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Agstract;

- . It is shown that the transition amplitude for scaftering of nucleons
on a hole nucleus een be direetly expressed by the linear response fﬁnction.v
The correlations in the ground state heve been included. Tﬁe structure of .the

- transition amplitude was studied for an extended sehematic model. Furthermore"
a’short summary of the linear response theory 1s given to elarify the .

assumptions about the effective interaction.

Work performed under the.auspices of the U. S. Atomic Energy Commission.
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1. _Intrdduction

Two different approéches have been used in‘dealing with the prbilémT
of nucleon-nucleus scattering based on a micréécopic-nuclear description.
In the coupled channel treatment Feshbachfs_projection-operator‘technique

1 9233)

is utilised to set down the relevanf system of .equations.’ The micro-

scopic picture of the nuclei is then .contained in a set of amplitudes. )

In the shell model approach one includes the dneéparticle continuum states in

the-treaﬁment_of nuclear reacﬁiéns.s_lo)\

The details can be found in the
cited references.
'Several authors have shown: that one can express the S-matrix for;
. . ;s o . 11-13, v
nuclear scattering processes in terms of Green's functions.” ) ‘In the

- Green's function approach of Zhivopistsev the problem of calculating the

T-matrix was reduced to the défermihation of the socalled réducible‘vertices 

(ﬁéfféctive scétteriné amplitudeé").' The reducible ?erﬁéx_bbéYé an equation
similaf'to the equationqu the usuallscatteriﬁg amﬁiitﬁde. Instead of’fhé
normal inferaction one has to_insefﬁ £he irreducible vertéx, and'thevinter—
'mediate propagators«are éxpréssea in tefms of dressea particles. It is
possible tobtreat.more‘cémplicated SCattering‘processés with this method

using appropriate approximations for the vertices.lh)

We limit ourselves to the description'df'nucléon scattering on a holev

nucleus fof two reasons: First,.that problem has been treated most in the -
sheil model approach; second, we are able to reducé this_problem to the
calculation of the linear responée function, which is frequently used in
nucleaf structure calculations. Furthermore, the rehormalisatioh procedufé?

for the forces is better known in this simple.case.v We assume that the

@
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state of the target nucleus is given by the groﬁnd state of the compound

- system plus one,quasi—hole. The ground'statefcofrelations of the compound

nucleus are included in our treatment.

- In the second Seétion wé'derive the neéded scattéring formaliSm ﬁsing'
Greeﬁ's fﬁnctions. In order to meke plain thé assUmptiéﬁs involvéd, we will
give a short summary of linear response theory in terms:of dressed Qﬁeé
parfiélebbropagators and efféctivé iﬁteractions in the third part. The
assumptiéné'about the two-point funétions and thg éffective interacfions'will
be discussed; too. In the.foﬁfth section we,usé for the zero;order_response'
the sheli model réspohéé. In this case thé T-matrix simplifies considerably.
Also thé_reduction to MacDonaldFs treatment is gifen.6) In ordef to get some

insight in the structure of the solutions; we treat the degenerated case in

' the fifth section using Brown-Bolsterli forces. In'the appendix . the incluSiOp.

1

of gquasi-bound single-particle stétes is given.
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2. Scattering Formalism

According to'our assumption that the target nucleus can be described;
by the core plus‘oneyﬁuasi—hole in the state a, we;have for the target‘ ' .

nucleon state:

7 = Z&1/2 "

Lo o e

|0'> denotes the_normalised ground'sfate of the compound nucleus

o

(H[b_) = EO(A)IO ).; A par%icies).l Heré,'wa and W& dfe'ﬁhe Schroédihgéff
annihilation — and creation opérators, respectively, of a nucleon with the
.quantﬁm nuﬁber set o fixed by an independenf—ﬁaitic}e Hamiltonian HS.
The spectrum of HS isvéssumed to haye a.discrete part plus a cohtinuﬁm
part. Since the grouﬁd state may‘égntain correlations, we have fo multiply' 
the state wulov) ‘with Miédél's réﬁormaliSatiOn bénstént155
(za = I(ealwalo )!2) then éetting a normaliséd stafé; If'itkis‘necessary
to distinguish the continuum states from the bound states.we will“label
continuum statesvby‘ P, k, p' eté. |

The independent-particle model scattering state can now be put in a -

convenient form:

o)y = (2 ) e Ty oo L I '~(2.2)_ 

i v ' W
(out_)

By the index (*) we distinguish the solutions with coming spherical

waves,-respectively, By ‘well ‘known methodsl6) we obtain for thevscatterinng @

solution of the full Hamiltonian (n +0):
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IE_H,,mM(") y

¢(_élwé+; ) (2.3)

or using eq. (2.2):

(¢k BI‘y(+)> = (ﬁaz z 2 fl/2§01w8w§<’ w (+ +),, |0 Y o.o(2.) |

B~ H+1n

Here, E‘ is the energyAOf,thésscattering syStem (E = E ep - ea); Ep is the
enefgy of.the incident,paxticle, Ed is the energy of the hole.

The total T-matrix can be divided into two parts (T =3TS + ),
™ :dgscribesﬁthe pure shell model‘scattering aha ‘I'R the effect of residuél
interaCtionl6); By means of the Gell—Mann—Goldberger 1dent1t1es and spllttlng
off ‘the Hamiltonian we obtaln then for eqs. (2 3) and (2.4):
s 1

) ) =5 . . .
B 0,0 - “kp 'aB‘ Ep,d_Ek,B+ln kB ,po

C (2.5)
S R \ .
S denotes the S-matrix in the independent-particle model:

S ' (=) () . oy
-skp = :(k | ot /) . | _ o (2.6)_
From egs. (2.4%) and (2.5) and introducing the same boundary conditions for the'
shell model states, we obtain the following equation for the unknown transition

amplitude ‘TR:

B
- P,a ksp

1 R - C=1/2, ot i + 155
TE__+in “kB,po - Z (Zsz'_zpzoc) <0l¢6wpv(*ﬂwx)_—_—l}1+_iﬁ IP-P("‘)IDO'LIQ Sk';p'}

= 0085k ,p o S (2.7)

,EE: dehotesvintegration as well as $ummation over the other quantum numbers .

P
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- By comparison with the definition of the response function

L@X\)(w) = - <0| {A‘P;\I.‘I’K(‘D—IHIQH)_I‘PI% + “P;E%(w"'ﬂ‘in)—lwiuk} lo? /  (2.8.)_

and assuming'the grouﬁd state_of the compound nucleus 4;for insfaﬁce, the-
016—core — does not contain components of the continuum states or equivalently -

all renormalisation constants for continuum. states are equal to one, we obtain )

with: -

e = (zgma) i@ L ean

L v KUAV

Anticipating a result from the. next chapters -inL - takes fhe form’

int E =5 &  + — T E_ 2,11)
o p'aBp( p,a) ppt 0B By oo gtin p'Bpu( p,a) : ) )
3 b . .

In the follow1ng the upper index "plus" is left out. Furthermore, Wefmark"

all quantltles descrlblng qua51—part1cles by a tilde.
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~giving the following result for the wanted amplitude

TiB,pa(E) - z {s,k,p'Tp‘,BpocCE)} - | | (2.12)
' LF . _ : :

or

R e i g - )
TkB’pOL(E) = TkB’pa(E) - emi Z {G(EP, Ek)TkpyTp,Bpa(E) } . (2.13)
: ) ! . ' . p' ' . : , .

According to eq. (2.11) we have to find an ‘equation for the linear_responsé)

function, which is the topic of the next section.
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3. Linear Response Theoryb' | .
. o . .o . Y _

‘We use the formulation of the nuclear many—body'problem‘in terms of

Green's functions+,_ Here, for completion we recall the relevant system of o -

'equations_using the following definition of Green‘s functions:

€a..a sal...a' (—i)? ¢ofz 1‘ba .. wa .:w:1~--¢;;LO,)_ . (3.1)
1 n®> 1" ""n ' 7 1 nf n 1 v :

Here, wa and wz ‘are the Heisenberg annihilation — or creation operators,

.respectively, of a nu¢leon with.thebquantum number set o at the time

_ta(a = : a,té), T denotes the time ordering operator. |0) is the normalised

A-particle ground state of the Hamiltonian

Z wot onBlpB Z‘l’ lbB aépcw by - | | | ,(3°2)

The flrst functional derivative of g0 Wlth respect to an external source_7 

Un is usually named as the generallsed linear response function L 20)
g ,
. - .5 k2 o a o '
Lkan'_ © L Gunm =t \gkmgn—gkﬁgmn) 2 _ (3'3>'

since itvdeterminés the first-order change in the single—particlevprOPagator“

due to anAexternal Perturbation:

Sg _ : .
_ kR ’ , o : .
Ang T Su U T oo ’ (3-4) :
=0 ' -
TSee, for instance, refs. l5’18 and l9).
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We employ; until further notice, the convention according to which summation
or‘intégration, respectively, is to be carried out over all doubly'occuring

Latin indices.

With the help of the functional method=C®>T

) or by perturbation
theoryl8) the folldWing exact Systém df equations is obtéined':(u = 0);

0 1 2 B _ .
5t %kn T o Pin T Vkn [ Bm@ T %m0 (3.5)}},

= -2i 1 - - 6)
’YKJ _ g;vkajbgba T lvkmangarIerdencm i (3 );;
2.0 o - R - | |
.Lkmjn - Lkmjn N Lkbijcuvavmun > ' _ v - .‘3-7?'
with !
0 . . - o o
Lkmjn T T 8knfpy 0 . - - (3.8)
. ’ . ,Gvk° . : ) ‘
S e : | (3.9
. nm o -

I 1is the socalled effective particle~hole interaction ("irreducible vertex5 

part") s V.

K] is the effective one—particle potential ("irreducible maSS'.

operatof");' Iterating (3.6) and (3.7) and using (3.9) yields the representation’

of wv, L,'and I .in Feynman graphé containing‘ohly the tWo~particle'interaqtion-

and the dréssedrone—particie propagatorsls)i All gréphsvof' I are irréduéible

in the particle;holé channel. "Upon transition tovenergy representation and .

use of the energy conservation one gets for (3.7):
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= o . 1§ - B O ) 0 f . . .
Ku)\\)(e € w) VLKuAv(E LJEW). "E: de"de (LKGA (e,e"w)T w850 (ele' ' ,0)
4 &
YP

pqu(a,..-ew)). - (3:10)

Comparison of (2.8) and (3.3) leads to

LKukv(w) = dede LKuAv(E’E’w) . (w*O).‘ . (3 %
Due to the structure of LQ_

10 (EsE) = 1(45) epled) seen) (3.12)
with
By () = (o {¢K(w_H+in)‘lwi+ wz(wﬂ{—in)—lw'(. o) (3.13)-

one can.carry out only one integration in (3.11):
= .0. - | 170 ' - 1 'Y =
Lguxv(s,w) | Lﬁukv(e’w) 2ﬂ§£1/;€ LKYAG(E’w)Iasyp(e’E’w)Lpqu(e’w) . (3,1§)

We ha&e not beenvable to reduce this equatién without an assumption about

" the effective parficle—hole force. Therefore, we neglect retardation effecﬁs
(e,e'—dependence) in the‘considered energy regipn caused by.diagféms in I
with~intermediate partic;e—hole type propagationf Our assuﬁptién.is
fulfilled, for instance, by restricting oniy fé ladder graﬁhs for I. In-

 nuclear matter even the w-dependerice of the ladder approximation is weakls’ge).
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- 2 -0 . “
Lmudm?—L@me)—2”§: wﬂa“ﬂjﬂ&pW)Lmﬁvw)

ay
Bo
with
0 _ .1 - Wy .o W
LKuAv(w) =55 | de gKv(€+§) gul(e 2)

UCRL-18907

(3.15}

(3.16). '

About the density dependence-of»the,éomplex effective particle—hole force

- very little is knownv In most approaches this dependence has been dis«

regarded expllcltly, sometlmes it was lncluded in a Dhenomologlcal manner

.Introducing the renormalisation procedure

‘fKuAv(w) = (ZKZAZqu)l(2 (w)

-1/2

éK)\(w) r:(ZKZA) g }\(w) 3

¥ () =iz 22 v OR

we obtain from egs. (3.15) and (3.16):

! B e | .
Banw ) = z Bt | Sytyp = 2T Z DBYU(w) ongo(®)

Yp M . _ . PBo

or'equivalently:

15, 23).

(3.27)

(3.18)

(3.19) 

'(3Q20)e,.



" Tewaw

(w)

~12-

- Z{[ Socdr = 27 ), Tt
- Bo oy . ‘

IO'SYP_

~0
(w)] Lopsv

(w)}'; |

UCRL-1890T

. (—3..21.,) R

e
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h._sTaMatrix with Shell Modei'Respohse'

Asva first step we assﬁme that in the conéidered energy reéion ali
terms in (3.6) are Weakly energy—dependent and can be collected in a shell-
model potentlal for example, of Saxon-Wood shape This assumption.seems

reasonable, since the single partlcle character Qf ViQ

is maintained if
one'neglects in the linearised equation for the‘effective scattering amplitude
I' all terms with intermediafe particle-hole propagation. Then, one obtainsi

o R : - _ 7 |
Vkm ‘f’ B lI'kbmza,gab ) : (k1)

"Diagonalising the shell model Hamiltonian %E-pig+;ig‘ and using this basis

one obtains for the two-point function:

~g o E l--n0 - ng : L » ’_ |
gou(w) =§ —  + = dcpgo(w) . (h.2)‘.

+ —€ _+i
O | w-gtin w-g_+in
: ' AN . :
Here, n_~ is the quasi-particle.occupation number. ‘Using eq. (4.2) the
zeroth—order-response reduces to:

° W s

Tgnw(®) = ¢ S a
with
ié (Q) . nK(l—nA) ) nk(l—nk) (h.h)ii
KA | wre,-g -2in w-—eK+e>\f2in A

For the wanted response function in eq. (2.9) we obtain from (3.21), (4.3),

and (4.4) the equation:
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) . | Ny o
Lot och(w) =1 ( ){ op' aB ZL voryp‘(w) | . (b.5)

Hence is given by

p'Bpa

-1 ~ | - , o
~ _ s Z PR . y
p Bpoc(E) om L, o (E) Loryav(E) TogpEl 5 (h6)
YV _ _Veyp : . :
where LpiYBV"ls the solution of

pp'YBv(w) = L (w){ prvogy ~ 2T Z Tt oBu ~(w) prv(w) » ST)

j{: means summation over the discrete states as: well as integration over the
continuum states.
For a general qonsideratibn it may be useful to symmetrise the

expressions in the variable pair (p'8;pa). We achleve this by 1ntroduc1ng

~ ~

the effective scattering amplitude T (T L = L) The equatlon for T

- can be read off? for instance, f?omvthequrmal sq;uﬁiop of (L.7):
FefoewifF, 0 we
or -
Fooiiamiii . S ae

Insértion.into eq. (4.5) leads to:
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iy | _ "S_  ‘ _ 8 . o~ (s o\
| . ‘ T . Vi

[ . A~

Lo rugu(@) Lyugue (@) Iﬁdop(w)} j} - o (%.10)

‘Then T takes the form:
~ ~ . 2 ~ T N o '
T E) = (om) I_, , (B) - (or zz: I E) L (&)1 (E) . (k.11)
prgapE) = (M) T 0 (B) - (2m)® ) T 0 (B) I (B T (E)
ov
The complex energy resonances aré given by the zero-points of the Fredholm

-determinantgh):

Det (1 +2rII°) =0 . L E (h.12)
You may obtain these zero-points Er by evaluating the Fredholm

determinant:

0=1+2n }E: I xw®)iS@)

1
VUV ' VU r

VU
) ( )2" . Ivuuv(Er)slvouc(Er)' - -
A2m o " IS IS5 - (k.13)
v MY Z . L B Lvu(Er) ch(Er) v to S
. o w I (B)I__ (5) -

I
o0 oupv ' Topeo
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Equation-(h;ll) looks similar to the expression for the T-matrix

. ’ . . . . . ~D o .
given by MacDonald6); But he uses a response function L in which only

the discrete part 1°0 o 15 is taken into account (I° = iSD LSC). -
Héncéuwe have the following equation for iD:'
P = 1°0 _ g 7°P ED e ' , (4.14)

Here; all quantum numbers are restricted to the discrete part of the spectrum

and I” obeys the equation

Pa1 e I5C 0 . = T as)

Utilising operator algebra one can transform eq. (4.10) in

P=185-1% (er P - (en) P ) i8 . - (4.16)

Then % takes the form

~

N R IR w T - . o
TorgaplE) = (2T) Ip.aBp(E) - (2m) j{: T igu(E) Lyg (B T (B) (kar)
' © VU : : , :
pv.

expressing T in terms of ED and viD- only. Insertion of a complete

‘system {|m); Hlm )= Emlm >} of the compound system into the definition

(2.8) of L leads to (A, .= : (2, zB) -1/2 <'o|»w§xpa]m>);'
L (w) ocszm Qozm w' o : : '
aoBp w-E +in w+E -in . , (h.28) - s



L
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Now, one obtains the result of MacDonald assuming that form remains valid

for _ED " where |m > and Eﬁ have got to be replaced by the solutions of

the eigenvalue problem with the complex interaction'-EnID. The second term -

. on the right-hand side of (4.18) is neglected'iﬁ thié‘approachm
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5. Schematic Model
In order to show the structure of the solutions for the T-matrix
more explicitly, we solve the problem for the Brown-Bolsterli forces25).

We choose this force because its separable form leads to a degeneration of

the Fredholm determinant (4.13). The explicit form of the force is:

~

em I

RN OESES - | , (5.2) -

UV KA
with
o= :.Vu\)(l—nu)n\) + Vvunu(_l—n\)) E ‘ ‘. (5.2)

w

For the solution of (L.5).one obtains using (5.1):

~ _ 8 _ ,_“'.S’ Moaa p'B . .
Lp'OCBP(w) —' LpOL(.w) {GPP'(SOLB LP'B(w) —;1+F_(ETA w } | (5.3) ‘

where
, € —€
—rn
o Mw) = s 2a Z I(ulV]n)l (s € )2
u>l ’

_____ll_ll__
+2AZ Z [de[(evlvln)| 2w2

+mz Z {I<w+ev [vn ) 12+ e o [vIn ) 12 } R

AY

=}AD_(iu) + 2%(w) + iY(w) E B o | | (5.4)
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’AF denotes the Fermi level. In (5.4) we used a more explicit notation
labelling the hole states with 1, -the bound particle states with up, and the -
cdntiﬁuum states With_(Ep\%Ep). We omit explicit angular momehtum labels.

Now, 5 takes the form

v Xolv]e e |v]8)

The complex energy resonances Er(EI;:eT~iPr) are given by the solutions of
1+A(Er) = 0, therefore, we obtain near an isolated.resonance the Breit-Wigner

.formulal6)

~

A<p|v|a><p"|v|B}A'(E‘r) N . g
'In nuclear structure calculations only the first term in (5.4) is used; the
last two terms give the influence of fhé continuum producing an energy-shift

~and a width. If the énergy—shift, caused by the continuum, is small we ‘

obfain:
.  Xop|v]a)(p'|v8 >AD'(€]3.) : o
PR o (@%(e Dviv(e)) 4 L

D

E-c_ +
D', D
&7 (e

€£ is the solution of the nuclear structure calculation. A more detailed
discussion can be found in the treatment of Lemmer26), who disregards the

second term in (4.18).



20~  UCRL-18907

6. Summafy.‘

A formaliém for.calcuiating nudledn scattéring by oné—hoié nucléii
Lusiné'linear response theory has been.sét down. Wé havé Been‘ablevto reduce
our treatment to‘earlier approacheé by neglecting ground stat§.§orr§lationst,
of ﬁhe compound nucleus.. furthermoré, we discusséd_thé assuﬁptions about the.
effective.fqrces.whiCh enter in the nucleon scattérihg préblém étarting from
the exact system of equafioﬁs for the;many;body problem. In the-appéndix

the influence of resonant single-particle states is given.
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Appendix>

So fér we have used fhe aSsumptiQn that_thé.bne—particle motion
couid{be described by a weakly energy—dépéndént poténtial? But thé second
term in eq. (3,6) may‘have a strong enefgyédepéndent part, for instancé, duev
. to the coupiing of thg.one;particle motidn to réSOnant statés of the'compound
nucleus. 'Furthermore; acco;ding‘to eqs. (2.8) and (2.9) the ground state
correlations have been restricted to bound states.éhlyf But, ip many
‘nuclear stfucture caléulations, using a realistic shell—modelvpotential,:ope
needs single—particlé stateé that lie in the continﬁumiv They cause &a sharp

single particle resonance, for ihstance, the 14 state in 016. Such states

3/2 7
give a strong energy-dependence in the last two terms of (5.4). Several
methods are known to overcome this difficultys_lo’zg), especially, the most-

important case of_avsingle—partiqle resonance. We adopt the méthod of
Garside and MacDonaldé).iﬁtroducing an additional one-particle fbfentiéi
—vig » Which shifts the releyant state into a bound state. Then v§2 causes
thé energy-shift énd the width; This method can also be_appiied to the-
:coupling of the qne—particle states.tohresonaﬁt stgtés: 'In.this case 'vig

is ‘the resonant part of the one—particlé potential. In both cases the one~

particle propagator obeys'the following equation

~ ~S ~g, (R | ey
(w) = w) + Z S A1)
&y guv( ) _gu(w)vuk(w)ng(w) , ‘ ( _.),
“where the totai effective one-particle poténtial is:given by
S0 o
- _ "8 ~R , » . -

'The resonant one-particle state is: bound in the potentiai ;kQ .
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Introducing the effective one-particle scattering amplitude by

;:'W’(w) :’EV(M) + Z ;ﬁY(_.w), éi(u‘)) Ew(w) R ) (A.3)
Y , _

we obtain

() Sy Bol) * E(0) T ) Sw . e

<

Due to the more ‘complicated structure of (A.4) we obtain for the zeroth order

response (3.16) instead of (L4.3) the expression:

0 . s .
LKLO\\)(U’) (w){ K\)U)\ (SK\)\) \))\(w) % (e -w) cS

Ay Ku(w)' J_CK\)(EUW) 8w : - (a.5)

~

-0

In-(A;5) we have restricted ourselves to the particle part of theﬁgﬂnatrix.
Furthermore vV denotes the_quantum'number set of the relevant ohe—particle

state 'shifted by the additional potential. If VR influences seéveral - -

x2
_particle-states, one has to drop 663 and 6Xj 27), The equation
I‘! ~ - ~O . ~ ~ o~ . . . . ) e
| L=L -2rL T19 | (a.6)

can now belreduced'to a simpler one of the form (L4.5):

L' =1° - 2r ' T 1° | | (a1

by introducing the matrix

{l
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_ ‘,\ AKIJI)V\Q(>w? .=': 6K\). }D\ ak?)\\) ‘ | o »v R | U.\'S)"‘-
where
vakuk‘\)(w-) .=‘ :"GK\) Av(l -n )n\) L (w) t )\(e ‘w) u)\dv'\? nu.(l-n\)).-:
Tt =:TA=T4+7Ta=:T+AL (A.9)

L=AL . S S (A.11)

The analogue of (4.11) takes now the form:

‘_IIP"BPOI‘(E') = 60@8 p\) o P(E:. +in) + 21rZ [ caB (E)( 60—\7 (1-n0)-
. ) ‘ o
;tp'o(?B+E+in)) ]_ : | . o -,_'.1 (A.l2)i
with:
fnq ._.._ iv -2 iv iv EI '.. B . o : - (A.bl3.)
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As in sectign b, it is poésible to.restfict oneself to bbund:sfates by
introducing a neW'efféctive‘interéétion} The'proceduré'Can be takén o&ér
- from section L. |
o For some purposes it méy be usefulltd calculate L' with fhe hélp.'
of_pertﬁrbaiion theory.. We obtain - |

L' = iI - (om) iI A f’£>

I (r11)

where iI is the solution of (A.T) with I'=I. AT 6beys,the_equation

AT=AT-2nAIL AT . . . (A.15)
Tteration of (A.15) and inserfion in (A.Jh)'y1e165>the perthrbativévexpdnsioﬁ
of L'.

SCHEMATIC MODEL:
In the schematic model we obtain a result very similiar to (5.3) and

(5.5)%

N a5, : B
Lp'OLBp(w) = ija(w)&{ 6_PP'60LB p B(ou)[ (e +o 1n) cS
+ D—'l(w) cap(w) ¢p'6(w) } ' | I | g (A.16)
or
Tp'aB'(E) = as 5 p(gp+1n)ap;-f } D ,(w)cap(E)cp,B(E) , (Af17);
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respectively.

Here C(w) and D(w) are defined by

'Cuv(w)fﬁzij fon Aoy . , . - (A.18)
' en ' '

and

Dlw) = s 1+ AW+ R | _ o ~ (a29)
with ) v _ , ‘ . L
R = -y {(l—ng) . Z < (1 n B 85 Fpleyumin) |

. KA : p . | , .
+ 5k3-iik(w)-t (ekfw+in)]>'} . '  | . (A.zo)ﬁ
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behalf of the Commission:
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respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, ''person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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