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ABSTRACT 

The small t expansion of Regge residues ~(t) and trajectory 

functions a( t) for arbitrary external masses and spins is discu'ssed. 

We assume the usual analyticity properties of helicity amplitudes, 

" the factorization of Regge residues, and the requirement of consistency 

with coupling to unequal-mass channels. The leading t behavior 

(i.e., the lowest permissible power of t and its coefficient) of 

aCt) and ~(t) for the trajectories in a "family" is shown to be 

uniquely determined by the leading t behavior of the highest-lying 

'trajectory(-ies) in the family. It is also shown that certain nohleading 

terms in the expansions of aCt) and ~(t) are uniquely d~termined by 

higher-lying trajectories. The relationship of various recently 

proposed parameterizations of aCt) and ~(t) to our general results 

is discussed. In particular, it is shown that the parameterization given by 

Cosenza, Sciarrino, and Toller has the most general leading t behavior 
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I. INTRODUCTION 

The behavior of the Regge pole expansion of the scattering 

matrix for small values of the momentum-transfer variable t has! been 

studied intensively in the past few years. Tollerl first studied the 

case of equal-mass (elastic) scattering at t == 0 and found. that a 

single Lorentz pole satisfies the analyticity properties of t.he scattering 

matrix and corresponds to an infinite descending sequence of integrally 

spaced Regge poles with factorizable residues. Toller's original group-

theoretical approach has since been generalized by Cosenza, Sciarrino, 

and Toller2 to treat other mass configurations [equal (EE), equal-

. unequal ,(EU), and unequal (UU)] and small nonzero t. The group-

theoretical method elegantly provides a solution to the conspiracy 

problem for arbitrary external spins and mass(';s but leaves open t.he 

question of the uniqueness of the solution. 

Recently it has been realized that direct application of the 

analyticity properties of scattering amplitudes and the factorization 

of Regge residues .. gives a· method of solution which is in a sense 

complementary to the group-theoretical method. The analyticity-

factorization method readily answers questions of uniqueness but provides 

only a clumsy method for explicit calculation of residues and trajectory 

functions. This met.hod has been used to explicitly show that the 

unequal-mass residues and analyticity and factorization in EU 

scattering uniquely determine the equal-mass residues to be· those of 

a :1ingle Lorentz pole when t.he equal-mass channel consists of twc 

~ ~ r S 
~;pinl('ss partic] es, -, ,) nucleon plus ant.inucleon, < and two rho 
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6 mesons. This author has shown7 that the equal-mass resid.ues 

must be those of a single Lorentz pole for arbitrary equal-mass channels 

by also using analyticity and factorization in EU scattering. (If 

only EE processes are considered, then there is the possipility of 

only one solution in addition to a single Lorentz pole if channels of 

arbitrarily high spin are considered. 7 ) In Ref. 3 through 7 only the 

dominant residue at t = 0 was considered (we henceforth call this 

"t == 0 behavior"). In this paper we extend the method to • t $ O. 

We should first like to make a few remarks about our terminology. 

Following Bitar and Tindle,8 we call the family of Regge poles, integrally 

spaced at t = 0, which is required by analyticity and factorizatioq, a 

"Lorentz family" and reserve the name Lorentz pole for the special case 

of EE scattering and t == o. Also, following Ref. 2, we call the 

members of a Lorentz family "conspirators" and the analyticity and 

factorization conditions "conspiracy conditions." By "minimal kinematic 

behavior" (MKB) we shall mean the lowest power of t (and its 

coefficient) that is allowed by the conspiracy conditions. For example, 

if l3(t) = t
X 

Y[l + oCt)] where x ~ x , the MKB is o 

is by definition a unique quantity. 

x 
o 

t Y. The MKB 

Our basic assumptions, in addition to (1) the usual analyticity 

properties of helicity amplitudes,9 are (2) the conspiracy conditions 

10 are satisfied by a sum of Regge poles, (3) there is only one trajectory 

of given quantum numbers and therefore its residue factorizes, and 

(4)·the solution must be consistent with nonvanishing coupling to 

" 
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unequal-mass channels at t = O. For simplicity we do not discuss 

internal symmetries except to give the additional conditions that 

statistics and charge conjugation place on equal-mass residues. 

Furthermore, since trajectories of opposite signature (T) give 

relatively imaginary contributions to the scattering amplitude, they 

must individually satisfy the conspiracy conditions. Thus by assumption 

(3) we consider at most a parity doublet for each 0;( t) . 

Using assumptions (1) to (4) we derive the MKB of the Regge 

residues and trajectories (and of the differences of these quantities 

for parity doublets). We prove that the MKB for all members of a 

Lorentz family is determined uniquely by the MKB of the leading 

11 member( s).. We also consider the general form of the power series 

expansion of residues and trajectories and show that certain derivatives 

are uniquely determined by derivatives of higher trajectories. This 

result is useful for testing the generality of proposed pararneterizations; 

any parameterization which has only the specified derivatives constrained 

,is the most general possible parameterization. We give our results in 

terms of particular linear combinations of the usual residues - these 

"crossed residues" are defined by Eq. (6). The usefulness of the crossed 

residues (particularly for equal-mass channels) will become clear in the 

course of the derivations. Throughout the paper particular attention 

is paid to the requirements of parity conservation. 

At this point we should'like to warn the reader that actual 

trajectories could have quite different behavior than that given here 

under certain "unphysical" circumstances. Firstly, if there is 
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"accidental" crossing of trajectories [a violation of assumption (3)], 

the small t behavior of the crossing trajectories and lower members 

of the family can be entirely. different. . Secondly, if a traj ectory 

couples only to a restricted type of channel [violating assumption (4) J, 

the small t behavior and family relationships may be entirely different . 

. As a simple example, if a trajectory couples only to spinless equal-mass 

channels, then only one trajectory (or an arbitrary number 6f such 

trajectories) satisfies the (trivial) conspiracy conditions!12 We 

believe that a sufficient condition for this not to occur is that not 

all unequal-mass residues be identically zero. The reader should notice 

that here we assume the stronger condition of nonvanishing . coupling to 

unequal-mass channels at t = o. 

In Section II we introduce our notation and derive the MKB for 

leading trajectories. We treat all mass configurations in a unified 

manner. The leading trajectories have been discussed before by many 

13-18 . authors, but in no single reference have all the conditions on the 

residues and trajectories been given. This section will also serve to 

introduce the reader to the type of arguments made in the f9110wing 

sections. In Sections III, IV, and V we discuss respectively the· unequal-

mass (U), equal-mass (E), and zero-mass (Z) residues for all memb~rs of the 

family. We derive the U residues by considering a UU process and then 

derive the E residues from these by using factorization for a EU 
, 

process. In Sections II through V we always impose the analyticity 

properties in terms of s-channel helicity amplitudes. The small 

t behavior is most naturally expressed in terms of s-channel amplitude::, 

since t =0 0 is near the s-channel physical boundary. 

\I 

" 
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For the E and.U channels we are content to show the uniqueness 

of the MKB, since, as pointed out in the first paragraph, the analyticity

factorization method most easily answers this question. Therefore only 

the subset of conspiracy conditions necessary to show uniqueness is 

considered. For a proof that the MKB given satisfies all the conditions 

we rely on the work of Cosenza, Sciarrino, and Toller. 2 They have shown 

"that their solution has this property and we shall show in Section VI 

that it also has the most general MKB (even though it has parallel 

trajectories). In Section VI the relationship of other proposed 

parameterizations8,l9,20 to our results is also discussed. We should 

point out here that Kleinl9 has previously given the MKB for the U 

residues and discussed a number of aspects of general parameterizations. 
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II. THE LEADING TRAJECTORIES 

We consider the s-channel process _ 1 + 2 ~ 3 + 4 and the 

corresponding t-channel process 4" + 2 ~ 3 + 1. The contribution of a 

Regge pole to the t-channel c.m. he1icity amplitude is given by21 

(-l)fl-[l' [2a(t) + 1] h + e-irr[a(t)-v]} 
4 cos n [aCt) - v] 

x , (1) 

where v is 0 and'1/2 for boson and 

fermion trajectories respectively; P and T are the parity and 

"t t" 1 Th f t" " " b 22 slgna ure respec -lye y. e eunc lon lS glven y 

-a-l( ) e , Z 
[l[l 2r( -2a) 

1 

[r([l - a) r(-[l - a) r([l' - a) r(-~' - a)]~ 

~ 
X (~,\a (z + 1 ~ 2 F([l _ a, [l' _ a.-2a. __ 2_) (2) 

2 ) Z - 1) , , z - 1 

It is convenient to define the reduced residues (suppressing the 

t dependence) 

x. , 

-----------
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where i,j is 4,2 or 3,1. Combining (1), (2), and (3), we obtain 

~ 
2 X (1 + x) F(~ - a, ~' - a; ~2a; -x) , 

where 2 
x =-~~ 

Zt - 1 

The Regge pole contribution to the s-channel c.m. helicity 

amplitude is obtained from (4) and the crossing relation23 

(4) 

(5 ) 

The parameterization of the residues is most conveniently given 

in terms of the "crossed residues ", which are defined as follows, 

R PT(t) L s. 
Sj(x.o ) ~ PT(t) d l(X.O) d , (6) 

"i"j ~.". 1 ~lj J ~i~j -1 1 

~iflj 

.- where 

XO 
- lim lim X (s,t) 

2,4 t~ 0 s~ 00 2,4 

(7) 

XO ;;;;; lim lim [n - X (s,t)J 
1,3 t~ 0 s~ 00 1,3 
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For the various external mass configurations we obtain: 9 

Unequal masses (u) , m. =f m.: 
1 J 

cos X 0 
i 

where 

Equal masses 

E. = 
1 

i,~ is 

(E) , 

X 0 rr/2 
1 

Zero masses (z) , 

E. 
J 

± 1, 

4,2 or 3,1 

m. m. *0: 
1 J 

m. = m. = 0: 
1 J 

cos X. 
1 

- cos X j = -1 

for m. < m. 1> J 

as usual; 

From the requirement of parity conservation 

we obtain 

and 

P'! 
f3 
fl·fl· 

1 J 

2s. 

., 
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(8a) 

(8b) 

(8c) 

(10) 

1)i (= where A = A. and - Aj 1 
(-1) 1 

1)7 ) is the intrinsic parity of 
1 

i. The "parity sequence" 1) is equal to P'!. 

". 

I 
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One further definition is useful in order to partially 

diagonalize the crossing matrix: 

(11) 

(12) 

From now on the signature label will be suppressed. The. spin s in 

(11) is the "channel spin" previously introduced by several authors. l ,19 

Q,uanti ties ~ p 
sfl 

can be defined by an expression similar to (11). 

Near the 

rapidly as Gin 

s physical region boundary H must vanish at least as 

gs)IA.-A.' I 2LI 
2 . It can be shown that in general 

Xi (s,t) ~ lim Xi (s,t) 
S-7 oo 

t-70 

where f .. (s,t) is regular at t 
lJ ' 

s. 
d l(X.) 

fl.A.. 1 
1 1 

O. From the identity 

it then follows that we may replace X by X 0 
i i 

[or in 

( '1) without changing the behavior of the left-hand side. Hence our basic 
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24 
analyticity requirement may be eA~ressed as 

L d s4(X 0) 
s 

1 d 2(X 0) 1,,-,,' I 1J-4"4 4 1J-2"2 2 
(Sin ~ Gs) (IJ- } 

s 
Ht . (s, t) X d l(ll -X

l
o ) = NS , 

IJ-l"l 1J-31J-1 ,1J-41J-2 

where NS means nonsingular at t = o. 

s 
d. 3(ll _ )~ 0) 

1J-3"3 3 

(lL!) 

We now consider the leading trajectories in a Lorentz family. 

We substitute (4) in (l.l~), allowing for the possibility of parity 

doublets, and take the leading term as s -"7 00 , 

_1.. I ,,-,,' I t 2 . 

II 
p=± . (IJ-} 

We have used the fact that for all mass configurations, 

. 1 e 
8m 2' s 

1 
----) (t/S)2. 
S-"7 00 

Using (11), (12), and the identity 

t-~I,,--,,-' II P Rs,,-P(t) Rs,,,-,P(t) sc7(t) = NS 

P=± 

'l'his . is our basic equation for leading trajectories. 

(16) 
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If there is to be nonvanishing coupling at t == 0 for at 

least some channel as required by assumption (~), 

must be nonzero for some s, s', t" and P. From (12), however, 

is also nonzero and (16) would be violated by a RSAP(O) RS'_AP(O) 

factor. t- 1A1 unless there is some cancellation with a trajectory of 

opposite parity (for A =F O). Therefore cx-(t) == c/(t) + O(tX) for 

:some positive X and parity doubling at t == 0 is necessary. For 

the moment we neglect the s dependence of (14) and return later to 

the determination of the power X. 

We now write an expression like (16) except with -A' and use 

(12), to obtain 

t"'~IA+A' I{ R +Ct) R +(t) + R -Ct) R -Ct)} == NS (17) 
SA s'",' SA s'A' 

We may add and subtract (16) and (17) after multiplying by an appropriate 

power of t and obtain 

, , (18) 

where mAl..' == minC I A - A' I, I A + A' I ) . We no,,! choose s', A' such that 

,R +, ,(O):f o. Let M;::' 0 denote this value of A'. From (18) it follo,vs 
s A 

that 
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We may therefore write the MKB as 

+ -M + M where y '(t) = y '(t) by (12). Similar expressions may be . . s-~ s~ 

obtained for R + I I and R -; they must both have the same M to be 
s ~ 

consistent with (16). Therefore we have the MKB: 

where P-M(t) 
Ys-~ 

PM(t) . 
rs~ 

Returning to (16), we now obtain 

+ ~~tH 1~+MI+I~'-M!)[r;Z-M(t) y;;~(t) + y~CM(t) y~;~,(t)l} . 

NS (20) 

The first two terms are nonsingu1ar but the second two are not for 

M t 0. Therefore the last two Quantities in brackets must vanish 



",', "-

sufficiently rapidly. 

or alternatively, 

P±M(t) 
Ys,,- = 

-13-

We thus write 

.' The minimum power Y is independent of s, since the power of t 

(21) 

required. depends only on A.. It is easy to show that the power Y is 

given by25 

M <. 1"-/ (22) 

'. We notice that the two terms in (19) differ precisely by the power 

and therefore gtM may be absorbed into +M 
Y and (18), with the 

additional condition 

, 

has the general MKE. With this condHion the last two terms of (20) 

vanish identically for· a+(t) = a-(t). 
+ .' 

Finally we must examine the relationship between a (t) and 

a-(t). For the required cancellation of the last, two terms in (20) to 

ta.ke place, the s dependence cannot be too different for the two 

trajectories. It is clear that the power X defined above cannot be 

smaller than Y. Since trajectory functions are helicity independent,' 

X must equal . M. 
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We may now collect the above results for the MKB26 (the 

definition of the " s' is slightly modified): 

HS (s,t) s:\;s':\' 

C' (t) a(o) 
,s:\;s':\' s , 

Cs_:\;s,_;\,(t) -~c- (t) 
,s",;s':\' 

-M ) 
's-:\ (t 

M 
aCt) + Pa(t) t 

1 

, 

(25) 

The functions C," a, and a are analytic in t (or t'2 for fermion 
1 

trajectories) at t = 0 with the possible exception of a factor f? 

common to all,. The parameter M which gives the absolute value of 

the helicity flip in leading order may be identified with the 0(3,1) 
, 1 

quantum number for EE processes. 

For M = 0 it is evident that (20) is satisfied with only one 

'leading trajectory and (211) and (25) show that the residues and 

tra;jectories of opposite parity are unrelated. In the absence of any 

dynamical requirement of a parity doublet, we henceforth assume that 

for M ~ 0 there is just one trajectory. For M = 0, in (24) 
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should be replaced by 
o 

Y
S

-
A
. and the requirement 

-M M 
YS- A = YSA . omitted. 

Similar modifications are to be understood throughout the paper. 

At no time in the above derivation of the MKB have the external 

masses been mentioned, hence (22), (23), and (211) hold for all processes. 

The only dependence on the masses arises when Eq. (6) is now inverted 

to solve for the ordinary reduced residues 13. We find, changing the 

notation slightly: 

Unequal masses: 

+ (26) 

.where r-M (t) = Y M(t) The factor Ei(Ei=.tl for 
-~i-~j ~i~j 

m. >< m.) takes into account the eccentric behavior (8a) of the crossing 
l J 

angles. 

where 

Equal masses: 

m.m. 
l J 

[ 

1 I M 1M' s . +s . -m 1 I M I M 1 X t2 m- (t) + TlTl.Tl. e- l :n:v(_l) l J t2 m+ - (t) 
Ym.m. l J Ym.m .. 

l J l J 

-M r (t) -m.-m. 
lJ 

M 
rm.m. (t) 

l J 
and m = m. - m .. 

l J 
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Zero masses; 

i~(l-P) [ 1 I M/ M . S.+S.+V 
e q t~ v+ Y (t) e-1rrv(_.1,' 1 J + TJT)i TJ j lJ.ilJ. j 

(28) 

where -M (t) YIJ..IJ..M(t) and + For minimal bebavior 
Y-IJ.. -IJ.. == v == lJ. i IJ. .. 

J. J . 1 J .J 

the various Y are finite at t == o. In general 'they are analytic at 
I 1 

t == 0 with the possible exception of an additional factor t~ common 

to all residues of a family. For fermion trajectories 0: and S are 
1 

analytic functions of t~ rather than t, as is allowed on general 

principles. 
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III. UNEQUAL-MASS RESIDUES 

In order to derive the MKB for U residues we apply the basic 

equcttion (14) to a UU process. For small t and large S'o'le fincl 

and 

z 
S = 

= 

• 1("\ 
sm~s 

2st + 
2 2 
s- (Il]: 

, Furthermore, choosing m4 < m2, m3 < ml for definiteness, we find 

and therefore 

2 
x 

. ,1 9 
sJ.n"2 s 

= 

~ S + 0(1) , 

(-ts' )-b 1 ( 1 ] = (~ + X)2 1 + O(t,s) 

We now insert the above expressions into (14) and obtain 

A-A' 
u p 

P R, 
SA, 

-2-'-
(1 + x) . 

)<. F(A - 0, -\.' - 0:; - 20; -x) NS 
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Since x ~ (ts)-l, it is evident this equation is untrue as it stands 

and conspiratqr trajectories at a (0) ~ a - n must be introduced. 
n 

Therefore the basic equation for UU scattering is 

A.-A.' _IA.-A. I I 
2 2 (1 + x) UR P(n) (t) 

s I A. I 

a p(t) 

(
4P42P31) n P P P 

x F (A. - a . (t), -A.' - a ( t ); - 2a ( t); - x) = NS x n n n 

(29) 

The factor (_l)n comes from (12) and the alternation of signature, 
n 

~ (-1) T, necessary for obtaining the same phase of the amplitude. 
n 

As in Section II, we first determine the y±M(n) (t). For this 

P calculation we may neglect the parity dependence of an (t) [and 

hence set aP(t) = a - nJ. If one imagines solving for the URP(n) 
n 

by iteration starting with (24), one easily sees that y±M(n) (0) is 

completely determined by y±M(O). To determine the precise relationship 

we write the general form, 

+ PT) B -M:x(n) t~'A+M' y -M(O)] 
A. A . sA. 

The B's are functions to be determined. They depend only on the 

hclicit.y diffel·ence A., as will soom become clear, and by (1;2) satisfy 

.. 



·. 

-------

B Ma(n) 
A. 
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B -Mo:(n) 
-A. 

UCRL-1878S 

We now insert (30) in (29) and consider first A ~ M and 0 < A.' < M. 

The requirement that the coefficient of the singularity (_x)N vanish 

becomes 

N 

£: B Ma(n) B Ma(n) 
A. A.' 

n= 

.,...-_--.-..,- r(A. - a: + N) r( -A.' - 0: + N) 
(N - n)~ r~A. - 0: + n) r~-A.' + 0: + n) 

r( -20: + 2n) 
r(-20: + N + n) o 

The solution of this set of equations for all N is readily found to 

be7 

B Ma(n) B Mo:(n) 
A. A.' [ 

(_l)n r(n - 2cx - 1)] [r(A. - 0: + n) rt-r-,' - 0: + n)] 
. n~ r(2n - 20: - 1) rCA. - 0:) r -A.' - 0:) 

Taking A. 

B Ma(n) 
M 

A.' = M yields 

[ 

n 1 
(-1) r(n - 20: - 1) r~M - 0: + n) r(-M - 0: + n)]2 

n~ r(2n - 20: - 1 reM - 0:) r(-M - 0:) 

Then from (33) it follows that 

. .. ,..-.. --............. 
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A. = 

rCA. - ex + n) 
r(A. - 0;) 
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1 

\ (_l)n r(n - 20; - l~ reM - 0;) r(-M- 0; + n) )-2 l n ~ r ( 2n - 20: - 1 r ( M -0; + n)·· r ( -M - ex) A. ~ l'4 J 

B Mo;(n) 
A. 

r(-A. - ex + n) 
r(-A. - 0;) 

[
(_l)n r(n - 20; - 1) reM - 0; + n) r(-M - 0;) )~ 0 ~ A. ~ M 
n~ r(2n - 20: - 1) reM - ex) r(-M - 0; + n) ~. ~ 

. Finally vle consider A. ~ M and A.' ~ -M, for \,!hich t.he 

condition (29) becomes 

+ B M:x(n) B -Ma(n) y M(O) Y -M(O) a (0) lOgS) 
A. A.' SA. S'A.' n 

X xn F(A. - 0; + n J -A.' - 0; + ~; -20; + 2n; - x) - NS 

We have suppressed some irrelevant. phase fact.ors. The solution is easily 

obtained by examining t.he three terms separately. Using (32) and (3~)J 

we find that. B-M:x(n) is given by an expression just like (3~) with M 

replaced by -M and t.hat 



.. 

where 

xMa(n) 

-21-

a (0) 
n 

xMex(n) a(O) , 

= (_l)n r(M - ex + n) r(-M - ex) 
reM - ex) r(-M ~ ex + n) 

UCRL-18785 

We now collect the a.bove results and give the MKB for the crossed 

residues: 27 

+ Pn t"~IA.+MI B -Ma(n) y -M(n)(t)] (2 )n 
. \. \.. s\. . P ij , 

where 

and 

y -M(n)(t) 
s-\. 

The ordinary residues are simply related to these through (11) and (6). 

For trajectories the relationship is 

ex (t) + P a (t) t M , n n 

where. 

ex (0) 
n 

ex - N, a (0) xMex(n) a(O) 
n 
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The signature is Equations (37) and (39) 

show that the leading behavior at t = 0 is completely determined by 

the leading trajectory, as asserted in Section I. 

For a discussion of the derivatives of the y±M(n) it is 

sufficient to consider ,,' = ±M. F!=,r example, if we take ,,' = M and 

,,>0, we find the nth trajectory gives in order (_x)N a contribution 

to (29) of the form 

y M(n)(t) 
s" 

y M(n)(t)' 
s'M . 

as well as 'terms involving the 

ex (t )+n " N 
s n ( -x) 

-M(n) y , 

, 

and a multiplied by extra 
n 

factors of t. By factorization we may consider these various terms 

separately, since they depend on different independent parameters y. 

We may also treat the various combinations of derivatives separately 

as they involve different parameters. Considering terms proportional 

to M(n) M 
Ys'M (0) = Ys'M (0) , which by assumption (4) may be taken to 

be nonzero, we see that the first N-l derivatives of 

are determined. By considering terms proportional to logs we reach a 

similar conclusion for ,. Finally, by considering other values of 

" and ,,' = -M, we conclude that the first N-l derivatives of 

y~M(N)(t), ,(t), and aN(t) are uniquely determined. They depend 

on the first N-l derivatives of residues and trajectory functions 

for n ~ N - 1 . 
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IV. EQ,UAL-MASS RESIDUES 

We derive the E residues from the U residues (36) and 

analyticity and factorization for EU scattering. We consider the 

s-channel process ml + m ~m3 + mand assume m3 < ~ 

ness. It is convenient to define the singular quantity, 

for definite-

y -

[ 
1 r, 2 2' 2)]:::::: 

s + 2 ~ - 2m - ~ - m3 

c-rI ( 42.l ., ,to. m)2 
31 I 

? 
i m(~~ . 

2 
m ) . 3 . 

(40) 

where ~1 is the usual threshold-pseudothreshold factor. In terms 

of y we have 

x ~ 
1 - y 

9 
. s 

sm 2" -

x 
s(l - y) 

The basic formula (14) must be modified slightly (but 

significantly) for ED scattering. The crossing angles for the E 

particles have the singular behavior 

sin(X.o - X.) cos X. - sin(¢. + \jr. ) (41 ) 
l l l l l 

where 
1 

0i 
f ij (s, t )Gin :s )2 , 

.. 
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We may now combine (41) and the other expressions above with 

(14) to obtain the basic equation 

n s -1 
P(-l) d~v (-sin y) 

P 
a (t) p 

E~ P(n) (t) 
sJ-L . 

() ( 
4P4 p ) n . a (t ) 

UR P n (t) 2 31 (1 _ ) n 
s' A' 2y . Y 

~ 
X (1 + y) 2 

1 - y 
\( P P P 2Y ) F~ - an (t), -A' - an (t); -2an (t); - r-:-y 

In (4.2) we have neglected terms of order t 

NS (42) 

1 and - times the most 
s 

singular contribution in the argument of the first rotation matrix. 

For our purposes it wtll be sufficient to consider A' = ±M so that 

Y s t M±M( 0) may be taken nonzero by as sumption (4). 

Before proceeding further we establish some additional notation 

and develop some of the properties of (42) by considering the solution 

for t == O. From (27) we obtain 

Ei3 P(O)(O) 
sp 
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Since we must require that the coefficient of each power 

yN (N > 0) vanish. From (42) we see the contribution of order 

N Y from n = 0 can be written as at most N powers of J or J y x 

. between (sAl and !S:l;M) by using the identity 

\' d s(-11) ( )k d s(~) L Vfl 2 fl fl±M 2 

If (42) is solved iteratively for the crossed residues it is thus·clear 

that ER Pen) 
SA 

vanishes unless A = :l;M + k, -n ~ k':;:;; n. Furthermore 

from the identity 

~ 
(1 _ y) CX (1 + y) 2 

1 - Y 

cx (1 + y) C~) 1 + Y 

F~ - cx, -:\' -cx; -2cx; -~) 1 - Y 

~. 
2 

. '")' ) 
- cx -A' - cx· -2cx' ~ , " 1 + Y 

we see that the power of fl(J) is even (odd) when the power N of x 

Y is even (odd). The power of J is also even (odd) when N is 
y 

. -1 even (odd) since Sln y is an odd function of y. Therefore 

ER Pen) vanishes unless n-k is even. After consideration of the 
SA 

parity properties (12) and use of (6) we find the unique solution 

E~ p(n)(O) = e 1 + PT} (_l)M-s+n K Ma(n) (2p .. f i%(l-P)[ 1 
Sfl fl sfl lJ 

, (44) 
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where K is given by28 

K Mcx(n) = (s IR (2!.) {b Ma(n)C' J +)h + b Mcx(n) ( J +)n-2 + 
s~ ~ Y 2· sn 2 sn-2 2 

+ b M:x(n)(-=- ) + b M:x(n) -=-) IsM) 
J n-2 (J n} 

s-n+2 2 s-n 2 

(_l)s+~+n K -Mcx(n) 
siJ 

(45) 

The b Mcx(n) 
sk 

are given explicitly in Table I of Ref. 7 for n ~ 3; 

for general n they can be obtained from the results of Ref. 1. 

In (44) the residues are those of a single Lorentz pole, since we have 

. 29 
Just shown they are unique and Refs. 2, 9, and 19 prove that a single 

Lorentz pole satisfies our conditions. 

We now derive the MKB for E residues from (42). To derive the 

residues we may set 
p 

CX (t) = CX - n n 
and, as mentioned before, consider 

only A.' = ± M. We solve the equation iteratively. Consider the 

coefficient of 

respectively, 

(-;2y )N 
\..2p42 

N 

N y. The contribution from n = N is, for A' = ±M 

~ M:x(N) B M:x(N)) Y, M( 0) 
M M 

TJ (2Y) 1 (ER +(N) B ~MCX(N) _ ER - (N) BM-MCX(N)) y,MM( 0) 
M 2P42 t'~ /A.+M I SA. M SA. 
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These will be equal to a function of the already determined residues 

for n < N. We can solve for ER±(N) by multiplying one equation by a 

quantity proportional to t raised to the power, IIA. - M' - IA. + Mil 

and then adding and subtracting. Using (34) we therefore obtain !o., 

unique result for ERP(N). 

We shall not burden the reader with the details of the calcula

tion of the specific forms for the ERSA.P( Tj). It is not difficult to 

show that they are given by the following expressions, 

where RM(n) are given by 

(2p .. ) 
lJ 

n , (46) 

(i) A. = M ± n, M ± (n - 2), M ± (n - 4), "', M ± 1 or M, 

(ii) 

R M(n)(t) 
sA. 

A. = M ± (n + k), 

J ±(A.-M) 
b Mcx(n)(sA.l( ±) IsM) Y M(n)(t) 

sA.-M 2 'sM 

(_l)n R -M(n) 
S-A. 

k ~ Q , 

(_l)n R -M(n) 
S-;\. 

(_l)M-A. R -M(n) 
S-A. 

r M(n)(t) 
sM*k 

(_l)Mtk-A. R -M(n) 
S-.\. 

(48) 
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(iii) A = M ± (n - 1), M ± (n - 3), M ± (n - 5),···, M ± 1 or M, 

R M(n)(t) 
SA [

+r Ma(n) . M(n)(t) + 
SA YsM+l 

or Ma(n) "" M(n) (t) 
SA YSM 

+ r Ma(n) Y M(n)(t)] t~ 
SA sM-l 

(_l)n R -M(n) 
s-A 

= (_l)M+l-A R-M(n) 
S-A 

(49) 

The r M:;t(n) in (52) are uniquely determined functions of the indicated 
SA 

variables; their explicit forms are not necessary for our purposes. 

The k appearing in (46) is the same as the power of t in (47) to 

(49). In (21-7) to (49) we also have the constraint 

Y ±M(n)(O) 
SA 

Y ±M(O) 
SA ' 

'" ±M(n) (0) 
Ys±M 

y ±M(l)(O) 
s±M , 

which shows that the MKB is determined uniquely by the leading trajectory. 

There is, however, the additional parameter YS±M ±M(l) (0). Its 

occurrence is a special case of a more general formula to be discussed 

below. 

The same trajectory constraint [(38) and (39)J is also 

obtained in this case, as it must be for consistency. 

We now discuss the derivatives of the y±M(n). As in the 

previous section we consider as an example A' = M and A ~ O. The nth 

t.r'/l,il'Ct,Ol'Y gives in order a-N s a contribution t.o (L~2) of the form 
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1 R M(n)(t) 
SA. . 

Y M(n) (t) 
s'M 

Since RSA.M(n)(t) behaves likes YSA.M(n)(t) tk, this contribution has 

t -~'(N+ 1A.-MI)+k.' the singularity Therefore for the above ranges of the 

helicities the following derivatives are determined: 

(i) 

(ii) 

(iii) 

A. = M ± (n - 2£) , £ = 0,1,"', (~] 

first N - £ - 1 derivatives; 

A. = M ± (N + k) , 

first ~ - 1 derivatives; 

M = (N - 2£ - 1) , £ = 0,"", 

first N - £ - 2 derivatives. 

[ 
N - 1] ,-, 

c. 

We now see that the extra parameter in (49) arises because for N = 1 

and £ = 0 no derivatives are determined in range (iii). The deter-

mined derivatives depend on the derivatives (with corresponding or 

lower order) of trajectories and residues for n <:. N - 1 and helicities 

in the range A.,- (N - n) to A. + (N - n). 

The above results may also be obtained from consideration,of 

EE processes if coupling to channels of arbitrary high spin and the 

t= 0 result (~3) are assumed. In this case the basic equation (l)i) 

becomes 
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d s(ZI.) S!(:n:) 
IJ.A. 2 d IJ. ! - A. ! 2 

~ 
2 (1 + x) 

E"§" p(n)(t) 
SIJ. 

x FG: - QnP(t), IJ.' - QnP(t), - 2Qn
P
(t); - 3) = NS, 

g 1 

sin ~ """ t 2 
2 

Actually the EE processes provide a more economical since 

derivation of the E residues but uniqueness is more difficult to 

demonstrate. 

Since equal-mass channels in practice always consist of two 

particles of the same kind or a particle plus antiparticle we state here 

the requirements imposed by statistics and charge conjugation. These 

requirements are easily derived from the properties of helicity states 

given by Jacob and Wick 30 and take the form 

~SIJ. 1"£ ~S-IJ. , 

where £ is given by 1 

Y 
(_1)1-2 particle-particle 

£ 

G(_l)1 particle-antiparticle. 

This requirement in conjunction with (9) will force some of the equal 

mass residues to vanish. l ,2 
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V. ZERO-MASS RESIDUES 

The zero-mass residues are first derived by considering a ZU 

process. It is then shown that the residues thus obtained also satisfy 

all the conspiracy conditions for ZE and ZZ processes and therefore along 

with the equal- and unequal-mass residues give a complete solution. 

In this case, in contrast to the E and U residues, the MKB 

of the lower trajectories is not uniquely determined by the leading 

trajectory; only the power of t and not its coefficient is determined. 

We consider HS for the ZU process with m2 = m4 O. In 
9 1 

this case sin ~ ~ t"2 and the basic equation (ll.~) becomes 
2 

t-~It .. -A' 'L L p( _l)n Z~ p(n)(t) UR P(n) (t) 
-A4A.2 s' A' 

P=± n==O 

ex p(t) -v-A' 

(4p4~P31) n (1 + x) 2 
)( 

P P P 
X F( -v - exn (t), -A' - exn (t); - 2exn (t); - x) NS (52) 

where v = A4 + A2 and we have assumed m3 < ml for definityness. 

From the relations 

s + !2 (t -(m 2 + m 2) - :J ) 
1 3 31 

x 
s + ~ (t 2 2 ::1:)' - 6n + m ) - . 

"1. 3 31 
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and the formulae (26) and (28) for the n = 0 residues, it is easily 

seen that the leading trajectory by itself satisfies (52). Since 
n 

URP(n) cc t -2' URP(O) it is clear that Z-P(n) 
f3 CX! The 

proportionality constant, however, is undetermined. Hence] 

ei~(l-P) [t4, I' -M 1 y M(n) (t) 1 /' +M 1 M(n) J '+ " I~ + PTJ t2 II. Y , .,. (t) 
SA A SA 

where 

X (2p .. ) 
lJ 

.n 

y -M(n)(t) 
s-A 

There is no relationship between the y±M(n)(O). 

For the ZE process an equation similar to (52) holds except 

with an additional sum over and a In this case, 

l -1 
x ~ t? S and therefore successive terms in the expansion of the 

hypergeometric function have the form (~t~)k. It is easily seen that 

these give no violation of (52) and thus the leading trajectory alone 

satisfies the equation. Similarly each conspirator for n:> 0 satisfies 

(52) by itself~ The ZZ processes are trivially satisfied by (53). We 

therefore conclude that (53) is consistent with arbitrary reactions. 

Finally, we make two obvious remarks. If the two zero-mass 

particles are of the same kind or antiparticles, Eq. (51) must be 

imposed. At t == 0 for ZE processes the result of the Lorentz 

family (or a single trajectory) is to give the single power behavior 

~o: :>1 
'" . 
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VI. DISCUSSION 

We first demonstrate that our results for the MKB of the equal-

and unequal-mass residues are the same as those given by Cosenza, 

Sciarrino, and Toller
2 

(EQS. 5.6 to 5.13 of II). 
In the unequal-mass case a straightforward calculation shows that 

the coefficient of t~IA.±MI is the same as that given in (36) and allows 

us to identify 

j' 

Uc MC:X 
j , A. 

. 
y (U)j' (p,O) 

-A.iA. j , 

where is a complicated function which we do not specify here. 

The equal-mass case is more complicated and we discuss it in somewhat 

greater detail. For example, for M 1= 0 we transcribe the formulae 

of Ref. 2 to our notation to find 

X (1 + 1111.11 
J. "7 

J 

-irrv e 

From (6) and (11) we then find 

gs' 

Y""S(E)S'+l(t)"t~t' (,-" )"( )s'+p" s . C ss s; !-L-!-L -1 

(54 )" 

(E)S'+l(t) t~~ 
y~s , 
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From (45) and the identity 

, 

we obtain 

~s' v 

'" A X C(ss's; A-V) d s(~) 
O:A.-v 2 

J±(v-M) 
'f, [b. Ma:(n)(s'vl( ±) . Is'M) 

s'v-M 2 
+p (-l)~ b -Ma:(~) 

TJ_M s' v+M 

. J ) ±( v+M) ] 
X (S'vl(2+ Is'M) (55) 

We now extract the dominant behavior for small t of the first term 

in (55). For the values (i) of A discussed in Sec. IV, we may 

take ~ 0; the Clebsch-Gordan coefficient then gives s = s' and the 

form of (55) is the same as that of (47). For the values (ii) we must 

take ~ = k = A - v; using the e}cplici t form of the Clebsch-Gordan 

coefficient we may verify that the form of (55) is the same as (48). 

Furthermore we identify 



I , 

I ,: 
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j! 
I 
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I 
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s+k 

~ 
s':=:s-k 

x C(ss'k; M - k, -M) 

(E)s'+l 
Yks 

,a( _l)S' +M C , s . 

For the values (iii) we must take ~ = 1; again the form is the same as 

(E)s'+l M (49), with Yls (s' = s ± 1, s) taking the place of our YsM±l (0) 

YI\SMM(l) (0') . h d t . ( ) d t' and Similarly t e secon erm In 55 correspon s ,0 the 

second term in (46). We have therefore shown that the residues of 

Ref. 2 have the most general MKB. 

As stated in Section I, we may therefore conclude that the MKB 

given here satisfies all the conspiracy conditions (to leading order 

in t) for EE, EU, and UU processes. The parity-splitting term i3.n (O) 

which was not considered in Ref. 2,may also be shown to satisfy the 

conspiracy conditions by using the fact that the dominant term a (0) 
n 

does so. In Section V it was shown that the zero-mass residues satisfy 

all the conspiracy conditions for ZE, ZU, and ZZ processes. Thus the 

MKB given above has all the required properties. 

We have not investigated in detail the derivatives of the 

y±M(n) obtained in Ref. 2. For the U residues a detailed knowledge 

of the functions V. M~(n)(~) is required. For the E residues, 
Jm 

however, it is not difficult to show that the solution of Ref. 2 has 

precisely the ma.ximum number of independent residue pa.rameters as 

determined in Sec. IV. However, these parameters are linear combinations 

of derivatives of our yiM(n) and we have not shown that the 
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relationships are linearly independent. Nevertheless it seems very 
I 

likely to us that the solution of Ref. 2 is the most general for parallel 

trajectories. 

A very compact model for the E and U residues has been given by 

Bitar and Tindle. 8 It assumes parallel trajectories and makes use of 

a group theoretical trick to show that the conspiracy conditions are 

satisfied. This model does not have the most general MKB. For example, 

whereas for the U residues the powers of t are the same as above, 

there is only one independent residue YSA.(O) [which may be taken as 

Y SMM(O)] instead of the possible 2s + 1. Also HS · has the pe,rticular 

·i'orm of a single 0(3,1) representation at t = 0 which is a result 

of a particular choice for the nonleading terms. 

To our knowledge the parameterization by Klein19 is the most 

general given thus far. He has given a power series expansion for the 

residues in the case without parity conservation and with parallel 

trajectories. The U residues have the general MKB given above. He also 

pointed out, as we have also seen above, that the leading t behavior 

of the residues is independent of the parallelness or nonparallelness 

of the trajectorie~ and the t;;;; 0 behavior of residues is simply 
a (0) 

proportional to (Pij)O Furthermore he has given a discussion of 

parity splitting for trajectories and obtained a more general 

form of (38) and (39). 

Recently Durand, Fishbane, and Simmont
O 

have given power series 

expansion for residues and nonparallel trajectories for spinless particles 

and M =co 0 which is alleged to be the most general possible. The U 
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residues and the trajectory functions have only the first N-l deriva-

tives determined and are hence the most general. Howeve~ the E residues 

also have the first N-l derivatives determined as compared with our 

minimum of [N; 2] One can see that the E residues are indeed not 

the most general by comparing with Ref. 2 for the case of parallel 

trajectories.' See also footnote 12. 

It appears likely to us that the requirement that the parameter-

ization of the residues and trajectories be consistent. with factorization 

and coupling to unequal-mass channels forces it to be exactly the s'ame 

,as that obtained in Bethe-Salpeter models with general kernels and. one32 

0(3,1) representation at t;; O. Therefore the most practical method of 
. . 

obtaining a general parameterization may be to use the group-theoretical 

0(3,1)-symmetry-breaking off-mass-shell models developed by Domokos 

and Suranyi33 and Frazer, Halpern, Lipinski, and Snider. 34 
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