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The first lecture summarizes results obtained during the past 

few years on the analytic structure of many-particle amplitudes in 

the physical region •. The results are derived mainly from the cluster 

decomposition and macrocausality requirements. The second lecture 

describes the macrocausality requirement. 
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I. INTRODUCTION 

1 Recent work on the multiperipheral model has focused attention 

on the properties of many-particle amplitudes in the physical region. 

In this lecture I shall summarize the principal results obtained during 

the past few years concerning the analytic properties of many'-particle 

amplitudes in the physical region. Only the assumptions and conclusions 

are described. References are given to the proofs. 

The results have been derived from S-matrix principles, and 

one main aim is to clearly describe these principles as they apply to 

this work. 

The principal conclusions are a description of the anal;ytic 

structure of the complete surface of physical-region singularities, 

and a formula for the discontinuity around an arbitrary physical-region 

singularity surface. This formula is similar to the one proposed by 

Cutkosky, but there are important differences. These are discussed. 

Another important result is a fundamental theorem that describes 

the physical-region analytic structure of integrals of the general type 

generated by the unitarity equations. The locations of the singularity 

surfaces of all of these functions are specified, and the general rule 

for continuing these functions around their singularity surfaces is 

given . 

Finally, two interesting expressions for S are given. The 

first is an infinite-series expansion that resemtles the Feynman 

expansion except that (1) each line of the diagram corresponds to a 

physical particle (and the integrations are accordingly on-mass-shell), 
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and (2) each vertex of the diagram corresponds to minus the physical-

region connected part of -1 
S . The second expression is similar, 

except that now (1) the sum is only over "structure diagrams", and 

(2) the propagator corresponding to each line is the ~xact physical-

region S matrix. Because the sum in this second expression is over 

structure diagrams, only a finite number of terms contribute in any 

bounded portion of the physical region. 

The n-particle amplitude is defined only on the set defined by 

the conservation-law and mass constraints. The appropriate notion of 

analyticity is thus the notion of analyticity on an "algebraic 

variety." This is a standard mathematical concept, and a very useful 

one. Because it is still unfamiliar to many physicists, I shall begin 

by describing it. 

.. .. 

• 
'if 
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II. ANALYTICITY ON THE MASS SHELL 

A. The Mass Shell 

The n-particle amplitude is a function of n four-vectors p .. 
l 

However, it is defined only on the surface defined by the mass-shell 

constraints 

2 2 
p. - m. = 0 

l l 

and the conservation laws 

(each i) , 

= 0 

The set of complex four-vector Pi that satisfy (2.1) and (2.2) is 

called the (complex) mass shell ?'1l. c 

B. Algebraic Varieties 

A set defined by the vanishing of a set of polynomials is 

called an algebraic variety by mathematicians. Since the left-hand 

(2.1) 

(2.2) 

sides of (2.1) and (2.2) are polynomials in p., the mass shell ern 
l . C 

is an algebraic variety in the space of the n complex four-vectors 

An n-particle amplitude is sometimes expressed in terms of 

p .. 
l 

functions of scalar invariants. For the cases n > 5 this again leads 

to an algebraic variety. For if one wishes to have a "ba.sic set" of 

scalar invariants such that all others are expressed unambiguously in 

terms of the basic ones, then the basic set must include more than just 

3n - 10 elements, even though the dimension of the mass shell in the 

space of invariants is 3n - 10. In fact, the mass shell in invariant 
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space is a (3n - 10) dimensional algebraic variety in an 
2 

(n - 3n)/2 

dimensional space of basic invariants. Asribekov
2 

has shown how to 

choose convenient basic sets of (n2 - 3n)/2 scalar invariants. Recent 

works3 on the n-particle Veneziano formula make use of these sets. 

Toller4 has expressed the n-particle amplitudes in terms of 

parameters of the Lorentz group acting on the external particles. 

In this space the mass shell is again an algebraic variety. 

Thus from many points of view the mass shell is an algebraic 

variety. To define analyticity on an algebraic variety we first 

introduce the notion of an analytic submanifold. 

C. Analytic Submanifolds 

Let 

vectors p. 
l 

be the points of 

are parallel. The set 

crr;c where a.ll of the nfour

'1r; - ~ ° == W is called the c c c 

"restricted" (complex) mass shell. It is an analytic submanifold in 

the space of the n four-vectors 

assumed to be strictly positive.) 

(All the masses m. 
l 

are here 

An analytic submanifold is a set that is locally ana.lytically 

equivalent to a flat space. Specifically, an analytic submanifold of 

an n- dimensional space of points Z = (zl,··\Zn) is a set .tI such 

that each point p of ~ has a (full) neighborhood uP and set 

GP(Z) == (glP(z),···gnP(zi) of n functions all analytic in uP such 

that JP ;;;;; (GP /2Jz is nonzero at each point of uP and such that .tJ 

coincides inside uP with the set defined by 

gmP(Z) = 0, where m = mP is some positive 

io' 
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integer ~ n. Thus GP(z) maps analytically into the flat 

space g P 
1 

p = g = O. m The condition 

that the mapping is nonsingular. 5 That is, 

is well-defined and analytic on the image 

The number nf' is the codimension 

the inverse 

"'p 
U of p 

U ." 

of ~ at 

is the dimension of ..R:J at p. The coordinates 

ensures 

mapping Zp(G) 

p, and n - mP 

are 

called local coordinates of..<8 at p. They are adjusted so that 

D. Analyticity on Analytic Submanifolds 

If a function is defined near p only on points of an ana~ytic 

submanifold ~ (of dimension <n) then the usual definition of 

analyticity breaks down, because the function is not defined on a full 

neighborhood of p. 

tion: 6 a function 

~ that contains p 

However, there is a completely natural generaliza-

F defined near p only on an analytic submanifold 

is said to be analytic at p 

is an analytic function at G = 0 of the local coordinates 

g P".g P 
m+l' n of ~ at p. 

The fact that the mapping GP(Z) is nonsingular ensures that 

this definition of analyticity is independent of the particular set of 

local coordinates used to define analyticity at p. 

This definition of analyticity involves only the values of F 

on the manifold ~ If there were a function F(Z) defined in a 

full neighborhood of p of ~, and analytic at p, then the restric

tion of this function to.;:J would clearly be analytic at p, since 
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then FP(G) = F'(zp(G)) would be analytic in all the giP at G 0, 

P P and hence also in the local coordinates gm+l , .•. ~ . 

Conversely, if F defined on A8 near p is analytic at p, 

then there exists an analytic function F'(Z) defined_on a full neigh-

borhood of p that is analytic at p and. that coincides with' F on 

~ near p. For instance, one can trivially extend FP(G) to a 

function FP(G) defined and analytic in a full neighborhood. of G 0. 

Then the function F'(Z) defined by F'(Z) E F'P (GP (Z)) has the 

required properties. Thus one can locally extend a function F 

defined only on .AI and analytic at p to functiori F'(z) analytic 

at p. This extension is highly nonunique. And generally these 

various local extensions will not fit together to give a global 

extension. 

The above remarks show, however, that the definition of 

analyticity given above is equivalent to the following pne: F 

defined on.AJ is analytic at p of..tJ if there is an F'(Z) 

that is analytic in Z at p (in the usual sense), and that coincides 

with F on ..tJ in some finite neighborhood of p. (This does not 

imply, however, that there is a single global function F'(Z) defined 

on a full neighborhood of ~ .) 

E. Analyticity on the Mass Shell 

At points of the restricted mass shell Wc the above definition 

is applicable. For the definition of analyticity on the mass shell 

'fIlc we give two possible candidates: 

'f 

.. 
-, 

, ! 

, I 

, i 
i 
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A function F defined only on ~ c 
is said to be analytic in 

the "weak sense" at p of tm ,.( c if for some neighborhood U 'PC eM 
c "'c 

of P the function F 

U/ n Wc' 

is continuous on uP 
c 

and analytic on 

A function F defined on only 1?7 c is said to be analytic in 

the "strong sense" at p of e)?? "Ic if F is the restriction to crrtc 

of a function F(Z) defined and analytic in a full neighborhood of p. 

These two definitions are not obviously equivalent. But 

Hepp7 has noted that in fact they are equivalent, due to a theorem by 

Oka. 

Thus we may use either of these definitions. 

F. Fundamental Properties 

The definition of analyticity on ~ given above is the c 

natural one. But is it useful? Do the usual consequences of analyticity 

carryover? Mathematicians have given a lot of attention to this 

problem, and the answer is yes. The fact that one does not have a 

global set of basic coordinates, but must generally use different sets 

of local coordinates at different points, does not disrupt things very 

much. In particular, the following properties hold: 

1. AnalJ~ic Continuation. Analytic continuation on the 

variety is defined in essentially the usual way. This continuation is 

unique: it does not depend on the choices of local coordinates. 

2. Cauchy-Poincar~ Theorem. A contour integral over a smooth 

(m-n) real-dimensional contour in an m-n complex-dimensional 

analytic submanifold can be continuously distorted through a domain of 
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analyticity in this submanifold without changing its value, provided 

the boundary remains fixed. The contour has (m-n) real dimensions, 

whereas the manifold has 2(m-n) real dimensions. The contour integral 

is defined by integrating in the local variables, but with the 

appropriately signed Jacobian dZ/dG =' J-l . For details see Ref. 8. 

3. "Mandelstam" Representation 

Let (Si} be a finite set of (nonconstant) polynomials in the (sf 0.<.(. f "" ,,~) 

n 'variables z .. Let C. be a curve in the S. plane. 
J. J. J. 

the inverse image of C .. (It will be a set of codimension 
J. 

n 
Suppose V is an £ dimensional algebraic variety in£ 

Let C,i be 

one in C
n 

And suppose 

F is defined only on V and is analytic at all points of D ;:; V - U (!., . . 
J. 

Let Rc be a large rectangular box in £n. Then F on D n Rc can be 

expressed as 

F(Z) , 

where 

= J 
R 

c 

£ 

L\ (S') K(Z, S')lT 

j=l 

, 
Si(A,j) -Si(A,j)(Z) 

and B(Z) is a similar contribution from the boundary of Re. The 

function L\(S') is the £-fold multiple discontinuity at the inter-

section of the £ cuts e., 
i(A,j)' and K(Z,S') is a known kernel. 

This is the generalization of the Mandelstam representation to 

a function defined only on an algebraic variety. For more details see 

Ref. 9. 

.. 

iI 
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These properties show that the natural definition of analyticity 

introduced above is also a useful definition. For other useful 

properties see Ref. 10. 
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III. CLUSTER DECOMPOSITION AND LANDAU SURFACES 

A. Cluster Decomposition 

The n-particle amplitude is assumed to contain terms corresponding 

to different disjoint subsets of the n particles interacting only 

among themselves. This decomposition into terms corresponding tQ.differ

ent clusters of particles interacting among themselves is called the 

cluster decomposition. 

The term of an n-particle amplitude corresponding to all n .. 

particles interacting with each other is called the connected part of 

that amplitude. This same function is assumed to represent the inter

action of this cluster of particles also when they occur in a larger 

reaction. A derivation of this cluster decomposition from physical 

requirements is given in Ref. 11. 

B. Bubble Diagram Functions 

The unitarity equation is 

or equivalently 

= 

-1 
S 

I , 

Insertion of the cluster decompositions of S 

equations like 

'1 

a.nd 
-1 

S into 

.. 

If 



i 
:i 
I! 
I' 
J, 

I 
I 
!' 

I: 
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and 

s = , 

etc., decomposes the expressions on the two sides into sums of terms. 

These terms are conveniently represented by bubble diagrams. Fo'r 

example, a term in the right side of (3.4) for the case of four 

incoming and four outgoing particles is represented by the bubble 

diagram in Fig. 1. 

Fig. 1. A bubble diagram E representing a term FB on 

the left side of (3.4), for the case of four incoming 

and four outgoing particles. The plus bubbles represent 

the cluster terms of S and the minus bubbles represent 

the cluster terms of 
-1 

S . The lines represent mass-

shell particles and there is a mass-shell integration 

over all internal lines. 

P · 1 h b . 12 f t' h b bbl reClse ru es ave een glven or conver lng eac u e 

diagram E into a well-defined function FE. Equations that arise 

from the cluster properties of S and 
-1 

S then take the form 
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= o , 

where e. . is a class of bubble diagrams. 

C. Landau Singularities 

Insertion of the cluster decompositions of S and -1 
S into 

equations like (3.3), (3.4), and their generalizations, gives nontrivial 

equations of the form 

± 

S ± 
c 

B 
F , 

where is the connected part of These expressions for 

can be inserted in place of the corresponding factor on the right to 

give still other equations of this same form. 

The conservation law of energy-momentum (2.2) is satisfied by 

the n-particle amplitude, and by its connected part. 13 Because of this 

constraint the various individual terms in the integral equations (3.6) for 

a given connected part will vanish below certain corresponding thresholds. 

But they will not in general vanish just above this threshold. Thus 

the individual terms in these expressions for the connected part must 

generally have ~ingularities at these thresholds. These explicit 

14 singulariues are known to be confined to Landau surfaces. 

It is generally the case that the explicit singularities of 

certain of the terms on the right of (3.6) cannot be balanced by the 



" 
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explicit singularities of the other terms on the right. This means that 

some of the S ±, must themselves have singularities, provided they 
c 

are not all zero. 

Maximal analyticity asserts that the functions_ S ± have no c 

physical-region singularities except those required by the equations 

(3.6). The statement of maximal analyticity given in Ref. 14 says 

more: it requires; the singularities of S ± 
c 

to be confined ~o the 

union of the surfaces of the singularities explicitly appearing in the 

various terms of (3.6), and hence to the union of all Landau surfaces. 
" 

Certain "iE, rules" . were also required. These two conditions on the 

allowed singularities follow from causality requirements. 
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The macrocausality condition itself will be discussed in the 

second lecture. One of its consequences is that the physical-region 

singularities of S ± 
c 

(divided by the conservation law 5) are 

confined to the positive-a branches of the Landau surfaces. These 

surfaces will be described in Section V. 

This positive-a rule was obtained originally by Landau in his 

study of singularities of Feynman diagrams. In that context the 

positive~ rule arose from the iE resolution of the singularity of 

the Feynman propagator function. That arose in turn from a causality 

requirement. The physical origin of the positive-a rule is thus 

the same for us as for Landau. 

B. iE Rule 

Macrocausality also gives the important iE rule. This 

rule assert that each connected part (divided by the conservation law 

delta function) can be represented as the limit of a unique analytic 

function. It moreover specify the set of allowed direction from 

which the limit is to be taken. This direction is, roughly speaking, 

the intersection of the "upper-half planes" associated with the various 

singularity surfaces that pass through the point. The precise defini-

tion is given later. 

It should be noted that the various individual terms of the 

equations (3.6) that according to maximal analyticity generate t.he 

• 
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+ 
singularities of Sc- do not generally satisfy this iE requirement. 

In particular, they generally vanish on one side of their threshold 

singularities but not on the other. Thus the functions on the two 

sides are certainly not parts of a single analytic function. The iE 

rule therefore demands strong connections between the singularities of 

the various terms of (3.6). 

),> 
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V. THE ANALYTIC STRUCTURE OF L + 

A. The Landau Equations 

The integrations in the, definition of a bubble diagram function 

FB are effectively constrained by the yarious mass-~hell and conserva-

tion-lawdelta functions. A product of delta functions signifies that 

one should transform to a set of variables that contains the arguments 

of all the delta functions as independent variables, and th~n omit the 

corresponding integrations. The condition for such a set of variables 

\' t 
to exist is that the corresponding Landau equations 'not be soluble. 

Landau equations are associated with Landau diagrams. A 

Landau diagram D is a diagram that is topologically equivalent to a 

spacetime diagram representing a multiple-scattering process. Thus 

the vertices of D, which correspond to the individual scattering 

processes, are connected by lines corresponding to particles moving 

forward in time. This condition imposes a certain partial ordering 

requirement on the vertices: it must be possible to draw all the lines 

of D directed from right to left. 

A real four-vector variable p. is assigned to each line of 
J 

D, and a real scalar variable a
j 

is assigned to each internal line 

of D. Then the Landau equations corresponding to D are the mass-

shell constraints, 

= , 

for each line of D, the energy-momentum conservation law, 
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LP j 
out of V 

for each vertex· V of D, and the loop equation 

= o 

loop 

for each closed internal loop of D. The sign in (5.3) is plus if the 

line is directed along the loop, and minus otherwise. 

The vector can be regarded as the spacetime distance 

between the creation and annihilation of particle j. The loop equation 

says that the sum of these vectors around any closed loop of the 

diagram must take one back to the starting point. The condition that 

O:j be positive is the condition that the particle moves forward in 

time. 19 

The Landau surface L(D) is the set of p. 
J 

corresponding to 

external lines of D such that the Landau equations for D have a 

solution with some 0:. f O. The set 
J 

L+(D) is the subset of L(D) 

such that the Landau equations can be satisfied subject to the additional 

conditions 

B. The Basic Diagrams D~ 

Suppose two vertices of some D are connected by a set 

consisting of more than one line. One can insert on these lines 

trivial extra vertices corresponding to forward scattering, without 
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changing the Landau surface L+(D). Thus each point of L+(D) belongs 

to the L+(~) 
A

of an infinite number of different D. 

It is convenient to deal with diagrams that do not have these 

trivial extra vertices. Let a trivial part of a diagram D be a 

part consisting of internal lines that is connected to the rest- of 
the diagram only at its initial and final vertex, but which has also 

other vertices. A diagram D having no trivial parts is called a 

basic diagram, and is denoted by D
i3

. Any D can be generated by -

inserting trivial parts into some D
i3

. 

It is easy to see that 

+ U + - + L ~ L (D) = U L (D
i3

) 

That is, every positive-a point lies on the L+(D
i3

) of some basic 

diagram D
i3

. 

Only a finite number of Di3 give L+(D
i3

) entering any bounded 

portion of the physical region,20 but an infinite number of D have 

this property. 

C. The Basic Surfaces LO+(D@) 

Let err; 0 be the points of ??7 such that at least two initial 

are parallel or at least two final are parallel. Let 

be the points of L +(D
i3

) - ~O such that the Landau equations for 

have no solution with some a. = O. 
J 

Then one can show2l that 
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The basic surfaces LO + (D
t3

) . are codimension-one analytic 

submanifolds of ~- crt? 21 
O· That is) any point p on LO + (D

t3
) has 

a neighborhood uP C 9'rj - -CJ'J? 0 such that LO +(De) coincides in uP 

with the set f = 0, where f is an analytic function-· (of the local 

coordinates Of?'r]) in uP and satisfies \7f 4= 0 throughoutVP. 

Thus L+ - ~o is the union of these simple surfaces, each having a, 

well-defined normal, whose direction changes gradually as p moves on 

it. 

This property of L+ is important in the formulation of the 

iE rules. Let the sign of f be chosen so that \7f points in the 

direction that would move if the internal masses m. 
l 

were 

formally increased by a common scale factor. Then the "upper half 

plane" corresponding to at point p is defined by 
\ 

1m G(p') . \7!~p)?, _~, _YJ_h~T~ __ p ' __ is .. a_ v:aY-iable-pei-ntnear- p ,. and· GC-p')· -- . 

is the set of local coordinates of p'. 

If only one basic surface LO+(Dt3) passes through p of 

then the iE rule says that S + /5 
c I 

near p can be 

represented as the limit of a function analytic in a domain in the 

upper-half plane corresponding to Lo+(Dt3) at p. 

If there are several LO+(Dt3) that contain p, then the 

analyticity domain lies in the intersection of the corresponding 

upper-half planes, provided this intersection is nonempty. 

Th h of L+ - &:)no ere are, owever, points p "( such that this 

intersection is empty. 



-20- UCRL-18769 

These points would give serious trouble, were it not for the 

independence proper~y described below. For if the contours of integra

tions in the functions FB were trapped between such surfaces then the 

functions FB would be nowhere analytic, and the whole S-matrix 

analysis of singularities would break down. 

The vital independence property, which allows one to get 

around this problem, asserts that S has a decomposition 

S , 

where S[D
f3

J has singularities only on 

(5·6) 

21 It can be shown 

that for any single Df3 the iE rules corresponding to the basic surfaces 

of D + 
f3 

and all its contractions are mutually compatible: for any 

P of L+(Df3) these various basic surfaces L + o . at p have 

upper-half planes that have a nonempty intersection. The iE rules 

are applied to the individual terms of (5.6). 

The basis of the independence property is discussed at the end 

of the next ~ection. 
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VI. 

A. Assumptions 

_l6 22 
THE FUNDAMENTAL THEORE~ , 

1. Positive-a Rule. The singularities of the connected parts 

of 8/5 and 8-
1 /5 are confined to L+ (5 is the cQnservation law 

delta function). 

2. Independence Property. In any bounded portion R of the 

8 [and similarly of $-lJ physical region the connected part of 
± 

decomposes into a sum of terms 8[D~J, one for each basic diagram D 
~ 

± 
such that enters R, and the singularities of 8[D~J/5 in 

R - ~O are confined to L + (D~) . 

3. iE Rule. 

Ip+[D~J Crespo Ip-[D~JJ be the (necessarily I'lOnempty) intersection of 

the upper-half Crespo lower-half] planes corresponding to the basic 

surfaces L + 
o through p that are associated with D~ and its 

±, 
contractions. Then the function 8 [D~J/5 can be represented over 

1?-Cfrt o as the limit 1m p' ~ 0 of a function that is analytic 

(and unique) in the set 

(p' Re p' : pER - ~, p'E C
p 
n 5 } 

P 

where 5 is a (sufficiently small) neighborhood of p. p 

on W( - L+(D~) - Cllfo the set C is the whole space. 
p 

L+(D~) - 'fr/o the set C is an open convex cone lying p 

For 

For 

in 

Ip ±[D~J. This be made + cone can arbitrarily close to Ip -[D~ J 

p 

p 

in 

on 

5 
p 

by taking 5 
P 

sufficiently small. This representation is discussed 

in Ref. 22. 
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4. Boundedness. For any unit-normed individual pa.rticle wave 

functions' 1jr. 
l 

one has 

where "norm" is the L 2 norm of 1jr. [This bound follows directly 

from the probability interpretation of S, the constant C being 

unity. This boundedness property is used to show that contributions 

to FB from small neighborhoods of points corresponding to 1l?o go to 

zero like the volume of the neighborhoods. ] 

B. Consequences 

Let B be any connected bubble diagram. Then FB satisfies 

the following properties: 

1. Generalized Positive~ Rule. The singularities of FB/o 

are confined to the union of the Landau surfaces L ± (DB)' A DB is a 

diagram constructed by inserting some Landau diagram Db into each 

bubble b of B. The surface is the Landau surface corre-

sponding to DB' with the additional stipulation that the Landau 

parameter a
j 

corresponding to a line j that comes from inside a 

bubble b of sign crb must satisfy crb a
j 
~ O. The original lines 

of B, which lie outside all the bubbles b, have no such constraint. 

2. Generalized Independence Property. Let B be the connected 

bubble diagram. In any bounded portion R' of ?'It the function FB 
\ 

decomposes into a finite number of term~ one for each way a set of 

basic diagrams can be introduced into the set of bubbles b of B, 
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subject to the condition that these basic diagrams D~ give surfaces 

L+(D~) that enter the regions allowed by energy conservation. The 

singularities of the term FB[D
B

] corresponding to the diagram DB 

+ 
are confined to L -(DB)' 

3· Generalized if . Rule. For any p 
+ 

of L -(DB) - 1170 let 

(a. (p), p. (p)} be the internal parameters corresponding to a solution 
l. l. 

at p of the Landau equations corresponding The corresponding 

"upper-half plane" is defined by 1m a(p' ,P ) > 0, where 

a(p', p) 

Here p' is a variable point of ~c and (Pi(P')} is any set of 

values of the internal Pi of DB that satisfy the conservation law 

constraints corresponding to the external values p'. [The function 

a(p', p) will not depend on the particular way the Pi(P') are 

chosen.] 

Let 1p[DB] be ,the intersection of the upper-half planes 

corresponding to all solutions ' (a. (p), p. (p)} 
1 1 

of the Landau 

+ ?'It O[DB] equations of L -(DB) at p. Let be the subset of points 

p of + L-(D
B

) - ?'rto such that 1p[DB] is empty. Then for any bounded 

region R FB 
..> can be represented ov~r R - ~o ?'>?O[DBJ as the 

limit 1m p' .~ 0 of a function that is analytic (and unique) in the 

set 

defined just as before, with DB in place of D~. 
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4. Generalized Boundedness. For any unit-normed individual 

particle wave functions one has13 
\jf. 

l 

B F [\jf.] < C 
l 

C •. ' The Justification of the Independence Property 

The iE rule derived from macrocausality in Ref. 18 applies 

specifically to points that lie on only one surface L+(D
t3
).The 

independence property allows this rule to be applied additively at 

points lying on several such surfaces. 

This independence property, or at least the implied additivity 

of physical-region singularities associated with different DB' is 

crucial to the S-matrix approach. It can be justified in several 

different ways. 

One way to justifY,the independence property is to invoke (for 

the first time) maximal analyticity. The point is that the independence 

property is regenerated by (3.6), in the sense that the fundamental 

theorem ensures that the right-hand side of any equation (3.6) can be 

split into a well-defined set of terms F(D
B

), one for each 

that the positive-a singularities of F(D
B

) are confined to 

DB' such 

+ L (D
t3

): 

positive-a singularities corresponding to different DB are separated 

into different terms. 

There is a tacit assumption at this point that the non-

positive-a singularities in (3.6) exactly cancel out, and thus do not 

affect the physical-region analytic structure. This cancellation 

assumption, though an extra technical assumption, is highly plausible, 

and it can very likely be proved. 23 

j 
i 
1 ' 
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Another way to phrase the argument is to say that if one assumes 

the independence property, then one can derive from the cluster properties 

of S and S-l explicit formulas for the discontinuities. These 

formulas imply that the singularities associated with-different basic 

diagrams are independent. Therefore singularities that violate the 

independence property are not required by the cluster properties of S 

and -1 
S . Hence maximal analyticity says they are not present. 

The global decomposition demanded by the independence property 

is exhibited in Section VIII. 
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VII. THE GENERAL PHYSICAL-REGION DISCONTINUITY FORMULA
23 

The formula for the discontinuity of S around Lo+(D(3) is 

obtained by re~lacing each vertex V of Dn by the entire S matrix 
p 

corresponding to V, and replacing the set of lines _a joining each 

pair of vertices of D(3 by 
-1 Sa ,where 

-1 S -- S 
a a Pa . Here Pa is zero when acting on a set of lines of mass 

less than Ma , and is unity otherwise. The mass of a set of lines is 

the sum of the rest masses corresponding to those lines, and 

the mass of the set of lines a of 

M· a is 

The action of on S is to effectively shift it onto 

another sheet. Thus the -1 Sa can be eliminated from the discontinuity 

formulas in favor of functions S on other sHeets. The utility of 

this is not apparent, because one will ultimately want to eliminate 

these extra functions in favor of the physical ones)which is done by 

means of -1 
Sa 

Notice also that the single -1 
Sa generates the unphysical 

sheets of the S's corresponding to all the different choices of the 

other (free) variables of S: each generates the unphysical 

sheets of an infinite number of different functions S. Thus the 

operators -1 
Sa provide the compact and convenient way to express the 

information about these sheets. 

Finally the -1 
S - have simple a 

. t· 23 lE proper les, and the 

fundamental theorem can be readily extended to functions containing 

them. This provides the tool for treating singularities that lie at 
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real points on the various unphysical sheets. One effectively expresses 

the functions on these sheets in terms of bubble diagram functions, to 

which the theorem applies. 
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VIII. TWO FEYIifMAN-LIKE ON-MASS-SHELL FORMULAS FOR S 

A. An Infinite-Series Expansion for S 

The equation SS-l = I has the formal iterative solution 

s (8.1) 

where R± = ±(S±l - I). If one converts this to bubble diagram functions 

23 one obtains 

s (8.2) 

where the sum is over all topologically distinct bubble diagrams B 

all bubbles of which are nontrivial minus bubbles. (Trivial bubbles 

have exactly one incoming and exactly one outgoing line.) The 

nontrivial minus bubbles now represent the connected part of R-. 

B. A Finite Expression for S 

There is one term in (8.2) for each Landau diagram D. If one 

groups together the terms corresponding to each basic diagram DB 

gets 

S 

one 

The term S[DBJ is obtained by replacing each vertex of DB by the 

corresponding minus bubble and each set of lines a of DB by S(a), 

where is the sum of terms of S of (8.2) such that the mass of 

the lines at all scattering stages is less than or equal to Ma , the 

mass of the lines of a. Thus contains all the terms of S that 
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contribute just above the normal threshold at Ma, but has no higher 

normal threshold singularities. 

If one now combines all terms corresponding to D's 
f3 

that 

have the same structure s (i.e. ,that differ only ~Y the values 

of the Ma), then the various S (a) connecting the two vertices·· 

corresponding to a add to give S, which acts between the bubbles 

that represent these two vertices. 

A typical term is shown in Fig. 2 

Fig. 2. The diagram representing a contribution to S 

corresponding to a triangle structure s. The shaded 

strips represent arbitrary sets of lines. 

Only a finite number of different structures will contribute 

in any bounded portion of the physical region. 
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I. THE PHYSICAL IDEAS 

A. Classical Limit 

Macrocausality requires that classical ideas and estimates 

become valid in classical limit~. In ordinary quantum-theory the 

passage to classical limits is ensured by the Schroedinger equation. 

In S-matrix theory there is no Schroedinger equation, and the corre

spondence to classical theory must be introduced in another way. 

B. Finite-Range Interactions 

Macrocausality also embodies the requirement that interactions 

be of finite range. Massless particles and their effects are thus 

ignored. 

C. Causality in Classical Physics 

What is "causality"? Philosophers have debated this at length. 

An example of what I mean is provided by a rock thrown at a window: 

the window breaks when the rock hits it, and not before. Another 

illustration is a set of moving billiard balls: they are deflected when 

they hit each other, and not before. The common phrasing is that the 

deflections are "caused" by the impacts. But the essential phenomenolog

ical fact is the existence of a relationship between changes of velocity, 

on the one hand, and spacetime separations on the other. 

A quantitative description of the billiard ball situation is 

provided by Newton's laws of motion, as embodied by the laws of 

conservation of energy and momentum. Each ball is conceived to carry 
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conserved energy-momentum, which is transmitted between them at impact. 

The size of the region of impact corresponds to the range of the 

interactions. 

A notion of causality is contained in this picture: the 

relationship of things at an earlier time to things at a later time is 

understood in terms of the idea of particles that move from one region 

of impact to another. Their motions are restricted by the requirement 

that the conserved energy-momentum carried by the particles is trans

mitted between them only during their impacts. 

This notion of causality based on Newton's laws of motion is 

the primitive causality notion in physics. It has predictive power, 

and this power would become exact in certain idealized limits. 

This latter fact suggests a more restrictive notion of 

causality, namely that thtngs at one instant of time exactly determine 

things at all later times. 

Attempts to implement this second notion of causality lead to 

difficulties. One must introduce new "things", besides just the 

particles, to represent the exact situation at the instants of time 

during the interaction. These new things have no clear status in 

phenomena, because all attempts to measure them are disrupted by the 

interactions associated with the process of measurement. This physical 

ambiguity has attendant mathematical ambiguities, and it is not at all 

clear that phenomena actually have the structure ascribed to it by this 

notion of causality. 
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The S-matrix viewpoint is that one should not try to implement 

this restrictive notion of causality. Instead, one should try to 

determine the mathematical structure of correlations between measure

ments within the broader class of theories not restric:ted by requiring 

the existence of some preconceived type of representation of systems 

at instants of time. Also, one should focus attention on measurements 

for which a decoupling can be made between a measured systemand the 

measuring devices. 

Although in S-matrix theory the notion of causality based on 

instants of time is not enforced, one must not lose the macroscopic 

classical structure that underlies the primitive causality notion. 

Macrocausality is the requirement that this classical structure emerge 

in the appropriate macroscopic limit, and that moreover classical 

estimates become valid in this limit. 
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II. THE MATHEMATICAL IDEAS 

A. Classical Limit 

Consider first a freely moving particle of mass m. Let its 

momentum-space wave function be 

-7-7') 

-rT(~-p)~ 2 2 0 x(p) e .. 5(p - m ) Q(p ) , (2.1) 

where P is a mass-shell four-vector (p2 = m2), and x(p) is an 

infinitely differentiable function of compact support. Suppose further 

that x(p) is a.na.lytic in some neighborhood N(P) of P, and is 

bounded by unity both in N(P) and at real p. The class of all such 

~rT(P) will be called n(p, N(P)). 

Consider next the trans~ated function 

UT( , 
~rT p) 

Its Fourier transform is 

ip,uT 
e 

J UT() e -ipx dp 
~rT p 

(2.2) 

We shall be interested in the limit T -700. Consider therefore 

the "scaled coordinate" 

Xl (2.4) 

The physical displacement UT in x space is a constant displacement 

U in Xl space. 

.. 
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The function 
~ U'T 
cP y'T (x '-r ) has an important property specified 

in the following theorem. 

Theorem A. Let r(p, u) be the line in x, space that contains u 

and has direction P. Let R be any closed bounded ~et in x' space 

that does not intersect r(p, u). Let st ~ steP, N(P)) be some fixed 

class. Then there are three constants 

C > 0, ex> 0, and y> ° 
such that 

for all T ~ 0, all x' in R) all positive y ~ YO' and all cpY'T 

in D. 

The content of this theorem is this: the function "-' U'T( ) cp X''T, 
y'T 

considered as a function of T and x', collapses exponentially to the 

line r(p, u) as T ~OO. 

The limit 'T ~oo corresponds to a classical limit. The 
1 

momentum spread 6p goes to zero like ,]:-2, and the coordinate spread 
1 

6x' also goes to zero like ,]:-2. The trajectory region in x'-space 

collapses to a classical trajectory, i.e., to the line r(p, u). 

In S-matrix theory the only role of Plancks constant is to 

fix the scale of space and time. That is, the x that occurs in 

exp ipx should be written as where is the physical 

spacetime coordinate and ~ is Planck's constant in the units used to 
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measure and p. If one writes x = x j-h = x' 1", ph 
one sees that 

holding the physical coordinates fixed and taking the limit 11 ~ 0 is 

the same as holding x' fixed and taking 1" ~oo. Looked at the other 

way, holding x' fixed and taking 1" ~ 00 expands the physics into 

the macroscopic domain. 

Consider next a scattering process involving n particles. 

It is described by a corresponding transition amplitude 

A S[·cp * '.'cp ] 
1 ' n 

(2.6) 

Let each of these wave functions cpo be replaced by a wave function 
1 

of the form (2.2). Then A becomes [suppressing the unimportant 

dependence on the functions X(p)] 

The limit 1" ~oo, considered in x' space, gives a classical limit 

in which the 

trajectory 

ith (initial or final) particle has the spacetime 

r(p., u.). 
1 1 

B. Finite-Range Interactions 

Any finite interval in the actual physical space x reduces 

to a point in x' = x/1" space, in the limit 1" ~oo. Thus any finite-

range interaction becomes a zero-range interaction in x' space. 

Consider the classical multiple-scattering processes in x' 

space that would be allowed if only zero range interactions were 

allowed. They are represented by multiple-scattering diagrams D with 
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point interaction vertices. For certain values of the set of arguments 

(p, u) of AT(P ... p. u ···u)
l' n' l' n 

there exists a multiple-scattering 

diagram D that would fit onto the corresponding external lines 

r(p., u.). The points (p, u) co:rresponding to thes~_ sets of values 
~ ~ 

(of the 8n components) are called causal. The points (p, u) -that 

are compatible with no multiple-scattering diagram are called noncausal. 

Most points (p, u) are noncausal, since generally the lines r(pi , u i ) 

will not intersect at all, and there will therefore be no possible --

initial vertex of D. 

In these multiple-scattering diagrams D we allow internal 

lines corresponding to all possible physical particles. These lines 

are required to begin and end at point vertices, at which energy-

momentum is conserved. The external lines are fixed by (p, u). 

C. Macrocausality in S-Matrix Theory 

Macrocausality requires that classical ideas and estimates 

become valid in the limit T ~O. To make the cla.ssical estimates one 

\AT \2 regards as the probability function for a statistical ensemble 

of classical scattering experiments. The coordinate-space and momentum-

space wave functions of the initial particles define the classical 

momentum-space and coordinate-space distributions of the statistical 

ensembles of initial particles, and the wave functions for the final 

particles represent the corresponding detection efficiencies. ll The 

estimates are made by summing the properly weighted contributions of 

all the possible classical scattering processes. These scattering 



-38- UCRL-18769 

processes are required to proceed via finite-range interactions: each 

particle is conceived to carry conserved energy-momentum, which can be 

transmittedbetween them by interactions whose effects are exponentially 

damped under spacetime dilation. 
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III. THE MACROCAUSALITY CONDITION 

The general macroscopic causality requirement has the following 

specific consequence: Let p ~ (p ... p )' and u ~ (u ···u) 
l' n , l'n 

represent the arguments of A'f. Fix P and let c;( (p) be the set of 
, .-'\ 

all u such that (p, u) is noncausal. Let a he some closed" 

bounded subset of a.. (p). Let the classes n. ~ n(p., N. (P.)) 
~ ~ ~ ~ 

be fixed. 

Then there are three constants C > 0, ex > 0, and Y > ° such that 

< -exy-r 
C e 

for all 'f ~ 0, all 0< y < YO' all positive Y < YO' a.nd all ct'Y'f(Pi) 

in n .. 
~ 

To get this condition one first uses the bound IA'f1 <;1 , 

which follows from the probability interpretation, to reduce the 

'~roblem to that of the asymptotic behavior. 

"" For any u in a it is, by definition, impossible to find a 

classical process corresponding to P. Thus everyone of the processes 

IA'f12 contributing to must fail in some way to satisfy all the 

classical conditions. 

If one allows the energy-momentum to be transmitted over any 

finite distance 6 in Xl space by any' finite-range interaction, then 

the contribution from this process must contain a factor -a6'f e ,where 

a > 0 is some positive constant. Thus for some sufficiently small ex 

the contribution from such a term would satisfy the required bound. 

There might be a process D for which the momenta of the 
I 

initial and final particles of the statistical ensembles are not 
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exactly those given by P. But then there would be a corresponding 
2 

factor e -y-r [(CVi) coming from the wave functions CP-ry(p). 

Another possibility is that the space position of some inter-

action is not on the corresponding line r(p., u.), which defines the 
l l 

center trajectory of the statistical ensemble corresponding to particle 

i. In this case the required factor comes from Theorem A. 

For most processes all three of these things will happen. 

But continuity properties ensure that the minimum of the corresponding 

constants ex in (3.1) is some strictly positive ex > O. The bound 

(3.1) with this ex holds for all processes, and hence for their 

weighted average. 

The macrocausality condition used in Ref. 18 includes, in 

addition to (3.1), an analogous condition for y = O. The fall-off 

in this case is no longer exponential, but merely rapid (i.e., faster 

than any inverse power of ,). This rapid fall-off comes from a rapid 

fall-off property of 
~ u, 
CPo, (x',), analogous to (2.5),that arises from 

the infinite differentiability of X(p). 

Notice that the macrocausality condition refers only to 

noncausal situations; it gives a bound in cases where no classical 

process can occur. Since it says nothing about cases where a classical 

process can occur, it is considerably weaker than the requirement 

stated in the preceding chapter. 
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IV. CONCLUSIONS 

As discussed in the first lecture, the macrocausality condition 

implies the positive~ rule and the iE 18 rule. And conversely, thes~ 

1 t ' 't t" 1 th' l't' d't' 18 . ana y lCl Y proper les lmp y e macrocausa 1 .y con 1 ~on, 

Th~ macrocausality condition refers only to noncausal points; 

it says nothing about situations in which classical processes are 

possible. Correspondingly, the positi ve~ and iE rule do .pot assert 

that any singularity actually exists; they merely allow certain singu-

larities to exist, 

On the other hand, the cluster properties of S andS-l 

± 
require the fUnctions S /5 to have singularities, 

The main result described in the first lecture is essentially 

this: if one permits only those singulariti.es of S= /5 allowed by 

macrocausality, then the equations Gnat follow from the cluster 

decomposition of SS-l = I, and the similar identities, require all 

of the allowed singularities to actually be present, That is, discon-

tinuity formulas are derived for all allowed singularities, and these 

generally give a nonzero discontinuity, 

It 'is interesting that; '. although the macrocausali ty 

requirement is invoked only for noncausalpoints, the derived discon-

tinuity formula& are in complete harmony with macrocausality requirements 

at causal points, That is, the discontinuity formulas are such as to 

give a spacetime structure to macroscopic phenomena that is in complete 

accord with the multiple-scattering picture of classical physics,ll 
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Thus from the cluster properties plus the macrocausality 

condition associated with noncausal points we have deduced the complete 

general physical-region analytic structure, and also the multiple-

scatterin~ structure of macroscopic spacetime phenomena. 

The reciprocal manner in which the various ideas lead to each 

other permits the assumptions to be stated in various ways. In the 

above discussion the cluster properties and macrocausality far. noncausal 

points were taken as the starting points. The cluster properties them-

selves can be derived directly from very weak macroscopic spatial 

1 t . t· 11 c us er proper les. Thus the basic assumptions are simply macroscopic 

spacetime fall-off properties that embody the requirement that inter-

actions have finite range. 

A slightly different way of stating the assumption is to say 

that all physical-region singularities are associated with particle 

processes: S-matrix theory is essentially .a particle theory (as 

opposed to a field theory) based on analyticit~ and the basic assumption 

is that the only singularities are those associated with particles. 

This requirement means specifically that all physical.,.region singularities 

are positive~ singularities that obey the plus iE rule. The 

justification for this specific interpretation of the general statement 

(that all singularities are associated with particle processes) is placed 

on a sound basis by the collective results described in these lectures. 

Once the allowed singularities are restricted to those 

associated with particle processes, then the cluster properties 

actually require these singularities to be present. Thus we find that 

,~. 

.. 
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the only singularities actually present are those absolutely required 

by the cluster properties. And this property is by itself in a sense 

sufficient. For if the cluster properties can be satisfied with just 

these singularities, then these alone can be requirefrby the cluster 

properties. 

The formulation of the analyticity assumption of S-matrix 

theory as the statement that'the only singularities are those actually 

required by the cluster properties (together with other principles 

such as unitarity, etc.) has a certain philosophic appeal. But from a 

technical standpoint it raises difficulties. For it presupposes that 

the solution is unique. But the tremendous complexity of the entire 

problem makes it unlikely that man will ever succeed in actually 

proving ,uniqueness in the full global sense. This leaves one in 

eternal doubt as to the exact content of the basic assumption. 

The practical problem is never to prove uniqueness in the full 

global sense. Rather it is to understand the mathematical structure 

of observed phenomena. One starts with certain known aspects of the 

phenomena, and attempts to correlate these aspects with others, some of 

which may be unknown. The basic assumption in actual practice is that 

all singularities are associated with particle processes. This form 

of the assumption, which is given a well-defined meaning in the physical 

region by the analysis of macrocausality requirements, can be extended 

in a natural way to nonphysical-region singularities associated with 

unstable particles. 
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