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ABSTRACT
The small t expansion of Regge residues 8(t) and trajectory
functions «a(t) for arbitrafy external masses and spins is discﬁssed.

We assume the usual analyticity properties of helicity amplitudes,

. the factorization of Regge residues, and the requirement of consistency ‘
. with coupling to unequal-mass channels. The leading t Dbehavior

(i.e., the lowest permissible power of t and its coefficient) of

a(t) and B(t) for the trajectories in a "family" is shown to be

uniquely determined by the leading t behavior of the highest-lying

trajectory(-ies) in the family. It is also shown that certain nohleading

‘terms in the expansions of a(t) and g(t) are uniquely dgtermihed by

higher-lying trajectories. The relationship of various recently
proposed parameterizations of «t) and B(t) to our general results
is discussed. 1In partiéular, it is shown that the parameterization given by

Cosenza, Sciarrino, and Toller has the most general leading t béhavior

~ permitted for residues.
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I. INTRODUCTION

The behavior of the Regge pole expansion of the scattering

.matrix for small values of the momentum-transfer variable t has?been

studied intensively in the past few years. 'Tollerl first studied the

case of equal-mass (elastic) scattering at t = 0 and found that a

.f'single Lorentz pole satisfies the analytiéity properties of the scattering

matrix and corresponds to an infinite descending'éequence of integrally -

SPaced Regge poles with factorizable residues. Toller's original group-

‘theoretical approach has since beeh generalized by Cosenza, Sciarrino,

and Toller® to treat other mass configurations [equal (EE), equal-

" unequal (EU), and unequal (UU)] and small nonzero t. The group-

‘theoretical method elegantly provides a solution to the conspiracy

problem for arbitrary external spins aﬂd masses but leaves open the
gquestion of the uniqueness of the solution.

- Recently it has been realized that direct applicatibh of the

analyticity properties of scattering amplitudeé and the factorization

of Regge residues gives é'method of solution which is in a sense
complementary to the group-theoretical-methéd. The analyticity—,
factorization method readily answers questions of unigueness but Erovides
only a clﬁmsy method for explicit calculation of residues and trajectory
funétions; This method = has been used to explicitly shOW‘that the
unequél-mass residues and analyticity and factorization in EU
scattering uniquely detérmine the equal-mass residues to bezthose of

& single Lorentz pole when the equal-mass channel consists of twc

. .. ’)).Jr . 5
spinless particles,”? ’’ nucleon plus antinucleon,- and two rho
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7

mesons. This author has shown! that the equal-mass residues
must be those of a single Loréntz pole for arbitrary equal—ﬁass channels
by also using analyticity and factorization in EU scattering. (1f
only EE processes are considered, then there is the possibility of
only one solution in addition to a single Lorentz pole if channels of
arbitrarily high spin are conSidered.7) In Ref. 3 through j only the
dominant residue at t = 0 was considered_(we henceforth céll this
"t = 0 behavior"). In this paper we extend the method to zt F 0.

We should first like to make a few remarks about ou; terminologyﬁ
- Following Bitar énd Tindle,8 we cali the family of Regge poies, integrally
spaced at t = 0, which is required by analyticity and'factérization a
"Lorenfz family” and reserve the name Lorentz pole for the %pecial case
ofvEE scattering and t = O. Aiso, following‘Ref. 2, we cail tﬁe
members of a Lorentz family "conspirators" and the~analyticity anﬁ
factorizatioﬂ éonditions "conspiracy conditions.” By "minimal kihematic
behavior" (MKB) we shall mean the lowest power of t (and its
coefficient) that is allowed by the conspi;acy conditions. For example,
if p(t) = tT7v[1 + 0(t)] where x > %, the MKB is 'tx9r. The MKB
is by definition é unique quantity. .

Our basic assumptions, in addition to (1) the usual;analyticit&

9

properties of helicity amplitudes,” are (2) the conspiracy éonditions
are satisfied by a sum of Regge poles,lo.(B) there is only one trajectory
of given quantum numbers and therefore its residue factorizés, and

(4) the solution must be consistent with nonvanishing coupling to
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. unequal-mass channels at t = 0. TFor simplicity we do not discuss
internal symmetries except to give the additional conditions that
statistics and charge conjugation place on équal-mass regidues.
Furthermore, since trajectories of opposite signature (1) givef
relati&ely imaginary contributions to the scattering amplitude, fhey
must individually satisfy the conspiracy conditions. Thus by assumption
(3) we consider at most a parity‘doublet for each «t).

Using assumptions. (1) to-(h) we derive the MKB of the Regge
residues and trajectories (and of the différences of thesé éuantities
- for parity doublets). We prove thét the MKB for all memberS of é
.:Lorentz family is determined uniquely by the MKB of the leading
member(s).;ll We also consider the general form of the power series
expansion of residués and trajectories and show that certain derivatives
are uniquely determined by derivatives of higher trajectories. This
result is useful for testing the generality of proposed parémeterizatiéns;
ahy parameterization which has only the specified derivatives constrained
Eis the most general possible parameterization. We give our results in
”terms of particular linear combinationsbof the usual residues - these
'”crossed residues" are defined by Eq. (6). The usefulness of the crossed
résidues'(particularly'for equal~-mass channeis) will become clear in the
course of the derivations. Throughout the papef particular attention
is paid to the requirements of parity"conservation.

At this point we should'like to warn the reader that actual
trajectories could have quite different behavior than that given here

under certain "unphysical" circumstances. Firstly, if there is
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"accidental" crossing of trajectories [a ;iolation of assumption (3)],
the small t Dbehavior of the crésSing'trajectories and lowér members

of the family can be entirely.different. " Secondly, if a trajectory'
couples only to a restricted type of channel [violating aséumption (W1,
the small t behavior and family relationships may be entirély different.
{As a simple example, if abtrajectory couples only to spinleés equal-mass
‘:channels, then only one trajectory (or an arbitrary number of such
trajectories) satisfies the (trivial) conspiracy conditionsi™® We
believe that a sufficient condition for this not to occur ié fhat not
all unequal-mass residues be identically zero. The reader ;hould notice
that here we assume the stfonger condition.of nonvanishing 'coupling to
unequal—mass.channels at t = O.

In Section II we introduce our notati;n and derive the MKé fof
leading trajectories. We treat all mass configurationsvin a unified
manner. The leading trajectories have been discﬁssedrbefore by many

,authors}5_18 but in no single reference have all the conditions on the

- residues and trajectories beeﬁ given. This section will aléo serve to
introdpce the reader to the type of arguments made in»the f@llowing
seétions. In Sections III, IV, and V we discuss respécfi&eiy the unequal-
-mass (U), equal—ﬁass (E), and zero-ﬁass () residues for ali membéfs of the
family. We derive the U residues by c§nsidering a UU process and.then
derive the E residues from these by using factorization for a EU
process. In Sections'II through V we always imposé the énalyticiéy
properties in terms of s-channel helicity amplitudes. The small

't behavior is most naturélly expressed\in terms of s-channel amplitudeg

since t = 0 1is near the s-channel physical boundary..
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For the E and .U channels we are content to show the uniqueness

of the MKB, since, as pointed out iﬁ the first paragraph, thé analyticity-

factorization method most egsily answers this'qUestion. Therefore only

the subset of conspiracy conditions necessary to show uniqueness is

considered. For a proof that the MKB given satisfies all the conditions

we rely on the work of Cosenza, Sciarrino,vand Toller.2 They have shown

"that their solution has this property and we shall show in Section VI

that it also has the most general MKB (even though it has pérallei

trajectories). 1In Section VI the relationship of other proposed

8,19,20

parameterizations to our results is also discussed. We should

9 has previously given the MKB fof the U |

residues and discussed a number of aspects of general parameterizations.
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II. THE LEADING TRAJECTORIES
We consider the s-channel process 1 +2 -3 + b and the
corresponding t-channel process L + 2 — 3% + 1. The contribution of a

Regge pole to the t-channel c.m. helicity amplitude is given byEl

e ' (s,8) - -( 1) [ga(t) +1] {r + 1ﬁ[a(t)_v]}
H5H15Huu2 P) = = T
Pr PT | | ~a(t)-1 ;
" B“B“l(t) ?“u“g(t) S’ (z¢) > | (1)

- where p = ), = Hoo n'o= pj - M3V is 0O and'l/2 for boson and
fermion trajectories respectively; P and T are the parity and

' signature respectively. The e function is given by22

lﬂ(u -u')
e;z,-l(z) m— [(r(y - @) T(-p - @) p(H - a) r(4 u _ O,)]g
H_JL |
o
x (Z;l> (zfji>2 F(u - a, p' -a;--QOz;-Z?l) ; (2)

It is convenient to define the reduced residues (suppressing the:

~t dependence)

B, 5 = (e e ry s 0) K- a)lr v (e "h}
“i“j - pij o 8 IM{-2a -1) cos ={& = v)
x g, T | (3)

1
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where i,j is L,2 or 3,1. Combining (1), (2), and (3), we obtain

4 p) P o
t ! = - 2P31
H . (s,t) = e‘{lﬂu p B ( "X 2 )
Q!
2 v ) L
X (l + X) F(H -Q, u' - o =203 -X) ) ()4)

- . _ 2
where x = zy - T

The Regge pole contribution to the s-channel c.m. helicity

amplitude is obtained from (4) and the crossing relatiort?

s ' ’r'( o t 3
H . (S:t)= d [X(S t)] H . (S;t‘) (5)
o MMM o il MMy ’ Mty SHyHo

The parameterization of the residues is most conveniently given

in terms of the "crossed residues", which are defined as follows,

S S ’ : '
Pr, . i o j Oy = Pr
R, (8) = E a5 0% e 0G0 B (t) (€)
i3 o HiM "3 Mty
- MiHy
- where
o] . .
X = lim 1lim X (s,t) ,
2,k t50 soeo 2,k
(7)
x° = lim  lim [n - X_ (s,t)]
1,3 t-0 sow® 1,3
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For the various external mass configurations we obtain:9
Unequal masses (U), m, + m,:
. .
E = = <
cos X, € €5 1, for m, Smy o (8a)
where 1i,j is k,2 or 3,1 as usual;
Equal masses (E), m; = my #.0:
. ,
Zero masses (Z), mg = my = 0:
cos X; = -cos Xy = -1 . (8c)
From the requirement of parity conservation
S,+8 .-V '
Pt i Pt
Bu = mlan('l) ] J B__u -u s
i3 17H;
we obtain
. S.+8,~U
- Pt ‘ © =iqv i - Pt
B, . = Mgy e (A1) B, - (9)
iy e
and
. S.+S.-A ’ o '
Pt -inv 173 Pt
R = MN.7. e (-1) R B : (L0)
lej 173 Ay xj

2s, ’
where A = A; - >\J. and ni(z (-1) + n_) is the intrinsic parity of
i

"i. The "parity sequence" n is equal to Pr.
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One further definition is useful in order to partially

diagonalize the crossing matrix:

S.-h.

P =5 . - . - J J P
R (t) = , C(sisjs, M xjx)( 1) | inxj (t) , (l,l)
Mot A ’
SR
= e ) MR Py
i 5 _ s-=A 3 ’
(12)
_ P I P,y
= P R (8) = P TR (E)

From now on the signature label will be suppressed. The spin s in

(11) is the "channel spin" previously introduced by several authdrs.l’l9
Quantities BsuP can be defined by an expression similar to (ll).
‘Near the physical region boundary H® must vanish at least as
o . QS . I)\"}\.'l 2)_'
rapidly as sin 5 . It can be shown that in general
| o \% |
X, (s,t) - 1im X,(s,t) = f..(s,t) | sin ——) s (13)
i , 1 ijgrm?o 2
. 8> 0
t— 0 ‘

where fij(s,f) is regular at t = 0. From the identity

s. - s o s - 95, 3
d (X,) = Z d 1im X% | a .t f . (s,t) (sing-—' ,
Hihg o d ‘ HiVy S T Vitg a7 <
Viv t— 0 '

it then follows that we may replace X, by Xio [or (& - Xio)]' in

(H) without changing the behavior of the left-hand side. Hence our basié
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analyticity reguirement may be expressed-aée

s s '
2 0 3 ,
(X ) d (X2 ) du (Tf - )‘.

: (o]
' BN N 4 ux Ay Y 5)
(sin%@s> () ‘uu | Hoto 35 |

r-%°) 8B (s,t) = NS , (1)
-~ where NS means nonsingular at t = O.

We. now consider the'leading trajectories in a Lorentz family.
We substitute (L) in (14), allowing for the possibility of parity
doublets,7and take the leading termas s - ,

DI IRCR IR
H)M h)dxe (Xg)dux (n x3)

P=t {u} | . _ 5‘5

| S, R P ~
1, _yoy dmp' 5z - P - P o _
X S (x -%7) e Pupss (t) -5“3“1 (¢) 57 (£) = ws
| (15)

We have used the fact that for all mass configurations, -
- 1 .
sin -;— 6, _s——-)—;) (t/s)2. _Using (11), (12), and the identity

s, ein(s+u)
d - ¥X) =
a (n. ) = e “ "

.t‘%lm' | Z PoR,I(0) Ry, () f"aP(t) -ms . )

(X) 5 we may rewrite (15) as

This is our basic equation for leading trajectories.
q g J
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If there is to be nonvanishing coupling at t = 0 for at

least some channel as required by assumption (L), RsxP(o) Rs'x'P(O)
must be nonzero for some s, s', A, and P. From (12), however,

' P P
: Rsx (Q) Bs’-x (
{2

0) 1is also nonzero and (16) would be violated by a
factor f- unless there is some cancellation with a tfajecfory of
opposite parity (for A £ 0). Therefore o (t) = ' (t) + O(tX),_for

'some positive X and parity doubiing at t =0 is necessary. For

the moment we neglect the s dependence of (14) and return later to

... the determination of the power X.

We now write an expression like (16) except with -\' and use
(12)”tvobtain
-3t +ooy
t R (t) R

s (8 #RGT) Ry () = ms ()

We may add and subtract (16) and (17) after multiplying by an appropriate

power of vt‘ and obtain

1 ' o
Sesm, . :
AN\ + N oY _

t RSA(t) Rs’x'(t) = NS ., - (18)
'where' mxx, = min(|n - x!{, Ix +ar]). 1We_now choose s', A' such that
sR;,K,(O) # 0. Let M» O denote this value of )\'. From (18) it follows
that

1 .
'Emm + . ' o
B NCIEE
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We may therefore write the MKB as

: thewl howl M
ro(0) = Py By g el ey
: +,-M +,M - .
‘where Voo (t) = Yo (t) by (12). Similar expressions may be
obtained for R N and R ; they must both have the same M to be
fcons1stent with (16). Therefore we have the MKB:
P LA PM aM| | P-M
Ry, () = ¢ Yg (t) +Pn ¢ T, (8) (19)
P-M PM
where v _, (t) = Yo (t)

Returning to (16), we now obtain

SA

i {t~12-<lx-Ml+1w-Mf>[Y

O R I R O R A

o onn, 2CPMIEIMD [y My r‘,jﬂ(t)]

+ nx,t%(IX'MI+1A'+MI)(Y;QM(t) (t) + r (t) Ys >\,(t)]

s K'

g e M

"))

M) i) ) v

= NS . | (20)

The first two terms are nonsingular but the second two are not for

M $ 0. Therefore the last two quantities in brackets must vanish
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sufficiently rapidly. We thus write f;iM(t) - ygiiM(t);+ orgX(sar)y

or alternatively,

ir(1-P) —
PiM AR Moy o ¥(s,n
r P - e [st '(6) + pe, P(t) ¢ (s )] . (21)
‘. The minimum power Y is iﬁdependent of s;since the power of t
reguired depends oniy'en 'X. "It is easy te show that the power Y is

given by25

| ], O0< [Al<M
Y(h) = s _ v , S
e e e
:”We notice that the two terms in (19) differ prec1sely by the power
‘Y(A) and therefore giM. may be absorbed into Y+M and (18) with the

additional condition

. : if@a-p)
s:*M(t) _ o B »rs:M(t')

has the general MKB. With this condition the last two térﬁs of (20)‘
vanlsh 1dentlcally for « (t) =Q (t)

~ Finally we must examine’ the relationship between a+(t) and ‘
a™(t). For the requlred cancellatlon of the last two terms in (20) to;
-5 take place, the s dependence cannot be too dlfferent for the two
J.tragectorles. It is clear.that the powe; X defined above cannot be
smallef then f._>Sincevtrejectory functions are helicity indepeﬁaent,

; X must ‘equal . M.
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We may now collect the above results for the MKB26 (the

definition of the y's is slightly modified):

,ng;s'x'(t) ;2(0) ’
,Cs—x;s'-x'(t) =_#¢;x;s'x'<t) ; (23)
iZ(1-p) L i
Ry (1) = e " {tzlx'M'stM(t)'+’an gz | YSxM(t)] ,
YS-fo(t)‘ = YSXM(t) 5 o (2h>
ocP'(t) = '.oc.(t) + Pa(t) tM..’. (é5.)

;The functions €, 'y, @, and a'zare analytic in f- (or t% for fermion
trajéétories) at t = O with the possible exception of a factor t%
common to all y. The parameterv M which gives the absoluée value of
thé helicity flip'in_leading order may be idéntified with tﬁe Q(B,l)'
quantum number® for EE procesées.
For M = 0 it is evident that (20) is satisfied with onl& one

-"leading trajectory and (2§)Fand (é5) show that the residues and

.trajectories of opposite parity are unrelated. In'the absehce offany
dynamical requirement of a parity doublet, we henceforth'a33ume that
-M

for M = 0 there is Jjust one trajectory. For M = 0, in (éh) T,

IS
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N 0 sl -M M .
should be replaced by 7T and the requirement Y =T ~omitted.
. 8-\ » : 5=\ SA
Similar modifications are to be understood throughout the paper.

At no»time in the above derivation Qf the MKB have the external
masses been mentioned, hence (22), (25), and (24) hold for all processes.
The only dependence on the masses arises when Eq. (6) is now inverted
to sque for the ordinary reduced residues E. We fihd, changing the

notation slightly:v

Unegqual masses:

eIy 1
- ir-(1-P) | 3le.pu-M|
— P i 2 M
B, () = e [‘c Yoy )
Mk Bk
' aigve,  S.+S.-u 5 e uM| ]
i i 7] 1 -M
+ LT, € -1 t t
R (-1) Yﬁiu- S - (26)
v dJ
M v " . _ “
where ¥ () = r (t) . The factor ¢.(¢, = &1 for
: —ui-uj HlIJJ- i1
m, < mj) takes into account the eccentric behavior (8a) of the crossing

angles.

Egqual masses:

i£(1-P) ‘ s, s,
O R 1, . i@ a D
Ml p.m, 27 Tu.m, 2
ity . = iti "3
J
1 ) . S,+s.-m 4
5 [m=M | M -inv, 71T 5 |mtM| _-M
X[, e e gy T B2 ()
1 _ 14
(27)
M } M o
where 7-m.-m.( ) Ymimj (t) and m=m ms.
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Zero masses:

.70 : '
‘ ir(1-P) { 1 s S.+s.+v
"B L ) = et [t2'V+M1 TR ORE LR GV
C Thghy iH 3
. ;- : -- : ‘ L o
x My M-(t)} , (8
R (e o
: ~M ‘M . . Cal .
where 7t (t) = 7 (t) and v = p, + p,. For minimal behavior
' —“ifuj o “1“,]‘ . 1 J :

the various 7y are finite at t = O. In general they are analytic at
. : o S o ' o 1

t = 0 with the possible exception of an additional factor t2 common
to ali residues of a family. For_fermion trajectories 'a'vand' B 'are |

analytic. functions of t2 rather than 't,:as'is allowed on general

principles.



III. UNEQUAL-MASS RESIDUES
In order to derive the MKB for U residues we apply the basic

equation (14) to a UU process. For small t and large s we find

L. 2 2 2 2 2, - 2 2
.28t + s -f-(ml. T 4y +mh')s+(ml - m, )(m5 - my, )

:m_.é_—ma mg—mz B
'it [1'+ ( 4 : )( - ? } [1-+o(l>] Y

)

{

- Furthermore, choosing m, < M m, <m for deflnlteness, we find

3 1
. 2 2, 2 2 |
2 (m,” - my)(m,” -m ) f ]
X = Zt - l = . St. n T l + O(t,’s‘) )
and therefore
b py D -
_;_Eg_éi ~ § + O(l) .

X

;S _< > (l+x%{l+0(t,§)]

sin' % '©

We now insert the above expresclons into (lh) and obtain

) ,' e/ )\_}\l
P < “phep51> 2
2,/\ N T }‘“ P R Rs,x, — (1 + x)

P=+11

lk N 1(1 + X)

X F(n - a, -\' - Q; - 203 —x)‘ = NS
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Since x = (ts)_l, it is evident this equation is untrue as it stands

' ' ¥

and conspirator trajectories at an(O) = -n must be introduced.

Therefore the basic equation for UU scattering is

(1 + x) 2
IS

p(-1)" URSKP(n)(t) URS'X'P(H)(t>

o F(t)
x “PuoPy ) ' Pey, - Peey; - 2o F(t); - x) = ms
— F(K'O‘nj( y N -y ;- 2ay ;- X) = .

(29)

The factor (-1)" comes from (12) and the alternation of signature,
n

T, = (-1) 7, necessary for obtaining the same phase of the amplitude.

As in Section II, we first determine the Y#M(n)(t). For this
calculation we may neglect the parity dependence of anP(t)4 [and
hence set ahP(t) = - n]. If one imagines solving for the URP(n)

. ) . . , +M(n) .
by iteration starting with (24), one easily sees that y (0) 1is
completely determined by YtM(O). To determine the precise relationship

we write the general form,

U P(n)(é) _ eiﬁ(l‘?) [Blfoz(n) Fhu] Mo

Rsx SA

+ P BX'MO‘(“) t%‘Hm st.—M(o)] (2pij)n . (30)

The B's are functions to be determined. They depend only on the

helicity difference A, as will soom become clear, and by (12) satisfy
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Ma(n) B -Ma(n)

By BN

We now insert (3%0) in (29) and consider first A > M and 0< A< M.

becomes
N .
ZBMa(n)B Mo(n) r{n -a+N) Ir'(-x' -a +N)
: A A (N - n)* P(A—ozfn) r(-x" +o +n)
X r%ga:_lvei)n) -0 . ' (32)

* The solution of this set of equations for all N is readily found to

be7

1)

The requirement that the coefficient of the singularity (—X)N vanish

A A

5 00) 5 o) _ [(afste can ) 1022 e ) P - o+ n)

n' r{en - 2a - 1) r(x - a) °{-n" - a)

(33)

Taking AN = A' = M yields

nj-

Mou(n) {g)n r(n -2 -1) I(M-0+n)(-M-q+ n)}
: - n' r'(en - 200 - 1) 'M - o) I'(-M - a)

Then from (33) it follows that

e

]
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B Ma(n) r{(-o +n)
~ - o Ty ma)
)Y r - é - 1) M- &) I(-M-a+n) :
{( n? rgén - eg - 1%-r(§(-'a 3 n)- r(-M - a) } N
L | (34)
pMr(n) _ LA -a+mn)

A - r(-» - a)

. _ln' _2’-]_. M - . v .-M—. 1 _ -
[&RNgKQf—TQMMM?émr@&-qﬁj} O A M

. "Finally we consider A > M and X; £ '-M,. for which the
~ condition (29) becomes

(R o Ma(n) -Mo(n) -M M
+ (1) B B, T 0) Ty, (0
» Ma(n) . -Ma(n) . M M, -~
t B, By 0 T, (0) vy, (0) a (0) logs
x ¥ F(x-a+n, -\ -0 +0; -2+ 205 - x) = NS

We have suppressed some irrelevant phase factors. The solution.is easily'

4 obtained by examining the thfee terms separately. Using (32) and (3k),

we find that B—Md(n) is given by an expression just like (34) with M

replaced by -M and that

-
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a (0) = M) a0y

where

We now collect the above results and give the MKB for the crossed

27

residues:

‘ . i][ 1-p . .
URSKP(n)(t) . 1 | ) [t%|x-M; BxMa(n) Yéxg(n)(t)
+' Pn)\ t%l?\.+M| B}\'MQC.(H) YSK—M(H)<t)] (gpij)n , (36)
where
v M@y oy, My
cand
ol (O N ) B 7)

 The ordinary residues are simply related to these through (11) and (6).

For trajectories the relationship is

anP(t) = o (t) +Pa (t) tM , | . - (38)

" where .

ocn(b) = o - N, an(O) _ xaln) a(0) . ‘ (39)



-22- ' ' UCRL-18785

The signature is 7 = (-1)%t and 7 = Pt . Equations - (37) and (39)
‘show that the leading behavior at t =0 is coﬁpletely determined by
the leading trajectory, as assertedin Section T.

For a discussion of the derivatives of the. YiM(n)

it is
sufficient to consider -A' = M. For example, if we take A" =M and
A > 0, we find the nth trajectory gives in order (—x)N a contfibution

- to (29) of the form

‘ (6)e e
YS}\.M(n)(t) Y-s'MM(n)(t); San( ) " (-X)N 5

-M(n)

as well as terms invdlving the vy~ and an' multiplied by extra
factors of t. By factorization we may consider these various terms
separately, since they depend on different independent parameters"r.

We may also treat the various combinations of derivatives séparately

" as they involve different parameters. Considering terms proportional

to Y?'MM(n)(o) = Yé,MM(O) , which by assumption (L) may be taken to
be nonzero, we see that the first N-1 derivatives of Yé\M(N)(t)

are determined. By considering terms proportional to logs we reach a
similar conclusion for QN' Finally, by considering other values of

» and ' = =M, we conclude that the first N-1 derivatives of -
+M(N) X X '

Y (t), aN(t), and aN(t) are uniquely determined. They depend
on the first N-1 derivatives of residues and trajeétory functions

for ng N ~-1.
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IV. EQUAL-MASS RESIDUES

We derive the E residues from the U residues (36) and

analyticity and factorization for EU scattering; We consider the

s-channel process m, +m —»m, + m and assume m5 < m for definite-

1 >3

ness. It is convenient to define the singular quantity,

7 (s - umg)% | i m(ml_?. - m)

y = X 317 . .5
=z, - 7T T 5 53 I
t 2t~ [s + 3 (}‘- om- - m - m5 )] t” s

~

(40)

where Es;l is the usual threshold-pseudothreshold factor. -In terms

of y we have

2
x = 7o,
. 9 1 1 ‘ -
s . (t)\2 A L
sin == '= (S_{,) (1 | yO)7 [1 + 0(t, S)] ’
Pibn s(1 -vy)

X

The basic formula (14) must be modified slightly (but
- significantly) for EU scattering. The crossing angles for the E

particles have the singular behavior
. 0 _ ‘
S1n(Xi - Xi) = cos X, = s1n(¢i + wi) , ‘ (1)

where

=

] :)
s S
jS = fij(s,t)(s,ln 2—- s
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and

sin y, = -y[1 + o(%, %)].

We may now combine (41) and the other expressions above with

- (14) to obtain the basic equation

1 ' n s .o=1
.t%l%-X' [ (1 - yg)%b\-?\' | 12_:, ; va P(-1) d)x.v (-sin = y)

P
o () o F(t)

o e ,
x o 5B 5 T %y, P“”(t)( 251) (1-y)"

¢

- |
1+ < \ P , P P 2
<____z> F@ - o F(8), At - o F(e); -20 F(e); - 2L y)

1 -y
- NS . (12)

n (42) we have neglected terms of order t and % times the most
singular contribution in the argument of the first rotation matrix.

For our purposes it will be sufficient to consider X' = ftM so that

YS,MiM(O) may be taken nonzero by assumption (h).

Before proceeding further we establish some additional notation
and develop some of the properties of (42) by considering the solution

for t = 0. From (27) we obtain

m

_ i(1-P) -
EBSUP(O)(O) = ° " [d ?(1) ALY du-MS(%)] YEMM(O)
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Since y~t2s , we must require that the coefficient of each power

yN (W > 0) . vanish, From (42) we see the contribution_of-order

myN from n =0 can be written as at most N powers of Jy or JX

" between (sx| and [s¥M) by u31ng the 1dent1ty

v 2 ut

T a5 @ a4, @ = (i) s £ w

1f (42) is solved iteratively for the crossed residues it is thus ‘clear

that g F0)
SA -

from the identity v . ' .
l+y . ' . . oy _
¥)° (1 - y F@ a, -\’ -0 -2 T y)

= (l+y) (1+§ F(—u-a, A -0 =205 1L¥y>; ’

vanishes unless A = M + k, -n < k g n. Furthermore

we see that the power of p(JX) is even (odd) when the power N of

y is even (odd). The power of Jy is also even (odd) when N is

even (odd) since sin ~ y is an odd function of y. Therefore

Ep P(n)

- vanishes unless n-k is even. After consideration of the

parity properties (12) and use of (6) we find fhe.unique solution

Eé- P(n)(o) e I

Csp sy ij

if(1-P) '
{1 + Pnu(-l)M-sm} K Mo(n) (2p. .

X Ty (1)
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28

where K 1is given by

o a n-2
KsuMa<n) = (sn lRy(%) bsnMa(n)<:2Ti) * bsn—QMa(n)(é{t) o

bs—n+2m(n)(; )n-e + bS_nMa(n)C; )n [sM)

(st cha(n) ()
sy

Ma(n)
sk

~for general n they can be obtained from the results of Ref. 1.

The b are given explicitly in Table I of Ref. 7 for n < 33
In (44) the residues are those of a single Lorentz pole, since we have
2
Just shown 9 they are unique and Refs. 2, 9, and 19 prove that a single
Lorentz pole satisfies our conditions.
We now derive the MKB for E residues from (42). To derive the

residues we may set anP(t) = -n and, as mentioned before, consider

only X' = + M. We solve the equation iteratively. Consider the
coefficient of yN. The contribution from n = N is, for X' = M
respectively,

2y ' 1 E (§) . M(W) E. -(N) _ M(N)\.M
2N oy (0@ 00 P 00 g e

N . _
oy 1 E, +(N) _ -Mx(N) E_ -(N) -Ma(N)> M
LY (2%) t-,%]mm( o By e By Ty ()
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These will be equal to a function of the already determined residues

for n< N. We can solve for ERi(N) by multiplying one equatioh by a

gquantity proportional to t raised to the power |In - M| - N+ M|
and then adding and subtracting. Using (34) we therefore obtain a
ERP(N).

unique result for

We shall not burden the reader with the details of the éalcula—

tion of the specific forms for the ERskP(”). It is not difficult to

show that they are given by the following expressions,

where - RM(n) are given by

Ma(n)(sx|(:;£> s 5 k) Ky Hn) ()

SA T s sMgk
(L48)

1
!

(_l)n RS-X'M(H) _ (-l )Mi‘k"'\ RS—X“M(H)
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(1i1) A =Mt (n-1), Mt (n=-3), Mt (n=-5),---, M1 or M,

s}\M(n)( 0 - [Jr-rS}\Moc(n) YSM+1M(n)( o) + orSXMa(n)?;MM(n)( 0
. -rsta(n) 7;M_1M(n)(t)} t%‘ »
(k9

_ (_l)n-Rs-X-M(n) ) (fl)M+1fx Rs-x_M(n)
, M(n)
SA

variables; their explicit forms are not necessary for our purposes.

The in (52) are uniquely determined functions of the indicated

The k appearing in (46) is the same as the power of t in (47) to

(%9). In (47) to (49) we also have the constraint

A +M(n) o wM(1),
0), T (o) = (
which shows that the MKB is determined uniquely by the leading trajectory.

There is, however, the additional parameter ? *M(l)(o). Its

stM
occurrenceis a special case of a more general formula to be discussed
below. _

The same trajectory constraint [(38) and (39)] is also’
obtained in this case, as it must be for consistency.

. s : +M(n) .

We now discuss the derivatives of the Y . As in the

previous section we consider as an example X' =M and X > 0. The nth

a-N

_ trajectory gives in order s a contribution to (42) of the form
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v . (t)+N
. M(n)(t) . n)(t> (”Puep ) )
t"?'lx-M' SA B v
Since R M(n)(t) béhaves likes 7 M(n)(t)'tk, this contribution has

SA
-3 N*
the singularity ¢

SA

’X_M’)+k Therefore for the_above ranges of the

helicities the following derivatives are determined:

(1) ‘ >\=M+(n'2*@> ) ’Z:O’Jl,;_‘.’ {g’]

first N - £ -1 dérivatives;

(ii) A=M+ W+k), k>0 ,
first N - 1 derivatives;
S (iii) >\.=Mf(N"2*Z"l) p Z:O,-:o.,[N;l] ,

first N - £ - 2 derivatives.
{

We now see that the extra parameter in (49) arises because for N =
~and £ =.0 no derivatives are determined in range (iii). The deter-

‘mined derivatives depend on the derivatives (with corresponding or

lower order) of trajectories and residues for n N - 1 and helicities

in the range A= (ﬁ -n) to a+ (N -n). | | |
The above results may.also be obtaiﬁed from conéiderationfof

EE processes if coupling to channels of arbitrary high épin and tﬁe

t = 0 result (L43) are assumed. Iﬁ this case the basic equ;tiop (lh)

becomes
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s'/ny Ex P(n
@ %5,

dIJ' -

b OtnP(t) T
%x E=  -P(n) (phepﬁ) (1+x)°
leu1 X . ;- .
X F(E - OhP(t), p'o- anP(t), -2anP(t); - é) = NS,
6 1

since sin == t Actually the EE ?rocesses provide a more economical
. derivation of the E residues but uniqueness is more difficult to
demonstrate.

Since equal-mass channels in practice always consist of two
particles of the same kind or avﬁarticle plus antiparticle we state hére
the requirements imposed by statisties and charge conjugatiﬁn. Thesé

‘requirements are easily derived from the properties of helicity states

given by Jacob and Wick50 and take the fofm

Esu = 1€ Es_u ’ ‘ (51)

. where & 1is given byl
I- . .
(-1)- 2 particle-particle

~ particle-antiparticle.

- This requirement in conjunction with (9) will force some of the equal

. . 1,2
mass residues to vanish.™’
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V. ZERO-MASS RESIDUES

The zero-mass residues are first derived by considering a 2ZU

- process. It is then shown that the residues thus obtained.also satisfy

all the conspiracy conditions for ZE and ZZ processes and therefore along

with the eQual- and unequal-mass residues give a complete solution.

. In this case, in contrast to the E and U residués, the MKB

of the lower trajectories is not uniquely determined by the leading
trajectory; only the power of ¢t énd not its coefficient is determined.
We consider HS for the ZU process with m, = m, = 0, 1In

5 Y , :
this case sin 55 ~ t2 and the basic equation (14) becomes

t'%'“"Z Z B %, Py U, P

=N A ST
Po: 100 L2
v P,y -p=A\'
a “(t) —_—
. (ﬂe?iz_l_) By 2
X
X F(-v - a T(t), " -a(t); - 2aF(t); - x) = NS (52)

where v = Ayt A and we have assumed m, < my for definiteness.

b,

From the relations

hp, p
_hes ;(_e 2, _ )
~ = s + 3t (ml + my ) 2151 s

1 i? s ’
s + 35 (} - @1 vy ) - ;]5£>
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and the formulae (26) and (28) for the n = O residues, it is easily

seen that the leading trajectory by itself satisfies (52).. Since
N Sk
5

n
URP(n) ot 2 URP(O) ZEP(n) w t° ZEP(O) . the

it is clear that

proportionality constant, however, is undetermined. Hence,

.iJI(l_P) 1 o N _- .
ZRS}\P(H)(t) I {talx-MI stM(n)(t)v - P, 3 ]}>\+M| fs;QM(n)(tJ
G (53)
where
YEXM(H)(t) _ YE-X-M(H)<t)
There is no relationship between the YiM(n)(d),

For the ZE process an equation similar to (52) holds except

. ' ;
with an additional sum over p and a du, S (2). In this case,

|

-\

AV

s.l and therefore successive terms in the expansion of the

x=~t
:.hypergeometric function have the form (ut%)k. It is easily seen that
these give no violatioﬁ of (52) and thus the leading trajectory dlone
satisfies the equation. Similarly each conspirator for n > 0 vsatisfies
(52) vy itself. The ZZ processes are tri#ially satisfied by (53). We
therefore conclude that (53) is consistent with arbitrary reactions.
Finally, we make two obvious remarks. If the two zero-mass
particles are of the same kind or antiparticles, Ea. (51) mﬁst be
'!imposed. At t =0 for. ZE processes the result of the Lorentz
family (or a single trajectory) is to give the single power behavior

Q31

[
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VI. DISCUSSION

We first demonstrate that our results for the MKB of the egual-

and unequal-mass residues are the same as those given by Cosenza,
Sciarrino, and Toller2 (ﬁqs. 5.6 to 5.13 of II).

In the unequal-mass casé'a straightforward calculation shows that

1 : . v )
the coefficient of t2’XiM' is the same as that given in (36) and allows

us to identify

(O) Z U Ma t%ixj(U)j'(P’o),

Mo

" where UC. is a complicated function which we do not Specify'here.

NADN

The equal-mass case is more complicated and we discuss it in somewhat
greatér detail. Fdr example, for M #IO we transcribe the formulae

of Ref. 2 to our notation to find

| E'ESHP(H)(,G) _ ECSMOC Z YQS(E)S'+1(t)' ‘t% C(SS'Q; u-u)‘(-l)s'ﬂ‘l‘
s

X (L mgn_ e (et o oy Mon) ENCDH

J-

From (6) and (11) we then find

ERS}\P(H)(t) . B, Ma Z (E)s +l(t). —é—s Z dm's (%)
) . M

. A i
M-g+s+ r O Mo(n
X C(ss'®, ~pu) (1 + Pnu('l) ) ﬂ) Cqr s'u )
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From (45) and the identity

R el S ) 4,73 4 )

i

_ (_qyS'Hv Y T
= (-1) C(ss'S; A-v) dox-v

" we obtain

Er P(n)(t)

| _ B, Moc \ (E)s'+1 X 38 sty
o = L Z (t) o 27 (-1)

A
C(ss'8; A- Sz
X Clss'ss Av)ay  *(3)

+(V-M)

* {bé v-MMa(n)< [<'é‘> [s120) +PT’-M('Ugb )

s'y+M

(v |
x (s’ v|< >i " |s'M>} . | -~ (55)

We now extract the dominant behavior for small t  of the first term

in (55). For the values (i) of A discussed in Sec. IV, we may

take g = 0O; the Clebsch-Gordan coefficient then gives s = s' aﬁd the
form of (55) is the same as that of (47). For the values (ii) we must
take & =k = ) - v; using the explicit forﬁ of the Clebsch-Gordan
coefficient we may verify that the form of (55) is the same as (48).

Furthermore we identify
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U ) . ‘ M E Nb! . s 4] v O s'+M
. _ E -1
i o VaMx (0) ks Cs ( )

k, n
X (RN - - n
Css'k; M - k, -M) dok (2)

5 For the values (iii) we must take @ = 1; again the form is the same as
M
(

(L9), with Y( )8’ +l(s' =5 + 1, s) taking the place of our YeM;l 0)

MM(l)( 0). Similarly the second term in (55) corresponds to the

second term in (46). We have therefore shown that the residues of

A
and Y

Ref. 2 have the most general MKB.

X As stated in Section I, we may therefore conclude that the MKB

given here satisfies all the conspiracy conditions (to leading order

in t) for EE, EU, and UU processes. The parity-splitting term an(O)
which was not considered in Ref. 2,may also be shown to satisfy the

i _ conspiracj conditions by using the fact that the dominant term an(O)

does so. In Section V it was shown that the zero-mass residues satisfy

all the conspiracy conditions for ZE, ZU, and ZZ processes. Thus the

! MKngiven above has all the required properties.

i
i
i
!
i
§
1
i
H

We have not investigated in detail the derivatives of the

. YiM(n) obtained in Ref. 2. TFor the U residues a detailed knowledge

L  of the functions ijMk(n)(C) is required. For the E residues,
however, it is not difficult to show that the solution of Ref. 2 has

precisely the maximum number of independent residue papameters as

b determined in Sec. IV. However, these parameters are linear combinations

of derivatives of our YiM(n) and we have not shown that the
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relationships are linearly independent. Nevertheless it seems Very
likely to us that the solution of Ref. 2 is the most general,forfparallel
trajectories. | B

A very compact model for the E and U residues has been given by
Bitar and Tindle.8 It assumes parallel trajectories and makes uée of
a group theorefical trick to show that the conspiracy conditions.are
satisfied. This model does not have the most general MKB. For example,
whereas for the U residues the powers of t are thevsame as abo;e,
there is only one independent residue YEX(O) [which may be takgn as
Y SMM(O)] instead of the possible 2s + 1. Also Hs  has the pérticular.
ilform of a single 0(3,1) repreéentation at f = 0 which is a résult
of a particular choice for the nonleading tefms.

19

To ouf knowledge the parameterization by Klein igs the most
general given thus far. He has given a power series expansion fqr the
residues in the cése without parity conservation and with parallél
trajectories. The U residues have the general MKB given above. He also
pointed out, és we have.also seen above, that the leading 1t behavior
of the residues is independent of the paralle}nesé or nonparallelness
of the trajectories and the t = 0 behavior of residues is simpiy

a_(0)
proportional to (pij) '

Furthermore he has given a discussion of
" parity splitting for trajectories anP(t) and obtained a more general
form of (38) and (39).
. . 20 .
Recently Durand, Fishbane, and Simmons have given power gseries

expansion for residues and nonparallel trajectories for spinless particles

and M = 0 which is alleged to be the most general possible. The U
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residues and the trajectory functions have only the first N-1 deriva-

" tives determined and are hence the most general.' However, the E residues

also have the first N-1 derivatives determined as compared with:our.

N -2
2

minimum of [ ] . One can see that the E residues are indeed not
the most general by cbmparing with Ref. 2 for th¢ case of parallel
trajectories.  gee also footnote 12.

It appears likely to us thét the requirement that the parémeter—

ization of the residues and trajectories be consistent with factorization

and coupling to unequal-mass channels forces it to be exactly the same

32

0(%,1) representation at t = O. Therefore the most practical method of
obtaining a general-parameterization may be to use-the grouﬁ-theoretical
O(B,l)-symmetry?breaking off-mass-shell models developed by Domokos

33 3h

and Suranyi”” and Frazer, Halpern, Lipinski, and Snider.
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in Ref. 19 and agree with the results obtained by several authors
for M =-%, 1. '

Ref. 7, Eq. (22). An equivaleﬁt form has been given by ‘A. Salam

and J. Strathdee, ICTP, Trieste, preprint IC/68/31 (Addendum)

1968.

This result was previously obtained in Réf.-?, where an explicit
demonstration was also given for n = 0,1,

M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, Lok (1959).

This has also been noticed for a single tfajectory by W. XK. Tung,
"Reggeization of General 2-Body Amplitudes,"” Stonybrook:preprint
1967. - A |

That is representations with the principal quantum number differing

-by an integer are excluded.

G. Domokos and P. Suranyi, Nuovo Cimento 56A, 4l5; 574, 813 (1968).
W. R. Frazer, F. R. Halpern, H. M. Lipinski, and D. R. Snider,

Phys. Rev. 176, 20k7 (1969).



LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, ''person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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