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ABSTRACT 

We discuss the dynamical behavior of narrow resonance models 

for rcrc scattering in the framework of what we call atonous duality, 

by which we mean that the pole locations a~d residues in a particular 

channel completely specify the narrow resonance amplitude as a 

Mittag-Leffler expansion containing no entire function's. 

We operate under the following assumptions:: 

(i) Grossing symmetry, isospin conservation, and Bose statistics 

hold. 

(ii) The only singularities of the amplitude are simple poles at 

locations defined by a + b ; (= 0;( s)) = 0, 1, 2, ••• where s is a 

Mandelstam variable. 

(iii) There are no I = 2 poles. 

(iv) The pole at s =; has a residue which is a polynomial in 

t of order :::; 0;( s) • 

(v) Atonous duality holds. 

(vi) All partial widths are positive. 

Under these assumptions we find that the I * 1 amplitude 

Alt(V,t) has Regge behavior for v ~ co at fixed t, wbile ~t(v,t) 

'has pure fix~d pole behavior. There are no Regge cuts. 
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Furthermore) we find it impossible to formulate partial wave 

dispersion relations for these models. 

As an example of such a model we discuss the one term Veneziano 

ansatz for ~~ scattering. 
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I. INTRODUCTION 

.We discuss here the detailed dynamics of narrow resonance models 

for nn scattering. 

The model is ~efined as a choice of FO(X'y) 
1,2 

in 

where ex(x} 

At 
1 = g 

. t 
= a + bx, and AI 

F 0 [ex ( s ) , ex ( u) ] 

is the t-channel amplitude for 

) 
/ 

/ 
(1.1) 

isospin I. The assumptions under which we work are listed and dis­

cussed in Section VI. The form of (1.1) insures that Bose statistics, 

crossing symmetry, and isospin conservation hold. For clarity, in 

Sections II through V we develop the detailed properties of the one 

term Veneziano ansatz for nn scattering3 

FO(X,y) = r(l - x) r(l - y) 
r(l - x - y) 

(1.2 ) 

We emphasize that our qualitative results also apply to a convergent 

sum of such terms. 

For the amplitude choice (1.2),in Section II we give several 

useful expansions of xt as partial fractions, and note that the model 
4 

exhibits what we call atonous dUality. In Section III we discuss the 
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positions and residues of the model's Regge poles; in Section IV we 

discuss its fixed poles; in Section V we discuss the asymptotic 

behavior of the Regge residue functions ~(t) and the related fixed 

angle and fixed J bounds. 

In Section VI we list a set of assumptions under which we 

discuss the general class of narrow resonance models. 

Appendix A contains a proof of the relations of Section II, 

gleaned from Whittaker and Watson, while Appendix B contains a discussion 

of the behavior of resonance widths in the one-term Veneziano model, and 

a rough argument for their positivity. 

II. EXPLICIT PARTIAL-FRACTION EXPANSIONS 

To investigate the properties of the amplitude (1.2) in the 

J plane, we make use of two partial-franction expansions. For 

oonveni.ence we define the variables v, 1:, x, y, w, z, where5 

a(s) 1 x = = + 5, 2 

a(t) 1 y = 2' + t , 

a(u) 1 w = = 2' + u, 

1 (x - w) , v = 2 

1: = 1 - x - w , 

z = 2v/-r (2.1) 

In the limit iJ. = m 0, we have z = 'cos e , -r = t, and rc t 

x+y+w 3/2 . (2.2 ) 
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The partial-fraction expansions are then, 

and 

00 

F 0 (x, w) = k 

r 
K = 1 

(_l)K 

r(K + y) 
-r(K) r(y) 

r{K + -r) 
r(K)r(-r) {v 

UCRL-18784 

1 
x - K 

1 
1 } 1 + 1 • 

+ -(l--r) - K -v + 2(1--r )-K 2 

(2.4) 

In Appendix A, we give a proof of (2.3) and (2.4) that demonstrates 

that these series converge absolutely for Re y < 0 and 

Re -r < 0, respectively. 

The eKpansion (2.3), expressing the function (1.2) entirely in 

terms of its poles in s(ar. x), illustrates explicitly the atonous duality 

4 
property of the model. The poles in t (or y)can be found by 

analytically continuing (2.3) to positive y, where the series diverges, 

using 

K
l ~ (Kx_.)n L (for Ixl < K) x - K 

1 

n=O 

and the asymptotic expansion for a ratio of two gamma functions, 6 

where 

r(z + 0:) 
rcz + t3) 
~ 
Iz I -+ co 

I arg 'z I < rc - E 

00 

L a-t3-n 
Cn (o:-t3, t3)z ., 

n=O 

(2.6) 
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Cl = ~(a-~)(a+~-l), 

1 (a 2- ~) C2 = 12 

en (a-~, ~) " ! t [C~:J -(-1) n+m (a-~ )~n-m ]em (a-~, ~). 
(2.7) 

Investigating the divergence of (2.3), we have, from (2.5) and (2.6), 

F 0 (x, y) - - r(y) I [K" + ~(Y-1 )KY-1. + O(K
y

-
2

) ] (K-
1 

+ x K-
2 

+ 0 (K-~) 1 
K=l 

1 { . 1 } - f'G) . s(l - y) + [2Y(y-l) + x] s(2 - y) + .•• , 

(2.8 ) 

where S(z) is the Riemann zeta function, which is analytic except 
7 

for a pole of unit residue at z = 1. From (2.8) we see that the 

series for FO(x,y) diverges at y = 1 to produce a pole with residue 

x, as we know it must. 

The series in (2.4) is interesting because the poles in s, 

[v + ~(l - 1')] and. u, [-v + ~(1 - 1')] are simultaneously exhibited, 

8 
with polynomial residues in 1'. Although (2.4) converges absolutely 

only for Re l' < 0, the conditional convergence due to the factor (_l)K 
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guarantees the absence of poles in 1: in its analytic continuation to 

positive 1:. This can be seen by following the argument leading up 

to (2.8) and using7 

~ 00 

L (2.9) 

K=l 

It is interesting to note how the Regge asymptotic behavior arises. 

Consider first the exchange of a tower of direct-channel resona.nces. 

The divergent part of this series generates a Regge pole. We have, for 

P < I xl < P + 1 and large x, 9 

Q) 

I 
K=P+l 

r(K + y~ 1 
r(y) r(K . x - K -

Q) 

- ;r(~) L 
L=O 

L x 
Y - L 

-i:rry y :rr e . x 
r(y) sin :rry 

L=O K=P+l 

y-L-l 
K 
r(y) 

= yr(y) F(l,-y; l-y; x) 

(2.10) 

Now consider the exchange of a cross-channel tower. Again, with 

P < Ix I < P + 1 , we have 
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00 

lim I r(K + x) 1 

x -+ _00 
r(K) r(x) y - K 

fixed y K=l 

P t) lim 1_ r(K + x) 1 
+ r(K) r(x) y - K P -+ 00 

K=l K=P+l 

P 

~ 
K 

1 
lim 

x 
~ r(K) y - K P -+ 00 

K=l 

P 

~ lim I P -+ 00 

K=l 

Th · 1 t r £'un t· t· f· 10 e 1ncomp e e c 10n sa 1S 1es 

r(a,x) ~ j['e-t 
t
a

-1 
dt " 

o 

00 

J2C 
lim + 

P -+ 00 L RXJ 

00 

I 
n=O 

K=P+l 

C_l)n xcx+n 

n!(cx + n) 

1 --
Y - K 

(2.11) 

(2.12 ) 

If we set -y =-1 + cx, analytically continuing to Re cx < 0 , we have 

.irey 
e 

and using lim 
x-+ 

lim 

_00 

x -+ _00 

fixed y 

which matchEB (2.10), 

y (l-y, 

00 

~ 
K=l 

as it 

00 

= 

K=l 

-x) = r(l 

r~K + xj 
r(K) r(x 

should. 

K x 
T'(K) 

1 
y - K ' 

- y), we get the limit we want, 

1 
'" e-i:n:y xY r(l _ y) , 

y - K 

(2.14 ) 

,J 
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III. MOVING POLES IN ANGULAR MOMENTUM 

Using (1.1) and the partial fraction expansions (2.3) and (2.4), 

we can write the t-channe1 amplitudes as 

t 
A2 (v,'t") == 

00 

g L 
K:::l 

00 

g\ ,--, 
K==l 

(_l)K TK('t") 1 

[v r(K) + ~(l-'t") - K 2' 

TK( 't" + ~) f 1 
r (K) v-+ -=~-(-l--'t"-)---K 

2 

00 

== g '\ 

'---' K==l 

x [-v _+--=-~l_( l---'t"-) "'-_-, -K + 

where TK(x) is Pochhammer's po1ynomial,11 

T ( ) _ r(K + x) 
K x - rex) • 

1 
+ 

+ ~(1-'t") l -v - K 
2 

(3.1 ) 

1· 1 
1 . i , 

-v + 2(1-'t") - K j 

(3.3 ) 

Extracting the s- and u-channe1 discontinuities of these 

expressions, we can then compute the Froissart-Gribov partial-wave 

amplitudes of definite signature 

± ~ fOO a (J,'t") == " 

o 



Recalling 

_1 f+l 
2 

-1 

we have, with z = 2v/ -r , 

+ 
a~ (J, -r) = o , 

00 

a
l 

- (J, -r) 2g L 
K=l 
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dz' 
z' - z 

K 
(-1) TK(-r) 

QJ(l + 2K-r- 1 ) , 
r(K) 

TK(-r + 1/2) 
QJ~ + 2K ~ 1) • r(K) 

(3.6) 

(3.7) 

Corresponding to a(v, -r) in (3.3), we find the partial-wave amplitudes 
± 

a
O 

(J, -r) , 

a
o 
-(J,-r) = o , 

00 T
K

( -r + 1/2) 
ao+(J,-r) 2g L QJ(l + 2K'~ 'l~ = r(K) 

K=l 
(3.9) 

Regge poles appear as divergences of the sums in (3.5) and (3.7), 

which determine the partial-wave amplitudes. For example, the I = 1 

Regge poles can be found by examining the behavior for large K of the 

summand in (3.7). 

~, 
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Using 

~(z) 
rcl / 2 r(v + 1) + l)(v + 2) 1 

(4v + 6) 2' + 
z 

o( ~) ] 
z -+ 00 

(3.10) 

and the asymptotic expansion (2.6), we have, setting a = ~ + 1/2 , 

1 r(J + 1) 

(4/~)J r(J + 3!2)r(a) 
00 { 1 --, 1 -1 I: "K? + 2" a(a-l)r + ••• , 

bl J 

which can be summed to give a series of Riemann zeta functions, s(z) , 

00 

1 r(J + 1) 
(4/~)J r(J + 3/2) r(a) 

L bn(J,a) ~(n + J - a). 

n=l' 

Since the only singularity of s(z) is a simple pole of unit residue 
7 

at z = 1, poles occur in (3.12) at J = a, a-l, a-2, .... '. 

In principle we can compute any number of Regge residues by an 

iterative procedure evident from (3.10) and (2.6), but 1.n practice 

combining the two expansions becomes cumbersome very ~uickly. 

The first two residues are 
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= (for J = a), 

-a+l 

~(a - 1) 1) ] ~l (T) 
g (4/T) ah -

= 
2(1!)1/2 2 r(a + 1/2) 

-a+l 
g a(4/ T) 

(for 1) • = 
8(1!)1/2 

J = a -
r(a + 1/2) 

(3.14) 

These residues are of the form predicted for linearly rising 

trajectories by Mandelstam.12 In addition to the threshold factor 

(4/ ...-)-a __ q2a • in (3.13), note the zeros which appear at the negative 

half-integers, as they must because of Mandelstam symmetry and the 

absence of compensating trajectories. 13 It should be noted that since 

(2.6) is an asymptotic expansion rather than a convergent series, there 

is no guarantee that the infinite sum (3.12) converges to (3.7). In 

fact, this is not the case, and the asymptotic expansion (3.12) diverges 

for all finite T and J. In addition, we will see in Section V that 

(3.12) is a poor approximation to the continuation of (3.7) as T ~ co 

for fixed J. 

If we apply the same methods to (3.5) we find that there are, as 

expected, no I = 2 Regge poles. Although (3.5) converges absolutely 

only for Re J > T , we can use (2. 9) to verify the absence of moving 

poles. The conditional convergence of (3.5) caused by the factor (_l)K 

eliminates the kind of poles appearing in (3.12). 

I 

'! 

.' 

.. .... _"'. i 
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IV. FIXED POLES IN THE J PLANE
14 

The QJ(z) have poles at negative integral J. Let us see 

whether these appear in our Froissart-Gribov amplitudes. 

The I = 2 fixed poles, from (3.5), have residues 

(X) 

= 2g L (, 2K - 1) , 
PN- l \1 + 'r 

K=l 

while the I = 1 fixed poles have residues, from (3.7), 

TKh + 1/2) 

r(K) (, + 2K : 1) . 
PN- l \1' , 

In deriying (4.1) and (4.2) we have used the fact that 

J + N 
(near J = -N). 

( 4.1) 

(4.2 ) 

In fact, y 1 (N) = 0 , as expected. The proof goes as follows. 

Set a == 'r + 1/2 , and. choose a < -N. Then (4.2) converges, and if it 

is zero for a < -N, analytic continuation tell us it is zero everywhere. 

(There can ;never be a barrier of singularities because the zeta function 

has only a single pole.) 

The sum in (4.2) is zero for a <-N. Define (for a < -N) 

P 

D(a, N, p) = L (4.3 ) 

K::::l 

By induction it follows easily that 
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D(a, 1, p) = (a + 1) rep) , (4.4) 

and we then have 

limp -to co D(a, 1, p) = (a + 1) rea) -to o. 

Now 

P 

D(a, 2, p) = L a[D(a + 1, I, p) - D(a, 1, p) J, 

K=l ( 4.6) 

and therefore 

li~ -to 00 D(a, 2, p) ~ ~+2 -to 0 (a + 2 < 0). (4.7) 

This procedure can be extended to arbitrary' N, which gives us 

the required result. 

Similarly, we define, to study (4.1), 

P 

G(x, N, p) = I 
K=l 

(_l)K T (x) KN-l 
K 

r(K) (4.8 ) 

Just as for the D's above, the study of G(x, N? p) can be reduced 

by an iteration procedure to the study of G(x, 1, p), but here 

G(x, 1, 00) f O. In fact we have15 

.. 
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00 

= 
x sin :rrx 

:rr L K (-1) B(-x, K + 1 + x) 

K=.O 

= x s;n u (1 
Jo 

00 L (_l)K tK+x(l - t) -x-l 

K=O 

= 
x sin :rrx 

:rr [ x -x-l -1 
dt t (1 - t) (1 + t) • 

Using15 

we get 

11 ta-l(l _ t)b-l (1 + t)-b-a dt = 

·0 

G(x, 1, (0) = 
-(x+l) 

-x 2 

-a 2 , (4.10 ) 

( 4.11) 

Therefore the I = 0 and I = 2 amplitudes contain fixed poles, 
16 

whose residues are functions of ~. The poles manifest themselves in 

the amplitudes a o+ and a2+ at odd integer (wrong signature) values 

of J, and hence, from the symmetry properties of the PK(Z) , we can 

see they give no contribution to.the asymptotic behavior of the physical 

. 17 
ampl~ tudes. 
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V. ASYlI/iPrOTI C BEHAVIOR OF' 13 ( t ) 

. If we use the Stirling approximation for rCz), (3.13) yields 

-ain( 4/ e) 
e , 

and as ~ goes to 00 along a wedge near the negative real axis we 

get an exponential blOlvup. Since 130C~)' is an analytic function of ~, 

and has an infinite string of zeros at a == - ~ - ~ "', Carlson IS 

theorem tells us this exponential blowup must occur, as pointed out by 

18 
Jones and Teplitz. 

Jones and Teplitz further remark that in a theory with infinitely 

rising trajectories at least one of the following set of assumptions, 

considered in' a related context by Khuri,19 must fail: 

(i) The amplitude A(s,t) is analytic in the cut s plane and 

is bounded for fixed t by 

~(s) c exp~sl~ - E ) ; 

(ii) A(s, z) is bounded by res) for fixed z; 

(iii) The SOmnierfeld-Watson transformation of the partial-wave 

,amplitudes a(J,s) exists, and a(J,s) is bounded by f(s) for 

fixed J; 

(iv) a(s) and 13(s) are analytic with a single cut from s == 4~2 

,to co, a(s) is polynomial bounded, and 13(s) is bounded by f(s). 

Since (i) and (iv) are satisfied by construction, we must check 

(ii) and (iii)., Both conditions are violated. Checking the fixed z , 

bOQDd (ii) we have, with x == a(s), w == a(u)" ~ ==2v/z , 

'1 
1 , 
I ,', 
J 

! 
'I 
, ~ 

" 

J 
1 
.1 
1 

') 
"1 
1 

j 
J 

I 
i 

I 
i 

1 
• ! 

1 
I , I 
; 
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r(~ + v + ~) r(~ - v + ~) 
2 z 2 z 

r(2v/z) 

1 ()1/2 { 7 1(V
Z exp v [(1 + liz) .en(l + liz) 

+ (-1-+ l/z).en(-l + liz) - ~ .en(2/ z)]}. 

(5.4) 

The evaluation of the fixed J limit takes some care, since 

our partial-wave amplitudes are expressed as infinite sums. 

20 
Near z = 1 we have 

(for v f. -1, -2, ••• ) , 

where 
.' d 

iJr(z) = dz log r(z) 

and y is the Euler-Mascheroni constant 

y = -iJr(l) = lim {~(Z) - _l_} 
z - 1 z -+ 1 

We rewrite (3.5) for P ~ ~I~ P + 1 : 

(E<!. 5.8 Cont.) 



P 

~. 2g L 
K=l 
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00 

+ 2g ~ 
K=P+l 

- 7 - ir(J + 1) } 

The second term on the RHS of (5.8 ) gives no trouble for ~ 

, large and negative. For the first term, however, we need to consider 

the asymptotic behavior of 

K 
(~(f) = 

-'1" 
-~ e , 

which violates (iii) for ~ ... -00. Looking at the singularity structure 

for a
2

+(J,'1") diagrammed in Fig. 1, we see that this asymptotic behavior 

is what we-expect, if we approximate the amplitude for fixed J by the 

pole at J = -1, with residue G(~,l,oo), using (4.1) and (4.11), so 

that 

-(Hl).en 2 
-~ e 

J + 1 (5.10) 

Now consider (3.7) for P < ~ + 1/2 < P + 1: 



'" 2g 

co 

+ 2g L 
K=P+1 

-17-

CKH1/ 2 + ••• } 
r( -r + 1/2) 

{

. 4K -J-1 1 
')( (,) +000; 0 

As -r goes to +00, we leave the region of convergence of the 

Froissart-Gribov projection (see Fig. 2) and, for fixed J, must consider 

more and more pole terms coming from the divergences of the second sum 

in (5.11). We see here, however, that the first sum in (5.11) becomes 

exponentially more important than the second as we go to higher -r. 

We must therefore interpret the expression for a1 -(J,-r) in terms of 

an infinite number of Regge poles, (3.121 as an asymptotic expansion 

which is good for -r -+ -00 at fixed J, but fails for -r -+ +00. The 

first sum on the right of (5.11) corresponds roughly to the contribution 

of the background integral, and the second is the sum of Regge poles. 

Our statement above about the asymptotic behavior of a1 - (J, -r) can 

alternatively be expressed as the fact that as one moves the background 

contour to the left in the J plane, in this model the background 

integral grows exponentially for large -r and dominates the Regge series. 

Since assumption (iii) fails both for a1 -(J, -r) and for a2 +(J, -r), 

we cannot write fixed-J dispersion relations for the partial-wave amplitudes. 

Fartia1-wave dispersion relations have served as a useful dynamical tool 
21 

in traditional Regge theory, and their failure here is an important 

consequence of the Veneziano model. 

.. ;.-



-18-

VI. POLE MODELS, REGGE BEHAVIOR, AND ATONOUS DUALITY 

In this section we discuss the general class of models for n:n: 

scattering containing only simple poles in place of the physical cut. 

We choose to restrict our considerations to that class of narrow 

resonance models whose defining characteristic is that the amplitude is 

completely specified by the residues and locations of the poles. This 

assumption eliminates from consideration, for example, models of the 

.. type recently proposed by J eng 0, which are forms of the interference 

22 model. 

We will use here the following assumptions: 

(a) Crossing symmetry, isospin conservation, and Bose statistics 

are satisfied. 

(b)' The only singularities of the amplitude are simple poles at 

s = sK' where c a + bSK (= a(sK)) = 0, 1, 2,'··, and similarly for the 

t and u channels. 

(c) There are no I = 2 poles.23 

(a.) The pole at s = sK has a residue which is a polynomial in t 

(or u) of order :S a(sK). 

(e) Given the locations and residues of the poles in s , the 

amplitude is completely determined. 

(f) All partial widths are positive. 

Assumption (a) is of course also satisfied by the physical n:n: 

amplitude. Assumptions (b) and (d) specify the pole locations and 

their possible angular momentum content. Assumption (c) is made purely 

for reasons of convenience. Assumption (d) is probably not independent 

of assumptions (a), (b),. (c), and (e). Assumption (e) is 
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the defining characteristic we refer to above, which we call "atonous" 

duality in order to differentiate it from Dolen-Horn-Schmid duality.4 

We do not discuss assumption (f) further in this section, except to 

mention that of all possible individual Veneziano terms, only (1.2) 

yields all positive widths. We touch on the positivity condition 

further in Appendix B. 

Assumptions (a), (b), and (c) are implemented by taking the t 

channel amplitudes 

/

A t· 
. 0 

A t 
1 = 

to be 

~ (H[a(t),a(s)] + H[a(t),a(u)]1 

g H(a(t),a(u)] H(a(t)"a(s)] 

- ~H[a(s) ,a( u)] 

H[a(s ),a(u)] 

(6.1) 

where (a) is satisfied by taking H(x,y) = H(y,x), (b) is to be 

implemented by hand, by choosing the pole locations as above, and (c) 

is satisfied by insisting that H[a(s),a(u)] have no singularities for 

s + u. 

For fixed y, the most general H(x, y) having given pole 

. locations and residues, by the Mittag-Leffler theorem,24 is 

H(x,y) = (6.2 ) 

where ~(x,y) is entire in x. 
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By assumption (e), atonous duality, we mean that, at least in the 

physical region in the channel where x is the energy, 

00 

H(x,y) = L I1c(y) 

x - K 
(6.3 ) 

K=O 

so that ~(x,y) = O. Now (6.3), by construction, will converge for 

all x, and for Re y < 0 • 

The symmetry of H then tells us that 

00 00 

L = L (6.4) 

K=O K=O 

provided Re x and Re yare negative. --.. In regions where x (and/or 

is positive, the divergence of the series of poles in x generates the 

poles in y, and vice versa. 

Assumption (e) is essentially the statement that for some fixed 

t we· can write an unsubtracted dispersion relation in s. We call 

this "atonous" duality, in order to distinguish it from Dolen-Horn-
4 

Schmid duality. 

If we express the pole residues of H(x,y) in terms of 

T = I - x - y, and let v = !(x - y), we see that both sets of poles 2 . 

can be simultaneously exhibited in the form 

CD 

H(x, y) = I 
K=O 

K -
I 

+ !(l-T) - K 
2 

again with no additional entire function. 

+ 

y) 
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Below, we will argue semi-rigorously that in the general case: 

(A) H(x,y) has pure power behavior of the form 

H(x, y) '" 
x .... 00 

fixed y 

00 

\ y-L () L x cL Y • 

L=O 

(6.6) 

(B) For v .... 00 in (6.5) for fixed .. , H[x(v, .. ), y(v, .. )] has 

fixed power behavior of the form 

CD 

H '" 
v .... 00 L 

fixed .. L=O 

-2L-l v 

Property (A) is Regge behavior, and property (B) is the Froissart­

Gribov ~henomenon.25 From (6.6) and (6.7) the I =0 amplitude has 

fixed and moving poles in the J plane; the I = 1 amplitude has moving 

poles only; and the I = 2 amplitude contains only fixed poles. 

Property (A) follows from the behavior of the residues 

lim 
K .... oo 

~(y) 

Property (B) follows from (6.8) and from the fact that 

~[a(t)]/q2a(t) ~. 0 for a(t) = 1, 2, 3, •••. 

(6.8) 

Furthermore, except for a violently pathological cas~ the 

fixed-J bound on a2+(J, .. ) is violated, as in the specific example 

discussed in Section V. 

Taken together, assumptions (b), (d), and (e) are almost 

equivalent to assuming Regge behavior. Let us see how the asymptotic 

behavior works out. By assumption (c) 
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~(x) "Cb 
m\ 

aFJn x ) g(K) (6.9) 

where we have taken aKK := 1 , for convenience. Factoring out any 

multiplicative x dependence we define g(x) , a(K,x), and o(K,x) by 

and 

lim 
K-+oo 

~(x) := g(x) a(K,x) 

= g(x) a(K,x) • 

(6.10) 

(6.11) 

In the example above g(x) == g(x) == ~(x), and a(K,x) = :rrc 

By using (6.4) we will argue below that these relations are true in 

general. 

Using the same procedure as in Section II, for P < Ixl < P + 1 

00 
~(x) 

P K 00 

lim ~ lim I x g(K) + lim \ g(x)a(K,x) 
'" 

x -+ -(X) 
Y - K P -+ 00 Y - K P -+ ill L y-K 

K==O K=O K==P+l 

(6.12) 

Similarly, for the direct channei exchange 

lim 
P -+ ill 

00 r ~(y) 
-- '" 
x - K 

00 

L -L-l '" ( )'" ( ) K g y a K,y 

K==P+l K=P+l 

(6.13 ) 

Physically, the second sum on the right in (6.12) should give 

no contribution to the asymptotic behavior. Matching the remaining 

terms, we get, in the limit of large Ixl 

f, 
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0) 00 0) 
L 

[ L L -L-l '" ( r ( ) L x ~(L) 
x K g Y a K,y = 

y - L 
L=O K=P+l L=O 

.0) 00 

L L 
L=O K=P+l 

(6.14) 

using the property of the Riemann zeta function7 

0) 

1 
~(z) - E~(z) k K-

z -E~ (z) -- = = z - 1 

00 

+ (t ES (Z)) L -z -z = K K 

K=M / 
". (6.15) 

where E~(Z) is entire. 

From this last relation we would of course like to conclude 

that g(y) = g(L), and ~(K,y) = ~ • We do not know how to prove 

that this is true rigorously, but we conjecture that it is, and we note 

that if these relations do not hold, evidently we need more information 

to determine the system, and assumption (e) is therefore violated. If 

we assume ~(K,y) is indeed if , (6.10) then 'yields, using (2.10), 
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00 L 
g(y) L x ihl F(l -yj l-Yj x) == Y - L Y , 

LFO 

g(y)1L -i1LY Y e x (6.16) '" 
x -+ co sin 1Ly 

so that we have Regge behavior and are left with an unspecified entire 

function g(y) .9 

Let us try to verify the conclusions above by using (6.4) in a 

somewhat different way. As y -+ 0- , we know that the sum on the left 

in (6.4) must diverge and we have, using (6.9) 

lim 
y -+ 0-

00 

L 
K==O 

(6.17) 

Since we are looking for the divergent piece of the series we 

can throwaway the first M terms, taking M » x, and obtaining, 

from (6.15) and (6.11), for small y and arbitrary, large, M 

';;(K,y) g(O) == g(O) == ~(O) (6.18) 

f(O) == 0, f'(O) == 1. (6.19) 

If we subtract off the first divergence and work at successive 

integers we get 

g(N) ; f(N) == N; f'(N) == 1. (6.20 ) 

If we differentiate (6.4) and go through the same procedure we 

can in fact conclude that f(y) == y, since we have implicitly assumed 
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~(z,y) is holomorphic. The differentiation and subtraction procedure 

also enables us to conclude that the general power behavior (6.8) holds. 

We therefore reach, semirigorously, the unsurprising conclusion 

that our assumptions imply that all the poles lie on Regge trajectories, 

and that there are no extra trajectories unassociated with poles. 

Either from (6.16) or from the Froissart-Gribov continuation 

00 r l1c(y) QJ(l + 2K ~ 1 ) , 

K=O 

we have the leading Regge residue 

(6.21) 

(6.22) 

In order to prevent f3 0 (t) from having poles at y = -1, -2"" 

we must insist 

(6.23) 

where h(Y) is entire and arbitrary, except for the requirement that 

h(N) ~ O. From (6.5) we can see that a2+(J,~) has fixed poles in J 

at wrong signature negative integers. As in the example above, the 

residues of the fixed poles are nonzero if 

(6.24) 

is nonzero for large, negative ~. The sum in (6.24) is bounded 

2 -~ ( ) 2 below by € e , provided all , h K > E for K > (some) M, 

and in fact ?'O(~) is nonzero if at least one h(K) is nonzero. 
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The model is now specified up to the entire functions h.(K), 
~ 

which enter each Regge residue. Except for a violently pathological 

choice of hi ' the f3 i (t) will then blow up exponentially 

as in the example above, as will the residues of the fixed poles, and 

the fixed J bound will be violated.18,26 

VII. CONCLUSION AND SUMMARY 

We have argued above that under a certain set of assumptions, 
4 

including most importantly what we call atonous duality, narrow 

resonance models for rrrr scattering necessarily contain fixed poles 

in J in the I = 0 and 2 ampli tud€l3, and moving poles in the 

I = 1 and 0 amplitudes. 

The Regge residues can be determined up to entire functions. 

For any reasonable choice of these functions, the fixed J bounds for 

the Froissart-Gribov amplitudes are violated and the Regge residues 

will show the exponential behavior discussed by Jones and TePlitz.18 

The formulation of partial wave dispersion relations is therefore 

: precluded. 

We believe the pathology outlined above can only be cured by a 

frontal attack on the narrow resonance approximation itself. 
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APPENDIX A. DERIVATION OF THE PARTIAL-FRACTION EXPANSIONS 

To prove (2.3) we use Gauss' theorem for the hypergeometric 

function27 

( ) r(c) p(c - a - b~ 
F a,bj Cj 1 = r(c _ a) r(c _ b ' (A.l) 

which holds for Re [c - a - b] > O. We remind the reader that F 

satisfies the hypergeometric e~uation 

z(l - z)u" + [c - (a + b + l)z]u' - abu 0, (A.2 ) 

and is defined by the hypergeometric series, 

F(a,bj Cj z) 

ro 

L 
TK(a) TK(b) K 

TK(C) r(K+ 1) z 

K=O 

Th ' f / / < 1 F /z/ = 1 the ser1'es l's27 e ser1es converges or z • or 

(a) divergent for Re(a + b - c) ~ 1, 

(b) absolutely convergent for Re(a + b - c) < 0, 

(c) conditionally convergent for 0 ~ Re(a + b - c) < 1, the 

point z = 1 being excluded. 

To verify (2.3) we note that 

co 

r r(K + y) 
r(K) r(y) 

1 -- = x - K 
r(m + 1 + y)(-l) r(m + 1 - x) 

r(y) rem + 1) rem + 2 - x) , 

K=l 

(by A.3) 

(by A.l) 

m=O 

r(l + y)r(l - x) ( ) 
r(2 _ x) r(y) F l+y, l-xj 2-xj 1 

(_y) r(l - x) r(-y) 
r(l - x - y) 

:::: F 0 [x, y] , 

(A.4) 



whenever Re y < O. 

Verification of (2.4) is mare involved, since both sets of poles 

have been simultaneously exhibited. 

In the notation of (2.4) we write 

Making use of the integral representation of the beta function, 

1
1 

B(x,y) = tx-l(l _ t)y-1 dt 

o 

11 ( )-x-y { x-1 y-1} = 1 + t t + t dt , 

o 

and of the hypergeometric function,2 7 

F(a, bj C; z) r(c) 
= reb) r(c - b) 

we have 

r[-v + ~(1 +1") J 

r[~v + !(1 + 1") + 1J 
2 

(A.6) 

r[v + ~(H1") J 
+ 1 F[1"+l, v + ~(1+1"); V + ~(1+1") + 1; -lJ 

r[v + 2(lt1") + 1J 

1 LCO 

r(1" +1+ n) (_l)ri{ 1 1 1 
rh ,+ 1) r(n + 1) 1( ') + 1 ' 

-v + 2 1+1" + n v+ 2(lt1") +nJ 
n=O 

(A.8 ) 

'.-
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and if we let K == n + 1, (2.4) follows. From the properties of F at 

Z = -1 listed above, we see the series in (2.4 )is absolutely convergent 

for Re ~ < 0,. and conditionally convergent for 0 ~ Re ~ < 1. 

APPENDIX B. BEHAVIOR OF RESONANCE WIDTHS 

We define W(N,L) as the partial width of the rrrr resonance 

having spinL and (mass)2. (N - a)/b. The behavior of W(N,L) as a 

function of its arguments is contained in 

W(N, L)· (B.1) 

where 

y = Z[~(N - D) + a] - ~ (N - D) (B.2 ) 

and 

2 
D = a(s) + a(t) + a(u) = 3a + 4~ b • 

The co~fficients of the Legendre polynomials appropriate for 

(1.2) in the case D = 3/2, a = 1/2, ~2 = 0, b = 1 BeV-2 are listed 

in Table Bl. 

For N » D,a and 
2 

4~ b, the polynomials TN(y) = r(N+y)/r(y) 

essentially consist of a huge forward peak between 0 ~ y .. ~ a, or 

1 - 2a/N ~ Z ~ 1. 

We can therefore approximate W(N,L) by 

J
1 

W(N, L) ~ 

1-2a/N 

PL(Z) r(N + y) 

dz r(N) r(y) 

For large L and small 1 - n , 

(B.4) 
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(
1 ')[;Jl(11) J ,T '211 - J2 (T}) + t J3(T}) 

where 
1 1/2 

11 = (2L + 1)[ T ] 
The first zero of JO(x) occurs at x ~ 2.41. Therefore the 

first zero of PL (z), from (B.5), occurs near the edge of the TN peak for 

(B.6) 

For L « LO and N fixed, W(N,L) will thus be roughly 

constant, since the entire forward peak in TN(y) is contributing to 

the integraL 

As L gets larger than LO ' W(N,L) will begin to drop 

sharply. Taking N» a in (B.4) and expanding r-l(y) in a power 

series about y = a , we obtain 

W(N, L) '" 2lf [ 

o 

-N(log N)~ ~' 
d~ e J O(2L"'{i) L 

j=O 

C (N) ~j 
j 

'where L.(x) 
J 

o ::; ~ ::; 2/N , 

r(l-a) sin rra 

_L2/N log N 2 (N) -j-l c. r(j+l)(N log N) e . L-i (L IN logN), 
J .... 

(B.?) 

is a Laguerre pOlynomial.29 In the interval of interest, 

-1 
we can bound r (y) by 

N~ {.f ¢2j 
(1 - 2) = r(l-a) sJ.n rra L R2T+'f) -

j=O 

~ ¢2 j +ljl 
cos ffa£o R2T+2T( -1 )'f' 

(B.8) 

,', 
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where ¢:= ~ N ~ • This expression roughly tells us what C (N) 
j 

must 

be like as a function of j, and we can now check and see whether the 

approximated series converges. 

To proceed, we need to know how 

Fejer's formula tells us that for fixed 

L. (z) 
J 

1 
2'z 

e 

L.behaves for large 
J 

Z 
22 

j. 

Therefore the approximated. series converges for fixed and large (L,N). 

ForL «N the argument of 

longer applicable. Instead we have30 

L. 
J 

becomes small and (B.9) is no 

1 

e-~ Lj(Z) '" J
O 

( [(4j + 2)z]1/2) + O(j-3/4), (B.IO) 

and the approximated series still converged. ForL « Nl / 2 , 
W(N,L) '" exp(_L2/N log N), and is relatively insensitive to L, as we 

have pointed out above. 

For L» l/Nr, a much more complicated argument leads once 

more to a convergent series, falling off exponentially. 

The behavior of W(N,L) sketched above is equivalent to an 

impact parameter description in which the radius of interaction grows 

1/2 31 
as s • 

a-I 
For L« N , the first term in the series gives N flog N 

o 

for the behavior in N, showing the power behavior one expects, along 

with the logarithmic shrinkage. 
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These general remarks lead to a rough argument as to the 

positivity of Vl(N,L). As has been shmm by Shapiro and Yellin,3 if 

one chooses a such that 1'1(2,0) 2: 0, then Vl(N, 0) > 0,32 

Using the same arguments, it j.s probably possible to show a simj.lar 

result for \i(N, 1), the p-wave widths, though this has not been done. 

Furthermore, Vl(N,N) and Vl(N,N-l) 2: 0 because the coefficient, of 

zL in PL(Z) is positive. 

Above, we have argued that for fixed large N, Vl(N)L) falls 

monotonically with increasing L. Combining this property with 

positivity of the s- and p-wave widths on one hand, and that of,the 

leading two trajectories on the other, 1,re have a rough argnment for 

the positivity of all W(N,L). 
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4 c . 73 8/5 

3 
25 c 73 8/5 lb 

2 d. It c . 112/3 2 

1 1 3 ft c . 208/5 "2 

0 0 1 0 ft c . 64/15 

0 1 2 3 4 

N 7 

, 
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FIGURE CAPTIONS 

Fig. 1. Singularity structure of the partial wave amplitude of even 

signature in the Re J, Re T plane. Note that the 

series defining + a2 (J,T), (3·5), converges only conditionally 

below the double line. 

Fig. 2 . Singularity structure of the partial vlave amplitude of odd 

signature al-(J,T) in the Re J, Re T plane. Note that the 

series defining al-(J,T), (3.7), diverges beyond the double 

line marking the leading Regge trajectory. 
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