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ABSTRACT

The transverse instability is studied for the
case of an infinite unmagnetized plasma with small
electfon temperature anisotr§py. Growfh rates and
normal modes are found. |
Relativistic corrections to the growth rate have a
stabilizing effect. The distribution function satis-
fies a diffusion equation with an additional "flow
term". The diffusion term causes the anisotropy to
disappear and thus stabilizes the instability. The
flow term" is a perfect ti@e derivative and makes
no contribution to the net chaﬁge in the distribution
function between initial and final states which have

negligible wave spectra.
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0. THNTRODUCTTON

T The Transverse Instability

The transverse instability is én instability in the low freguency
transverse electromagnetic waves of a plasma, not in the high freéuency
transverse waves (modified light waves). It is driven by anisotropy
either in temperature or in any of the even moments of the velocity
distribution of either the electrons or the ioﬁs. The contribution of
a group of resonant particles to the current is an essential part of the

instability. Let « denote the electron temperature anisotropy, that

is, the temperature difference divided by the mean temperature
a = aT/T . | " (0.1)

The instability occurs for very low wave numbers

L i

k < o2 w /e ~ (d/c) @? k

] (0.2)

D

where W is the electron plasma frequency, d 1is the mean electron
thermal velocity, and kD is the inverse of the electron Debye length.

The instability has very slow growth rates
r o~ ook~ (¢/e) P, (0.3)

For an unmagnetized plasma the ingtability is purely growing. The
instability has been studied by various authors,l-go'mainly for the

¥ case of a magnetized plasma.
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Summary
An infinite unmagﬁétized plasma is considered. The electrons
have a temperature maximum (or minimum) along the 3-axis and a tempera-
ture miﬁimum (or maximum) in the plane perpendicular to the 3-axis.
The case of small electron anisotropy is considered. According to
Shapiro and Shevchenkol6 @he validity'ofvtﬁe qﬁasilinear approximafion

. requires

R T (o)
which fof fhe transverse instability requires

o << 1 . ) (0.5)

We shall see that the nonlinéariterms are of ordér Ia[% co@pared to
the linear terms in the Vlasov equation. Ton anisotropy.is assumed to -
be small enough.so that its effects may Be‘neglectedﬂ. A set of ordered
equations is found based on a multiple time scale expansion bf the
Vlasov and Maxwell equations in powers of Ia!%.' Growth rates for
normal modes are found. - _ The
maximum growing modes have k parallél to the axis of temperature
minimum and Ek_ parallel to the axis of temperature maximum.
Relaﬁivistic corrections to the growth rate have a stabilizing effect.
The quasilinear stabilization is studied. The quasilinear
approximation consists of a pair of coupled equations for the mégnetic
field,  §k, and the average particle distribution.function, fo'

f
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We break fo into two parts
e o= op (0, (@ o (0.6)

¢ (©)

is defined to be the isotropic part of fo at t =0,

and fo(g) is the anisotropic part of fo at t =0. It 1s shown

(2)

is shown to remain purely

2 L

that fo(o) is constant. Moreover, fo

“anisotropic for all time, that is the moments of 1, v°, v , etc.

with respect to fo(g) remain zero throughout its evolution. We shall

see that fo(g) satisfies a diffusion equation with an additional

"flow term” which is independent of fo(z) and depends only on the

- magnetic wave spectrum at time t. The diffusion tensor is a positive

operator. It thus produces dissipation and thereby has a stabilizing
effect by tending to eliminate the anisotropy. It is shown that the
only steady state solution is fo isotropic. Each magnetic wave has

a stabilizing effect on fo through the flow term when the wave is
growing, and a destabilizing effect when it is damping! However the

flow term is a pure time derivative. The flow term makes no contribution
to the net change in any even velocity moment between initial and final
states which have negligible wave spectra. The net change in the velo-

city moments between such states is due entirely to the diffusion term.



-l | _ UCRL-18825

I. ORDERING SCHEME
Ordering the Equations

The parameter in which we shall order our eguations is the .

electron temperature anisotropy «
2 2y,2
a = (T, -_Tl)/T = (¥ -a%)/a ' (1.1)

where a and b are the perpendicular and parallel electron thermal
velocities respectively. We let d be the thermal velocity which the

electrons would have if their velocity distribution were isotropic

30 = 2a°(t = 0) + b°(t = 0) (1.2)

and T 1is the cofresponding tempéréture. We shall assume that effects

due to ion anisotropy may be neglected. The'condition for the validity

of this assumption will be given in the section on normal mode analysis.
We shall order the Maxwell and Vlasov equations. We define

the space average of any quantity by

£o(v, t) = limit T [ Or £(r, v, t) . (1.%)

Henceforth in any equation in which V occurs, the limit V — o will

be implied but not written. We define the deviation of any guantity by - "
sf(r, v, ) = f(z, v, t) - £(v, t) . | (1)

To simplify writing owr equations we define two quantities for species
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. . ) e ’
58°(z, 1) = (v X 8B(x, 1) - & (1.5)
S ~
e P
8s°(r, t) = £ oE(r, t)- 3 (1.6)
B . S . ~

Normal mode analysis shows that the growing wayes have growth rate

v ~ aka (1.7)
and have wave numbers k given by

ke ~ 0F w | | ' | (l;8)l

. N _
where We is the electron plasma frequency. By &2 we shall mean the
positive square root of the absolute value of . Normal mode analysis
further shows that Ek(longitudinal) ~ Ek(tranSVerse). ‘For typical

spatial gradients and time scales we take V ~ k and 0/0t ~ v. We

- begin by defining the dimensionless parameter ¢

1l e

€ ~ o8B . v (1.9)

To estimate &R we must note that v X d/dv operating on a spherically
symmetric function of velocity gives zero. The distribution function,

£

0? is equal to a spherically symmetric part plus a nonsymmetric part

which is of order « fo. Thus

3R df ~ € kd &f (1.10)

- but

B8R £, ~ o ekd f_ . . (1.11)
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We assume the two terms in Faraday's equation to be the same

order
0 8B = -c V X 8E
3t = , ~

101 . : | (1.12)'
Using this-we may estimate OF
8E ~ oc(%) 5B L | (1 13)
“from which it follows that
85 £~ BR f_ (1.1h)
. but
5S 5f ~ o SR f . o | (1.15)

We éstimate the relative magnitude of the two field terms in
* the Maxwell-Ampere equation, and assume that the current is the same

order as the largest of these two terms.
] _ L N 3 S
3% 8E - ¢ V XB3B '+ e a’v v ef = 0
. s .

1 Y {1.16)
~where ng is the density of species s and

2 _ ' '
Q)] = ll—'y;‘ nses /ms - (l.l?)
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is the square of the plasma freguency for species s. From the above

we conclude that
5f ~ o € £ (1.18)
These estimates yield the following ordering for the Vliasov
. équation for &f

ot

| .
i

o 8f + v. V df + BR_ + 88f_ + BROL + BSBf - %der(SR + 88)8f = 0
o1l :1:1:e:ae: (e:qe) o (1.19)

and for Poisscn's egquation

5 V. SE = Z by n_ e fd5v 5>
~ S S .
S

| (4?2

- 1. (1.20)

: This says that to lowest order in « the RHS is zero. We will find

that this gives us an equation for E

kKlongitudinal) in terms of B

e
Finally, the above estimates yield the following ordering for

‘the Vlasov equation for fo

S | 1 :
St = - F / d.Br(E;R +’6S)6f
: oceg) . (1.21)

This says that to lowest order in ¢, fo does not change on the Y

time scale. We will find that when fo is expanded in powers of ¢
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1), fo(g_) Foe (1.22)

e o= r (@) gl
o) -_O. O

that fo(g) does éhange on the Y_l time_scale;' This change is

caused by the ©BR df term.

Estimating How Large € Becomes
From the energy appendix we have the following relations between

energy densities

%) o ¢

3t E;nag ~ S Y%in Y *5% “dkin . (1.23)
fhus we have

~ N 2 . ]

g{ % J[. &r |8§| /8r ~ anm gE agv . (1.24)

Vv

We integrate and assume there is initially negligible energy in the

_wéve _
a w 2 o w 2
= 5B|% ~ —=& [ag(t) - ag(O)] N 0 d® . oK

2 2
c c

Compafing this with the definition of e we see that

) 1 ' ‘ -
e ~ la|z . : ‘ (1.26)_
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Multiple Time Scale Expansiongl—gu

When we have a function having multiple time scales,

L
F(t, o?t, at,---), we may Iintroduce new variables, tos By toste,
such that
X 1

F(t, a?t, ot,-++) = F(to, oc2tl, octg,-"') (1.
then

o) 5 ) o

st T oS oS ta, tTTT oo (1.

o] 1 2

At the end of a calculation, we equate the various time scales by

t =t = b, = t, = .- (1.

Combining our various order estimates we may write

of ~ o2 £ ‘ (1.
o L
5B ~ o(nmd”)? (1.
2.4 2\ :
BE ~ « (E) (nma“) , (1.
o » 2 e 2% |
) & PP (mma®)? (1
¢
N 1 1
: 2

(1.

27)

28)

29)

30)

31)

32)

.33)

3k)
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We expand fé and 9/0t, and the Fourier transforms of df, 8B, and
v N _
8E in powers of «aZ.

£ = fO(O)A + fo(l) + fo(2> . T | (1.35)

£, = fk(B) + fk(u) + (1.36)

B = Ek(g) + %k(B) + (1.37)

R A N (1.38)

%55%5%+ e | o (1.39)
. 3 .

For initial conditions we choose
fo(o)(o) = the isotropic part of fo(o) . - (1.50)

vThus, fo(o)(b) is defined to be an isotropic distribution, all of

whose moments, (1), <v2>, (vh), etc. are the same as those of fo(o).

e} e}

A R O A A I (1.10)

(n)

is the anisotropic part of fo(o). All dther fo are taken to be
zero at -t = O.
Substituting our expansions into the Fourier transfofms of

equations (1.12), (1.16), (1.19), (1.21), and (1.22), and collecting "

" terms of the same order in « yields

§#<2) = = ick X §k<u)v' : | ' (1.42)

[t
oo
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-";;ck X Ek(g) + Z byn e [ Ov v fks(5) = 0 (1143)
ik v fk(5) + Rk(z) e (B | sk(h) fo(o) -0 (1.4k)
Z' lhoen_e_ fd3v fks(B) - 0 (1.15)
g%" e (0 _ o o - (1.46)
5 O .
S L), 3 LW, () _ 1P e, ()
&—5- fO + W)_,_ fO + E%g fO = = V‘f'(gﬂ)B R-k fk .

(1.48)
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IT. THE QUASILINEAR EQUATIONS

The Evolution of fo(o) and fo(l)

Equation (1.46) shows that fo(o) is not a function of t..

5
Integrate Eq. (1:47) on the t5 time scale. Now Bfo(o)/éth is a
. constant on this time scale,'hence fo(l) will grow like
fo(l)‘ = constant - t3 . : (2.1)

Eventually fo(l) would become comparable to fo(o) contrary to the
ordering assumptions. This unwanted secular behavior is suppressed by
requiring
3 . (o) | | |
SEZ fo = 0 : _ (2.2)

from which it follows that

o . (1) _ |
gﬁ—fo = 0 . (2.5)

3

Thus fo<o) “is not a function of th and fo(l) is not a funCtioﬁ

of t_.

3 : v
Let us integrate Eq. (1.48) on the t5 time scale: Now
(2) - 3) | - - (o)
R i is a function of t3, however 6fo /6t5 and
Bfo(l)/éth are constants on  the t5 time scale. These would therefore

(2)

lead to secular behavior in fo In order to suppress this secul-

arity we must require

(07
[
—
[
~r
(0%
~~
(o]
g
(@]
—
[3V]
{iong
S
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from which follows

Y o . 1 [ &k | 2 3 '
E%fo( ) - Vf(en)B R-k( ),fk( - (2:5)

We integrate Eq. (2.4) on the t), time scale. Now Bfo(o)/6t5. is a
constant on this time scale and would.lead to secular behavior in

fo(l). To suppress this sectlarity we must require

ot), £ =0 . (2.7)
Thus £ (©) is not a function of t., ,, or t_, and £ %) is not a
o 37 W T 5 T o
function of t5 or th' Repetition of this analysis with higher order

"equations leads to the conclusion that fo(o)' and fo(l) are_constant'
_‘on all time scales. From our initial conditions it then follows that

7fo(l) remains zero for all: time.

The Equation for fo(g)

Since fo<o> is constant and fo(l) is gzero, the lowest order

piece of the distribution function that undergoes change is fO(Z). We

solve Eq. (1.44) for fk(ﬁ) and substitute this into Eq. (2.5).
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A S22 SR B - (2.9)
sk(u) - £ Ek(u)(trans)‘+ Ek(u)(long) X %: (2.10)
We may solve Eq. (1.42) for gk(u)(trans)
Ek(u)(trans) = - ~%— k X 5%— Ek(e) . ' (2.11)
k¢ %

We. substitute these relations into Eq. (2.8) and consider the contribu-

tion of Ek(u)(long) to the integrand. This contribution is

@ B 36 @) Gk ey 2O
~ o~ o~ ~ ~~ ov
R E ALENCP S » 5—05 ()~ o (2.12)
~ oV

where we have made use of the fact that fo(o) is spherically symmetric,

and therefore a function of vo. Thus E (h)(long) does not affect

(2) .

the evolution of f_ Equation (2.8) then becomes

: . 2 3
I o - T
3 m e (2x) ~ N~
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Note that the first term is odd in %k and thus only the pole contributes
to this term. The second term is even in k and thus only the

principal value is nonzero.

Ordering the ﬁelativistic Vlasov Eguation
It is interesting to see the effect that relativistic
corrections have on the lineaf growth rate. In order to calculate this
we will need the relativistic vefsion of Eo. (1.4k). 1If we define the

tensor

o= - -y B (2.1k)

25

then the relativistic Vlasov equation may be written

. : A}
{%*L"V*%a'lv‘(@*l’xyc)jf:O . .'(2.15)

?<1|

_We.use the relation

< 1
.1 -1 .%_ - v - vP/P) (2.16)

N . l .
S x - - -V x ) e (2.17)

whereupon the relativistic Vlasbv equation may be written

{3— + v.e ¥V + .
ot ~

- ' 2,2\% 3
. IY' E - mc(l - v /c%)2 B -(y;x.a;) f = 0

Bl
10

(2718)
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 We order the Fourier transform of Eq. (2.18).in « but“ndt in v/ec.
) e d ) (o) e o (2 2
1k-v-f»(3? +-§ 5T '_E‘( )=f.(0) —.ig(l -V /c )2 Bk( ) (VX ) @)
=0 . 1 (2.19)
The Equétion for

We solve Eq. (2.19) for f (3) " ana substitute this into

_ k
Eq. (1.43). :

i ) (%) .. s(o)
_1ck)<Bk fgws f VXET‘Z{EX—.IV Ek fo
- %{1 - VP /)2 §k(2) (v X %F) fos(E)} = 0 .' (2.20)

Let us consider the .gk(g)(long) contribution. The k-v in the

;4denominator is canceled because fo(q) is a function of v2. Thus we

“are left with an ihtegral of ﬁhe form

JrABV v function of 2 (2.21) .

which is identically zero. Thus E_ (u)(long) does not contribute to

(2)

Ethe equatlon for the evolution of B

Multiply Eq. (2.20) by ickX. Substitute gk(h)(trans) from

(2.11). Introduceé the dimensionless velocity

EI - z/d' - S o (2.22}
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define the small parameter
2,2 - | , |
B = d7/c - (2.23)
and let fo(g) denote
_ e o
fo(g) = d fo(z) . (2.24)

Then Eq. (2.20) may be written

2
w
22 2 _s s s o (2)
where
I = 1 -i;:'g (2.26)
1 o)
Jl = 1 fd5u E—'}:{' kxu BE IVX g fo(o)(g) (2.27)

| ) | |
I, = deu Sxxu -7 @x D P . (2.28)

2) 5 (2)

and B

The Egs.. (2.13%) and (2.25) for the evolution of fo(

form a closed set.

! The Equation for Ek(u)(long)
We solve Eg. (1.kl4) for fk(5) and substitute this into

Eq. (1.45). Substituting R and S from Egs. (1.5) and (1.6) yields
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ewl_
-
2<
|_I
2

ngdeV
s

s
Consider the integral .

ES = [ dBV :

Now fo(o) is isotropic, therefore H must be proportional to k

e

‘3— fos(o) =2 fd5v v O pslo) (2.30)

1423
s
<

since it is the only vector in H. Thus

S S A G (BT A LI SR CE

~

Canequenfly gk(u)(trans) does not contribute to Eq. (2.29) which

may be written

o |
2 s _ () , “s s (2)

Z w,~ h” B (long) = Z e 55 B, : | (2.32)

s S '
where ' .

1 /7 3N\, s(2)
EBs _ fdav kv (Xxsg>fo . (2.33)

Thus Ek(u)(long) -is given once Ek(z) is known. Also,
‘Ek(h)(trans) is given in terms of Bk(g). ~ However as we have seen

Ek(L)(long) is not needed to find the evolution of fo(g) and Bk(e).

The electric field has the role of a'dependent variable. We shall
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investigate the polarization of thé electric field in the section on
normal mode ané,lysis,_ and thereafter we shall not concern ourselves
with the elevct'ric field. . |

Henceforth the superscript - (2) of Ek(g) and the subscript

3 of a/at5 will be implied but not written.
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III. NORMAL MODE ANALYSIS
Coordinate Axes
Let 3 be a unit vector parallel to the axis of temperature
symmetry. Let the subscript _L denote the component of a véctor
lying in the plane pérpendicular'to '32  Let i be a.unit véctor in

the k, 3-plane and let é be a unit vector perpendicular to k and 9;

Define
A
% - kx?2 (3.1)
A A A A A ,r.\ . C )
Then (1, 2, 3) and (k, 2, ) form two right handed orthogonal

bases. We define velocity cbmponents

"

1
D
MOy

.E y = -E a,nd Z = @-E . (5.2)

‘Let © denote the angle between the k-vector and the 3-axis, and

"denote
A A : ' .
o= k+3 = cose (3.3)
tE = sin o . (3.4)
Expansion of a BiMaxwellian in Powers of «
We shall find the normal model vectors and growth rates from
Eq. (2.25) for the special case of a bimaxwellian fo. We consider a

‘bimaxwelliaﬁ'distribution function and expand the anisotropic part of

the exponent



*
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]
o
—~
s
~—
1l

(o) /2 (&%) e § (0,°%/a" - w2

2 12 2,2, 1 2 2,2,
= .fM(dj/a b) (1 + 5 (1 -4da°/a%) + 3 Yy (1 -4da/p7) -}
| (3.5)
where fM denotes the maxwellian
-3/2 1 2 |
£, (w) = (2x) exp -z u . (3.6)
It follows from eneigy considerations that
2,2 1 2 |
(1-a%7) = -s0 + old) ”_ - (3.7)
(1 - dz/bg) = %oc + o(ozg) (5.8)
. 2 ' .
(@/a%) = 1+ o(d") . O 3.9)
therefore i
. 2 2 2
£, = Ty [l+%(§u3 -u) + o)) . : (3.10)
From Eq. (3.10) we have to order «
(o) o
£ = £, (3.11)
p () _ ¢ 30,2 - v®) (3.12)
0 T M BYVU3 , et
2k . (2) .
The moments of 1, u, u , etc. with respect to fo ~as glven by

. (2)
kel

Eq. (3.12) are all zero. Therefore

(o)

is the purely anisotropic
part and fo is the purely isotropic part of fo Just as our

definition requires.
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Evaluafion of Jl and J2

Using the fact that fo(o) is a function of u2' only; we
may write in general

o
5

+ du

~ o~

5 = -ifd?u 2 xw@Ex 0 (-t

- s - ey s ()0f)

(3.13)
Now Jl is a.symmetric tensor and thus must have the form'v
goo= 31 + 3 Rk (3.14)
0~ ~
© but since‘ g f Iy is zeroy I must be of the form
IEAEEEE A S _(5..15_)

‘We calculate half the trace of Ji. Only the residue contributes to
the x-integration which we calculate by passing under the pole. We

denote
W y2 70 : (3.16)

~then

, 1 ) '
Jl = g.‘[ﬁy dz W (1 - 5w2)3/2'2 SéE - 58(1 - ng)2 fo(o)(WE) .

W

(3.17)
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Integration by parts gives
: -2 2,3 2
o= - o (1 - )2 £ 0068 L (3.18)

Thus is in genei'al a negative constant. If we use the maxwellian

Jl ,
f (o) from Eq. (3.11) and expand (3.18) in powers of then
o . toB

(2 {1 -8+ -} .- (3.19)

Using the fact that fo(e) is a function of u° and u52

only, we may write

(x 3 2 | C(3.20)
GuB :

14
>
0/10/
1

S

where the asterisk * denotes that u2, is held constant during the

uB-differentiation. Thus J,, may be Written

2
J‘ : deu L (X u)(u X 5)(1 - Bu )% 0 (2)(1,12 u2)
2A 5 S du} O 773
| | (3.21)

The tensor J is proportional to the distribution functlon anisotropy
(1n the general sense), and is proportional to « for the spec1al case
of a blmaxwelllan distribution. Using the fact that the rest of the

_integrand is even in y, the tensor (/IE X w)(u X 3) may be written



-2k- . o . UCRL-18825

i
|

A LA 2 A A An - A : '
(kxwux2 = Gank-pf)+ (Ex-pa)22) . (3.22)

Thus J, has the form
J, = Jo 55 +3.n AR a R Cterm. | ‘ B (3-25)

n

(2)

We see that the 2,n-submatrix is diagonal for general fb . It

follows from this that the normal mode vectors for Eg. (2;25) are

N
n

(3.24)

1>

» A
and B =

3 ,
o kK

~k
If we use. fO(E) from Eq. (3.12) corresponding to a bimaxwellian fo

then J2 becomes, disregarding the 2% term

'Jg

al- 2 88+ (6% - uP) gé}deu 22(1 - gu°)? £,(u%)

(5.25)

We expand (3.25) in powers of B to obtain.

st2='oz{- u2§§+(l-2u?)§§}<'-%6+°'°>- (3.26)

{ The Normal Mode Equation
We may use Eqs. (3.19) and (3.26) to estimate the values of

J, and J2 in Eq..(2.25) for B Using these values we may -now

1 <k’
state the condition for which the effectvof_ion anisotropy on the

-Tdispersion relation may bebneglected. This is

> 2 -
w" oo, >> W 2 - - (5f27)
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This condition is equivalent”to

oy
n ¢ S (3.28)
which is very easily satisfied. We henceforth disregard‘ion anisotropy.

We suppress the k-dependence and write

al
B = B, 8 + B 7 (5.29)
Then Eq. (2.25) becomes for general £
S B =y, B | (3.30)
ot 2,0 2,n "2,n , . R
where the growth rate is
* 70 N\L 2 D o _
_ L: 2 i - K
Tpn = K (wr) Wpn - Xc Jw. ) (3.31)
and we have defined
1 2 % 1 |
: . € 101
3 = -(—) [3 — +J -—} . : (3.32)
a o T 1 de 1 di .
We note that if the rather mild restriction
me ,
T, >> m T, _ _ (3.33).

is satisfied then the ion contribution to d is negligible. And if

. ()

@)

. ) *
is maxwellian then 4% = de. In any case d is a constant

throughout the evolution of the plasma.
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o Polarization
If we substitute Egs. (3.11) and (3.12) into Egs. (2.31) and

(2.35) we obtain

S

2
h® = -1/kd | - (3.34)

- s | |
o - i(g)? kg—s Ep 2 | - (3.3)

~thus if we define

2, 2 | | |
o= w S/ o | (3.36)
S
t = E: 0%2 a/d e . (3.37)
-

Then Ek(h%long) may be written

Ek(h)(long) = -1(%)%% tu (2 "B (3.58)

where if we neglect the ion contribution we can estimate the magnitude

of t/n as
¢/n = o, de/c . (3.39)
‘For comparison we have

@k(u)(trans) = - %E Ty (E X Ek)' . | ' b_ (3'AO)_
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‘We see that mode n is purely transverse. For mode 2 we see that
() o (W)
generally E_ (long) and By (trans) are the same order of

‘~ O

magnitude. This mode becomes transversely polarized at 6 = 0 and

90°, which corresponds to maximum growth for o < O (T“ < TL) and

a>0 (T“ > Ti) respectively.

Discussion of the Dispersion Relation
If we disregard relativistic corrections and assume a

bimaxwellian fo’ then the growth rate for mode 2 may be written

L .
2\5 , 2 22, 2
Ty = _kd* (;)2 {ae(l -2u7) - ke W, b , (3.41)

For a>0 (T, > TL) this mode grows for

H
45° < @ < 90° -~ (3.42)
and .

0 <K <k (erit, ) = ol - 2% 7/ C (3.43)

Maximum growth occurs at

6 = 90° . I (3.4k)
and
k- = %kge(crit, 90°) . (3.45)

For <0 (T, < Ti) this mode grows for

t

o

0

and

<6 < st ‘ (3.L8) -



~and

2 1
K© = =
>

- Likewise, the'growth rate for mode vn may be written

"n

keg(crit, 0°)

N _
2 2
= -kd* (%) (o, 1+ k

~ UCRL-18825

(3.

(3.

(3.

~ For a>0 (T!s > Tl) this mode is damped for all k. For « < O

;'(T;i < Tl) . we have growth for
| .

o °

0° <0< 9
" and-

2

0 < ¥ <k “(crit, o)

Maximum growth occurs at

j and

-
it
\Nj

n .

2 wée/cz

k 2(crit, 0°%)

(3.

(3.

(3.

" In each case, maximum growth occurs for %k parallel to the axis of

temperature minimum and Ek

maximunm.

parallel to the axis of temperature

L8)

.49)

50)

51)

52)

.53)

5k)
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The relativistic calculation shows that the growth raté has
corrections of ordér ‘dg/cg. :For'both modes  2; and n the -

relatiﬁistic terms decrease the growth rate for a given k-value and

“reduce the region of unstable waves. Thus . relativistic terms have a

stabilizing effect on the transverse instability.
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IV. QUASILINEAR STABILIZATION

(2)

Form of the Equation for f

Equation (2.13) for fo(g) may be written in the form

_g_tfo(E) - %.D.ggfo <6u )( f(o)) (4.1)

where

)
i
L
<~

'oi'x B )01 X B ) ) ' (h.g)

5
d'k 2 3

= (uXB)(kX B ). u
20 (5n)> K22 § 3t =k

=
1}
i
<+

(k.3)

We shall refer to the first term on the RHS of Eq. (4.1) as the diffusion.
term and the second term as the flow term. The diffusion term causes a
. (2)
0

change in which is proportional to vfo(g). Whereas the flow

term depénds only on the sﬁété of'the magnetic wave spectrum at time t.
since fo(o) is constant throughout.the evolution of the plasmé. It
there were only a single magnetic wa&ebpresent, then D and g would
.bé singular functions of u. We assume tﬁat there is a continuous
~ spectrum of Waveé so that D and gv are émooth functions of wu.

The factor u X o/du appears on the left in both the
‘diffusion and flow terms. It follows that the moments

%g (un>(2) = it Pu P £ @ _ 5 . ()



-31- UCRL-18825

2 b . 2
Therefore since the moments of 1, u, u , etc. with fo( ) are

initially zero, they remain zero forever.

(un>(2) = 0 . V (L.5)

Thus f‘(e) remains purely anisotropic throughout its evolution.

(2)

Equations for the Moments of fO

The moments

5 3 >3 :
. (@)
.0

@m$@>=/ﬁ”mﬁ%@mau% (4.6)

are all independent and together specify fo(g). Since is an

and u, we may restrict our attention to 'm

2 2k 2. 2

even function of u

3

‘and n even integers. The: functions 1, u, u3 , U, u u3 st can be
combined to give a set of polynomials, pm(ue, u52), ~which are
orthonormal relative to a positive weighting funétion, fw(ug).
u P, p. £ = ES . (k.7)

M*m "w mM » ;
The choice for the weighting function will be made later. We expand
f0<2) in the above polynomials.

e (@) _ o (1) p(v2, w.2) £ (u®) . C(h.8)

o) m m 7 73 W ’

m

We take the moment of p  with respect to Eq. (4.1) for fo(z).

The result. may be written in the form
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1 e | 1 L% _Mm
tNM = V 202 3 9k (B t T B
m e (2x) o
2 . * M 9 ‘ :
+ ———-kgde(gk I 5t B (k.9)

where

Moo &l L5 x) (-2 oy (o) 4.10
L pr Gxwex v(Zmn) 20 o

. A 9 ‘
M 'fdiu’?j‘-'—u 3 X 0 X E)(au 3 pM>(a 5* Pm>fw
koo > -
5 (k.11)

We consider the contribution of the flow term to the moment
equation. Since the remainder of the‘integrand is even in y, the

A A : :
tensor (3 X u)(u Y }E) in IM reduces to

A
(uy® B8+ (xz - ua®) 22+ term} . (k.12)

Thus the 2, n-submatrix of IM is diagonal and constant. Hence we

may write

1 * . '
(§k*' IM'?E B) = 3 'a_t@k - T Be) - (1.13)

Thus the flow term in Eq. (L.9) is a pure time derivative. Therefore
the flow term makes no contribution to the net change in -any even
velocity moment between initial and final states which have negligible

wave'speqtra. The net change in the yelocity‘moments'betweeh such states
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is due entirely to the diffusion term. Assuming that aM is of order
o, negligible wave spectra corresponds to a magnetic wave energy density

satisfying

£ «< o 8 . - (L.1h)
kin

mag

¢ (@) 5.
O

Since D and E were assumed to be smooth functions,
continuous funétion and SO0 may be completely represented by ité
moments. Thus we may say that the flOW'ferm in Eq. (4.1) is a pure time
derivative although this is not at all obvious from Eq. (4.3).

 We consider now the diffusion term. Sincé the remainder of
the integrand is even in y, the tensor (3 X E)(g X u) in '
reduces to

GRGR - e Dt -0 + 1B 728 (4.15)

The 2, n-submatrix of IMm is diagonal. Thus nc cross terms between
mode 2 and mode n occur in the equation for fo(g). Only the pole
contributes to IMm. We do the x-integration and retain only the

2, n-submatrix.

Mmoo 2 g-zf‘dydz {y2§ﬁ+z2§’g‘} (%pM(Wg’ E‘QZED
. - Z

<-——*p W, 850 1, (u.lé)

where now the * denotes that w2 is held constant during the

z-~differentiation. And we have used -the relation
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R CO | I R
u x=0 . Jz

3

) - (4.17)

We note that the components:of the tensors IMM for all M are néga-
tive. Thus the aM' éomponent of the diffusion terms has a stabilizing

effect in the equation for 6aM/6t.

Moment Expansion of the Growth Rate Formula
If we substitute Eq. (4.8) for fo(g) into Eq. (3.21) and

ignore relativistic corrections then J, may be written

2

5, = [P G xwax Z aM( *pM> £,

?S:'

(k.18)
Thus if we'choose

- 29 ¢ () o (h.19)

W 5u2 o}

(where‘the minus sign makes fw positive for. single humped fo(o)),

then J2 becomes

Iy = = E: 2 o ™. - (L.20)
Using this expression we may write Egs. (3.30) and (3.31) for B as

. l .
3 ¥ /2\2 '
RYS }\Bk = = kd (;) I k c /0.) z 2 aM IM} . Ek . (4.21)
' : M o

il
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The same functions IM(G) appearvin the growth rate formula and in the
flow term. We see from Eq. (4.21) that o, will contribute to growing

waves for mocde j at angle 8 if .
.M(@) < 0 . (k.22)

However the contribution of these waves at angle © to the flow term

for ajM/Bt is proportional to
oM 3 2
1,(0) 5z 13,07 (k.23)

Thﬁs these waves have a stabilizing'effect (reduce IaM]) when they are

growing and a destabiliging effect when they are damping.

Steady State Solutions

A steady state solution to Fq. (4.1) would have to satisfy

&op. L2 B Lo (k.24)
Denote
g - gﬁ fo(g) . | (b.25)

Multiply Eq. (4.24) by fo(g), integrate with respect to u, and

integrate the first J/du by parts. Then

J/.dBu g-p.g =0 | (4.26)

which implies that
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g-og -0 (.27)

for all u since the quadratic form will be shown to be positive
‘ definite.
Consider D. Perform the k-@ integration in Eq. (4.2). Then

D Dbecomes

2 . .
1 1 2 : * :

57 Bl 7 "k (w X B ) X B) . (h.28)
m e (2x) Kiu

o
I
- <I+

Evidently D 1is a real and symmetric tensor. Furthermore the quadratic

form, @-D-@g is positive definite. Denote

Y = u X gﬁ fo(2) - wx?d aa' . fo(e) . (1.29)
~ u5 . .
Then we may write
. 1 2 1 1 2 2 A 2
g- o = V727 5w 52 Voo - 4k V- B l° (4.30)
m cC . ( J‘[) klu . )

‘ A A A ' .
‘Now for u parallel to 1, V equals 2. .Therefore @.D. @ is

proportional to
.dk dk, |B |2 | | (4.31)
2 T3 172 ’ _ :

. /‘ .
“And for u parallel to 2, ¥ equals 1. Therefore g-D- g is

.proportional to
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[d_kl a, (kB/_k)E ENE . | | (4.32)

Therefore for g -D. g to be zero for all u requires that the fields

(2)

for both mode 2 and mode n are zero or that fo is gero. If
we consider also the growth rate formula‘it is evident that both the
fields and 'fo(g) must be zero. This then is the only steady state

solution.

fo(steady state) = fo(o) . - - (4.33)

" We have not shown that the plasma, if left to itself, actually
approaches the above steady state. However this is highly plausible

because of the steady dissipativé effect of the diffusion term.'_

Physical Description of'the Stabilization Process

Consider the initial value problem where T is larger than

il

T Waves grow up corresponding to every k-vector lying near the

L
perpendicular plane. Consequenﬁly every particle resonates with some of
the waves, that is, has its velocity vector perpendicular to the
k-vector of the wave. Let the angular width of the spectrum about the

" perpendicular piane be A. Particles whose velocity vector lies within
an angle A of the parallel axis will interact with more waves than
particles whose velocity vector lies outside this cone. This causes
parﬁiqles withvlafge Vll/vl. to diffuse more rapidly than particles with
small v /v . This}reduces Tll and increases ?l thereby causing

7L

stabilization.
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Numerical Calculation
In the au.thors.thesis26 a numerical calculation was made assuming
' fo to be bimaxwellian throughout its evolution. This is equivalent to

retaining only the polynomial

1
2

_ '(5u52 - w?)/(12) C(h.34)

P3

in the expansion (4.8). Comparing with Eq. (3.12) we see that

o = o/V3 . . o (k3)
“The initial conditions were T” > Tl:1andvhégligible initial wave energy.
The evolutibn of o may be broken into three distinct phases: an
_initial phase, a rapid phase, and an asymptotic phase. During the initial
?hase the wave spectrum growSIUp peakéd about the'perpendicular plane.
Whereas particle diffusion and flow occurs very'slowiy at first, and hepce
little change'oécﬁrs in the anisotropy. Evéntually the aﬁplitude of the
Qave'spectrum becomes so large that « Dbegins to decrease'rapidly. This
is due mainly to the flow term which is larger than the diffusion term

at first. The temperature anisotropy decreases rapidly until slightiy
more than half of the wave spectrum (with larger wave numbefs) is damping,
and slightly less than half‘is still growing. This redﬁces the flow term
~and changes its sign. The flow term then partially cancels the diffusioﬁ
term. This ends.the rapid phase. Particie diffusion then proceeds ever
.more slowly as_temperatﬁre isotropy is approached. Asymptotic analysis
shows that.the anisotropy decreases with time like t-a/B. Simultane-
ously the wave spectium shifts to lower and lowér wave numbers, and
eventually decays. - The asymptotié phase is characterized by the wave

spectrum Shifting so as to always be about hdlf damping and half growing.



9. | UCRT-18825

APPENDICES
A. Energy Relations

We define the kinetic, magnetic, and electric energy densities

by
- 5 }
£ - fa% Lo m +ef (A.1)
kin v
s 3 1 2 s - ..
- = &v=n m v,"f : (A.2)
6;_kin _[’ 2 s 's 1 o :
1 2
mag .
1 2 0 |
e = ;.]-dBr ISEl /8H . (A.h)
elec : '

© Energy conservation follows immediately from the Vlasov and Maxwell

equations.
o A o : -
3t (“pin * c"mag; *1ee) = 0 (4.5)
But since
. d :
8 ~ O — BB ' (A.6)
~ c = .

.1t follows that

£ ~ O‘2<%>2 & .' (.7)

elec mag



_Lo- | ’ . UCRL-18825

Now from the Vlasov Eg. (1.21)

. s -
3 I S T § 2 1 3 S .8
s £ = fdv2 VfdrSRZSf £ 0O

nom v
9t |kin s s 1
(A.8)
But on the other hand : o
3 oF 3, 1 2 1 38 .S
SE»g““kin = - [d&Vv Fa . m v % d"r 88” of (A.9)

since the - v ¥ 8/dv in B®R gives zero when integrated with V2. Now
38 8f ~ « BF Bf ‘ . (A.10)

therefore it follows that

- s 5 s
% £ - g %{8 . (A.11)

kin lkin :
Now from the definition of ¢ we have than an amount of energy,

E»éf ~ OB >£%: , flows from parallel motion into perpendicular
lkin in .

motion. However from Eq. (A.11) it follows that only

asd ~ of 8 & of it flows into the magnetic field.
tkin kin ‘

Assume that the ions are isotropic and so do not participate
in the energy flow. We defined d to be the mean thermal velocity at
t = O, when the fields were assumed to have negligible energy. The
perpendicular and parallel thermal velocities were denoted by - a and b.

Fauation (A.11) may be written
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e
kin Jkin
which may be written in terms of the electron thermal velocities as

2 22

(o(a” - dg) + (_b2 - d2)} ~ oz(a2 - de) ~ dlan . (A.
Let us define & by
(a2—d2) = -%&dg (A
Then from Eq. (A.lﬁ) it follows thatv'
| (v° - dé) - %& &+ o(df &%) . (A.
But from the définition of «
ad® = b2 =82 - a2+ o a?) ». (A
Thus to lowest order
a = o | (A.
whernce
a2 - a°n - %—a + o(ozg)} : (A.
B> = dg{l + 20+ O(ag)} . - _ (A.

5

5 & ~ a 6(66 | | - (A.12)

1%)

14)

15)

.16)

17)

18)

19)



-lp. ' UCRL-18825

B. Irreversibility

We have used the Vlasov and Maxwell equations to describe our
plésma. We have performed no phase or ensemble averaging. = And yet we
have obtained a tensor D ﬁhich is a positive operator, and hence which.
produces dissipation. From where did this irreversibility arise? It
‘came from the assumption that D is a smooth function of u. This
restricted us to a continuous spectrum of waves. Ph&sically, the
gy velocity space diffusion occurs,because of the different phases of the
magnetic fields which the electron experiences as it travels through
these waves. If we had considered the case of only a‘single magnetic
wave, then the electron would have a coherent phase relationship with
this wave. Then D would be a singular function of u and Eq. (4.1)

would described the exact, reversible electron trajectories.
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C. Pole Prescription

Let us denote

y - ey fo(2) i 6S(h) fo(0) - (c.1)

" then the ordered Vlasov Eq. (1.19) may be written

(-éi—+v-v> Bf(B) = ¢ . | . - (c.2)

Previously we dropped the 6/8tl term because 8f and ¢ ‘have no ty

dependence. We retain this term in order to find the k- v pole

' prescription. Fourier transform in space and in the t variable

1
ikov-w ot e, b)) = g (bt . (c.3)
~o~ 7 TR 2 3 kw' 2 3 : :

Whence

. . -iwt -
£ e, 1,00 - fg_wm Lg (e . (c)

~ o~

It is well known for initial value problems that the w-contour lies in

some UHP above all the polés. In order to have a real w-contour we

may write (C.L) as

(3) ) = 1limit do i 2 R
fk (tl t2 ) = ii?;t 2% W - kev + ie € ¢kw(t2 ,) )
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| Now.

'iwt; 

v:¢kw(t2f"')' =

' Wé'ndw use the fact thatvzﬁfﬂvénd~ @ are not funCtioﬁs.of t, (whose

1

absence we indicate with a carat). Then
| | torer) _ 5 é(’j- (@ t'--;)‘“ B . (c )A
Pralto ) = e Bl Ay tomee) e
" substituting this into (C.5) gives

) 4 ..y - timit b g (B oty . (c.8)
T G ) = lmit o »¢k(tl &y ) . (c.8)
: €-—>O_-f\,,\_ i ‘ .
 This is the same as Eq. (1.k4), but in éddition-iﬁ“has the pole bréscrip—
* tion for the "k and v -integrations.  Name1y, the k and v ébntours ‘

go under the pole.
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