no restriction on the sign of sin wi. Thus we assume Wi to
range between O and . There exist the following relations from

various formulas for <%k’ R(i)%£> :

,'i:

+

13

j
Y

i

B
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" cos Wi = -(%5, R(i)%B) = 'ﬁéc(i)‘HB(i) 5 (
* 2 L X o) . \O - Cy. .
sin Wi sin Ei = -(ng, R(l)HB) = "M (1)‘ﬂ5(1) s
. . : - C,. .
sin ¢, sin £, = M3 (1)‘ﬂ2(1) ’ (19)
. - C,. .
sin \lri cos Ei = My (l)'T]B(l) ,
. - C,. .
-3in wi cos Ci = -nB (l)'nl(l)

If we use Eq. (11) to replace q's by' p's, and Eq. (13) to replace

J's by p's, we obtain for particles a,b,l:

2 2 . 2 2 2
sy - (s + o~ -m )(t, +m" -m ) - 2m A
a 2 2 2 2 4
X(sab: ma ) mb ) X(tla’ ma P) ml )
(s . + “m )t 4m S - t) + 2m oA
ab mb a la mb b mb
cos V¥ = .
b A(s m 2) alt t ) ’
S ) 12’ ™ 7 Yo
2 2 2 2
(Sab * ml - Sl)(tla N ml - ma ) * 2ml A
sV = - 2 2 ,
v >\(Sab’ Moo Sl) x(tla’ oo My )

g
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and for particles 2 ang 3

2

> >
cos v - (sgp *m" = s )(ty, + moo-ty) - emtA
o Map 7 5) At , m.2, 5.) ’
ab’ My 7 la’ By o By
3 2
. o [0y 17 Aty s m %, t,)
sin éi = — »
. . 2
8, A1
1 2
sint, =- em, [0, 1% M s m, 8y)

[0, H 2 ’

om, . ’ ’
i abi ali b 1 i)
cos &, - — G( ) - G( ) + G )
i [5i‘j\/i]§ al i ali ali ?

' emy abi abi ab i
cos €y = e G(al i) * G<ab i/ - G<11>1> )
i i
2 2 o
where A m - m -m o+ Sy y
2 2 0 3
x(x,y,z)=[(x+y+z)(x—y+z)(x-y-z)(x+y-z)]
(21)
2 2 ) 2
£L¢i = Mg m%, i) (t1ar m7s &)

Pl )
z. iy

f 2 /
- 1<S:1'b tm - si)\tla +m - t, ) - cm Aj s



Ti

abli
Opy = 'G(abl i

. det

®, and O,
i : i

a+b i (1,))

expressed in terms of invariant variables as

o, =

i ‘o(s

1a

and &, =
i
cos gi

unicuely.

SubstitutingEgs.

b)

2
- t, (mi

¢(tla

2
Qma

2 2
Sab ma Ty 5

2
"ty

2 2
~t, _+m_“+m, T,
ia "a i

ia

ma2 + m s )

t.
2 Via

and a + 1

2 tib; Si) -

> Sq43 ti).

-15-

)

2 2
Sab ™ M
2mb2

2 2
bty M

> 2
by,

are the sub-boundary function512

i+ (b,3)

2 2 2

My My

+ 2m

(14) and (17) into Eg.

’-t

respectively.

Sab by Fip ”

The expressions for

+m +m1 ,
~t, .+ 2+ =

b1 M T
2

amy

a2 2
R T

in Eq. (20) are used to determine the range of £

COS .
gl

UCRL-18761

®_. 1is the total boundary function of the process and is defined by

2 2
~t., +m_+m,
ia i

t., + 2+m 2
R ]

-m.,
1

1i 1

2m,
i

for the processes

They are

and

and 'gi

(9), we have
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(s,,) Py =As g HS A =S, A
" () ¥ (a2 b~
| ~

x expliligt, + 7\5% * Aoby * ABEB)] |

S S S

1 - ®p
(V,)a_= .
Ny (9,) d_%_)\ )

X expl-in(=n +x - #A) del_ (v

5 5

s (t

a- | A4y a- . Py w
X N a v/ M\

a’a MMy

la)

Using the identities

e S0 = (DM e ), et

S=A S
=N A (-l) d;\}\ (TT' - \11)

and

dx_xS(W) = (_l)s+X dxxs<n -¥) | (éu)

and redefining n - Wl and g ~ wb as wl and Wb’ we have

(s,)

H . (5198759552587 stay)
xlxgxa,xaxb ab 12. 23’ "1a’ "3b

= (-1)7 X _ exl-in(-n, + hy + Ay - &)
>\ .

S S
. - - 1 3
K el Ol o st o ingE ) ] s ) (¥5)

v, ) a= (v,) &
M L o 2

KEK KBXB

S s (t

_ )
X a- (v °F@) Ers o3 (s

d= . 3557 053Snzs87 .5t
Kaka a kbxb KbKQXB,kaXl ab’ 712’723’ la

)
(25)
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The crossing matrix may have an overall phase factor which may be the
2s.
product of some factors like (-1) . We do not specify it since it

cannot be measured experimentally.
If we choose the x-z planes to be the plane defined by the

particles a, b, and 2 in the s channel and that specified by the

ab

particles a, 1, and 2 1in the tla channel, we just change the
definition of nl(i) and ﬁé(i) as in Eq. (16). By explicit calcula-

tion we can show

abl
—G(\a b 2) @5 -0 - 0

DEGD

cos ty = n, (B) ny(b) = [

(26)

If we express the angles' (ai, 8., ¢.) of'Eq. (2) in terms of invariant

1 1

variables, we can see that cos ¢2 =<<I>5 -9, - Qﬁ/2(®l®5)% . Therefore
we have cos Cb = Cos ¢2. Similarly cos El = CoS8 ¢£ . We also obtain
cos Cé = COS Qb, cos Ea = COS El. These results verify the statement
about the transformation matrix in the preceding section.

In the 2-to-N case we have the same formula for crossing

matrices, but we have to distinguish 833 and s

K and iy and Sj'

The invariant variables 513 and ., are still defined as in Eg. (1),

while s _ and tj ‘are defined as in Eq. (la). In the 2-to-3 case

> - - '
sij and tib are equal to Sy and tj regpectively. For the N-to-N

process we have found the Lorentz transformations L(i) and L(i)
=M

such that LCM(i) and L~ (i) are equal to Lp and L§ in the c.m.
i i
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frame of the direct channel and the cross channel respectively. The
same technique can also be applied to calculate the crossing matrix in
the ©N-to-N' process.

It 1is worth mentioning that the crossing angles gi, Ci’ and
Wi are real in the physical region of the sab channel, because in this

region the three orthogonal ﬁﬁ(i) are real vectors in the three-

dimensional Euclidean space. The relation that brings the standard

1% o o - . - . - . .
tetrad (nl, Nps nB) to (nl(l), nz(l), ﬂ5(1)) is real also.
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IV. APPLICATIONS
Capellal“L has made several apflications of the crossing matrix
for the two-to-three helicity amplitudes. We shall discuss the
difference which arises from the crossing angles Ei and gi, and
ﬁention some further applications. |
In general the crossing angles ﬁi and gi are real in the
physical region of the 5.0 channel. Therefore for an experiment

which fails to measure polarizations, the differential cross section

may be expressed as

£ 1)
do E: I ( al’ 2
—_— s ¢} — jHe — — — - f .
an N AphohsiRgh

For an experiment measuring the helicity orientation of one final

particle, the cross section can be expressed in terms of the =

la
channel helicity amplitude
: 2
doi . . (Sab)
=) o Mv) ay . H) eml-i(R, - R)E,]
- L—a— o~ }\-}\.. j. . i i i i
xi,hl#xi i i1
(¢,.) ()7 '
1 la
X H;\' & H'X . (27)
il i .

The right-hand side of Eq. (27) looks as if it is not real, but if we

fake the complex conjugate we get the original form after changing
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some dummy indices Xﬁ and .Xi' In Eg. (27) indices other than M .,
have been neglected. Eguation (27) is particularly useful to relate
the cross channel Regge terms to the asymptotic expression of the direct
channel in high energy polarization experiments.. It is easily seen
that the phase aﬁgle gi mgst not be omitted since the change of the
phase angle will alter the cross section drastically. Following a
similar line of argument, we can write down the formula for thé
differential cross section with polarization meésurements of more than
one final stafe particle.
One of the applications of the croséing matrix is to investigate
the kinematical singularities and the kinematical constraints for a
2-to-N process, but we will not discuss this matter further here.
Another application is.to express”the asymptotic behavior of
the Sob channel c¢.m. helicity aﬁplitudes in terms of tla channel
Regge 'poles for external particles with spin. For example, the 5.

channel c.m. helicity amplitude corresponding to the process shown in

Fig. 2(a) can be obtained by crossing the t,, channel amplitude

shown in Fig. 2(b), which has the formlB’lu

(t. ) ) s,8_C o, S (t, )

g 12 .:z r 1%a 12(_t ) D 12 1a <g<12)>
—— - A AN AL
puuAQXBkb 17a

Oy £SO o, (t,.)
_ Me®e¥e3 23 "3p” ¢ (23)
X g (t145 tap) Doy <§ ) ’

(0 S_S S
03525, 2

X I~ .
HAzM, A%

S3 Sb .
X DXBKB (R, (A5, P5)] D [, (> o)1 - (28)




We do not explain the notation here but only mention that g
2
2(23)
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(12) and

are the little groups and Ai ig the Lorentz transformation
which carries the rest frame of the Reggeon to the c.m. frame of the

tla channel. This is referred to the case that both s and s

12 23

become large as s becomes large. The s channel c.m. helicity

ab ab

amplitude for a process shown in Fig. 3(a) in which 815 becomes

is fixed can be obtained by crossing the t channel

large gnd s 1s,

23

- c.m. helicity amplitude of the process shown in Fig. 3(b). In this

case we need several Regge poles since one of the variables s or

23

Slé is not in the high energy region. One notes that the amplitudes

in Figs. 2(b} and 3(b) have similar formulae except that the labels of

the particles are interchanged.
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APPENDIX
The asymptotlc expressions of the crossing angle gi when

s goes to infinity is explicitly written down. The angle Ci

T . ab

“will only give an overall'phase factor which does not change the
© measurable quantities. Therefore, we shall not calculate them. We
restrict ourselves to the cases when s12s23/san goes to a constant

as s, 8oes to infinity, since in this region the Regge poles

dominate significantly.

l-¢ €
(Case 1) Sgp % Sps —~As 7, S5 = BS,y (0 <.e < 1)
> .1
N -2m2[D(A2 + B° + oAB - hmgg)]2
(a) € =3 sin &2 - 5T s
, [(AB - m,")c]2
sin §5—->O R
where D =m " - om (. +t.) + (t. + )7 - bt +
o T Mo WP T o bxp 1a T *3p 1a"3b

2 2 2 2.2
+ AB(2t1a+m1 - em +ma)+AB s

2

2 2, .2 :
C = -2(m3 +om,”) A (b, m,y, tBb)
2 2 2 2 2 2
+ EAB(m.2 -t - tBb)(me oty * tBb) - umg b B - Amg tBbA
w (b) e>2L  sin £, -0
2 2 2 2

H



(c)

(Case 2)

oL

1
= 2
D2 A (% , I t..)
e < % , sin §2 — la ’1 20
2
AB(tlatBb)
sin o -
EB-e
Sup — ®s 810 —aBsab, 523 fixed:

sin §2 -0,

sin £E_ -0
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FIGURE CAPTIONS
An example of successive crossings: The direct channel

(Sab channel) is crossed into the intermediate channel

(tal channel), and then the final cross channel (s12 channel).
The total crossing matrix is Cl r Cr' The intermediate channel
may be ta2’ tbl’ or tb2 channel. However, the total

crossing matrix is independent of the intermediate channel.
The So1 channel c¢c.m. amplitude, dominated by cross channel

Reggeon exchange can be expressed in terms of the Regge terms
of the tla channel c.m. amplitude via crossing matrix in

a 2-to-3 process.

The s

ab channel c.m. amplitude, dominated by cross channel

Reggeon exchange and resonances (direct channel Reggeons),
can be expressed in terms of the Regge terms of the tla

channel c.m. amplitude via crossing matrix in a 2-to-3

process.
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