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ABSTRACT 

The crossing matrix of the helicity amplitude for a production 

process is worked out with the conventional definition of helicity 

states. This crossing matrix has the same form in different c.m. 

frames except for particles moving along the z axis, which have 

additional phases. It can thus be used for successive crossings. 

Generalization to N-to-N' processes is discussed, and application to 

the Regge formalism is considered. 

I, 
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I. INTRODUCTION 

The crossing matrix, which relates the direct channel and the 

cross channel helicity amplitudes, has been calculated in a two-body­

to-two body process (2-to-2) by Trueman and WiCk,l Muzinich,2 and 

Cohen-Tannoudji, Morel, and Navalet. 3 Capella: using a technique 

introduced by Moussa and stora5 and utilized by CMN,3 has derived the 

crossing matrix through an unconventional definition of helicity states. 

By his definition Capella avoids certain phase angles in the crossing 

matrix. From the point of view of a co'nventional heliciti definition, 

Capellp.'s helicity states are defined in an "unnatural" frame, though 

the frame has not yet been worked out explicitly. On the other hand, 

the boost used in CMN's3 paper can easily pe shown to coincide with 

the conventional boost in the c.m. frame. The advantage of the 

conventional approach is shown by considering two successive crossings 

as in Fig. 1. The total crossing matrix from the direct channel (d) 

to the second crossed channel '(c2 ) is composed of two sub-crossing 

matrices, one from the channel (d) to (cl ) and a second from (cl ) 

to (c2), together with a transformation matrix to connect the frame 

used to calculate the crossing matrix from (d) to (cl ) and the frame 

used to calculate the crossing matrix from (cl ) to (c2 ). For 

Capella's method the transformation matrix will be very complicated 

and has not been worked out in his paper. If we calculate the two 

crossing matrices in the same frame, then we don't need to perform 

the transformation. But for one of the two sub-crossing matrices, the 
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simplicity of Capella's result will disappear and it must be calculated 

independently. Of course, since Capella's.definition of helicity states 

is not the conventional one, the crossing matrix from Capella's method 

and that from the conventional definition of helicity states not only 

differ inform but also have a different physical interpretation. In 

this paper we consider the crossing matrix of the conventional helicity 

amplitudes for a 2-to-N process, and obtain a result from which we can 

easily write down two or more successive crossings. 

In Section II, we start from the analytic properties and the 

crossing relation of the spinor amplitudes (M functiod,8) for a 2-to-3 

process, and then derive the crossing matrix. The method to calculate 

the crossing matrix is discussed and the process with two successive 

crossings is also considered. The results are then generalizable to a 

2-to-N process. In Section III, the explicit e}~ressions for the 

crossing angles and the transformation matrix due to change of the 

choice of x-z plane are worked out for a 2-to-3 process. They are 

easily generalized to a 2-to-N process. In Section IV, some applica­

tions of the crossing matrix are discussed. In particular, we consider 

the case when the direct channel helicity amplitude, dominated by 

exchange of cross channel Reggeons and/or saturated by the direct channel 

resonances, can be expressed in terms of the double Regge terms of the 

appropriate cross channel helicity amplitude through the crossing 

matrix. In the Appendix, the asymptotic expressions of the crossing 

angles when the total energy goes to infinity are written down. 

explici tly. 

... 
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II. KINEMATICS AND CROSSING MATRIX 

Consider the process a + b ~l + 2 + 3 (sab channel). The 

particle state i is described by its four momentum Pi' spin s. 
l 

and the helicity A, •• 
l 

We define the c.m. frame of channel such 

that the incoming particles a and b move along the z axis and the 

crossed particle 1 is in the x-z plane with a positive x component 

of its momentum. Later on we will show that a different choice of the 

x-z plane will result in a difference of the phase factor. The 

"invariant variables are defined as 

2 2 
(i,j,k cyclic) sab (Pa + Pb) , s .. == (p. + p.) - sk 1,2,3 

lJ l J 
, 

(1) 

(p. 
2 

(Pi 
2 

(i,j f j). t. - Pa) , tib == - P ) - t. . 2,3, i la l b J 

We choose and as independent variables. 
, 

The four momenta Pi in the c.m. frame of the sab channel are 

parametrized by 

Pa == m (cosh a , 0, 0, sinh a ), a . a a 

Pb ~(cosh ~, sinh ~ sin rr, 0, sinh ~ cos rr) , 

Pl ~(cosh al , sinh a
l sin gl' 0, sinh a l cos gl) , (2) 

Pi m. (cosh a., sinh a. cos g., sinh a i sin g. cos ¢. , l l l l l l 

sinh a. sin g. sin ¢i) , l l 

(i 2,3) 
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The invariant variables are related by 

t. + tib + 
2 2 2 

sab m +~ + m. la a 1 

tia(b) + tja(b) + 
2 2 s .. == m. + m. 

lJ 1 J 

2 2 2 
s12 + s23 + s31 ~ +~ +~ 

The cross channel a + 1 ~ b + 2 + 3 

UCRL-18761 

+ Sjk (i,j,k 1,2,3 cyclic) , 

2 
+ tkb(a) , + ma(b) (3) 

+ sab 

is called the t. channel. la 

We shall calculate the crossing matrix between sab and t la channels. 

The crossing matrices between any other two channels can be obtained 

either by similar methods or by crossing twice. The four momenta are 

denoted by q, and parametrized by (ai' 9i , ~i) in a similar way as 

in the channel c.m. frame. 

Before calculating the crossing matrix we have to make the 

following two assumptions: 3,4 (a) There exists an analytic domain such 

that the spinor amplitude can be continued analytically in the' invariant 

variables from the physical region of the sab channel to that of the 

t. channel with all four momenta fixed on the mass shell. (b) The la 

spinor amplitude 

relation9 

satisfies the crossing 

(4) 

The phase label cr is unity if the two crossed particles are fermions 

and zero otherwise. The spinor amplitude3 ,7 is defined to transform 

.. 

• 
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under a complex Lorentz transformation A as 

x 

(s ) (s ) 
M ab (p). M ab (p) and similarly for The spinor amplit.udes 

(t. ) (s ) 
M la (p) are related to the helicit.y amplitudes H ab and 

respectively by 

x 

and 

(t
l 

) 

HA_ A A ·A A a (p) 
'"b 2 3' a 1 

where E == i02 is the Pauli matrix), and the boost. 

uniquely defined through the equation 

and 

(t
l 

) 
H a 

, 

(6) 

, 

is 
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L p. 
1 

-i¢. ~T 
1 3 e (8) 

We now continue Eq. (6) from the physical region of the t la channel 

to that of the sab channel along the path stated in the assumptions. 

The discussion of the analytic properties of the amplitudes under the 

continuation in CMJ.IJ's paper3 is also applicable to a 2-to-3 process. 

At any point on the generalized Mandelstam diagram12 of a five-body 

process in the physical region of sab channel, there eXists
ll 

one 

unique complex Lorentz transformation -1 
A which carries the continued 

set of four momenta 
- - c - c - c - c - c 

[z} = (Pa ' Pb ' PI ' P2 ' P3 } to the set 

since z. ·z. = z. ·z. for z. and z. 
1 J 1 J 1 1 

in the barred and unbarred sets of four momenta, respectively. From 

Eqs. (4), (5), (6), and (7) we have 

, f...2-f...2+f...3-f...3+s1+:>--'1-sb-:>--'b sl 1 
(_1)° ~ (-1) D- (L - A L ) 

[~} f...l-A l . pC PI 
1 

... 

.' 
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are the c.m. helicity amplitudes of 

and t channels respectively. 
la In Eq. (9) there is an overa~l'phase 

factor Tj (s) undetermined, as shown in Ref. 3. We have two kinds of 

techniques to calculate the crossing angles. One is used by Trueman­

Wickl and by Muzinich,2 and the other by CMN3 and by Capella. 4 We 

shall use the latter method. The boost Lab(i) 

in Ref. 3 is defined as 

where 

i 
/ 
I 

000 0 
{ t , 1]1' 1]2' 1]3} 

=: 

is a standard tetrad and 
, .. ,;.'~ 

in the channel 

, (10) 
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{ 
q v q P ql" /[ G C: ~ i)]t -E (for i a,b,l) 

f-LvpCJ a b 

TJ2 (i)v ( 

_"/[G(a b i)]t v q P t -E q (for i 2,3) 
f-LVPCJ a b ql a b 1 

qioq,g q{q,g qkoq,g 

G (i j k) 
,g m n det qio~ a oq 

~j m qkoqm 

q o~ -i qjoqn qkoqn (11) 

TJ
3

(i) 

{ }

1 
2 2 2 2 

m. (q. 0 (q + qb)] - m. (q + qb) 
1 1 a 1 a 

, 

, 

the four momenta qi:s being in an arbitrary frame in sab channel. 

The TJ • (i) 'sare orthogonal to each other and normalized to pos i ti ve 
J 

or negative unity depending on whether they are space-like or time-like ° 

Similarly Lab(i), in an arbitrary frame<in the t la channel, is 

defined by 

= , (12) 

.. 
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- v - p - cr /'[ (a 1 b)l~-
-'EjJ.vpcr qa ql qb Gal b ~ (for i a,l,b), 

(for i 2,3), 

r 

By explicit calculation we can show that LabCM(i) and LalCM(i) in 

the c.m. frames of and t la channels with the plane of particles 

a, b, and 1 as x-z plane are equal to 

i. e., 

L p. 
l 

and 1- respectively; 
Pi 

(14) 

This is the essential reason why we define T]2(i) and 1i2 (i) in 

Eqs. ',('0 and (9) different from Capella's definition. 4 Further, 

the relation between the continued LalC(i) 

as 

1\ -1 L CM(-.c) 
al Pl 

and 1- c 
Pi 

can'be written 
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-1 It means that the crossing angle L A L is equal to 
c p. 

C 1 Pi . l 
Lal (i)- Lab(i), and we'will calculate the crossing angle from 

LalC(i)-l Lab(i). Thus the method introduced by CMN3 is applicable 

to a 2-to-3 process. For 2-to-N processes a + b ~l + 2 + ... +N 

and a + I ~ b + 2 + ... +N, Lab and Lal still have the forms 

given by Eqs. (10)-(13) except that the index i runs from 2 to N 

and the invariant variables s. and t. are redefined as 

= 

l l 

t. 
l 

(la) 

We note that in the above discussion we choose the x-z plane 

in channel as the plane specified by the particles 

a, b, and 1. If we choose the x-z planes as the plane specified by 

the particles a, b, and 2 in the sab channel and the plane of 

a, 1, and 2 in the t la channel, then we only need 'to change the 

definition of T]2(i) (i=a,b) and Ti2(i) (i = a,l) to 

1 

-E q V q P 
/J.vpCJa b ~ ~)] 2 (for i a, b) , 

(16) 

(for i a,l) 

The difference of the crossing matrices for two different scattering 

planes will be calculated in the next section ej~licitly. The result 
-i¢J 

is such that we add a phase factor e 3 only to the particles 

.. ; 

I 1 
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moving along the z axis in a certain channel, where ¢ is the angle 

required to rotate from one x-z plane to another. For the particles 

not moving along the z axis, nothing is changed. By this observation, 

it is straightforward now to write down the crossing matrix for a 

process with two successive crossings, as in Fig. 1. The total 

crossing matrix C is just C == Cl rC2, where Cl is the crossing 

matrix from channel (d) to (Cl ) with the plane abl as the x-z 

plane and C2 is that of channel (cl ) to channel· (C2 ) with' a12 

as the x-z plane. The Wigner rotation r is to change the plane 

a12 to alb in channel (Cl ). 
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III. CROSSING ANGLES 
:<; 

Following CMN;' the Lorentz transformation 
-1 

;( (i) = LaIC (i) Lab(i) can be expressed as 

where E. = -1 for 
1. 

i = l,b and E. = 1 
1. 

otherwise. For the particles 

a,2, and 3, o((i) is a pure rotation, while for the crossed particles 

band 1 it is a pure rotation plus a complex Lorentz transformation 

which introduces at most a factor (_1)2s. The most general rotation 

R( i) is 

R(i) (IS) 

We can calculate the angles (Si' ~i' ~i) by computing the values of 
o 0 

various (~k' R(i)~£). The representation function D of a rotation 

group only depends on 
o 0 

cos ~i' and the formula for (~k' R(i)~£)'S 

places no restriction on the sign of sin ~ .. 
1. 

Thus we assume ~. 
1. 

range between 0 and n. There exist the following relations from 

o . 0 ) various formulas for (TI R(l)TI . 'Ik' '1£. 

", 

to 

.. 



• 

cos \jf. 
l 

sin \jf. sin r:;. 
l - l 

sin \jf. sin t,. 
l l 
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(19) 

If we use Eq. (11) to replace q's by p's, and Eq. (13) to replace 

g's by pC's, we obtain for particles a,b,l: 

cos \jf 
a 

22.22 2 
(s b + rn - ~ )(tl + rn - rnl ) - 2m 6 a a 0 a a a 

( 2 2) (t 2 2) 
A sab' rna ,~ A la' rna ' rnl 

, 

, 
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and for particles 2 and 3 

cos 1/r. 
l 

sin Si 

sin i'. , C,l 

cos s. 
l 

cos s. 
l 

where 

222 
+ m. - s.)(tl + m. - t.) - 2m. ~ 

l l all l 

t. ) 
l 

r 
[¢. .J:.!. J2 

l l 

, 

s.) 
,l 

1 
[cD . .:JI . J2 

l l 

, 

2m. {( b .. ) --_l_-"'r G a ~ 
[~ . . jJ.J2 all, 

l l 

_ G('a 1 ~) 
all 

(20) 

( a b i)} 
- G 1 b i ' 

( 2 2 z2) A x , y , 1 [(x + y + z)(x - y + z)(x - y - z)(x + y _ Z)J2, 

(21) 

;}'*. 
l t. ) 

l 

.' 

• 
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~Ti is the total boundary function of the process and is defined by 

~Ti 

2 2 2 2 2 2 
2ma s -m ab a -~ , -\a +ma +II]. , -to +m +m. 

la a l 

2 2 2 t 2 2 2 
s -m -~ 2~ - bl +~ +II]. , -\b +~ +mi 

1 4 ab a ' 
-(2") det 

2 2 2 2 2 2 
-tla+ma +ml ' -tbl+~ +~ , 2II]. sli -II]. -m. 

-to 
2 2 2 2 2 2 2m. 

2 +m +m. , -t ib +~ +mi , sli -~ -mi 
, la a l l 

~. and ~. are the sub-boundary functions12 for the processes 
l l 

a + b ~ i (l,j) and a + 1 ~ i + (b,j) respectively. They are 

expressed in terms of invariant variables as 

~. 
l 

2 2 2 -to (m.m + In. s.)+ la lab l 

222 = sb t . t. b -sb(m In. +m. s.) a la l a a b l l 

2 2 2 (1 1 1 1) 2ma ~ mi s i 2 + 2 + 2 + s. ' 
m m. m.l a b l 

l 
2 

2 

2 

(22) 

'"V 

and ~. = ~(tl ' t. , sl.; t.). The expressions for cos s. and l a la l l l 

cos r. in Eq. (20) are used to determine the range of s. and ~. "l l l 

uniquely. 

SubstitutingEqs. (14) and (17) into Eq. (9), we have 

, 
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-
"1'2 - \2+ \3+s1+ \1- sb - A_ 

( -1) (J L (-1) "b 

~ 

Using the identities 

-
(_1)-\+\ d~~S(~), d_~\S(~) S-\ s ( -1) d- (n - ~) 

\\ 

and 
-

d- s(~) = (_l)s+\ d- s(n _ ~) 
\-~ ~\ 

, (24) 

- -
and redefining rr - ~1 and rr - ~b as ~1 and ~b' we have 

• 



,.. 
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The crossing matrix may have an overall phase factor which may be the 
2s. 

product of some factors like (-1) 1 We do not specify it since it 

cannot be measured experimentally. 

If we choose the x-z planes to be the plane defined by the 

particles a, b, and 2 in the sab channel and that specified by the 

particles a, 1, and 2 in the t la channel, we just change the 

definition of Tll(i) and Yl2 (i) as in Eq. (16). By explicit calcula-

tion we can show 

cos Sb 

-G( a b 1) 
,a b 2 

(26) 

If we express the angles (ex. , 8. , ¢. ) of Eq. (2) in terms of invariant 
1 1 1 

1 

variables, we can see that cos ¢2 = (<4>3 - <4> 2 - <I>~/2(<I>1<I>3)2 Therefore 

we have cos ~b = cos ¢2' Similarly cos ~l = cos 0b We also obtain 

cos ~l' These results verify the statement 

about the transformation matrix in the preceding section. 

In the 2-to-N case we have the same formula for crossing 

matrice~ but we have to distinguish s .. 
lJ and sk' and sib and Sj' 

are still defined as in Eq. (1), The invariant variables s .. and 
lJ 

while and t. 
J 

are defined as in Eq. (la). In the 

s .. 
lJ 

are equal to and t. 
J 

respectively. 

2-to-3 case 

For the N-to-N' 

process we have found the Lorentz transformations L(i) and L(i) 

and ~M(i) are equal to in the c.m. 



-18- UCRL-18761 

frame of the direct channel and the cross channel respectively. The 

same technique can also be applied to calculate the crossing matrix in 

the N-to-N' process. 

It is worth mentioning that the crossing angles ~i' ~i' and 

'\jr i are real in t.he physical region of the sab channel, because in this 

region the three orthogonal TT.(i) 
J 

are real vectors in the three-

dimensional Euclidean space. The relation that brings the standard 
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IV. APPLICATIONS 

Capella4 has made several applications of the crossing matrix 

for the two-to-three helicity amplitudes. We shall discuss the 

difference which arises from the crossing angles ~ . and r;,., and 
1 1 

mention some further applications. 

In general the crossing angles ~ and ~ are real in the 
i "i 

physical region of the sab channel. Therefore for an experiment 

which fails to measure polarizations, the differential cross section 

may be expressed as 

dO' 
dQ 

For an eJ~eriment measuring the helicity orientation of one final 

particle, the cross section can be expressed in terms of the t
la 

channel helicity amplitude 

dO'. 
1 

dQ 

The right-hand side of Eq. (27) looks as if it is not real, but if we 

take the complex conjugate we get the original form after changing 
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some dummy indices A.. 
1. 

'" and A. .. 
1. 

/ 

In Eq. (27) indices other than A.. 
1. 

have been neglected. Equation (27) is particularly useful to relate 

the cross channel Regge terms to the asymptotic expression of the direct 

channel in high energy polarization experiments. It is easily seen 

that the phase angle ~. must not be omitted since the change of the 
1. 

phase angle will alter the cross section drastically. Following a 

similar line of argument, we can write down the formula for the 

differential cross section with polarization measurements of more than 

one final state particle. 

One of the applications of the crossing matrix is to investigate 

the kinematical singularities and the kinematical constraints for a 

2-to-N process, but we will not discuss this matter further here. 

Another application is to express the asymptotic behavior of 

the channel c.m. helicity amplitudes in terms of t la channel 

Regge'poles for external particles with spin. For example, the sab 

channel c.m. helicity amplitude corresponding to the process shown in 

Fig. 2(a) can be obtained by crossing the t
la 

channel amplitude 

shown in Fig. 2(b), which has the form13,14 

(t
l 

) 
H a 

s s 0: 0: (t ) ( ) r 1 a 12 (t ) D 12 la /, 12) 
A.l A.a A. la A.IJ. \g 

(28) 
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We do not explain the notation here but only mention that 
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(12) g and 

(23) g are the little groups and Ai is the Lorentz transformation 

which carries the rest frame of the Reggeon to the c.m. frame of the 

channel. This is referred to the case that both and 

become large as sab becomes large. The channel c.m. helicity 

amplitude for a process shown in Fig. 3(a) in which becomes 

large and s23 is fixed can be obtained by crossing the t la channel 

c.m. helicity amplitude of the process shown in Fig. 3(b). In this 

case we need several Regge poles since one of the variables or 

s12 is not in the high energy region. One notes that the amplitudes 

in Figs. 2(b) and 3(b) have similar formulae except that the labels of 

the particles are interchanged. 
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APPENDIX 

The asymptotic expressions of the crossing angle ~i when 

sab goes to infinity is explicitly written down. The angle Si 

. will only give an overall phase factor which does not change the 

measurable quantities. Therefore, we shall not calculate them. We 

restrict ourselves to the cases when s12s23/sab goes to a constant 

as sab goes to infinity, since in this region the Regge po~es 

dominate significantly. 

(Case 1) ~Asab 
l-E 

~Bsab 
E 

(0 < E < 1) sab ~ 00, s23 , s12 

2 + B2 4m2 2) J~ 1 -2m2[D(A + 2AB -
(a) E - - sin S2 ~ 

[(AB - m2 2)CJ~ 
- 2' 

sin S3 ~ 0 , 

22222 
+ AB(2tla + ~ - 2~ + ma ) + A B , 

E>! 
2 ' 

sin S2 ~ 0 , 

sin S3 ~ 0 . 
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(c) 

1 2 
1 

D2 ~(t1a' m2 ' t 3b ) 
E<- , sin ~2 ~ I , 2 

AB(t1at 3b)2 
,J. 

sin ~3 ~ 0 . 

(Case 2) sab ~ 00, s12 ~ Bsab , s23 fixed: 

sin ~2 ~ 0 , 



"' 

-r; 

* 

l. 
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FIGURE CAPTIONS 

An example of successive crossings: The direct channel 

(sab channel) is crossed into the intermediate channel 

(tal channel) , and then the final cross channel (s12 channel) . 

The total crossing matrix is Cl r Cr. The intermediate channel 

may be t a2 , t bl , or tb2 channel. However, the total 

crossing matrix is independent of the intermediate channel. 

The channel c.m. amplitude, dominated by cross channel 

Reggeon exchange can be expressed in terms of the Regge terms 

of the t la channel c.m. amplitude via crossing matrix in 

a 2-to-3 process. 

The channel c.m. amplitude, dominated by cross channel 

Reggeon exchange and resonances (direct channel Reggeons), 

can be expressed in terms of the Regge terms of the t la 

channel c.m. amplitude via crossing matrix in a 2-to-3 

process. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or. 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 

/ 

D 



--
TECHNICAL INFORMA TION DIVISION 

LAWRENCE RADIATION LABORATORY 
UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

~~ 


