RECEIVED UCRL-18769

ey SERCE %/Z

AADIATICS LA‘;&U&&P{'iORY
APk L 14oY

D
/ LIBRARY AN
l NOCUMENTS SECTION
»

N

TWO LECTURES ON S-MATRIX THEORY

Henry P. Stapp

February 19, 1969

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545
LAWRENCE RADIATION LABORATORYQ'?;A}
UNIVERSITY of CALIFORNIA BERKELEY

69L87-TY0N



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



a0

UCRL-18769
UC-34 Physics
TID-4500 (53rd Ed)

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No, W-7405-eng-48

TWO LECTURES ON S-MATRIX THEORY
Henry P. Stapp

February 19, 1969

]



1I.

III.

~idi- UCRL~18769

IECTURE I. PHYSICAL-REGION ANALYTICITY PROPERTIES

OF MANY-PARTICLE AMPLITUDES

Contents

Introduction . e e e B
Analyticity on the Mass Shell . . . . . . . . . « . . 3‘
A. The Mass Shell . . . v ¢ ¢ v v v v v v v « o o . . _5
B. Algebraic Varieties . . . ¢« « « ¢ v v v ¢ v e e 4 - 3
C. Analytic Submanifolds . . + v v ¢« v v v v v e w4 0 L
D. Analyticity on Analytic Submanifolds . . . . . £
E. Analyticity on the Mass Shell . . . . 6
F.' Fundamental Properties 7

1. Analytic Continuation . . . . . . . . . 7

2. Cauchy-Poincaré Theorem . . . . . . . . . Cee 1

3. "Mandelstam" Representation . . . . . . . . .. . . 8
Cluster Decomposition and Landau Surfaces . . . . . . . . . 10
A. (Cluster Decomposition . . . . . . « .+« . + . . . . . . 10
B. Bubble Diagram Functions . . . 10
C. ILandau Singularities . . . . « . « « « o o o o . . . .12
Consequences of Macrocausality . . . . . . . .o1h
A. Positive-q Rule . . . . . . . . . . . .. .14
B. i€ Rule . . . . . . . . . . ... . .14
The Analytic Structure of L' . . . . . 16
A. The Landau EQuUations . « + + v v v v v v v e o o o W . 16
B. The Basic Diagrams DB e e e e e e e e e . 17
C. The Basic Surfaces LO+(D5) T <




-V e

VI.  The Fundamental Theorem . . . . . . . .
A, Assumptions . . « « . ¢« ¢« v 0 v e e e 4 e e

1. Positive-0 Rule . « ¢ ¢ « o o 2 o« = =

2. 1Independence Property . . . . . . . . .
j. ie Rule . . . . . .. ; e e e e e e e e
4. Boundedness ; e e e e e e e e e

B. ‘Consequences R T

1. Generalized Positive-x Rulé e e e e e
2. Generalized Independence Property . . . . .
3. Generalized 1e Rule . . . . . . . . « . .
4. Generalized Boundedness L C e e e
C. The Justification of ﬁhe Independence Property
VII. The General Physical-Region Discontinuity Formula .
vVIII. Two Feynman-Like On-Mass-Shell Formulas for S
A. An Infinite Series Expansion for S . . . . . .

B. A Finite Expression for 8 . . . v v v v .« .

UCRL-18769

. 21

21

21

21

21

22

. 22

22

22

. 23
.24

2k

. 26

. 28

. 28

28



-vii- UCRL-18769

TWO LECTURES ON S-MATRIX THEORY

Henry P. Stapp
Lawrence Radiation Laboratory

University of California
Berkeley, California

February 19, 1969

ABSTRACT
The first iecture summarizes results obtained during the past
few years on the analytic structure of many-particle amplitudes in
the physical region.  The results are derived mainly from the cluster
decomposition and macrocauéalify requirements. The second lecture

describes the macrocausality requirement.



1- UCRL-18769

I. INTRODUCTION

Recent workl on the multiperipheral model has focused attention
on the properties of many-particle amplitudes in the physical region.
In this lecture I shall summarize the principal results obtained during
the past few years concerning the analytic properties of many-particle
amplitudes in the physical region. Only the assumptions and conclusions
are described. References are given to the proofs.

The results have been derived from S-matrix principles, and
one main aim is to clearly describe these principles as they apply to
this work.

The principal conclusions are a.description of the analytic
structure of the complete surface of physical-region singularities,
and a formula for the discontinuity around an arbitrary physical-region
singularity surface. This formula is similar to the one proposed by
Cutkosky, but there aré important differences. These are discussed.

Another important result is a fundamental theorem that describes
“the physical-region analytic structure of integrals of the general type
generated by the unitarity equations. The locations of the singularity
surfaces of all of these functions are specified, and the general rule
for continuing these functions around their singularity surfaces is
given.

Finally, two interesting expressions for S are given. The
first is an infinite-series expansion that resemkles the Feynman
expansion except that (1) each line of the diagram corresponds to a

physical particle (and the integrations are accordingly on-mass-shell),



-2- UCRL-18769

and (2) each vertex of the diagram corresponds to minus the physical-
region connected part of S_l. The second expression is similar,
except that now (1) the sum is only over "structure diagrams", and
(2) the propagator corresponding to edch line is the exact physical-
reglon S matrix. Because the sum in this second expression is over
structure diagrams, only a finite number of terms contribute in any
bounded portion of the physical region.

The n-particle amplitude is defined only on the set defined by
the conservation-law and mass constraints. The appropriate notion of
analyticity is thus the notion of analyticity on an "algebraic
variety." This is a standard mathematical concept, and a very useful
one. Because it is still unfamiliar to many physicists, I shall begin

by describing it.

>
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II. ANALYTICITY ON THE MASS SHELL

A. The Mass Shell

The n-particle amplitude is a function of n four-vectors p; -
However, it is defined only on the surface defined by the mass-shell

constraints
p.” -m," =0 (each i) , (2.1)

and the conservation laws
S - = 2.2
/_in};pi—og (2.2)
in ou

The set of complex four-vector p, that satisfy (2.1) and (2.2) is

called the (complex) mass shell ‘7nc'

B. Algebraic Varieties

A set defined by the vanishing of a set of polynomials is

called an algebraic variety by mathematicians. Since the left-hand

‘sides of (2.1) and (2.2) are polynomials in p;, the mass shell QT%

is an algebraic variety in the space of the n complex four-vectors p;-
An n-particlevamplitﬁde is sometimes expressed in terms of
fUncfions of scalar invariants. For the cases n > 5 this again leads
to an algebraic variety. For if one wishes to have a "basic set" of
scalar invariants such that all others are expressed uﬁambiguously in
terms of the basic ones, then the basic set must include more than just
3n - 10 elements, eveh though the dimension of the mass shell in the

space of invariants is %n - 10. In fact, the mass shell in invariant
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space is a (3n - 10) dimensional algebraic variety in an (n2 - 3n)/2

. . . s . G 2
dimensional space of basic invariants. Asribekov has shown how to

. [s]
chioose convenient basic sets of (n° - 3n)/2 scalar invariants. Recent )

works5 on the n-particle Veneziano formula make use of these sets.
Tolleru has expressed the n-particle amplitudes in terms of
‘ parameters of the Lorentz gfoup acting on the external particles.
In this space the mass shell is again an algebraic variety.
Thus from many points of view the mass shell is an algebraic
variety. To define analyticity on an algebraic variety we first

introduce the notion of an analytic submanifold.

C. Analytic Submanifolds

Let 7ﬁco be the points of ‘7%2 where all of the n four-
vectors p; are parallel. The set 9%2 - 7?20 = Wé is called the
"restricted" (complex) mass shell. It is an analytic submanifold in
the space of the n four-vectors p; - (A1l the masses m, are here
assumed to be strictly positive.)

An analytic submanifold is a set that is locally aﬁalytically
equivalent to a flat space. Specifically, an analytic submanifold of
an n- dimensional space of points Z = (zl,"\zn) is a set ;Qf such

that each point p of f has a (full) neighborhood W and set

(\!

P (z) = (élp(z),"'gnp(zi> of n functions all analytic in UY such
that J° = aGp/GZ is nonzero at each point of P  and such that o
coincides inside UP with the set defined by

glp(Z) = ggp(Z) = e gmp(Z) = O,bwhere m=m is some positive

~
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integer < n. Thus G°(Z) maps 4 NP analytically into the flat
space glp = ree = ng = 0. The condition J° = 3G°/3Z # 0 ensures
that the mapping is nOnsingular.5 That is, the inverse mapping 7P (a)

is well-defined and analytic on the image ﬁp of Upw

The number mP is the codimension of ,EJ at p, and n - m®
'is the dimension of 4 at p. The coordinates (gm+lp,--‘gnp) are

called local coordinates of ,qf at p. They are adjusted so. that

7P (0) = Z-

D. Analyticity on Analytic Submanifolds

If a function is defined near p only on points of an analytic
submanifold ‘Rg (of dimension <n) then the usual definition of
analyticity breaks down, because the function is not defined on a full
neighborhood of p. However, there is a completely natural generaliza-
tion:6 a function F defined near p only on an analytic submanifold
28 thét contains p is said to be analytic at p 1if FP(G) = F[ZP(G)]

is an analytic function at G = O of the local coordinates

gmﬂp’...gnp of &g at p.
The fact that the mapping Gp(Z) is nonsingular ensures that
this definition of analyticity is independent of the particﬁlar set of
local coordinates used to défine analyticity at p.
This definition of analyticity involves only the values of F
on the manifold _zg . 1If there were a function ﬁ(Z) defined in a

full neighborhocd of p of ,e?, and analytic at p, then the restric-

tion of this function to .28 would clearly be analytic at p, since
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then FP(a) = F(Z(c)) would be analytic in all the g at G =0,
and hence also in the local coordinates gm+lp""gnp'

Conversely, if F defined on 28 near p 1is analytic at p,
then there exists an analytic function F(Z) defined on a full neigh-
borhood of p that is analytic at p and that cdincides with " F on
-_43 near p. For instance, one can trivially extend FP(G) to a
function fp(G) defined and analytic in a full neighborhood.of G = O.
Then the function ¥(z) defined by ¥(z) = ¥ (GP(2)) has the
required properties. Thus one can locally extend a function F
defined only on 443 and analytic at p to function F¥(Z) analytic
at p. This extension is highly nonunique. And generally these
various local extensions will not fit together to give a global
extension.

The above remarks show, however, that the definition of
analyticity,g;ven above is equivalent to the following one: F
defined on .o 'i's'analytic at D of & if there is an 'ﬁ(z)
that is analytic in Z at p (in the usual sense), and that coincides
with F on ,28 in some finite neighborhood of p. (This does not
imply, however, that there is a single global function ﬁ(Z) defined

on a full neighborhood of.xg.)

E. Analyticity on the Mass Shell

At points of the restricted mass shell WC the above definition

is applicable. For the definition of ahalyticity on the mass shell

79L: we give two possible candidates:
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A function F defined only on C}fg is said to be analytic in
" " . : p
the "weak sense” at p of ﬁz?é if for some neighborhood Uc C 5@%
of p the function F is continuous on Ucp and analytic on
P
U, 1 v,
A function F defined on only 6b?c is said to be analytic in

the "strong sense" at p of ?ZQ if F is the restriction to QEHL

‘of a function F¥(Z) defined and analytic in a full neighborhood of p.

These two definitions are not obviously equivalent. But
Hepp7 has noted that in fact they are equivalent, due to a theorem by
Oka.

Thus we may use either of these definitions.

F. Fundamental Properties

.The definition of analyticity on ?ZQ given above is the
natural one. But is 1t useful? Do the usual cousequences of analyticity
carry:over? Mathematicians have given a lot of attention to this
problem, and the answer is yes. The fact that one does not have a
global set of basic coordinates, but must‘generally use different sets
of local coordinates at different points, does not disrupt things very
much. In particular, the following properties hold:

1. Analytic Continuation. Analytic continuation on the

variety is defined in essentially the usual way. This continuation is

unique: it does not depend on the choices of local coordinates.

2. Cauchy-Poincaré Theorem. A contour integral over a smooth

(m-n) real-dimensional contour in an m-n complex-dimensional

analyti¢ submanifold can be continuously distorted through a domain of
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analyticity in this submanifold without changing its value, provided

the boundary remainé fixed. The contour has (m-n) real dimensions,
whereas the manifold has 2(m-n) real dimensions. The contour integral
is defined by integrating in the local variables, but with the
appropriafely signed Jacobian 0Z/dg ='J-l. For details see Ref. 8.

. "Mandelstam'" Representation
=Y

Let [Si] be a finite set of (nonconstant) polynomials. in the (space QMog)
n -variables zs . Let Ci ‘be a curve in the Si plane. Let Cii

the inverse image of Ci' (Tt will be a set of codimension one in gn

Suppose V 1is an £ dimensional algebraic variety magn- And suppose

F 1is defined only on V and is analytic at all points of D=V -L/C%:

Let 3: be a large rectangular box in.Cn. Then F on D) R, can be

expressed as

F(z) = Z 7 (z) +B(z)

A

where

(2ni)~t

F (2) = j[ a(s) X(z, s )‘“f1’ 1(K’

Re 1 5105 - Si(0,5) @)

and B(Z) 1is a similar contribution from the boundary of R,, The
function AX(S') is the Z—fold multiple discontinuity at the inter-
section of the £ cuts éLi(x,j)’ and K(Z,5') is a known kérpel.
This is the generalization of the Mandelstam representation to
a function defined only on an algebraic variety. For more détails see

Ref. 9.
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These properties show that the natural definition of analyticity
introduced above is also a useful definition. For other useful

properties see Ref. 10.
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III. CLUSTER DECOMPOSITION AND LANDAU SURFACES -

A. Cluster Decomposition

The n-particle amplitude is éssumed to contain terms corresponding
to different disjoint subsets of the n particles interacting only
among themselves. - This decomposition into terms corresponding ta.differ-
ent clusters of particles interacting among themselves is called the
cluster decomposition.

The term of an n-particle amplitude corresponding to all n.
particles interacting with each other is called the ¢onnected part of
that amplitude. This same function is assumed to represent the inter-
action of this cluster of particles also when they occur in a larger
reaction. A derivation of this cluster decomposition from physical

requirements is given in Ref. 11.

B. Bubble Diagram Functions

The unitarity equation is
sst - 1, | (3.1)
or equivalently
=5 . : (3.2)

Insertion of the cluster decompositions of § and S..l into

equations like

88T =1 , i (3.3)
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and

s = ss’'s - (3.4)

etc., decomposes the expressions on the two sides into sums of terms.
These terms are conveniently represented by bubble diagrams. For
example, a term in the right side of (3.4) for the case of four

ihcoming and four outgoing particles is represented by the bubble

diagram in Fig. 1.

Fig. 1. A bubble diagfém B representing a term FB on
the left side of (3.4), for the case of four incoming
and four outgoing particles. The plus bubbles represent
the cluster terms of S and the minus bubbles represent
the cluster terms of S_l. The lines represeﬁt mass-
shell particles and there is a mass-shell integration

over all internal lines.

Precise rules have been given12 for converting each bubble
diagram B into a well-defined function FB. Equations that arise

fromhthé cluster properties of § and S"l then take the form
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P -0 . (3.5)
BeC '

where Ci ‘is a class of bubble diagrams.

C. Landau Singularities

Insertion of the cluster decompositions of § and S_l into
equations like (3.3), (3.4), and their generalizations, gives nontrivial

equations of the form

s, - Z oo, (5.6)

t t : t
where Sc is the connected part of S l. These expressions for Sc'

can be inserted in place of the corresponding factor on the right to
give still other equations of this same form.
The conservation law of energy-momentum (2.2) is satisfied by

the n-particle amplitude, and by its connected part.l3 Because of this

constraint the various individual terms in the integral equations (3.6) for

a given connected part will vanish below certain corresponding thresholds.

But they will not in general vanish just abové this threshold. Thus
the individual terms in these expressions for the connected part must
generally have singularities at these thresholds. These explicit
singularities are known to be confined to Landau surfaces.lh

It is generally the case that the explicit singularities of

certain of the terms on the right of (3.6) cannot be balanced by the



13- UCRL-18769

explicit singularities of the other terms on the right. This means that
some of the Sct. must themselves havg singularitiES; provided they
aré not all zero. |

Maximal'analyticitj asserts that the functions_ Sci have no
physical-region singularitiesvexcept thbse_required by the equations
(3.6). fThé statement:of maximal analyticify given in Ref. 1L says
more: it‘requireg the singularities of Sci to be COnfined.;§ the
union of the surfaces of the singularities egglicitly appearing in the
various terms of (3.6), and hence to the union of all Landau surfaces.

Certain "ie. rules" - were also required. These two conditions on the

allowed singularities follow from causality requirements.
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IV. CONSEQUENCES OF MACROCAUSALITY

A. Positive-x Rule

The macrocausality condition itself will be discussed in the
second lecture. One of its consequences is that the physical-region
singularities of Sct (divided by the conservation law &) are |
confined to the positive-a branches of the Landau surfaces. These
surfaces will be described in Section V.

This positive-a rule was obtained originally by Lahdau in his
study of singularities of Feynman‘diagrams.' In that context the
positive-a rule arose from the 1ie resolution of the singularity of
the Feynman propagator function. That arose in turn from a causality
fequirement. The physical origin of the positive-o rule is thus

the same for us as for Landau.

B. ie Rule

Macrocausality also gives the important ie rule. This
rule assertthat each connected part (divided by the conservation law
delta function) can be represented as the limit of a unique analytic.
function . It moreover specify the set of allowed direction from
which the 1limit is to be taken. This direction is, roughly speaking,
the intersection of the "upper-half planes" associated with the various
singularity surfaces that pass through the point. The precise defini-
tion is given later. |

It should be noted that the various individual terms of the

equations (3.6) that according to maximal analyticity generate the
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*
singularities of Sc do not generally satisfy this 1ie requirement.
In particular, they generally vanish on one side of their threshold

singularities but not on the other. Thus the functions on the two

sides are certainly not parts of a single analytic function. The 1ie

. rule therefore demands strong connections between the singularities of

the various terms of (3.6).
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V. THE ANALYTIC STRUCTURE OF T,"

A. The Landau Equations

The integrations in the definition of a bubble diagram function
FB are effectively constrained by the Various mass-shell and conserva-
tion-law delta functions. A product of delta functions signifies that
one should transform to a set of variables that contains the arguments
of all the delta functions as independent variables, and then omit the
corresponding integrations. The condition for such a set of variables
to exist is that the corrésponding“Landau equations"not be soluble.

Landéu equations are associated with Landau diagrams. A
Landaﬁ-diagram D is a diagram that is topologically equivalent to a
spacetime diagram representing a multiple-scattering process. Thus
the vertices of D, which correspond to the individual scattering
processes, are connected by lines corresponding to particles moving
forward in time. This condition imposes a certain partial ordering
requirement on the vertices: if must be ?bssiblevto draw all the lines
of D directed from right to left.

A real four-vector variable pj is assigned to each line of
D, and a real séalar variable aj is assigned to each internal line
of D. Then the Landau equations corresponding to D are the mass-

shell constraints,

p.” = m.,, p. >0 , (5.1)

for each line of D, the energy-momentum conservation law,




%
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p. = PJ- 2 ' (5'2)

into V out of V

for each vertex -V of D, and the loop equation

E £oaps o= 0, | | | (5.3)

loop

for edch closed internal loop of 'D. The sign in (5.3) is plus if the
line 1s directed along the loép, and minus otherwise.

Thé vector aj pj can be regarded as the spacetime distance
between the creation and annihilation of particle Jj. The loop equation
says that the sum of these vectors around any closed loop of the
diagram must,takerbne back to the starting point. The condition that’
aj be poéitive is the condition that the particle moves forward in
19 '

' The Landau surface L(D) is the set Qf pj cbrresponding to
éxternal lines of D such that the Landau equatioﬁs for D have a
solution with some oy # 0. The set L+(D) iS?the subset of L(D)
such that the Landau equations can be satisfied subject to the additional

conditions aﬁ > 0.

B. The Basic Diagrams DB

Suppose two vertices of some D are connected by a set
consisting of more than one line. One can insert on these lines

trivial extra vertices corresponding to forward scattering, without
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changing the Landau surface L' (D). Thus each point of L' (D) belongs
A
to the L+(ﬁ) of an infinite number of different D.
It is convenient to deal with diagrams that do not have these

trivial extra vertices. Let a trivial part of a diagram D be a

part consisting of internal lines that is connected to the rest of
the diagram only at its initial and final vertex, but which has also
other vertices. A diagram D having no trivial parts is called a

basic diagram, and is denoted by D Any D can be generated by

B
inserting trivial parts into some DB.

It is easy to see that
s Ut - UL+(DB) . (5.14)

That is, every positive-a point lies on the L+(DB) of some basic

diagram D _.
B

Only a finite number of DB

portion of the physical region,go but an infinite number of D have

give L+(DB) entering any bounded

this property.

C. The Basic Surfaces LO+(DB)

Let ﬁb?o be the points of 6%7‘ such that at least two initial

Pj

. +
be the points of L (DB) - ?ﬁb such that the Landau equations for

are parallel or at least two final pj are parallel. Let LO+(DB)

+
L (DB) have no solution with some aj = 0. Then one can :show21 that

1= U my) - M, (5-5)
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The basic surfaces LO+(DB)' are codimension-one analytic
submanifolds of qq? - ﬁh?O.El That is?any point p on LO+<DB) has
a neighborhooa ® o %-‘9770 such that LO+(DB) coincides in UY
with the set f =.O, where f 1is an aﬁalytic function (of the local
coordinates of fﬁ7) in UP and satisfies Vf ¢ O throughout U’.

. Thus L+ ; eqa) is the union of these simple surfaces, each having a,
- well-defined normal, whose direction changes gradually as p . moves on
it.

This property of L+ is important in the formulation bf the
ie rules.v Let the sign of f be chosen so that Vf points in the
direction that LO+(DB) would move if the internal masses m. were
formally increased by a common scale factor. Then the "upper half
plane" corresponding to LO+(DB) at point p 1is defined by

Im G(p') - Vf(p) > 0, where _p' _is a variable-peint near- p, and G(p')

is the set of local coordinates of p'.

If only one basic surface LO+(DB) passes through p  of
Lt - ‘7ﬁg ‘then the ie rule says that SC+/8 near p can be
represented as the limit of a function analyticvin a domain in the
upper-half plane correspénding to LO+(DB) at. D. |

If there are several LO+(D5) that contain p, then the
analyticity domain lies in the intersection of the corresponding
uppéer-half plaﬁes, provided this intersection is nonempty.

There are, however, points p of Lt 5270 such that this

intersection is empty.
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These points would give serious trouble, were it not for the
independence property described below. For if the contours of integra-
tions in the functions FB were trapped between such surfaces then the

-functions FB would be nowhere analytic, and the whole S-matrix
analysis of singularities would break down.

The vital independence property, which allows one to get

around this problem, asserts that S has a decomposition
s - L sl (5.6)

where S[DB] has singularities only on L+(DB). It can be shown‘t

that for any single D the 1ie rules corresponding to the basic surfaces

B
+ . R
of DB and all its contractions are mutually compatible: for any
p of L+(DB) these various basic surfaces LO+_I . at p have

upper-half planes that have a nonempty intersection. The ie rules
are applied to the individual terms of (5.6).

The basis of the independence property is discussed at the end

of the next section.
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' 6,22
VI. THE FUNDAMENTAL THEOREM O’

A. Assumptions

| 1. Positive-o Rule. The singularities of the connected parts

of S/5 and 8-1/6 are confined to L (5 is the conservation law

delta function).

2. 1Independence Property. 1In any bounded portion R of the

physical region the connected part of § [and similarly of »Sfl]

B

+
decomposes into a sum of terms S[DB], one for each basic diagram D
*
such that L+(DB) enters R, and the singularities of S[DB]/B in
. . + . :
R - 9;6 are confined to L (DB).
3. ie Rule. TFor any p in L+(DB) - 6”70 let
+ - : . s s
IP [DB] [resp. Ip [DB]] be the (necessarily nonempty) intersection of
the upper-half [resp. lower-half] planes corresponding to the basic
surfaces LO+ through p that are associated with DB and its
: *. :
contractions. Then the function S [DB]/S can be represented over
'ﬁ? - 6&% as the limit Imp' — O of a function that is analytic
(and unique) in the set

{p" : Rep' Ep eR - 92%, p' € Cp N 6p} 5

where 6p is a (sufficiently small) neighborhood of p. For P
. .
on ﬁn? -L (Dﬁ) - L?%g the set Cp is the whole space. For p on
L+(D ) - 747 the set C_ is an open convex cone lying in
B 0 P ,
. + o, : :
Ip“[DB]. This cone can be made arbitrarily close to Ipi[DB] in 6p

by taking Sp sufficiently small. This representation is discussed

in Ref. 22.
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4. Boundedness. For any unit-normed individual particle wave

functions wi one has
s vyl s ¢,

where "norm" is the L2 norm of V. [This bognd follows directly
from the probability interpretatibn of 8, the constant C Dbeing
unity. This boﬁndedness prbperty is used to show that contribhtiOns'
to .FB from small neighborhoods of points corresponding to €b7b éo to

zero like the volume of the neighborhoods. ]

B. Consequences

Let B be any connected bubble diagram. Then FB -satisfies
the following properties:

1. Generalized Positive-u Rule. The singularities of Fo/&

+
are confined to the union of the Landau surfaces . L_(DB). A DB is a

diagram constructed by inserting some Landau diagram Db into each

N
bubble b of B. The surface L_(DB) is the Landau surface corre-
sponding to DB’ with the additional stipulation that the Landau

parameter aj corresponding to a line j +that comes from inside a

bubble b of sign o, must satisfy o aj > 0. The original lines

b b

of - B, which lie outside all the bubbles b, have no such constraint.

2. Generalized Independence Property. Let B be the connected

bubble diagram. In any bounded portion R of ﬁh? the function FB
\

decomposes into a finite number of terms, one for each way a set of

basic diagrams can be introduced into the set of bubbles b of B,
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subject to the condition that these basic diagrams DB give surfaces
L+(D5) that enter the regions allowed by energy conservation. The
singularities of the term FB[DB] corresponding to the diagram DB

' +
are confined to L_(DB).

. , + ) _ .
5. Generalized ie Rule. For any p of L (DB) vﬁn?o‘ let

{ai(p), pi(p)} be the internal parameters corresponding to a solution
at p of the Landau equations corresponding Li(DB). The corresponding

"ypper-half plane" is defined by Im o(p',p ) > O, where
o(p', 2) = L o (®)lp;(p') - py(p)]

Here p' is a variable point of 77?c and [pi(p')} is any set of

values.- of the internal Py of DB that satisfy the conservation law

constraints corresponding'to the external values 7p'. [The function

‘o(p', p) will not depend on the particular way the pi(p') are

chosen. ]
Let IP[DB] .be the intersection of the upper-half planes
corresponding to all solutions - (ai(p), pi(p)} of the Landau
equations of Li(D ) at p. Let 5"? [D_] be the subset of points
| _ B | 0tVz
+ : .
p of L (DB) —A‘7ﬁb such that IP[DB} is empty. Then for any bounded
. B .
region R) ¥~ can be represented over R - ﬁr?o - ?%%[DBJ as the
limit Im p' -0 of a function that is analytic (and unique) in the

set

t o, t = _ 9 - y |
{p' : Re p _peR. ,?O ?'?O[DB],p ecpﬂap}

defined just as before, with DB in place of DB.
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L. Generalized Boundedness. For any unit-normed individual

13

particle wave functions wi one has
Y] < c

C.. The Justification of the Independence Property

" The ie rule derived from macrocausality in Ref. 18 applies
specifically to points that lie on only one surface L+(DB)._”The‘
independence property allows this rule to be applied additively at
points lying on several such surfaces.

This independence property, or at least the implied additivity
of physical—region singularities associated with different DB’ is
crucial to the S-matrix approach. It can be justified in several
’Edifferent Ways.

One way to justify the independence property is to invoke (for
the first time) maximal analyticity. The point is that the independence
.property is regenerated by (3.6), in the sense that the fundamental
theorem ensures that the right-hand side of any equation (3.6) can be
), one for each D_, such

B B
) are confined to L+(DB):

split into a well-defined set of terﬁs F(D
that the positive-o singularities of F(D6
positive-x singularities corresponding to different DB are separated
into different terms.

There is a tacit assumption at this point that the non-
positive-tr singularities in (%.6) exactly cancel out, and.thhs do not
affect the physical-region analytic structure. This cancellation

assumption, though an extra technical assumption, is highly plausible,

and 1t can very likely be proved.25
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Another way to phrase the argument is to say that if one assumes
the independence property, then one can derive from the cluster properties
of S and S-l explicit formulas for the discontinuities. These
formulas imply that.the singularities associated with-different basic
diagrams are independent. Therefore singularities that violate the
independence property are not required by the cluster properties of S
and S_l. Hence maximal analyticity says they are not present.

The global decomposition demanded by the independence propéfty

is exhibited in Section VIII.
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VII. THE GENERAL PHYSICAL-REGION DISCONTINUITY FORMULA23
The formula for the discontinuity of § around LO+(DB) is
obtained by replacing each vertex V of DB by the entire S matrix
correéponding to V, and replacing the set of lines . Jjoining each

-1
by 8 , where 'S ;_Pa S«Pa and

pair of vertices of D a o

B
Sa—l Sa = Pa' Here Pa is zero when acting on a set of lines of mass
less than Md, and is unity otherwise. The mass of a set of lines is
the sum of the rest masses corresponding to those lines, and Mj‘ is
the méss of the set of lines « of De. |

The action of Sa—l on S 1is to effectively shift it onto
apother sheet. Thus the SO[l can be eliminated from the discontinuity
formulas in favor of functions S on other sHgets. The utility of
this is not apparent, because one will ultimately want to eliminate
these exfra functions in favor of the physical ones)which is done by
means of Sa—l.

Notice also that the single Sa-l generates the unphysical
sheets of the 8's corresponding to all the different choices of the
other (free) variables of S: each SO;l generates the unphysical
sheet; of an infinite number of different functions §S. Thus the
operators Sa-l provide the compact and convenient way to express the
information about these sheets.

Finally the So[l have simple ie properties,25 and the

fundamental theorem can be readily extended to functions containing

them. This provides the tool for treating singularities that lie at
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real points on the various unphysical sheets. One effectively expresses

the functions on these sheets in terms of bubble diagram functions, to

which the theorem applies.
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VIII. TWO FEYNMAN-LIKE ON-MASS-SHELL FORMULAS FOR S

A. An Infinite-Series Expansion for S

The equation SS-l = I has the formal iterative solution
- (R7)2 (8.1)
s = ) ®R)HY :

where Ri = i(Sil - I). If one converts this to bubble diagram functions

23

one obtains

s = Y&, (8.2)

where the sum is over all topologically distinct bubble diagrams B
all bubbles of which are nontrivial minus bubbles. (Trivial bubbles
have exactly one incoming and exactly one outgoing line.) The

nontrivial minus bubbles now represent the connected part of R .

B. A Finite Expression for S

There is one term in (8.2) for each Landau diagram D. If one

groups together the terms corresponding to each basic diagram D one

B
gets
s = 2 slog] . (8.3)
The term S[DB] is obtained by replacing each vertex of DB by the
corresponding minus bubble and each set of lines « of D_. by S(a),

B

where S(a) is the sum of terms of § of (8.2) such that the mass of
the lines at all scattering stages is less than or equal to Ma, the

mass of the lines of . Thus S<a) contains all the terms of S that
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contribute just above the normal threshold at N&, but has no higher

normal threshold singularities.

g

have the same structure s (i.e.,vthat differ only by the values

If one‘nOW'combines\all terms corresponding to D_'s that

of the Md), then the various S(a) connecting the two vertices. .
corresponding to -« add to give 8, which acts between the bubbles

that represent these two vertices. {

A typical term is shown in Fig. 2

Fig. 2. The diagram representing a contribution to §
cofresponding to a triangle structure s. The shaded

strips fepresent arbitrarylsets of lines.

Only a finite number of different structures will contribute
. v o N
in any bounded portion of the physical region.
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I. THE PHYSICAL IDEAS

A. vClassical Limit

Macrocausality requires that classical ideas and estimates
become valid in classical limité. In ordinary quantum-theory the
passage to classical limits is ensured by the Schroedinger equation.
In S-matrix theory there is no Schroedinger equation, and the corre-

spondence to classical theory must be introduced in another way.

" B. PFinite-Range Interactions

Macrocausality also embodies the requirement that interactions
be of finite range. Massless particles and their effects are thus

ignored.

C. Causality in Classical Physicé -

What is "causality"? Philosophers have debated this at length.
An example of what I mean is provided Dby a rock thrown at a window:
the window breaks when the rock hits it, and not before. Another
illustfation is a set of moving billiard balls: they are deflected when
they hit each other, and not before. The common phrasing is that the
deflections arev"caused” by the impacts. But the essential phenomenolog-
ical fact is the existence of a relationship between changeé of velocity,
on thé one hand, and spacetime separations on the other.

A guantitative description of the billiard ball situation is
provided by Newton's laws of motion, as embodied by the iaws of

conservation of energy and momentum. FEach ball is conceived to carry
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conserved energy-momentum, which is transmitted between them at impact.
The size of the region of impact corresponds to the range of the
interactions.

A notion of causality is contained in this picture: the
relationship of things at an earlier time to things at a later time is
understood in terms of the idea of particles that move‘from one region
of impact to another. Their motions are restricted by the requirement
that the conserved energy-momentum carried by the particles is trans-
mitted between them,only during their impacts.

This notion of causality based on Newton's laws of motion is
bthe primitive causality notion in physics. It has predictive power,
and this power would become exact in certain idealized limits.

This latter fact suggests a more restrictive notion of
causality, namely that things at one instant of time éxactly determine
things -at all later times. |

Attempts to implement this second notion of causality lead to
difficulties. One must introduce new "things", besides just the
particles, to represent the exact situation at the instants of time
during the interaction. These new things have no clear status in
phenomena, because all attempts to measure them are disrupted by the
interactions associated with the process of measurement. This physical
ambiguity has attendant mathematical ambiguities, and it is not at all
clear that phenomena actuallyhave the structure ascribed to it by this

notion of causality.
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The S-matrix viewpoint is that one should not try to implement
this:restrictive notion of causality. Instead, one should try to
determine the mathematical structure of correlations between measure-
ments within the broader class of theories not restricted by requiring
the existence of somé preconceived type of représentatioh of systems
at instants of time. Also, one should focus attention on measurements
fdr which a decoupling can be made between a measured system and the
measuring devices.

‘Although in S-matrix theory the notion of causality based on
instants of time.is not enforced, one must not lose the macroscopic
classical structure that underlies the primitive causality notion.
Maérocausality is_the requirement that this classical structure emerge
in thg appropriate macroscopic limit, and that moreover claésical‘

estimates become valid in this limit.
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II. THE MATHEMATICAL IDEAS

A. Classical Linit

Consider first a freely moving particle of mass m. Let its

momentum-space wave function be

- =

0 0) = x() T 5w® - wf) 00°) (2.1)

where P 1is a mass-shell four-vector (P2 = m2), and x(p) is an
infinitely differentiable function of compact support. Suppose further
that X(p) is analytic in some neighborhood N(P) of P, and is
bounded by unity both in N(P) and at real p. The class of all such
?..(p) Will be called a(p, N(P)).

Consider next the translated function

ut, . ip-ut
P () = o (p)e - (2.2)

Its Fourier transform is

%) f 0 o) TP ey (23

We shall be interested in the limit T - ». Consider therefore

the "scaled coordinate™
x' = x/t . (2.4)

The physical displacement uT in x space is a constant displacement

u in x' space.
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The function $YTuT(x“T) has an important property specified
in the following theorem.
Theorem A. Let TI'(P, u) be the line in x' space that contains u
and has direction P. Let R be any closed bounded set in x' space
that does not intersect I(P, u). Let Q = Q(?, N(P)) be some fixed

class. Then there are three constants
c >0, a> 0, and y > 0
such that

5| < e (2.5)

for all 73> 0, all x' in R, all positive y < T and all mYT
in Q.

The content of this theorem is this: the function $TTUT(X'T),
considered as a function of T and x', collapses exponentially to the
line (P, u) as 7 — .

The 1limit 7 — « corresponds to a classical limit. The
momentum spread Ap goes to zero like T-%, and the coordinate spread
Ax' also goes to zero like T-%. The trajectory region in x'-space
collapses to a classical trajectory, i.e., to the line r(p, u).

| In S-matrix theory the only role of Plancks constant is to
fix the scale of space and time. That is, the x that occurs in

exp ipx should be written as xph/h , Where x is the physical

ph

spacetime coordinate and A is Planck's constant in the units used to
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measure X and p. If one writes x = xph/ﬁ = x'T, one sees that

Ph
holding the physical coordinates fixed and taking the limit A -0 is
fhé same as holding x' fixed and taking T — o. Looked at the other
way, holding x' fixed and taking T — « expands the physics into |
the macroscopic domain.

Consider next a scattering process involving n particles.

It is described by a corresponding transition amplitude

A = sle 0] (2.6)

Let each of these wave functions o be replaced by a wave function
of the form (2.2). Then A Dbecomes [suppressing the unimportant

dependence on the functions. x(p)]

T _ LT ceD . e
A" = A (Pl, P, P 5 Uy U un)

The 1limit T -, considered in x' space, gives a classical 1imit
in which the ith (initial or final) particle has the spacetime

trajectory F(Pi, ui).

B. Pinite-Range Interactions

Any finite interval in the actual physical space x reduces
to a point in x' = x/T space, in the limit 7 — . Thus any finite-
range interaction becomes a zero-range interaction in x' space.

‘Consider the classical multiple-scattering processes in x'
space‘that ﬁould be allowed if only zero range interactions wére

allowed. They are represented by multiple-scattering diagrams D with
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point interaction vertices. TFor certain values of the set of arguments

(P, u) of AT(Pl,-'-Pn; u ,--u ) there exists a multiple-scattering

10
diagram D that would fit onto the corresponding external lines
.F(Pi’ ui)" The points (P, u) gorrésponding to these sets qf values
(of the 8n components) are called causal. The points (P, u)- that
are compatible with ﬁo multiple-scattering diagram are called noncausal.
Most points (P, u) -are noncausal, since generally the lineS vF(Pi,_ui)
will not interéect at ali, and there will therefore be no possible -
initial vertex of D.
in these multiple-scattering diagrams D we allow internal
lines éqrfesponding to all possible physical particles. These lines

are required to begin and end at point vertices, at which energy-

" momentum is conserved. The external lines are fixed by (P, u).

C. Macrocausality in S-Matrix Theory

Macrocausality requires that classiéal ideas and estimétes
become valid in the limit T — 0. To make the classical estimates one
regards IATIQ as the pfobability function for a statistical ensemble
of classical scattering experiments. The coordinate-space and momentum-
space wave functions of the initial particles define the cléséical
momentum-spéce and - coordinate-space distributions of the statistical
ensemblés‘of initial particles, and the wave functions for the final
pgrtiéles represent fhe corresponding detection efficiencies.ll The

estimates are made by Summing the properly weighted contributions.of

all the possible classical scattering processes. These scattering
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processes are required to proceed via finite-range interactions: each
particle is conceived to carry conserved energy-momentum, which can be
transmitted between them by interactions whose effects are exponentially

damped under spacetime dilation.
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III. THE MACROCAUSALITY CONDITION
- The general macroscbpic causality requirement has the following
specific consequence: Let P = (Pl,'--Pn) and u = ﬂul,---un)
represent the arguments of AY. Tix P and let &f (P) be the set of
. A ‘
‘all u such that (P, u) is noncausal. Let ({ Dbe some closed,.
bounded subset of A (P). Let the classes Q= Q(Pi, Ni(Pi)) be fixed.

Then there are three constants C >0, a> 0, and y > 0 such that

A"] < ¢ ™ - (3.1)

for all T3> 0, all 0<y<y,, allpositive ¥ < 1y, and all ;p'YT(pi)
in Q. '

i _ \
To get this condition one first uses the bound |AT] <1
which follows from the probability interpretation, to reduce the

“problem to that of the asymptotic behavior.

oA
CFor any u in ({ it is, by definition, impossible to find a

classical process corresponding to P. Thus every one of the processes
contributing to [ATIE must fail in some way to éatisfy all the
classiqal conditions.

If one allows the energy-momentum to be transmitted over any
finite disténce A in X' space by any'finite-fange interaction, then
the contribution from this process mu;t contain‘a factor e—aAT where
a > OA is some positive constant. Thus for.some sufficiently small «
the contribution from such a term would satisfy the'required bound.

There might be a process D . for which the momenta of the

l

initial and final particles of the statistical ensembles are not
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exactlj those given by P. But then there would be a corresponding
factor e_YTEZ(APi)g coming from the wave functions wTT(p).'

Another possibility is that the space position of some inter-
action is not on the corresponding line F(Pi, ui), which defines the
center trajectory of the statistical ensemble corresponding to particle
i. In this case the required factor comes from Theorem A.

For most processes all three 6f thesé things will happen.

But continuity properties ensure that the mihimum_of the corresponding
constants o in (3.1) is some strictly positive « > 0. The bound
(3.1) with this «a holds for all processes, and hence for their
welghted average. |

The macrocausality condition used in Ref. 18 includes, in
addition to (%.1), an analogous condition for y = O. The fall-off
in this case is no ionger exponential, but merely rapid (i.e., faster
than any inverse power of 1T). This rapid fall-off comes from a rapid
fall-off property of $OTuT(x'T), analogous to (2.5), that arises from
the infinite differentiability of X(p).

Notice that the macrocausality condition refers only to
noncausal situations; it gives a bound in cases where no classical
process can occur. Since it says nothing about cases where a classical
process can occur, it is considerably weaker than the requirement

stated in the preceding chapter.
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IV. CONCLUSIONS

As discussed in the first lecture; the macrocausality condition
implies the positivé-a rule and the ie rule?igAnd conversely, these
 analyticity properties imply the macrocausalityvcondition.

" The macrocauéality condition refefé only to noncausal points;
it séys ﬁéthing about situations in which classicai processes are
possible. Correspondingiy, the positiveqa and 1ie rule do pét assert
that an&_singularity éctually éxisfs; they merélyvéiigy certain singu-
larities to exist.

On the other hand, the cluster properties of § and -S;l
require the functions Si/6’ to have singularities.

The ﬁain result described_in the first lecture is essentially
this: if one:permits only those singulérities of S*/S allowed by
macrocausality, then the equations that follow from the cluster
decomposition of SS_l = I, and the similaf identities, require all
. of the allowed singularities to actually be present. That.is, discon-
tinuity formulas are derived for all allowed singularities, and these
generally give a nonzero discontinuity. | |

- It is interesting that, although the macrocausality -
requirement is inVoked only for noncéusal-pointé,_the derived_discon-
tinuity formulas are in complete harmony with macrocausality requirements
at causal points. That is, the discontinuityvformulas are such as to
give é spacetime structufe to macroscopic phenomené that is in complete

accord with the multiple-scattering picture of classical physics.l



-h2- UCRL-18769

Thus frqm the cluster properties plus the macfocausality
condition associated with noncausal points we have deduced the complete
general physical;region analytic structuré, and also the multiple-
scattering structuré of macroscoplic spacetime phenomena.

The reciprocal manner in which the various idéas lead to each
other permits. the assumptions to be stafed in various ways. In the.
aﬁove discussion the cluster‘properties and macrocausality for noncausal
points were taken as the starting points. The cluster properties them-
selves can be derived directly from very weak macroscopic spatial
cluster pr’operties.ll Thus the basic assumptions are simply macroscopic
spacetime fall-off properties that embody the requirement that inter-
actlons have'finite range.

A slightly different way of stating the assumption is to say
that all physical-région singularities are associated with particle
procésses: S-matrix theory is essentially a particle theory (as
opposed to a field theory) based on analyticity, and the basic assumption
is that the only singularities are those associated with particleé.

This requirement means specifically that all physicalsregibn singularities
are positive-¢x éiﬁgularities that obey the plus ie rulé. The
Justification for this specific interpretation of the general statement
;@hat all singularities are associated with particle processes) is placed
on & sound basis by the collective results described in these lectures.

Once the allowed singularities are restricted to those
assoclated with particle processes, then thé clustef properties

actually require these singularities to be present. Thus we find that
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the only singularities'actually present are those absolutely required
by the cluster properties. And this propefty is by itself in a sense
sufficient. Tor if the‘elustervproperties can be satisfied with just
these singularities, then these alone can be required by the cluster
properties. | |

The formulation of the analyticity assumption ef S-matrix
theory as the statement that'ﬁhe only singﬁlarities are those actually
required by the cluster properties (together with other principles
such as unitarity;etc.) has a certain philosophic appeal. - But from a
technical‘standpeint it raises difficulties. For it presupposes that
the solufion is unique. But the tremendous complexity of the entire
problem makes‘it unlikely that man will ever succeed in actually
proving uniqueness in the full global sense. This‘leaves one in
eternal doubt as te the exact content of the basic assumption.

The practical problem is never to prove uniqueness in the full
global sense. Rather it is to understand the mathematical structure .
of observed phenomena. One starts with certain known aspects of ‘the
phenomena, and attempts to correlate these aspects with others, some of
which may be unknown. The basie aseumption in actual practice is that
all.singularities are associated with'particle processes. - This form
of the assumption; which is given a well-defined meaning in the physical
regien by the analysis of macrocausality requirements, ean be extended
in a natural way to nonphysical-region singuldrities associated with

unstable particles.
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