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ABSTRACT 

A series of rotating-frame nuclear double-resonance 

experiments is reported in which the NMR of the rare isotope 
43 Ca (natural abundance 0.13%) in CaF2 is detected via the 

observable resonance signal of the abundant l9F nuclei. The 

technique consists of (1) cooling the l9F dipolar interaction 

energy reservoir by means of adiabatic demagnetization in the 
. 43 

rotating frame, (2) coupling the rare Ca to this cooled 

reservoir by means of a rotating magnetic field at or near 

the 43ca nuclear Larmer frequency, and (3) examining the final 

state of this reservoir by measuring the "dipolar" free induction 
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signal following a rr/4 rf pulse at the l9F Larmor frequency. 

With this basic format, results have been obtained and are 

reported here for (a) the relative heat capacities of the 43ca 

rotating-frame Zeeman Hamiltonian and the l9F dipolar Hamiltonian 

terms, (b) the cross-relaxation time for the 43ca-19F energy-

transfer process as a function of rotating-frame effective 

field strength and orientation, (c) transient oscillations of 

the 19F dipolar spin-temperature upon application of an rf 

pulse at the 43ca resonance frequency, (d) the transverse (T2 ) 

relaxation process of the 43ca nuclei, and (e) the spin-lattice 

relaxation time (T1 ) of the 43ca nuclei. Theoretical expressions 

for results (a) and (b) are obtained using the well-known 

thermodynamic model to describe the state of the l9F and 43ca 

spin systems. The l9F_43ca dipolar coupling is treated as a 

perturbation to obtain a simple "golden rule" expression for 

the ,cross-relaxation rate. This model, first applied to 

nuclear double-resonance by Hartmann and Hahn, is combined here 

with the experimentally determined fluctuation spectrum of the 

l9F_43ca coupling operator to yield calculated cross-relaxation 

rates in excellent agreement with the experimental results. 

The above mentioned fluctuation spectrum is found to be a very 

nearly exponential function of the rotating-frame 43ca Zeeman 

splitting over a range of cross-relaxation rates spanning nearly 

ttu·ee orders of magnitude for two distinct orientations of the 

applied field relative to the ·crystal axes and to be essentially 

/\ 
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independent of the orientation of the rotating-frame effective 

field. This rather surprising spectral form is crucial to the 

successful calculation of the results we find, and also leads 

to satisfactory agreement between theory and experiment for 

results (c) and (d). The transient oscillation phenomena 

(c) are the rotating-frame analogy of the pulsed de-field 

experiments carried out by Strombotne and Hahn. A density-matrix 

perturbation expansion technique similar to that used by the 

latter authors is employed here to explain our results. The 

form of the 43ca transverse decay process (d) is calculated 

by means of the Anderson-Weiss model theory; the exponential. 

decay time is closely approximated by a calculated result 

using the exponential fluctuation spectrum noted above, and 

the initial region of nonexponential behavior predicted by 

this model theory is clearly evident in our results. 43ca 

T1 values (e) were obtained at 300°K and at 355°K with a 

variety of field orientations in the (110) plane of the crystal 

axes. The T1 process is found to be isotropic and to have a 

temperature-dependence suggesting that it is quadrupolar in 

origin. The temperature-dependence of T1 is in reasonable 

accord with the Van Kranendonk theory. 
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I. INTRODUCTION 

A high-sensitivity nuclear double-resonance technique 

has been introduced(l) in which the precessing magnetization 

of an abundant nuclear species is slowly destroyed by causing 

it to interact with a second system of nuclei of low abundance. 

This interaction takes place under the influence of rotating 

magnetic fields applied simultaneously at the respective Larmor 

frequencies of the two nuclear species involved. Evaluation 

of the coupling strength (or relaxation time) for the exchange 

of energy, between two sets of nuclei leads to an estimate of 

1014 - 1016 nuclear magnetons as the minimum number that can be 

detected by the technique, This technique was shown experi-

mentally to have a high sensitivity, but the sample studied 

contained nuclear spins of moderate C-7 percent) abundance. The 

theory was found to be approximately correct in this first experi

ment and in later applications( 2 ) of double resonance in systems 

of rarer concentrations, but it has not been tested in quantita-

tive detail from the point of view of nonequilibrium conditions, 

and where the double resonance experiment is considered while 

off resonance as well as at exact resonance. 

It is desirable to study double resonance dynamics in 

terms of an experiment on a system where pure magnetic coupling 

is dominant, and where quantitative predictions concerning the 

nuclear double-resonance dynamics can be made and tested. In 

this paper we present the 'results of such a study, in which the 

NMR of the rare isotope.~ 3 ca (fractional abundance~. l.3xlo- 3 ) 
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is observed via the easily detected resonance of the 100 percent 

abundant 19F nuclear spin sy~tem in a single crystal of CaF 2 • 

Instead of the double irradiation, spin-locking method applied 

in Refere~ce ·1, the experimentally simpler double resonance 

scheme (suggested there) of adiabatic demagnetization in the 

rotating frame (ADRF)( 3 ) was adapted with only a slight sacrifice 

in sensitivity. With the latter approach the experiment consists 

of the following steps. First, ADR~ is carried out on the abundant 

species,·defined as A-spins, resulting in a state of low spin-

temperature represented by the secular dipolar interaction 

Hamiltonian term as a thermal reservoir. This energy reservoir 

is unperturbed by other spin-Hamiltonian terms( 4) in the absence 

of radio-frequency irradiation and the low spin-reservoir 

temperature established by ADRF persists for a spin-lattice 

relaxation time of the order of T1 . A thermodynamic analysis of 

this experiment was demonstrated by Slichter and Holton, ( 3 ) 

whose careful work gave further validation to the rotating-frame 

spin-temperature concept originally advanced and demonstrated 

by Redfield. ( 5 ) Following ADRF, the cooled A-spin dipolar 

reservoir can be brought into thermal contact with the rare spin 

species, defined as B-spins, by applying a rotating field H1 at 

the B-spin Larmor frequency. By pulsing H1 on and off, or by 

rotary saturation,~ 5 ) an energy influx into the A-spin reservoir 

can be generated via the B nuclei, leading to a more rapid warm-

up rate for the associated spin-temperature. This accelerated 

, 
f ( ~. 
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relaxation of the A-spin temperature is detected by monitoring 

the A-spin NMR signal following the B-spin irradiation sequence; 

only through observation of the A signal is it possible to 

determine the B-spin behavior throughout this investigation. A 

preliminary report of our results with this scheme has been 

published. ( 2 ) 

Within the framework of the approach we have outlined, 

43 ' 19 
an interesting variety of NMR properties of the Ca - F 

spin systems can be investigated which have implications that 

extend beyond the quest for ultimate sensitivity for detecting 

rare nuclear spins. In particular we report a series of experi-

ments in which the central and recurrent theme is the dipolar 

fluctuation spectrum of the abundant 19F nuclear spins, or, more 

precisely, of the dipolar operator which couples these nuclei 

to a rare 43 ca spin moment. This spectrum is subject to direct 

measurement here and provides valuable insight, because successful 

calculations of. such a spectrum are not available. Further, the 

present studies probe the thermodynamical nature of the rotating-

frame A-B spin system ene~gy transfer process, clearly demonstrated 

by the results given by Lurie and Slichter. ( 6) These authors 

showed that the relative heat capacities of coupled spin-systems 

are accessible to experimental measurement independent of any 

theory of A-B coupling rates or spin-lattice relaxation, provided, 

however, that the B-spin system is not too low in abundance. 

Such heat capacity measurements are also carried out here as a 
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necessary adjunct to our other experimental objectives. 

Our main goal at the outset is to investigate the 

time-constant (LAB) for energy exchange between rare and 

abundant nuclei as an extension of the thermodynamic (spin-

temperature) model of rotating-frame dynamics, and to compare 

the results with quantitative calculations. For this purpose 

the CaF 2 system provides a favorable case in a number of respects. 

The 43 ca nuclear·moment is small enough so that its dipolar 

coupling with the surrounding l9F can be considered weak compared 

with the 19F - 19F coupling. Thus the A-B coupling operator can 

be successfully treated as a perturbation, leading to an exponenti~l 

rela*ation process. ( 7 ) Also, the 43ca nuclei are sufficiently 

dilute so that interactions among them may be safely neglected 

in calculating their resonance properties. At the same time the 

43ca dilution is not too small, so that signals several orders 

of magnitude above the detection threshold are available, and 

no impediment is presented to a double-resonance study ranging 

over wide signal amplitude conditions which might be grossly un-

favorable from the standpoint of sensitivity, 

Calculation of the cross-relaxation time constant 

LAB is carried out by means of density-matrix perturbation 

theory.C 8 , 9 ~lO) In the ADRF case L~~ is essentially the rate 

at which transitions are excited between the rotating-frame 

Zeeman levels of the B-spin by the A-'8 dipolar coupling operator, 

which in turn is being randomly modulated by flip-flop interactions 

... \ 
I''· 
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among the A-spins, specified by a spin-spin interaction time 

constant T2A. With a B-spin Zeeman splitting weB = yBHe, 

where He is the rotating frame effective field, TA~(weB) is 

simply proportional to the spectral density of the perturbation 

operator at frequency weB" As noted above, it is generally not 

feasible to calculate such a spectral density function directly. 

Instead, one ususally resorts to the assumption of a mathematically 

convenient form (e.g., Gaussian), with amplitude and width para

meters determined by the method of moments, (ll,l 2 ,l3 ) In the 

pre~ent work the spectral form is obtainable directly from measured 

values of TA~(weB), which are found to vary as an exponentially 

decreasing function of weB' With this experimentally determined 

spectrum, the calculation of TAB(weB) can be carried out without 

any arbitrary assumptions. As a result, theory and experiment 

are found to be in excellent accord. The details of these calcu-

lations as well as the elements of the thermodynamic model of 

rotating frame double resonance are summarized in Section II in 

a form suitable for the interpretation of our experiments. Experi-

mental data for the relaxation times TAB and for the heat capacity 

of the rare spins 1n an applied rf field are given in Section IV, 

where a series of pulsed double-resonance experiments are reported. 

Double resonance measurements were also carried out 

in which the B-spin energy reservoir was continuously heated by 

means of rotary saturation. ( 5) These experiments are described 

in Section V. Here an audio-frequency modulation of the static 
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field ~0 at frequencies -weB causes absorptive transitions 

between the B-spin rotating frame Zeeman levels. By adopting 

a simple BPP(l 4) theory of audio saturation we extract additional 

data for the cross-coupling time TAB which parallels that of 

Section IV. A detailed examination of audio-resonance linewidths 

was also carried out, and it is interesting to compare these re

sults with the work of Franz and Slichter(lS) on rotary saturation 

of the 19F spins in CaF 2 . These authors successfully explained 

their results with a theory based on spin quantization in a 

second rotating frame, rotating at the frequency of applied 

audio modulation about an axis parallel to the effective field 

H in the first rotating frame. The conditions of high audio 
-€ 

saturation required for this approach are also encountered in 

our work, and a corresponding expression for the audio lineshape 

is derived for the rare-spin case. Interestingly, this expression 

is asymptotically approached by the BPP(l 4) theory at high 

saturation levels. 

In addition to the pulsed rf field and rotary satura-

tion methods of Sections IV and V, we demonstrate in Section VI 

a third double-resonance technique which steps beyond the con-

fines of the thermodynamic reservoir model. This is based upon 

the oscillatory behavior of the A-B coupling energy that persists 

for a time -T 2A during the application of an rf pulse at or near 

the B-spin Larmor frequency. These oscillations, which occur 

at frequency weB' display the rotating-frame analogy of the 
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pulsed-d.c. field transient oscillations investigated 

earlier. (l 6 ) An analysis of this effect is given in which 

the density matrix equation of motion is integrated over the 

time duration of the rf pulse, including terms up to second 

order in the A-B coupling operator. Employed as a double-

resonance technique in detecting the B-system, this phenomenon 

gives the greatest A-spin heating effect with rr-pulses applied 

at exact resonance to the B-nuclei at a rate -l/T2A. Under 

these conditions one obtains a double resonance interaction 

comparable in effectiveness to the methods discussed in 

Sections IV and V. 

In a further development of the ADRF method, we 

show in Sections VII and VIII, respectively, how these ideas 

may be employed to investigate the spin-spin (T 2B) and spin

lattice (T1B) relaxation processes of rare nuclei. T1B for 

4 3ca: CaF 2 is found to be quite long · (- 200 sec) with a tempera

ture dependence indicating that it is quadrupolar in origin. 

The T2B results are particularly important in corrobopating 

the measured values of TAB' since TAB ~ T2B as weB ~ 0, In 

this connection the measured values of T2B are further sup

plemented by the closely related audio linewidths presented 

in Section V. Since the short correlation time 

condition is only marginally acceptable in assessing the quantity 

T2B, the full spin-spin relaxation process is compared with a 

calculated relaxation function obtained from. the Anderson-Weiss{l3 ) 
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model. Again, the fluctuation spectrum determined from the 

TAB(weB) results of Section IV is crucial in a successful 

application of this model theory, as is demonstrated by a 

comparison with the usual assumption of a Gaussian fluctuation 

spectrum. Recently, systematic discrepancies have been noted(l?) 

between experimental ESR and NMR linewidths and values calculated 

on the Anderson-Weiss theory assuming a cut-off Lorentzian 

lineshape model.- Interestingly, these discrepancies are in 

the same direction as would be found here under this assumption. 

To our knowledge the present work constitutes the only case 

where a directly measured fluctuation spectrum is available 

for comparison of experimental and calculated linewidths. 

II. THERMODYNAMIC MODEL 

In this section we use the thermodynamic model to 

derive a set of equations with which to interpret our double-

resonance experiments. Our approach, which is similar to 

that of previous investigators, (l, 2 ) starts with the system 

Hamiltonian and applies the spin-temperature approximation 

to describe the thermodynamic state of both nuclear spin-systems; 

also, the extreme line narrowing second-order relaxation 

assumption is made to calculate the rate of energy exchange 

between the two systems. However, our experimental results 

require the analysis of two spin reservoirs which are not 

generally in thermal equilibrium with one another; and con-

siderations relating to nonequilibrium transient effects such 

v 

' 
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as spin diffusion and incompletely damped spin-spin interactions 

will be taken up after introduction of the thermodynamic model. 

Because our objective is to give an entirely quantitative 

account of these experiments, we make a careful examination 

of a number of assumptions essential to a quantitative theory 

of this sort. 

Although the equations will be couched in general 

form, we will of course have in mind the application to a 

single crystal of CaF 2 , with the 100 percent abundant l9F 

nuclei (I= l/2,y/2rr = 4.0055 kHz/G.) as the "A" spin NMR 

system observed directly, and the 0.13 percent abundant 43 ca 

(I= 7/2,y/2rr = 0.2865 kHz/G.) as the rare "B" spin NMR which 

is observed only indirectly through the intermediary A-spins. 

With these two species in mind, we assume throughout that in-

homogeneous broadening, magnetic or quadrupolar, is totally 

absent. ( 18 ) 

A. The Hamiltonian 

We retain only those terms in the Hamiltonian H 

which are necessary for the description of the rotating frame 

double-resonance process in a large magnetic field H . There-o 

fore we take 

(1) 
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The first term 

is the secular or zero-frequency term of the dipolar inter-

action among the A nuclei I .. This term provides a large A-
-l. 

spin energy reservoir, the state of which is examined by 

observing the associated ''dipolar" free-precession signal.(lg) 

All of the nonsecular (high-frequency) A-A dipolar terms, as 

well as the A-spin Zeeman coupling, are strongly decoupled 

from H~A and are omitted.C 4) The second and third terms (in 

frequency units), 

describe the coupling of an isolated B-spin £ with the applied 

d.c. and rotating fields H
0 

and H1 , respectively. They are 

representative of the B-spin energy reservoir. We consider 

an isolated B~spin not only for the sake of simplicity, but 

also to emphasize that the B-spins can be assumed to act in-

dependently of one another. Dipolar coupling among the very 

dilute B-spins is neglected, since a rough estimate of the 

corresponding time constant for this coupling (see Appendix A) 

is extremely long compared to the time scale in which measure-

ments are made in this system. The fourth term, 

, 
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describes the secular dipolar coupling between a given a-spin 

and neighboring A-spins. This term provides the essential 

thermal link whereby energy is coupled between the A and B-

spin system . The coefficients A .. and B. are the usual dipolar 
lJ J 

interaction coefficients where the subscripts express the 

lattice coordinates of the A-spins concerned. 

The fifth term, 

represents the B-spin coupling with an applied audio-frequency 

modulation field Ha that imposes rotary saturation( 5) to 

enhance the detection efficiency and to study B-spin rotating-

frame resonance properties in a particular kind of double 

resonance experiment to be described more fully below. The 

A-spin interaction with Ha is omitted, since it commutes 

with all the foregoing Hamiltonian terms which describe the 

A system. A H81 represents the spin-lattice interaction of the 

A nuclei, or more precisely, the coupling of the operator H~A 

with time-dependent modes of the lattice coordinates. We 

A shall not delve into the detailed nature of H81 , which involves 

coupling with stray paramagnetic impurities together with spin 

diffusion among the A-spins. A The effects of H81 will simply 
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be represented by an empirical relaxation time T
1

A in our 

model. B Finally, HSL represents the spin-lattice interaction 

of the B-nuclei. The associated laboratory frame relaxation 

process will be schematically represented by a relaxation 

time TlB' This relaxation process appears to be dominated 

by quadrupolar Raman scattering of thermal phonons and is 

quite weak (TlB- 200 sec). Because of this, TlB is considered 

to have a negligible effect on our double-resonance phenomena 

and is omitted in the rotating frame considerations to follow. 

Further discussion of T1B is deferred to Section VIII. 

B. Density Matrix in the Rotating F~ame 

We examine the properties of the double resonance 

Hamiltonian Equation (1) using the equation of motion 
. 

ip = [H,p] of the spin-system density matrix p. This equation 

is transformed to a reference frame rotating at a frequency w 

with respect to B-spin coordinates and tilted at an angle 8 so 

as to place the axis of quantization along the rotating-frame 

"effective field," as shown in Figure 1. This is accomplished 

by the transformed density matrix 

where R = exp(i8S )exp(-iwtS ). The equation of motion for 
y z 

pR is then 

(2) 

I 
, I v: 

, 



~ ' ' ,, 

' 

- 13 -

with 

A A 

B.I . 
l Zl 

(3) 

The effective field He = iH1 + k~H defines the direction in 

space of the new Z-axis of B-spin quantization, where 

~H = H
0 

- w/yB. The X-axis is perpendicular to the Z-axis 

and lies in the rotating frame x-z plane (see Figure 1). e 

is the angle between H and the laboratory z-axis so that e 

cos e = ~H/He and sin e = H1/He. The transformation effects 

a correspondence between terms of Equations (l) and (3) as 

follows: 

and 

In the representation of Equations (2) and (3) the 

Hamiltonian has become explicitly time-independent (ignoring 

for the present the effects of the audio-irradiation term). 

It has the simple structure of A- and B-spin energy reservoirs 

coupled by a perturbation 
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H '- (Szcos e -Sxsin 6) L B.I .. 
p . J ZJ 

J 

If the effective Zeeman splitting weB = yBHe is adjusted to 

be within the spectral width of A-spin dipolar fluctuation 

(yBHe ~ yAHLA' where the A-spin local field HLA is defined 

below) then H will cause transitions between the energy 
p 

levels of the terms -weBSZ and allow an energy transfer be-

tween the two spin systems. 

( 4 ) 

Following Redfield5 and succeeding investi

gators,Cl,3,6,7,l9) we employ a spin-temperature description 

of the states of both spin-systems with a density matrix of 

the form 

( 5) 

This formulation requires that the state of both spin systems 

must be specified by a temperature, which requires internal 

thermal equilibrium for the A system. In turn this imposes a 

unique temperature for the B spins, a point to be examined 

later in further detail. We use Equation (5) in its high-

temperature form: 

l i 

,, 
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( 6 ) 

to express the energy content of the A- and B-spin reservoirs, 

and subsequently derive the energy transfer equations. From 

AA 
EA = hTr[Hd pR(eq.)] and EB = -hweBNBTr[SZpR(eq.)] we find 

and 

NBh
2
w;Bs(S+l) 

3kTB 

, (7a) 

(7b) 

where NA and NB are the total number per c.c. of each type of 

nucleus in the specimen; and the A-spin local dipolar field 

HLA has the conventional definition H~A = Tr(H~A) 2/Tr{y~ f 
The energy content represented by the coupling term H is 

p 

omitted here as always negligibly small compared with EA. 

C. Double Resonance Equations 

The A-B relaxation equation may be simply derived 

by viewing EB as the energy of a macroscopic magnetization 

MB in the applied field He' i.e., EB = -MBHe. The relaxation 

of MB via the perturbation HP takes place in much the same 

fashion as in a magnetic dipole spin-lattice relaxation process. 
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·The 6m = ±1 transition rates between the B system m-levels 

AB -1 
are given by wm,m+l = (l/2)TAB[I(I+l) - m(m+l)] where the m-

levels are established from the Hamiltonian term -weBSZ, and 

( 8) 

In.Equation (8) MB is relaxed toward a value corresponding to 

the instantaneous A-spin temperature TA. Therefore we may 
. 

express conservation of energy by the relation EA + tB = 0, or 

( 9 ) 

Equations (8) and (9) express the A-B energy transfer 

process only, .and we must add to them terms which represent 

the saturating effect of the audio-irradiation field Ha (B-spins) 

and spin-lattice relaxation (A-spins), respectively. We treat 

the audio absorption in the rotating field H in exact analogy e 

to the case of rf absorption in a laboratory field H . In 
0 

the perturbation limit (i.e., for Ha smaller than the audio-

resonant linewidth), the effect of H may be expressed as a . a 

i 

1..r~Jll 

I 
! 

I 
! 

fractional rate of decay 1/Ta of the magnetization MB, where(l 4,l9) .., 

, 
(10) 
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f (w ) is the normalized audio-lineshape function and a a 

wla = 1/2 yBHasin 6. Adding the term -MB(TB)/Ta to the 

right-hand side of Equation (8) and expressing the results 

in terms of inverse spin temperatures (SB = TB
1

,SA = T~ 1 ) 

using Equation (7b) we find 

(lla) 

Similarly we add a phenomenological spin-lattice relaxation 

term -(EA(TA)) - EA(T1 ))/T1A to Equation (9), which with the 

aid of Equations (7a) and (7b) becomes 

(llb) 

· where 

£ = (12) 

is the ratio of heat capacities of the B- and A-spin reservoirs 

and s1 is the inverse lattice temperature. Equations (11) give 

a complete description of the double resonance dynamics under 

investigation here. As noted above the B system spin-lattice 

relaxation time term which included T1B has been omitted from 

Equation (lla), primarily because T1 B is extremely long and has a 

negligible effect on the double-resonance experiments. 
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Equations (11) may be seen to represent the behavior 

of the system of energy reservoirs shown in Figure 2, where 

the coupling.between reservoirs is labelled by the corresponding 

time-constant. The audio generator is effectively a reservoir 

at infinite temperature, since the B-spin coupling with it 

tends to produce total saturation of MB. This pictorial repre

sentation allows a simple visualization of the two types of 

double resonance considered here. First, in the rotary satur-

ation method the rotating field (H 1 ) and the audio-irradiation 

.field (Ha) are applied simultaneously in a single pulse long 

enough to increase measurably the A-spin temperature TA. 

During this time, energy flows from the audio generator via 

the B-spins into the A-spin reservoir to cause the observed 

increase in TA, After an initial transient the B-spins reach 
. 

a quasi-equilibri~m state in which (setting SB = 0 in Equa-

tion (lla)) SB: ra/~AB+T~)SA. For strong audio irradiation 

we have Ta. << TAB and SB = 0. With the assumption that 

SL << SAl which applies throughout our work, we find 

Thus, the warm-up rate of the A-spin is increased under these 

conditions by the double-resonance rate contribution s/TAB' 

which is the la~gest one observable with the methods considered 

in this section. 

, 
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In the pulse method the audio generator is not used 

(-r = oo) 
a ' 

and the rotating field H1 is repeatedly turned on and 

off, alternately connecting and disconnecting the B- and A-

spin reservoirs. If complete A-B equilibrium is reached during 

each "pulse" of H1 , and the B-spin reservoir is brought to 

infinite temperature (i.e., M8 = 0) between pulses, then TA is 

increased by a factor (l+s) for each pulse applied. After 

many pulses a cumulative and measurable increase in TA is 

produced. The net heat input to the A-spin reservoir in this 

technique is equal to the work done on the B-spin system in 

turning off H1 . The thermodynamics of the pulse method have 

been investigated in detail by Lurie and Slichter. ( 6) Although 

this technique is not in principle as potent in heating the 

A-spins as the rotary saturation method, it is useful for the 

present work in that it allows a detailed study of the A-B 

thermal equilibrium process. 

To complete the theory we need only to find an ex-

pression for TAB in terms of the Hamiltonian parameters 

(Equation (3)). This we do under the assumption of short cor-

relation times by means of the master equation for the time rate 

of change of the density matrix. (lO) This formulation, combined 

with the spin-temperature assumption used here, gives an A-B 

coupling relation of the form of Equation (lla), with 

(13) 
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where 

with 

Upon evaluating TrB (where Tr - TrATrB) in Equation (10) we 

find 

l . HAA1· l . HAA l d -l d T 
B.I . e \ B.I . e 

J ZJ ' J . ZJ J 

TrAU B.I. J 
2 

. J ZJ 
J 

(14) 

Here (Llw 2) AB is the Van Vleck ( 20 ) second moment. of the B-magnietic 

resonance line, and the quantity in braces is the autocorrelation 

function a(T) of the operator L B.I .. a(T) can be found in 
j J ZJ 

principle by expanding the exponential operators in Equation (14) 

to obtain a series in even powers of T. In practice it is 

I 
. I 

, 
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2 feasible to calculate only the coefficients of T and possibly 

T4 in this fashion, with the consequence that one usually 

reports to the assumption of a mathematically convenient form 

for a(T) with which to carry through the calculation. Here 

instead we use the experimentally determined form 

l/TAB(weB) ~ e-aweB, to be justified later (Section IV~ as a 

basis for our calculations. From the Fourier transform of 

Equation (14) it follows that 

( 2 2) -l 
a(T) = l+T /TC , 

and we identify a as the correlation time T . c 

(15) 

By equating 

the T
2 terms in power series expansions of Equations (14) and 

(15) we find 

l 
2 
T c 

Tr rdAA' L B . I ·J 2 . J ZJ 
l - J 

= - 2 2 

Tr G B .I .l U J zjJ 

Equation (14) now simplifies to 

(16) 

(17) 

where the parameters (6w
2

)AB and Tc can be calculated to high 

accuracy from the known dipolar coupling coefficients. 
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Combining Equations (11) with TAB' as calculated 

above, we are now equipped with an essentially complete 

formulation of rotating-frame double resonance dynamics for 

CaF 2 . Calculated values of Tc and_ TAB are tabulated in 

Section IV where they are compared with experimental data. 

On the whole the simple formulation developed here is found 

to give a reasonable account of our results. Since these cal-

culations depend so heavily on the fast correlation and spin-

temperature assumptions, we close this section with a detailed 

examination of these matters. 

D. Fast-Correlation and Spin Temperature Approximations 

The condition for validity of the fast-correlation 

ap~roximation may be simply expressed here as 

TAB >> Tc' 

We see from Equation (17) that this condition is most severely. 

tested fore= TI/2 with small values of weB' i.e., as 
-weBTc 

e + 1 to give the shortest possible -TAB value. In the 

experiments of Section IV the conditions which favor a short 

TAB are that of ~ along the (lll) crystalline axes and with 

For this extreme, we find T ~ So ~sec and . c 

TAB ~ 500 ~sec, which meets the above requirement reasonably 

well. Throughout the range of experimental conditions 

encountered, then, the experimental values of TAB and Tc 

satisfy the inequality Tc/TAB ~ 0.16. As a result, the 

transient behavior investigated in Section VI will affect 

.. 
~· 

, 
' 
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only negligible fraction (-Tc/TAB) of the relaxation process. 

Furthermore, the deviation from a simple exponential due to 

these transients is found in any case to be less than 3 percent 

of the exponential term, ·and is therefore of negligible importance 

to our results. 

The spin temperature assumptions are expected to 

hold for nuclear spin energy reservoirs possessing internal 

thermal equilibrium, and this also requires TAB >> Tc - T2A. 

The maintenance of thermal equilibrium among the A-spins depends 

upon spin diffusion to carry away excess energy from the double 

resonance "heating centers" (i.e., B-spin sites). To establish 

a criterion for this "rapid diffusion'' limit, we require that 

during one double-resonance relaxation time constant TDR = TAB/€, 

the spin diffusion process must be complete in a sphere of 

volume n~1 , where nB is the volume density of B-spins. For this 

purpose we assume isotropic diffusion in a continuum of dif-

fusivity D, for which in time t a point-source disturbance would 

be expected to propagate a distance r: (Dt) 112 • Thus were-

quire a 

where 47Tr~/3 

2 
spin-diffusion time constant T SD - rB/D << TAB/€, 

= n~l. For the case of43 Ca in CaF 2 we have 

rB = 7a, where a is the 19F - 19F near-neighbor distance. The 

calculations of Lowe and Gade( 2 l) give D = O.l4(hy~/a) for the 

s.c. lattice, from which we find TSD- ll msec. This we compare 

with the data given below which give a minimum value TAB/€ > 100 

msec, so the condition TAB/€ >> TSD is obeyed as required. It 
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is interesting to note that TSD/TDR ~ n~13 , so that the criterion 

TSD/TDR << l improves as the rare nuclei under investigation 

become more dil4te. 

Although the CaF 2 system satisfies the simple 

criterion of rapid spin-diffusion set forth above, we may 

need to impose an even more stringent requirement to guarantee 

the validity of Equation (lla), since this equation demands, in 

effect, that the A-nuclei in the immediate neighborhood of 

each B spin reflect the bulk A-spin temperature. A detailed 

theoretical examination of the latter situation is extremely 

difficult,-because the diffusion model, although it has been 

applied to this probl~m by Slusher and Hahn( 2 ~ breaks down when 

considering the small scale of the distances between a rare spin 

and its immediate neighbors. We shall not probe this question 

further, but instead develop a simple experimental criterion to 

determine the presence of spin-diffusion "inhibition" of the 

TAB process. Using Equation (14) it is easily shown that the 

area 

(18) 

under the rate "spectrum" curve is given simply by 

A = rr/2(~w 2)A8sin2 e, independent of the functional form of 

a(T). With accurately calculated values of (~w 2)AB' comparison 

of calculated and experimental values of A is a sensitive test 

' 
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for spin-diffusion effects, which always tend to reduce 

the value of A. This criterion is applied to the TAB data 

presented in Section IV, where spin-diffusion effects are 

estimated to be small. 

In addition to the requirements of local A-spin 

temperature equilibrium the thermodynamic mode~ Equations (ll) 

also demand that the population of the B-spin (rotating frame) 

m-states be describable by a Boltzman dist~ibution, i.e., by 

a spin termperature. Whereas in abundant spin systems this 

situation is maintained by mutual spin-flips, here the B-B 

dipolar interactions are much too weak to be effective during 

the A-B equilibration time (see Appendix A). Instead, we 

depend upon the nature of the A-B coupling to maintain a B

spin temperature. With the form of wAB +l given above (see 
m,m 

Equation (8)) the B-spin relaxation has the convenient property 

that if the m-state populations are initially in a Boltzman 

distribution, they will remain so at all points in time. Thus, 

although the B-spins behave totally independently of one 

another, they may 9e considered to possess an effective 

internal "thermal equilibrium." 

Breakdown of this simple picture will occur in 

principle if higher order rate processes having a more com

plicated m-dependence than WAB +l given above become important. 
m,m 

This would result if the "fast correlation" assumption used 

to calculate TAB is not strictly valid. The next higher 



1 .. 

.... 26 ,.. 

order perturbation terms give rate contributions of th.e order 

of Tc/T~B with m-dependences including m3 and m
4 

terms. 

These terms are smaller than the lowe~t order wAB by a m,m+l 

factor o - Tc/TAB < 0.16, so that such. high.er-.order terms 

are expected to be small here, but perhaps not entirely 

negligible. The effects of these higher order terms on our 

experimental results are expected to be (a) an increase in 

the relaxation rate over that given by Equation (14) by a 

fractional amount ~o, and (b) a deviation from the simple 

exponential behavior assumed in Equation (8) by an amount 

2 -8 < 0.03, which is essentially unobservable here. This 

matter is discussed further along with th.e results presented 

in Section IV. 

III. EXPERIMENTAL APPARATUS AND TECHNIQUE 

A. The Equipment 

A block diagram of the double-resonance apparatus 

is shown in Figure (3). It consists essentially of four parts, 

the A-frequency transmitter and receiver, the B-frequency rf 

power system, the audio power system, and the magnet and field-

regulation system (not shown). The A system is basically a 

medium-power coherent pulsed NMR setup in which the output 

from an 11 MHz crystal-stabilized master oscillator is fed 

simultaneously to a gated power amplifier and a phase detector 

at the output of the receiver. From the phase-detector the 

., 
; 
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video A-signal is further amplified and then monitored with 

a boxcar integrator and strip-chart recorder. Special fea-

tures were incorporated into the A-rf power system to allow 

the waveform to be abruptly phase-shifted and then slowly 

turned off to carry out the ADRF preparation of the A-spin 

system. 

The B-rf power system consists of a tunable gated 

power amplifier driven by a Hewlett-Packard model 606A VFO. 

This system was arranged to cover a band of frequencies centered 

on the43 ca Larmor frequency of -787 kHz. A specially designed 

gated amplifier was used to supply radio frequency power either 

in a series of short bursts for the case of pulsed double-

resonance or in one burst of good (-1 percent) amplitude sta-

bility lasting for a second or more for the rotary~saturation 

double-resonance case. Finally, the audiofrequency saturation 

field was supplied by a conventional high-fidelity power ampli-

fier driven by a Hewlett-Packard model 202C audio oscillator. 

All of the timing and pulse-modulation waveforms were derived 

from Tektronix 160-series pulse and waveform generators (not 

shown in Figure 3). 

A specially designed NMR head shown in Figure 4 was 

used to fulfill the requirements of providing rf magnetic 

fields perpendicular to H at two widely separated frequencies 
-o 

as well as a crossed-coil transmitter-receiver system to 

function at the A-spin frequency. In addition, the audio field 
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parallel to H was generated by a pair of coils situated in 
-o 

the plane of the magnet pole faces. The A-rf power was 

applied to a pair of Helmholtz coils having a horizontal 

axis as shown in Figure 4, giving a linearly polarized mag-

netic field of good homogeneity over the sample volume. The 

B-spin rf field was generated in a vertical-axis solenoid. 

The latter coil was wound with an inner diameter just large 

enough to accommodate the cylindrical CaF 2 specimen and of 

sufficient length-to-diameter ratio to give the extremely high 

rf homogeneity (better than 1 percent over the sample volume) 

required for the rotary-saturation experiments. This same 

coil was alternately used as the A-spin rece~ver coil, for 

which purpose the central portion of the coil covering the 

sample volume was tapped with the two receiver leads shown in 

the figure. Switching between these two coil functions was 

accomplished by means of a relay (see Figure 3). In the B-rf 

mode the coil taps are left open-circuited an~ the top of 

the coil is connected to the B-transmitter outputs as the 

inductive part of a tuned load. For the A-spin receiver mode 

both ends and one of the taps of the coil are grounded with 

the other tap fed to the receiver input, thus forming a low-

inductance, high-Q tank coil suitable for the tuning at the 

higher A-spin Larmer frequency. Another set of contacts on 

the same relay was used to switch on the audio irradiation, 

by alternately connecting the audio coils to the amplifier 

output or to ground. 

\I 

.... ' 
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In order to carry out the measurements of T1B at 

elevated temperatures reported in Section VIII, the NMR head 

in Figure 4 was enclosed in an insulated box through which a 

stream of heated air was passed. The sample temperature was 

monitored with a copper-constantan thermocouple junction glued 

to a slot cut in the side of it, using a reference junction 

at ice temperature. With this simple arrangement temperatures 

up to 355°K could be maintained to within ±2°K. 

The de magnetic field was supplied by a 12-inch 

electromagnet using a Varian V-2100 current-regulated power 

supply. The field was NMR-controlled in order to maintain 

the long-term stability required for these experiments. This 

was accomplished with a Varian F-8 Gaussmeter and liquid proton 

sample, combined with a frequency source stable to within three 

parts in 10 6 over several hours time. The source consisted of 

a Gertsch FM-6 frequency meter followed by a Gertsch FM-5 

frequency divider. With the field properly set and locked to 

the proton resonance with the F-8, the 19F resonance condition 

was maintained with this scheme to within three parts in 105 

or approximately 10 percent of the 19F linewidth. The residual 

drift was small enough to be a negligible factor in the overall 

stability of the 19F signal. 

B. The Specimen 

The specimen used throughout this investigation 

was a cylindrical single crystal of CaF 2 with cylinder axis 
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approximately parallel to the [110] direction, supplied by 

the Harshaw Chemical Company. Under close scrutiny with 

back-reflection Laue photographs, the cylinder axis as 

measured at the cylinder end faces was found to b~ displaced 

from (110) orientation by 5 ±1° toward the (100) direction 

and 3 ±1° toward the (lll) direction. To minimize the orienta-

tion error in the comparison of theory to experiment all 

theoretical curves shown here include the.5° and 3° average 

misorientation. 

In orienting the crystal axes relative to the field 

H , the vertical rotation axis was set within ±0.5 degrees of -o 

parallelism with the magnet pole faces, and the rotation angle 

Q about this axis was resettable to ±0.5 degree. The angles 

Q which bring H
0 

nearest the (100), (110), and (lll) directions 

were determined from the Q-dependence of T2A' making use of 

the fact that T2A(Q) is extremal for these field directions. 

By recording T2A(Q), Q(lll) and Q(llO) were measured to ±l 

·degree, giving an angular separation Q(lll) - Q(llO) within 

experimental error of the theoretical value. We note that the 

slight misorientation of crystal axis described above would not 

materially affect this angular separation. 

The spin-lattice relaxation rates of the F1 9 Zeeman 

and dipolar Hamiltonian terms are somewhat accidental properties 

of CaF 2 crystals available, since they depend on the inclusion 

of stray paramagnetic impurities during the crystal-growing 
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process. The crystal used for this work was chosen in part 

because the relaxation times (T1A(Zeeman) = 10 sec and 

T1A(dipolar) = 4~1 sec) were well suited to the experi~ent. 

Although no detailed analysis of the T1A's was carried out 

nor were the paramagnetic impurities identified, it is thought 

that these impurities were dilute enough to play no significant 

role in the double-resonance properties of the crystal. For 

example, Bloembergen( 2 a) has reported a sho~ter T
1

A(Zeeman) 

for a specimen of CaF 2 containing 10 ppm Fe, suggesting a 

43 Ca-to-paramagnetic impurity ratio of 100 or more for the 

present specimen. 

C. Preparing and Monitoring the ADRF State 

All ·the experiments reported here followed a similar 

pattern of A-spin preparation, B-spin irradiation and manipu

lation and subsequent reexamination of the A spins. We give a 

brief description of the A-spin portion of this cycle which was 

uniform throughout the investigation. To prepare the "cooled" 

A-spin dipolar reservoir a variety of techniques are avail

able. (l,3,l9, 23 ) We selected a procedure of spin-locking the 

A-spin magnetization followed by rotating-frame adiabatic 

demagnetization (ADRF). The corresponding A-rf irradiation 

sequence is shown in Figure 5. It consists of pulsing on an 

rf field H1 (A) >> HLA at the exact 1 9F Larmor frequency, phase

shifting this waveform by n/2 after an equivalent n/2 pulse 
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time [tw = n/(2yAH1 (A))] so as to bring H1 (A) parallel to 

the A-spin magnetization in the x-y plane, i.e., to produce 

the spin-locked condition, and finally to turn off H1 (A) 

isentropically, thus reducing the A-spin dipolar temperature 

to an initial value TAi ~(H1A/H0 )T1 . In the present case 

TAi ~ O.l°K. To ensure the isentropic character of the above 

process, H1 (A) is turned off in a time t ADRF >> T 2A ~ 50 lJSec. 

Uniform results were found for turnoff times of 10 msec or 

greater. 

In orde+ to check the efficiency of A-spin cooling 

as well as to monitor TA at any time after ADRF, the A-spin 

dipolar free induction signal excited by a e ~ 45° rf pulse 

was observed as shown in Figure 5. With good cooling efficiency 

one expects a dipolar signal of the order of half the maximum 

Zeeman free induction amplitude obtainable with a n/2 pulse; 

' 
this was found to be the case with the A-spin preparation 

scheme used. 

If the B-spins are not excited following ADRF, then 

-1 the dipolar signal amplitude s0 ~ TA simply decays toward ~0 

(since TAi << T1 ) with a relaxation time-of T
1

A (dipolar). This 

decay process was found to be exponential within experimental 

error, giving the 4.1 second dipolar relaxation time quoted in 

III B. As TA relaxes toward T1 following ADRF, the A-spin 

magnetization is also recovering toward its thermal-equilibrium 

value. Thus a 45° pulse wi~l in general excite a free-induction 

~I 
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signal of combined Zeeman and dipolar character. Fortunately, 

these two signals are out of phase(l 9 ) by rr/2, and the dipolar 

signal of interest can be selected by adjusting the phase-

detector to be in exact quadrature with the Zeeman component. 

In performing double resonance measurements, the 

timing sequence of Figure 5 was used in which a time of the 

order of T1A (dipolar) is allowed between ADRF and the 45° 

monitoring pulse for the B-spin irradiation to be applied. 

The dipolar signal from each such cycle is integrated in one-

shot fashion to produce a momentary deflection of the recorder 

pen, which is then returned to a zero-output position by a 

relay mechanism. The cycles were repeated at intervals of 

several T1A (Zeeman) or approximately 30 seconds. The zero 

of signal is found by omitting the rr/2 phase shift from the 

preparation sequence, resulting in a complete inhibition of 

dipolar cooling. Any reduction of signal amplitude as a 

result of B-spin irradiation is then interpreted as a double-

resonance effect. The detailed procedures for extracting 

double resonance data from signal deflections are discussed 

in the experimental sections which follow. 

IV. PULSED DOUBLE RESONANCE 

Pulsed double resonance measurements were carried 

out under a wide variety of experimental conditions in order 

to test our simple dynamical formulation (Equations (11)) as 

thoroughly as possible. In this type of measurement a train 
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of N identical, equally-spaced square pulses of H1 are applied 

during the B-spin irradiation time interval of Figure 5. A 

sample of this waveform is shown in Figure 6. During each pulse 

the A-B system thermal equilibrium proceeds according to Equa

tions (11). By varying the pulse width T from 0 to -3 TAB' a 

quantitative study of this process can be carried out. During 

each pulse of H1 a macroscopic B-spin magnetization ~B is 

developed along the rotating frame effective field He. At the 

end of the pulse the transverse component MBsin e is dissipated 

in a T2-decay, but the longitudinal component MBcos e persists 

in general for a time TlB' thus imposing an initial condition 

on the next A-B coupl~ng period. In order to avoid the associ

ated complications in the data analysis for e ¥ rr/2 and render 

the action of all pulses identical, a "comb" of ten B-rf 

saturating pulses was applied before each double-resonance 

pulse (not shown in Figure 6). The pulses in the saturating 

comb were spaced by -4 T2B to make them act independently and 

were adjusted in length to have a maximum effect of attenuating 

MB. In this way th~ MB = 0 condition is guaranteed at the 

onset of each A-B contact period. The saturating combs also 

produce an attenuation of the A-spin thermal order that is 

small except for small feB' where N is very large, as discussed 

in Section VI. This is accounted for in the data analysis in 

a simple manner described below.C 24 ) 

• 
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Let us now utilize Equations (11) to calculate the 

behavior of SA during the first pulse of Figure 6: 0 < t < T. 

( -1 We note that the audio field H is not used here T = a a 0) and 

that the TL1 term in Equation (llb) is negligible throughout. 

By differentiation and substitution we first convert Equa-

tions (11) to an equivalent second-order differential equation 

involving only SA: 

2 
d SA + lc 1 +e:) 

dt 2 ,-TAB 

This equation has solutions of the form 

where 

-a t 
+·s e -A-

0.' (19) 

(20) 

(21) 

The values of SA± are determined by the initial conditions 

SA(O) = SAi and M8 (o) = 0, where SAi is the inverse A-spin 

temperature immediately following ADRF. With these initial 

conditions we find 
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[ 

E: 1 
SA.--+ -T · l T . , ... AB .. , lA 

SA+_ = ± (a+-a_) 
(22) 

For the sake of clarity in the following discussion we shall ' 

expand the exact expression in Equations (21) and (22) keeping 

only first-order terms in TAB/TlA 2 0.1. Errors incurred in 

this procedure will be of the order of 1 percent. We emphasize, 

however, that the exact expressions quoted were used for the 

data-analysis computer program. ( 2 5) 

become 

and 

with 

In expanded form, then, Equations (21) and (22) 

n = 

.} 

s(l + E: + 2TAB/T1A) 

(l+s) 

(23a) 

(23b) 

,., 
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During the interval T ~ t ~TO + T the A-spins simply con

tinue to undergo spin-lattice relaxation giving 

SA(T+T 0 ) = SA(T)exp(-T 0/T1A). Combining this relation with 

Equations (17), (18), and (19) we find with some algebraic 

manipulation 

e E:T/[ (l+e:)TlA). (l+ne-CH) 
(l+n) ' 

(24) 

where 

l+e: = ---
TAB 

(1-e:) 1 
(l+e:) TlA . 

Equation (24) has been written so as to separate clearly the 

double-resonance effect on SA(T+T 0 ), represented by the 

bracketed expression, from the normal TlA decay function 

-(T+TO)/TlA . 
e correspondlng to the total B-rf cycle period 

In addition the factor f < 1 has been inserted 
s.p. 

to represent the effect on SA of the saturating comb, which 

diminishes SA for each comb applied. We note that the quantity 

in brackets reduces for TAB << TlA to what one would calculate 

by letting T1A + oo in Equation (19), 

[ 
-(l+e:)T/TAB] -1 

[ ] + l+e:e (l+E) , as it must. 
I 
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We now extend the above consideration to a train of 

N pulses, using for example the expression for BA(T+T 0 ) in 

Equation (24) and MB = 0 as the initial bonditions for the 

· seco~d pulse, etc~ In this way we find for BA at the end of 

the pulsing sequence (t = N(T+T 0 ) in F~gure 6), 

-N(T+TO)/TlA N 
= BA.e · (f ) 

1 · s.p. 

N 
(l+ne,...aT) 

(l+n)N 
(25) 

The A-spin monitoring pulse is applied immediately following 

the B-spin pulse train giving a dipolar signal 

SD[N(T+T 0 )J ~ BA[N(T+T 0 )J. In taking data this signal is 

compared with a reference signal SD(ref.) ~ BA(~ef.) obtained 

by simply omitting the double-resonance pulse train from the 
N -N(T+TO)/TlA 

cycle of Figure 5, so that BA(ref.) = BAifs.p.e 

Each data point thus consists of the measured ratio 

sD(N('r+T 0 )) 

SD(ref.) = 
BA(N(T+T 0 )) 

BA(ref.) 
= eNE:T/((l+E:)TlA) (l+ne-cn)N 

(l+n)N 

(26) 

\! 

.) 
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Experimental data for each set of conditions 

(orientation of crystal axes, weB' and e) were taken by 

measuring SD(N(T+T 0 ))/SD(ref.) at fifteen equally spaced 

T-values T /15 < T < T , where T > 3TAB" max - - max max - , 
N was 

chosen to give a convenient range of dipolar signal varia-

tion and ran from as few as seven pulses up to about forty 

for the small-E cases. 

The B rf amplitude variation was held to a negligible 

amount with regulated power supplies and weB was measured be

fore and after each data set to within ±2nx50 sec-l with the 

audio-resonance technique of the following section. Two values 

of SD[N(T+T 0 )] were measured and averaged, and each set of 

data was then fitted to the exact counterpart of Equation (26) 

in the least-squares sense using an IBM 1620II computer, yield-

ing experimental values for TAB and E (the measured value 

T1A = 4.1 sec was assumed throughout). In all cases the data 

were found to be consistent with the exponential decay factor 
-a~ 

e of Equation (26) to within the experimental scatter. 

Computed values of E and TAB were found to be independent of 

N and of Tmax for Tmax ~ 3TAB. 

Measured values of E are plotted as a function of 

feB= (weB/2n) for g
0

1 1[111] and g
0

1 1[110] withe= n/2 in 

Figure 7, where the solid lines shown are plots of Equation (12) 

derived in Section II, i.e., 

2 
E = CfeB' (27) 



with 

c = 

- 40 -

47r 2x10 6N8 S (S+ 1) 

2 2 
NAyAHLAI(I+l) ' 

where feB is in kHz. For this purpose the isotopic abundance 

of ca 43 (= 2N8 /NA) was taken to beC 26 ) 1.3xlo-3 and the lattice 

2 sums in the expression for HLA were evaluated to 1 percent 

accuracy by com~uter. For the data of Figure 7 the saturating 

pulses were omitted, since MB is entirely destroyed between 

pulses by the transverse decay process. The data points here 

are seen to follow the expected square-law dependence very 

closely, but with a slightly smal~er coefficieht of f~B than 

calculated. The calculated curves include the slight mis-

orientation of the crystal discussed in Section III. The 

data of Figure 7 have been fitted to Equation (27) in the 

least-squares sense with the values of C so determined sum-

marized in Table I. The ratios C /C 1 are given in Table I exp ca c 

and are seen to be nearly the same for both orientations. This 

suggests an error of +3.5 percent in the nominal isotopic 

abundance of 43 ca, which is well within the error limits of 

previous determinations. ( 26 ) 

Measurements of E(feB) were also taken using saturating 

pulses with H
0

1 IClll) and 8 = TI/2, TI/3, TI/4, and TI/6. These 

data which were taken over the same frequency range as those 
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of Figure 7, are independent of e, but deviate slightly from 

2 
the feB law for feB < 4 kHz. The latter effect is thought 

to be a spurious one associated with the saturating pulses, 

specifically that there may be a small difference in the 

effect of these pulses with and without the B rf measuring 

pulses. The effects of such a small difference would be in-

tensified at low feB by the larger number of pulses applied 

in order to get i measurable effect. Fitting the feB > 4 kHz 

data to a power law C = f~B' the values C = l.05xlo- 3 (kHz)- 2 

and n = 2.025 are obtained, These are within experimental 

error of the no-saturating-pulse values, giving a satisfactory 

consistency between the two types of measurement. 

-1 The measured values of TAB corresponding to the 

E results of Figure 7 are plotted against f 1BC= yBH 1/2rr) in 

Figure 8. Noting that TAB+ T2B as flB + 0, we also plot 

in Figure 8 values of TA§Co) derived from measured values of 

T2B (see Section VII). For both orientations the data are 

seen to vary quite closely as exp(-2rraf1B); it is on this basis 

that the (Fourier transform) autocorrelation function was 

taken to be of the form of Equation (17), with the subsequent 

identification of a as Tc. There is no a priori reason to 

expect this type of behavior, but it forms a convenient empirical 

framework with which to discuss our data. On the above basis, 

theoretical curves for T~~ vs. flB are obtained from Equations (16) 
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and (17) and are shown as the solid lines 

Again, the lattice sums in the expression 

in Figures 8 and 9. 
2 

for (6w )AB and 

Tc were evaluated (including measured crystalline misorienta

tion) to l percent accuracy by computer. 

Deviations between this ad hoc theoretical form and 

the experimental data are seen to be of the order of or less 

than 15 percent. This is remarkably good, considering that 

there are no adju§table parameters once the form of the spectrum 

is fixed. The slopes of the calculated exponential spectra 

(i.e., Tc) agree within 2 percent of the experimental values. 

Data for TAB corresponding to the saturating-pulse 

s-values discussed above were taken with H I l[lll] for four -o 

values of e. These are plotted against feB in Figure 9. The 

solid lines shown are least-squares straight-line computer 

fits to the data points for each value of e. The theoretical 

curve for 8 = rr/2 plotted in Figure 8b is shown here as a 

dashed line. Agreement with the e = rr/2 data is substantially 

the same as without saturating pulses. Behavior for e ~ rr/2 

is essentially unchanged with the curves shifted down cor

responding to th~ factor sin2e of Equation (17.) and with 

minor variations in the slope (T ). A precise examination of c 

the a-dependence of the TAB spectrum may be made with the 

·spectral area A defined in Section II (Equation (18)). Using 

the straight-line fits shown in Figure 9 to evaluate the 

experimental areas, we obtain the plot of A vs. sin2e shown 



- 43 -

in Figure 10. The sin2e law is seen to hold within experi

mental error. 

From the above results and discussion we conclude 

that the theory of the TAB process developed in Section II is 

basically _correct, with an approximately exponential fluctua

tion spectrum, and with spin-diffusion effects largely absent. 

In the remainder of this section we ·turn our attention to the 

latter effect and to other more detailed matters relating to 

these data. 

First we make a closer examination of the e = n/2 

data of Figure 8, since these data are the most complete and 

accurate, It is seen that (a) in both cases the data points 

fall systematically below the theoretical curve, (b) that they 

do not form a perfectly straight line, but are slightly con

cave upward, and (c) for !!a II [110] the f lB = 0 data point 

falls slightly below the intercept of a straight line through 

the other data. Considering effect (c) first, this "flattening" 

effect seems .to be absent for the [111] data. However, the 

(111) point for TA~(O) may actually lie somewhat lower than 

· shown as suggested by the audio linewidth data of the next 

section, which gives a value of T~B (dipolar) about 10 percent 

smaller than the T2B measurements. As to the origin of this 

effect, it is very likely an intrinsic property of the actual 

fluctuation spectrum. Differentiation of Equation (14) with 

respect to weB shows that the slope of the spectrum vanishes 
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at weB = 0 if 

is finite. 

assumption, 

frequencies. 

Since the latter would seem to be a reasonable 

-1 we then expect a leveling off of TAB at low 

The T~~(O) data points indicate that this 

effect is of the order of 10 to 20 percent. Effect (b) is 

suggestive of spin-diffusion limiting of the TAB process, 

since the data is seen to bend downward just in the region 

(3-7 kHz) of maximum A-B system energy transfer (cx:e:/TAB) 

which is also plotted in Figure 8. Such a conclusion is 

not supported by the data of Figure 9, however, where the 

slight curvature is seen to be present at all 8-values. A 

spin-diffusion effect would be expected to diminish at the 

smaller 8-values, where the rate of energy transfer is greatly 

reduced. Of course, it is possible that this curvature is 

simply an intrinsic feature of the spectrum. A third possi

-1 bility is that the TAB values rise upward at lower frequencies 

because of the onset of higher-order contributions to the 

rate. Such effects are expected to be smaller than the simple 

"golden rule" process.by a ratio of roughly Tc/TAB" This ratio 

shows a definite increase at lower frequencies and has a maxi-

mum value of about 0.15 for the [lll] data of Figure 9. The 
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maximum ratio T /TAB is smaller for H I I [110] by a factor c -o 

of almost 3, so that one expects a much smaller curvature 

for this orientation. Though this does not seem to be the 

case, the data are really not accurate enough to resolve this 

question. We can neither confirm nor deny the presence of 

these higher-order processes from these results. Finally, as 

to effect (a), this would seem to be the clearest indication 

of spin-diffusion limiting obtainable from the present data. 

By fitting straight-line segments to the spectra of Figures 8 

and 9 we obtain estimates of the experimental spectral area A 

defined by Equation (18). These are compared with calculated 

values A = (n/2)(6w 2)ABsin2e in Table II, where they are seen 

to be smaller by amounts of the order of the estimated experi-

mental uncertainty -10 percent. The major source of·uncertainty 

in the experimental A-values arises from the paucity of data 

in the 0 - 2 kHz region, where a great deal of the area is 

located. Nonetheless, this is taken to be evidence for a small, 

but definite amount of spin-diffusion inhibition of the TAB 

process. The effect was slight enough so that no change in the 

functional form (e.g., Equation 26) used to analyze the data was 

found. The experimental areas A from Figure 9 are also tabulated 

and compared with theory in Table II, where a similar area dis-

crepancy is found, th~ugh the data are not as accurate. Interest-

ingly, we find here a trend of less area discrepancy at smaller 

-1 angles and smaller TAB rates, as would be expected for a spin-

diffusion inhibition effect. Also listed in Table II are the 
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TABLE I 

Orientation 8 C(calculated) C /C exp calc 

[110] 7T 0.505xl0- 3 (kHz)- 2 0.96 ±.03 2 
Figure 7 

[lll] 7T l.066xlo-3 (kHz)- 2 
0.97 ±.03 2 

TABLE II 

Orientation 8 A(calculated) A /A 'L (calc) 1: (meas) meas calc c c 
r-·-- ·---

(Figure 8a) [110] 1f 4.26Xlo7(sec)-2 
o~89 58 f.Lsec 57 ±.5 f.Lsec 2 

(Figure 8b) [111] 7r 5.6lXl07(secr2 0.92 77 fJ-SeC 78 ±l f.Lsec 

' 
2 

[111] 7r 5.61Xl07(sec)-2 0.84 77 f.Lsec 80 ±l 
2 f.LSeC 

(111] 7r 

(Figure 9) ~ 3 
4.2lXl07(sec)-2 0.86 77 f.Lsec 79 ±1 f.Lsec 

1 r 111] 7r 2. 50><10 7 (sec r 2 0.87 4 77 f.Lsec 76 ±l fJ-SeC 

t ( 111] 7r 
l. 35><10 7 (sec) -2 0.99 77 f.Lsec 76 ±l f.Lsec b 

. : 
i 
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calculated and measured correlation times T from the slopes c 

of the semilog spectral plots. Although these may be affected 

by spin-diffusion and other small effects, agreement between 

theory and experiment is seen to be excellent. 

V. ROTARY SATURATION DOUBLE RESONANCE (RSDR) 

In this section we study an alternative scheme for 

carrying out rotating frame double resonance experiments, in 

which the B-spin energy reservoir is continuously heated by 

means of rotary saturation( 5 ,l5 ) as opposed to the pulse modu-

lation method of the previous section. The RSDR method has 

the advantages of a greater potential double-resonance rate 

of A-spin heating and a greater precision in determining the 

rare-spin Larmor frequency. It is also useful for making 

accurate measurements of the rotating frame effective field H . e 

In this technique a single burst of B-rf field H1 

is applied to the specimen (following ADRF preparation of the 

A-nuclei) for a time TB of the order of T1A or shorter if 

the double-resonance effect is strong (see Figure 11). During 

this period the rotating-frame effective field H is established e 

in accordance with Equation (3). Simultaneously with the burst 

of H1 , the audio-frequency field H cos w t is applied parallel a a 

to ~· If wa is set equal or near to the rotary-saturation 

resonance frequency weB = yBHe' the componant Hasin e of audio 

field at right angles to H will cause a net absorption of -e 

energy by the B-spins. The energy influx is then passed on to 
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the A-nuclei by the TAB process (see Figure 2) and produces 

a measurable increase in TA. 

It is possible to observe two different types of 

double resonance spectra with this method. In the first, 

illustrated in Figure 12, the A-spin signal SD is monitored 

while the frequency w at which H1 is applied is stepped through 

the region of the B-spin Larmer frequency y 8H
0

. The audio 

frequency wa as well as the fields Ha' H1 , and H
0 

are kept 

constant. For wa < y 8 H1 the rotary-saturation resonance 

condition is most nearly satisfied for w = y8 H
0

, giving rise 

to the spectrum having a single peak of A-spin heating in 

Figure 12. For wa > y 8 H1 the audio-resonance condition will 

be satisfied for two values of w symmetrically displaced from 

y 8 H
0 

according to the formula w± This 

eondition leads to the double peak in Figure 12. The data of 

Figure 12 may be used in conjunction with the measured Larmor 

frequency of the 1 9 Fnuclei in the same applied field H to 
0 

determine y 8 . The result is y
8

/2rr = 0.28657 ±0.00004 kHz/gauss 

or (0.035 ±0.02) percent larger than the value y( 4 3ca)/2rr = 0.28647 

±0,00003 kHz/gauss determined by Jeffries( 27 ) for the ca 2+ ion 

in solution. This disparity, although poorly resolved here, is 

ascribed to variations in the 43ca chemical shift between aqueous 

solution and the crystalline environment of the ca 2+ ion in 

C F (28) 
a 2' 

1': 

• 
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In contrast to Figure 12 we may observe the rotary-

saturation spectrum by sweeping the frequency wa with all 

other parameters fixed. An example of this is shown in 

Figure 13. Such a spectrum is useful for determining the value 

of H as well as to investigate sources of rotating-frame e 

line broadening. We note that the effect of secular dipolar 

coupling terms on the rotary saturation spectrum is quite 

different in the present case of rare nuclei from that for 

abundant spin systems. Here, because of the absence of inter-

actions between B-spins and because of the relatively weak 

A-B coupling, we expect a very nearly symmetrical absorption 

line centered at frequency weB for effective fields such that 

weBT2B >> l where l/T2B = rr/2 (~w 2 )ABTc. This inequality 

holds throughout the present work. In contrast, the rotary 

sat~ration spectrum of the l9F in CaF
2

(lS) is asymmetrical 

and shifted to higher frequencies for He < HLA' 

The process of rotating-frame audio-energy absorption 

has been described in detail.(S,lS) This process is closely 

analogous to conventiqnal laboratory-frame NMR absorption, 

with the roles of de magnetic field, rf magnetic.field, and 

T1 played here by He, Hasin e, and TAB' respectively. As 

discussed in Section II the rotary saturation process may be 

characterized by a saturation time-constant Ta given by Equa

tion (10). We note that the factor w /w Bin Equation (10) is a e 
the only source of asymmetry in the audio-absorption spectrum. 
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It gives rise to at most a 6 percent shift in the audio-resonance 

peak in the present work. 

With the above formulation the RSDR method may be 

used to measure values of the fundamental double-resonance 

rate -E:/T AB of the spin-temperature model of Section II. ( 29) 

( ( -1 -1) ) For E: << l and weak A spin-lattice coupling T1A TAB + Ta >> l 

an approximate solution to the coupled Equations (ll) may be 
. 

obtained by setting SB = 0 and substituting the resulting 

expression SB = (T a/(T a +T AB))S A into Equation ( llb) to find the 

double-resonance contribution to the decay rate of SA 

(28) 

Equation (28) is sufficiently accurate to describe the bulk 

of th~ results presented in this section, Data for the rate 

contribution E:/(Ta+TAB) was obtained by comparing the A~spin 

dipolar signal SD(TB) = SD 0exp[- E:TB/(Ta+TAB) - TB/TlA], ob

tained with a pulse of H1 , Ha of duration TB' with a reference 

-T /TlA signal SD(ref.) = sD 0e B obtained by simply omitting the· 

pulses of H1 and H from the timing sequence of Figure 5. The 
a -E:TB/(Ta+TAB) 

resulting ratios SD(TB)/SD(ref.) = e were found 

to vary exponentially with TB as expected, giving experimental 

values of the double resonance rate T~~ = E:/(Ta+TAB), which 

may be written 
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1 = 
TAB 

(29) 

where S = TAB/Ta is the conventionally defined saturation 

parameter. The strongest double-resonance effect is obtained 

for large values of w1a in Equation (10) such that Ta << TAB' 

or S >> 1, for which TAB + TAB/E. 

Since the high saturation level conditien S >> 1 

2 
could not always be maintained, use was made of the H dependence a 

of S in order to extract values of TAB/E from the data. For 

this purpose the induced voltage V across a search coil sc 

placed near the CaF 2 specimen was taken as a measure of Ha. 

This procedure was necessary because Ha was found to be a 

complicated function of audio-coil current and frequency on 

account of proximity to the magnet pole faces. In an inde-

pendent calibration the relation V = KWH (K = constant) sc a a 

was found to be satisfied to within 2 percent. Combining this 

expression with Equations (10) and (29) gives 

= K + v2 
sc 

(30) 

where the form of the constant K is irrelevant to the present 

2 
discussion. By plotting measured values of Vsc TAB against 

line. 

TAB/E is obtained as the slope of the resulting straight 

Figure 14 shows such a plot for 43ca in CaF 2 with 
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~~ 1[111], e = TI/4, and feB= 8.0 kHz, yielding TAB/€ = 0.40 sec. 

At the top of the plot an experimental scale of values for 

the saturation parameter S is shown, where we note 

2 S = Vsc TAB/€K in the notation of Equation (30). These values 

of S, derived from the straight-line interpretation of the data 

of Figure 14, are to be compared with an estimate of S = TAB/Ta 

based on Equation (10) using a Lorentzian lineshape function 

(31) 

2 * At exact resonance we find the familiar result S = w1aT 2aTAB. 

With a,rough calibration of Ha using the search coil and 

* measured values of TAB and T2a (see below), this formula 

gives S-values within 20 percent of the experimental ones. 

The saturation levels given in Figure 14 are typical of those 

encountered in the .. RSDR studies reported here. 

Expenimental values of TAB/€ were obtained in the 

above fashion for a variety of 6- and feB-values with H
0

1 1[111]. 

In order to compare these results with the plots of ·TA~ vs. feB 

obtained by the pulse method of Section IV (Figures 8 and 9), 

the TAB/€ data were first multiplied by corresponding €-values 

taken from the experimental calibration of € vs. feB given 

in Figure 7. Since the € data are quite accurate, a negligible 

error is introduced by this step. The TAB values derived in 
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this fashion were then inverted and plotted on a semilogar-

ithmic scale vs. feB in Figure 15. The straight line fits 

to the pulse-method data of Figure 9 for corresponding 8-

values are drawn in for comparison. A good corresponence with the 

exponential TA~ rate "spectrum" displayed by the pulse-method 

data is seen to hold, with the exception of the 8= n/2, 

feB = 4 kHz data point, which lies well below the corresponding 

data of Figures 9 and 8b, This discrepancy may well be a re-

sult of spin-diffusion limiting, which is expected to be most 

severe for these values of angle and frequency. Moreover, the 

bottleneck effect is expected to be greater in the rotary 

saturation method, since the peak energy transfer condition 

now persists for the entire duration of B-spin irradiation 

time, rather than only briefly at the beginning of each pulse 

as in the method of Section IV. For example, the experimental 

rate of A-spin heating TA d/dt (TA
1

) for 8 = n/2, feB = 4 kHz 

is found to be -6.6 sec-l with RSDR as compared with -2.3 sec-l 

in the corresponding pulse measurement of Figure 8b, leading 

undoubtedly to intensified spin-~iffusion limiting in the 

former case. The ~· = n/4, n/6 data points also tend to pass 

beneath the pulse data at feB = 4 kHz, but overall agreement 

is within the experimental scatter. 

An investigation of audio-frequency linewidths such 

as displayed in Figure 13 was carried out in conjunction with 

the RSDR measurements of this section. These linewidth results 
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supplement the T2B measurements of Section VII and reveal the 

presence of a small quadrupolar broadening of the 43 ca NMR 

line, an effect not observable by other means. 

Experimental linewidth data were taken by varying 

.wa with the parameters H1 , Ha, and e at fixed values (see 

Fig~re 13). These data were reduced by first correcting the 

raw RSDR data for the effect of T1A and other small effects 

associated with the exact solution of Equations (11) in the 

present circumstances, ( 25) and then fitting the values of TAB 

so obtained to Equation (29), where S is proportional to 

f (w ) in the formulation of Equation (10). Lineshap~ data a a 

were computer-fitted to an assumed Lorentian form for fa(wa) 

(Equation (31)) in the least-squares sense, giving a reasonable 

repr~sentation of the data in all cases. Results for the 

measured half-width at half-minimum for H I J[lll] are plotted 
0 

against feB for three different values of e in Figure 16. 

The various sources of audio-line broadening may 

be examined with the rotating-frame Hamiltonian Equation (3). 

To this we add a term to represent stray quadrupole couplings. 

-· 
Assuming these are small compared to yBHe' the one secular 

term may be written in the laboratory frame as HQ = AS 2 
B z' In 

the tilted reference frame of Equation (3) this becomes 

H~R = 0.5 A(3 cos 2e-l)S~neglecting (rotating-frame) nonsecular 

terms. The coefficient A is proportional to the 43ca quadrupole 
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moment and to the electric field gradient at a given B-spin 

site. In considerations to follow we treat A as a random 

variable with (for convenience) a Gaussian distribution of 

values over the B-spin sites of the crystal. 

Q With a total Hamiltonian HR + HBR we identify four 

sources of audio-line broadening: 

(a) Homogeneous dipolar broadening from the third (cos 8) 

term in Equation (3). This term (with 8 = 0) is 

primarily responsible for the T2B decay process 

studied in Section VII. It is modulated in time 

AA by the Hd coupling, giving rise to an essentially 

Lorentzian line of half-width cos 2e;T 2B. 

(b) An effective "lifetime" broadening from the nonsec-

ular fourth (sin 8) term of HR. This term is responsi

ble for the TAB process as shown in Section II. Here 

we estimate its effect on the audio linewidth by 

noting that it would cause an audio "free-precession 

decay" of exponential form with time constant 2TAB" 

The factor 2 occurs because the perturbation acts 

effectively for only half of the time on a moment 

precessing about the Z-axis. This effect alone would 

therefore give a Lorentzian line of half-width l/2TAB" 

(c) Inhomogeneous broadening from stray quadrupole couplings 

to be discussed in detail below. 

(d) Broadening from inhomogeneities in the applied Brf 

field H1 . This effect was minimized with a special 
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coil design discussed in Section III. Correspondingly 

no linewidth contribution ~ H1 was observed and we 

place an upper limit of - 2xlo- 3 H1 on rf inhomogeneity. 

Droop and ripple on the B-rf pulses were negligible. 

With the above considerations in mind, then, we 

examine the audio-linewidth data shown in Figure 16. 

The e = n/2 data ~how a roughly constant linewidth 

= 120 Hz over the frequency range studied. Since the homogen

eous broadening term~ cos 2e vanishes for this case, the major 

contribution is attributed to stray quadrupole couplings. It 

is notable that the lifetime~broadening term (solid line for 

e = n/2) is apparently absent from the data. The reason for 

this is not understood. 

In·Section VII the quadrupolar broadening in evi-

dence here is found to affect the decay time T2B primarily 

through its contribution to the second moment M~. In order 

to relate the measured audio-resonance half-width to M2, it 

is necessary to adopt some model of the quadrupolar-broadened 

audio lineshape gQ(w). Since gQ(w) is found to be approximately 

Lorentzian, the simplest such model would be a cut-off Lorentzian, 

with the half-width and cut-off point determined by calculated 

second and fourth moments. We reject this model as unsatis-

factory here for two reasons. First, it is found to misrep-

resent the calculated sixth moment by about an order of magnitude. 

Second, it has been found(l7) to systematically underestimate 

I 

I 

' ' 



- 57 -

the half-width of dynamically broadened resonance lines by a 

factor of two or three. An alternative two-parameter model 

is developed in Appendix B, based on the assumed form 

exp[c(a- I a 2+t 2 )J for the Fourier trartsform of gQ(w). The 

constants c and a are easily related to M~ and M~, leading to 

a sixth moment very nearly equal to a calculated estimate. 

Moreover, the resulting gQ(w) is found for the parameters c 

and a so determined to be very nearly Lorentzian over frequencies 

.ranging by twice the half-width from center. These points 

are illustrated in detail in Appendix B. The relation between 

and the measured half-width 6whalf is found there to be 

2 = l.40(6whalf) With the observed value 6whalf = 2rrxl20 

we obtain M~(e = rr/2) = 8.0x10 5 sec- 2 . This result will be 

utilized in Section VII to interpret measured T2B values. 

-1 sec 

For e = rr/4 and rr/6 the predominant linewidth contri-

2 bution comes from the homogeneous cos e;T2B term. The quadru-

polar contribution is greatly reduced at these angles owing 

Q 2 2 to the 8-dependence of M2 (~(l-3 cos e) ). Solid lines are 

plotted in Figure 16 showing a combined estimate of dipolar 

and quadrupolar contributions summed with the (2TAB)-l term. 

Again the latter term does not appear to be present in the 

data, though it is not clearly resolved, 2 
The cos 8/T 2B term 

was evaluated using experimental data .for T2B given in Sec-

tion VII, with the quadrupolar correction calculated with the 

scheme developed there. This correction amounts to -1.5 percent 

' 
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and < 1 percent of the dipolar part for e = n/4 and n/6 

respectively. The e = n/4 results suggest that T2B is 

slightly longer for H I j[lll] than the value found in 
0 

Sectidn VII, though the agreement is within experimental 

uncertainty. 

The simple BPP theory (l 4) of saturation summarized 

by Equations (10) and (29) has been found to give a satis-. 
factory account of the rotary-saturation phenomena investi-

gated here, even at relatively high saturation levels 

S = TAB/Ta >> 1. On the other hand Franz and Slichter(l5) 

gave a good account of 19F rotary saturation phenomena in 

CaF 2 by describing the state of the nuclear spins with a 

spin-temperature in the second rotating frame, i.e., in a 

frame rotating about the Z-axis at frequency w • We show . a 

here that the latter description for our rare-spin case 

leads to an audio-absorption spectrum that is approached 

asymptotically by the BPP result at high saturation levels. 

There are two important differences between the 

rare and abundant spin cases considered. First, there is no 

dipolar "local field" for the rare spins because their like-

spin coupling is negligibly weak. Second, there is only 

negligible coupling with the lattice directly, and the A-spins 

become an effective "lattice" with longitudinal and transverse 
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2 
"spin-lattice" relaxation times TAB and T2a = T2B/cos e, 

respectively (ignoring questions of inhomogeneous broadening). 

Under these circumstances the problem of dynamic equilibrium 

in the second rotating frame becomes closely analogous to the 

case of rotating frame equilibrium with anisotropic spin-

lattice relaxation considered by Abragam. We take his results 

over directly( 29 ) to find an equilibrium magnetization along 

the audio-"effective field" !!ea = l'H1a + kliHa given by 

M = oa 

M liH H T2
2 o a ea a (32) 

where liHa = (wa-weB)/yB' and M
0 

= MB(TA) as defined in Equa

tion ( 8). k and i 1 'are unit vectors along the Z-axis and 
A 

along an axis~ k and rotating at a frequency w , respectively. a 

With Equation (32) we evaluate the steady-state energy influx 

to the A-spins as He(M
0

-M2 )/TAB with M2 = M
0

aliHa/Hea' Equating 

this expression to d/dt EA = - EA/TAB' we find 

1 
= 

TAB 

2 
EWlaT2a 

(33) 

for the audio-lineshape function under extreme saturation 

conditions, where liwa = yBliHa. For comparison we write out 

Equation (29) for a Lorentzian lineshape (Equation (31)): 
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2 
c:wlaT2a 

(34) 

.In the limit of extreme saturation w~aT 2aTAB >> 1, so that 

Equation (34) approaches Equation (33) asymptotically. Thus 

the assumption of spin quantization in the second rotating 

frame introduces rio significant modification of the simple BPP 

theory in the present case. 

VI. TRANSIENT OSCILLATIONS IN THE ROTATING FRAME 

In performing ~he pulsed double-resonance experiments 

it was noted that the initial behavior of the rotating-frame 

magnetization MB consisted (at large f 1B) of a small step 

function ancompanied by short-lived (lifetime -T ) oscillations c 

of similar magnitude at frequency flB" Physically, these 

phenomena represent the change in the energy of the Hamiltonian 

· AB 
term Hd (Equation (1)) in response to the rf field H1 . They 

are closely analogous to the oscillatory behavior of the 

laboratory magnetization in response to a pulsed de field 

investigated by Strombotne and Hahn. (l 6 ) In this section we 

develop an approximate theory for these oscillations and show 

that they constitute in principle a powerful method of nuclear 

double resonance quite distinct from those discussed in earlier 

sections of the paper. The B-spin irradiation sequence is as 

shown in Figure.6. 



- 61 -

To calculate the initial behavior of M3 upon applica

tion of an rf pulse we begin with the rotating-frame 

Hamiltonian Equation (3), omitting the irrelevant audio term 

and assume throughout that H
1 

is applied at exact resonance 

(e = n/2). Thus Equation (3) becomes 

B.I .. 
l Zl 

(35) 

In the absence of H1 Cw13 = 0) the remaining two terms of 

Equation (35) achieve thermal equilibrium as a composite di-

polar energy reservoir in a time of the order of T . We reprec 

sent this (initial) state of the combined A- and B-spin dipolar 

terms with a density matrix 

using the high-temperature approximation as in Equation (6) 

with an initial spin-temperature TAi' After the pulse field 

H1 is applied, pR develops in time according to Equation (2) 

~ith an initial value given by Equation (36). Since HR is 

explicitly time-independent, the formal solution to Equation (2) 

is found immediately to be 

(37) 
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It follows from (37) that the total rotating-frame nuclear 

spin energy is conserved during the pulse, i.e., 

(38) 

At the end of the pulse, however, an amount of work w1B<s 2) 

is done on the system in turning off H1 , leaving a final 

nuclear spin energy 

(39) 

where T is the pulse width. The increase in nuclear spin 

energy, (H ) 
R f 

to a measurable 

(HR >., leads, upon application of many pulses, 
l 

increase in~A" The experiments performed 

to observe this effect were of the same format as those of 

Section IV, with the pulses used being shorter (T -·Tc << TAB) 

and with many more of them required 

N -

to produce a measurable effect. 

As the exact formal expression for pR(T) (Equa

tion (37)) is not suitable for a practical calculation of 

! 
I 

!i 
! 
I 

~ I 
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(HR), we use a perturbation expansion of pR(T) to second 
f 

order in the A-B interaction H (Equation (4)) to find an 
p 

approximate expression for pR(T). Standard techniques give 

- I:dt' L'dt"~p(t'),[Hp(t'-t"),pRil] }T+(T) 
(40) 

where H (t) = T(t)H Tt(t) and T(t) = 
p p 

This 

expansion is valid under the same "extreme narrowing" assump-

tion used to derive Equation (13), with the additional require-

ment that T/TAB << l. Combining Equations (39) and (40) and 

using the definitions of the correlation function a(t) (Equa-

tion (14)) and pRi (Equation (36)), we obtain 

with 

t' 

Io dt" 
d 2a(t 11

) cos(w t 11
) 

lB dt"2 

da(t') 
dt' 

(41) 

(42) 
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We may now claculate the change in TA caused by a 

single rf pulse by observing that the nuclear spins will revert 

in a time -T to a thermal equilibrium state with energy (HR) 
c f 

and spin-temperature TAf (analogous to Equation (36)) following 

the end of the pulse. The latter quantities are related by 

= -h ~r [HAdA) 2 + Tr ( Hp) 2l .. 
kT AfTr ( 1) 1 ~ J (43) 

·By equating expressions (41) and (43) the fractional decrease 

in A-spin signal s
0 

per pulse is found to be 

0 ( T) 

2 
NBTr(H ) p (44) 

where the factor NB has been inserted to obtain the effe,ct 

of all B-spins in the crystal. o(T) is seen to consist of a 

fixed parameter NBTr(H~)/fr(H~A) 2 
multiplying a time-varying 

functiori (1- F(T)) which is (initially} of order unity, The 

multiplying parameter is easily evaluated for CaF 2 with 

H II [111] to be 1. 07xlo- 3 . Of the three terms of F( T), the 
-0 

first two are purely oscillatory and decay to zero or a 

relatively small value in a time -Tc' The third term is also 

oscillatory for T - Tc' but for T >> Tc its slope approaches 

E/TAB' This is not surpri3ing because Equation (40) is an 

approximation to the exact formal solution of the entire A-B 
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dross-relaxation process, and therefore must contain the 

beginning of the exponential TAB equilibrium process. The 

asymptotic behavior of this final term represents the onset 

of the exponential approach to A-B equilibrium contained in 

Equation (11). 

To compare the oscillations with the exponential 

process we set apart the term of Equation (44) which is 

~ T and define a new function O(t): 

(45) 

O(t) is a function wh~ch is -1 for T - T and contains oscilc 

latory terms at frequency w1B which decay in a time -Tc. The 

first term of Equation (45) has at large flB the step-plus

oscillation form noted earlier and represents purely the effect 

of the H1 pulse on the thermodynamic state of the A-B coupling 

term (H). Thermodynamic reservoir calculations show that 
p 

including H in the calculation of Section II changes the 
p 

theoretical value of E only by a fractional amount 

Therefore the step behavior characteristic of the short time 

solution (Equation(44)) vanishes for long times T >> Tc when 

all perturbation terms are'taken into account. 
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Data for the oscillation effect has been taken for 

w1B/2n = 12.6 kHz and 2.43 kHz. Values of 6(T) were obtained 

from A-spin signals SD(N,T) and SDo measured with and without 

a train of N pulses, respectively, using the formula 

SD(N,T)/SDo = (l- 6(T))N ~ e-No(T). Experimental plots of 

6 vs. T are shown in Figures 17(a) and (b) for the cases 

mentioned. The solid lines drawn are obtained from machine 

calculations of 1- F(T), using Equation (42). The 12.6 kHz 

data of Figure 17(a) clearly demonstrate the structure of 

Equation (45) with the step, slope, and oscillation amplitude 

in good accord with the theory. Again, the experimentally 

determined form of a(t) is crucial in the successful calculation 

of this effect. The 2.43 kHz data of Figure 17(b) is in poorer 

agreement, mainly because the range of T values (0.9 msec) is 

of the order of TAB - 0.5 msec. A significant improvement in 

agreement here is achieved by simply replacing the final term 

in Equation (45) with its full exponential form given in the 

previous paragraph (solid line in Figure(l7b)). The residual 

discrepanc1 may result from the extreme narrowing assumption 

being only marg~nal here (TAB/Tc- 4). 

We conclude this section by noting that the initial 

behavior of MB studied here may be employed as a double

resonance technique with a comparable effectiveness to those 

of Sections IV and V. For very large values of w1B Cw1BTc >> 1) 

0 l1 e haS f 0 r T < < T C , 0 ( T ) ~ · 1 . 0 7 X 1 a·- 3 ( 1 - C 0 S W l B T ) • 
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Adjusting w1BT = n and making use of the rapid recovery of 

the thermodynamic equilibrium following a pulse by applying 

-1 pulses at a rate R ~ T , one can in principle obtain doublec 

resonance rates of the order of Ro(n/w1B) ~ 20 sec-l It is 

noteworthy that this estimate is about twice the maximum 

values of E/TAB for the CaF 2 system, the latter being the 

strongest effect obtainable by the technique of Sections II-IV. 

It is easy to show that these two double-resonance schemes, 

although quite different at the level of detailed physics 

involved, have in general a comparable sensitivity independent 

of the nuclear moments and crystalline structure parameters. 

VII. MEASUREMENT OF T2B 

The decay function of the unobservable rare-spin 

free precession signal can be experimentally determined in a 

simple and reliable fashion using a modified version of the 

pulsed double-resonance method of Section IV. In this section 

we present a simple formulation of this technique and apply 

it to the measurement of T2B for 43ca in CaF 2 . The 43ca T2 

process is virtually identical with the TAB process of 

Section II for 8 = n/2 in the limit weB+ 0. Such a corres

pondence is required physically; because the decay time (TAB) 

of MB must approach T2B for H1 + 0. As commented in Section II, 

the extreme narrowing assumption for this case is marginal. 

We therefore treat the full T2B decay process with the motional 

narrowing model of Anderson and Weiss, (l3) 
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The measurements are carried out with the B rf pulsing 

sequence of Figure 6 applied during the B-spin irradiation time 

of Figure 5. Using a fixed number N of pulses as before, the 

pulse width T is now adjusted so that complete A-B thermal 

equilib~ium is achieved during each pulse (T >> TAB), in order 

to simplify the data analysis. The pulse spacing T is made 
0 

small enough so that the decay of MB between pulses is incom

plete, thus forming an initial condition for the next pulse. 

Since the Brf waveform is coherent from pulse to pulse, each 

pulse will immediately "lock" the residual precessing MB vector 

from the preceding pulse along H1 , and A-B thermal equilibration 

. will begin again via Equations (ll). The frequency w of the 

Brf must, of course, be adjusted to equal yBHo within a small 

fraction of l/T2B for the scheme to work smoothly. Under the 

above circumstances the A-spin warmup rate will be a function 

of the pulse separation T
0 

and can be analyzed to determine 

the transverse decay function f(T
0

) that describes the behavior 

of MB between pulses. 

To find the value of SA at the end of the pulsing 

sequence we may conveniently omit the T term from Equa-
lA 

tions (ll) and approximate its effect with the simple factor 

exp{-[NT + (N-l)T
0

]/T1A} which would apply in the absence of 

Brf. In doing this we are omitting a factor exp{£T/(l+£)T1A} 

in the analysis. With E << l and T << TlA this factor is very 

nearly unity. Equations (ll) then reduce (with T~l = 0) to 
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(46a) 

and 

( 46b) 

during each pulse. With T >> TAB we have SA = SB = sn at 

the end of the nth pulse from Equation ( 46a). Between pulses 

SA is constant and SB (i.e., M8 ) decays by a factor f(T
0

). 

Equation (46b) then gives S 
1

(1 + sf(T )) = S (l+s), n > l. n- o n 

At t = O, BB = 0, giving s 1 = BAi(l+s)-
1

. Thus at the end 

of the pulsing sequence we find 

-[NT + (N-l)T
0

]/TlA 
•e 

[1 + sf(T
0

))N-l 

(l+s)N 

(47) 

including the approximate T1A decay factor. Data is again 

taken by compa~ing the A~spin signal 

-[NT 
reference signal SD(ref.) oc BAie 

SD(N,T
0

) oc SN with a 

+ (N-l)T 0 ]/TlA 
obtained 

by omitting the pulses of H1 . Defining E;(N,T ) 
. 0 
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-1 
~(N,T ) = (1 + Ef(T ))l-N (l+E)-l 

0 0 
Making ~he reasonable 

assumption that f(oo) = 0 we use the experiment itself to 

calibrate E with ~(N,oo) = (l+E)-1 . Expansion of ~(N,T 0 ) in 

powers of E then gives 

~(N,T ) 
0 

~(N,oo)--l= (48) 

so that experimental data for f(T
0

) is obtained from the left

hand side of Equation (48). 

Free induction decay data for 43ca in CaF2 with 

~~ 1[110] is shown in Figure 18 with the experimental parameters 

given in the figure caption. The solid line shown is a calcu

lated curve of f(T
0

) using the Anderson-Weiss (A-W) model theory. 

The results of this 'theory may be taken over to the present 

situation with the following correspondence of notation: 

2 2 
wp + (~w )AB; $~w(T) + a(T); ¢(T) + f(T), with the A-W notation 

on the left. The A-W expression for the free induction decay 

envelope is then 

1'0 

f(•o) = exp - (6w2)AB JO d•(•o-•)a(•) (49) 

This decay function has zero slope at T
0 

= 0, and asymptotically 

approaches an exponential function 
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Although the data of Figure 18 are uncorrected for quadrupolar 

broadening, we compare it with a calculated curve (solid line) 

using Equation (49) and a(T) given by Equation (15) where 

T is chosen (arbitrarily) to fit the exponential region of c 

the data. The T value so determined is within a few percent c 

of the theo~etical value. The initial curvature of the free 

induction data is clearly discernible and is well represented 

by the A-W model theory. 

To make an accurate comparison of theory and exper-

iment, we develop a procedure to correct measured T2B values 

for the quadrupolar broadening effects revealed in the 8 = rr/2 

audio-linewidth studies of Section V. For this we use the 

relation between T
2 

and the second and fourth moments M2 and 

-1 
M4 given by the A-W model t~eory, namely T2 = M2/we' where 

3M
2 d 2a'T.). 

M ~ . 
2 - 2 . 2 

dT 
T=O 

Using Equation (15) for a(T) these relations combine to give 
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2 2 
T2B = 2 

7T 

(50) 

Equation (50) is valid within the framework of the A-W model 

for a purely exponential spectrum of dipolar fluctuations. 
I 

We assume it to hold when small quadrupolar corrections to 

M2 and M4 are introduced. With a secular line-broadening 

Hamiltonian consisting of the terms HAdB + HAA + HB from 
d Q 

Sections II and V, the method of moments gives 

M2 MD Q H= (llw2) AB l = + M2' 2 (5la) 

- -·---·--- --

M4 MD + MQ + Q D = 6M2M2 , 4 4 (5lb) 

where M~ and M~ are given in detail in Appendix B. Substituting 

Equations (51) into Equation (50) then yields 

.2 
[T~B]

2 

+ 2r~- 3[M~l jp[M~lTl 
T2B = (52) 

[l + MQ/MD]3 
2 2 

D 
where T2B is the relaxation time from dipolar coupling only. 

.The second term in the numerator is found on close examina
D 2 

tion to be negligibly small compared with (T 2B) We there-

D 
fore extract T2B from the experimental data with the formula 

., 

. -·-
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(53) 

From the value M~(e = rr/2) = 8.0x10 5 sec- 2 obtained in Section V 

we find M~(e = 0) = 3.2x1o 6. Calculated values of M~ for the 

exact crystal orientation described in Section III give, using 
3/2 

Equation (53), correction factors (l + M~/M~) = 1.13 and 

1.17 for~~ j[lll] and [110], respectively. 

The data and interpretation for the exponential part 

of f(T
0

) are summarized in Table III for the two crystal 

orientations studied. Theoretical values of T~B are shown 

for a purely exponential spectrum (as indicated by the measured 

T~~(weB) values in Section IV) and for a contrasting Gaussian 

fluctuation spectrum. The corrected experimental values of 

T~B are seen to lie between those co~responding to these two 

model spectra, but actually quite close to those for the 

exponential spectrum. This indicates that the spectra plotted 

in Figure (8) do not vary exponentially below weB/2rr = 2 kHz, 

but level of~ and strike the weB = 0 axis below the exponential 

intercept by the fractional amount shown in the far right-hand 

column of Table III. We interpret this in turn to mean that 

a(T) varies as Equation (15) out to several T 's, then diminishes c 

more rapidly, so that the quantity 
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measured by the T2 decay is smaller by the factors 0.94([111]) 

and 0.82([110]) than for a purely Lorentzian a(T)~ 

The corrected experimental value of T~B for H
0

1 1[111] 

has been compared with measured rotary s~turation linewidths 

for 8 = rr/4 and rr/6 in Section V. For these angles the quadru

pol~r linewidth corrections are less than 2 percent, and the 

D close agreement between T2B as found here and the experimental 

audio linewidths lend~ support to our correction scheme for 

quadrupole effects based on Equation (53) and Appendix B. 

H Along 
0 

[lll] 

[llO] 

TABLE III 

D 
T2 B values (usee) 

Experiment 
Measured corrected for 

quadrupolar 
T 2 B broadening 

217 ±18 245 

421 ±·47 492 

Theory Theory T~B(exponential) 
(exponential (Gaussian D 

spectrum) spectrum) T
2

B(measured) 

231 408 0.94 

4o4 715 0.82 
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VIII. MEASUREMENT OF TlB 

In the double-resonance experiments of Sections IV

VII, the results do not depend on the 43 ca spin-lattice 

relaxation time T1B as long as T1B >> TAB' With a modified 

version of the pulsed double-resonance technique of Section IV, 

however, TlB values satisfying this condition can be straight

forwardly measured for rare spins of sufficiently large 

abundance. The T1 measurement technique is described in 

this section, and experimental results for 43 ca in CaF 2 are 

presented and discussed. 

In contrast to the 19F nuclei in our specimen, the 

43ca spin-lattice relaxation process appears to be dominated 

by the intrinsic Raman scattering of phonon~ by the 43 ca 

nuclear quadrupole moment, a process first studied rigorously 

by Van Kranendonk. ( 30) This conclusion is drawn from the 

measured temperature-dependence of TlB and from the observation 

that the paramagnetic impurity relaxation mechanism is in

hibited for 43 ca· by the weakness of spin-diffusion processes 

for such a rarefied nuclear species. In quadrupolar relaxation 

processes both Am = ±1 and Am = ±2 transitions are allowed 

according to the rate formulas 

w m,m+l 
(2m+l) 2 (S-m)(S+m+l) 

= 2S 2 (2S-1) 2 Wl 
(54a) 



w m,m+2 
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(S-m-l)(S+m+2)(S-m)(S+m+l) 
= 2S 2 (2S-l) 2 W2 ' 

(54b) 

where w1 and w2 depend on the nuclear quadrupole moment Q 

.and the properties of the crystal lattice vibrational spectrum. 

Unless it happens accidentally that W1 = w2 , the 

rates in Equation~ (54) will not auto~atically preserve a 

.Boltzmann distribution among them-levels. In the usual case 

of quadrupolar relaxation of abundant nuclear spins, the di-

polar coupling between nuclear spins is usually strong enough 

to maintain internal thermal equilibrium. In the present 

rare-spin case, however, this mutual spin-flip equilibrium 

mechanism is severely inhibited; an estimate of its strength 

is developed below which indicates that for most of the 43 ca 

spins in CaF 2 the internal thermalization time is considerably 

slower than TlB' Consequently, the approach to spin-lattice 

equilibrium will in general consist of the sum of several 

different exponential decay terms. In practice we find only 

a single rate to be present. This is primarily because our 

relatively poor signal-to-noise ratio permitted observation 

-l of the TlB process only through a single e decay time. 

(It is quite possible that under better conditions, close 

examination of the decay process for several T1B's could reveal 

multiple exponential behavior.) Because the 43 ca are, by 

preparation, initially in a Boltzmann distribution, there is 

reason to believe that the rates measured correspond to that 

condition. 

\ 
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The scheme for measuring T1B consists of three 

steps, illustrated in Figure 19. These are (1) cooling the 

B-spins by contact with the cooled A-spin reservoir; 

(2) allowing the B-spins to relax for a variable time interval 

tR; and (3) bringing the cooled B-spins back into contact 

with the saturated (TA = oo) A-spin reservoir and measuring 

the resulting A-spin cooling by means of the A-spin signal 

amplitude SD. As the time tR is increased from zero, the 

B-spin magnetization at the end of step 2 relaxes toward its 

spin-lattice equilibrium value, a process which is accompanied 

by an identical variation of the signal SD measured in step 3. 

In order to generate appreciable A-spin cooling in step 3 it 

is necessary to make the B-spin heat capacity roughly comparable 

to that of the A-spins. This is accomplished by using very 

large effective fields H (E ~ H2 ). e e 

In step (1) H is applied at angle e with respect -e 

to ~0 for a time of several TAB's giving an initial B-spin 

magnetization MBZi = CBHeSAi/(l+E), where CB is the B-spin Curie 

constant, and SAi is the inverse A-spin temperature following 

ADRF cooling. It is assu'med that TAB << T1A, a requirement 

which is in competition with the requirement of large He. As 

H1 is switched off abruptly, the component MBzi = MBZicos e 

of magnetization along H is preserved by energy conservation. -o 

As tR is increased MBz relaxes toward its equilibrium value 



- 78 -

MBzo = c8 H
0

/TL. The initial value of MBz is easily shown to 

b~ MBzi ~ MBzo Hecos 8/HLA(l+£). In the present experiments 

on CaF 2 we have He- 52 G., HLA = 0.855 G., e = rr/4, and 

£ = 0.25, giving MBzi ~ 35 MBzo' For tR ~ T18 , then, we may 

assume MBz is relaxing effectively toward zero. Assuming the 
( 

relaxation to be exponential, we have at the end of step (2) 
-tR/TlB 

MBz(tR) = MBzie ' 

In step (3), MBz is projected back into the rotating 

frame on reapplication of H1 , giving M82 (tR) = M8 z(tR)cos e. 

When rotating frame thermal equilibrium is reestablished 

(having carefully saturated the A-spins so that SA(tR) = 0), 

the resulting A-spin dipolar signal is then given by 

' 
(55) 

where SDo is the signal amplitude which would be found immediately 

following ADRF in step (1). As mentioned above it is advan-

tageous to use large enough values of H to make £ - 1, thus . e 

maximizing SD. This is easily accomplished for a given value 

of H1 by adjusting AH = w/y - H
0

• The practical limit of this 
yBH T 2 

procedure occurs when TAB = TAB(O)e e c/sin e becomes com-

parable to TlA' At this point one begins to lose magnetization 

in the thermal equilibrium processes of steps (l) and (3), and 

SD drops sharply from the value given in Equation (55). With 

i 
I . 
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the experimental parameters given above we have SD - 0.08 SDo' 

and TAB= 0.7 sec (T1A = 4.1 sec), with ~0 1 IClll]. 

A typical set of T1B relaxation data taken as 

described above is shown in Figure 20, giving T1B = 202 ±19 sec 

under the conditions shown. The relaxation interval tR was 

varied in increments of 30 sec and was timed with a watch. 

Because the maximum signal-to-noise ratio was only 3 or 4, 

five measurements were averaged to obtain each data point in 

Figure 20. The straight line fit to the decay curve was then 

determined by computer using the least-squares method. 

TIB measurements have been performed at 300°K and 

at 355°K, using the heating arrangement described in Section III, 

and at a variety of orientations of crystal axes relative to 

~· ·Parts (l) and (3) of the measurement process of Figure 19 

were always carried out with H I I [lll] in order to have the 
-o 

best signal-to-noise ratio. For relaxation measurements at 

other orientations, the crystal was simply rotated by hand to 

the desired orientation at the beginning of the relaxation 

period and returned to the [111] direction at the end. These 

operations could be accomplished in less than a second, and 

thus make a negligible contribution to the scatter of the 

data. T1B values were obtained under each set of conditions 

as described above. The results of all the TlB measurements 

are plotted in Figure 21 on angular scales showing the three 

main symmetry axes. No anisotropy in T1B which exceeds the 
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experimental scatter is seen at either temperature. There is, 

however, a significant change in the average T18 (dashed line) 

between the two temperature values used. 

We compare the temperature dependence of T18 with 

the ionic model calculation of Van Kranendonk, ( 30) which 

gives 

(56) 

where T* ~ T/8
0

, e
0 

is the Debye temperature, and E(T*) is 

a numerical function( 30) which approaches unity for T* >> l. 

Using e0 = 5l0°K for CaF 2 we find from Equation (56) 

(57) 

in reasonable agreement with the experimental ratio 

= 0.72· ±0.13. (58) 

We note that, in addition to the acoustic phonon contribution 

to l/T18 calculated by Van Kranendonk, there exist potential 

contributions from optical phonons as discussed by Wikner, et. 

al.( 3l) and from the covalent admixture mechanism of Yosida 

. I 
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and Moriya. (J 2 ) No attempt has been made to estimate the 

relative rate contributions from these various mechanisms. 

However, since they all have similar (though not identical) 

temperature dependences, the comparison with Equation (56) 

is not an inappropriate one. For example, in a study of 

quadrupolar relaxation in rather highly covalent III-V com

pounds, Mieher(JJ) found good agreement with the temperature 

dependence given by Van Kranendonk's ionic model. 

The observed isotropy of the 43ca spin-lattice 

relaxation in Figure 21 is not surprising, since no cubic 

system has been found to have an anisotropic quadrupolar spin-

lattice relaxation rate. This has been found to be true ex-

perimentally in spite of calculated anisotropies in the 

coefficients w1 and w2 of Equations (54). Mieher(JJ) has noted 

that these anisotropies cancel out for a number of crystal 

structures with both the Van Kranendonk and Yosida-Moriya 

models when w1 and w2 are combined to give the Boltzmann

distribution T1 value. As noted above it is just this thermal 

equilibrium rate which is apparently measured in this work, 

in spite of the absence of an effective thermalizing mechanism. 

Finally, we examine the influence on the T1 of 43ca 

of the paramagnetic ions which relax the 19F nuclei. These are 

thought to be at least two orders of magnitude more dilute than 

the 43ca. On this basis the contribution of these ions to 

l/TlB would fall in the spin-diffusion limited regime discussed 
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by KhutsishviliC 34 ) and others( 3S, 36 ) for which the T
1 

process 

is an exponential one with 

(59) 

Here NP is the concentration of paramagnetic ions in the crystal, 

D is the nuclear spin diffusion constant, 
2 2 -l 

•Sp(Sp+l)Te(l+w
0

BTe) is the coefficient 
I 

2 
and C = (2/5)(yByeh) 

of r- 6 in the (isotropic 

average) relaxation rate l/T1 of a B-spin interacting with a 

paramagnetic ion of moment yehsp and spin-lattice relaxation 

time T at a distance r. e 

It is difficult to make a meaningflul estimate of the 

spin-diffusion constant D for a system of rare nuclei, because 

the rate 1/T at which a given nucleus approaches thermal eq 

equilibrium with its surrounding like nuclei is strongly depen-

dent upon the exact spatial distribution of such neighbors. 

For a system a~ dilute as 43ca, one finds a distribution of 

T values ranging over several orders of magnitude. We eq 

deal with this problem in an approximate way by calculating 

an "average" value of T (of a sort to be discussed presently) eq 

and taking over Bloembergen's estimate( 22 ) D ~ b 2/50 T2 to the 

present case with the correspondence T 2 + T and b + (NB) -l/3 , . eq 

where b represents the distance between neighboring nuclei. 

T • eq . 

'• 



- 83 -

A calculation of T for a given configuration of eq 

like-spin neighbors is carried out in Appendix A, based on 

the following model. An ensemble of identical systems is 

envisioned in which the nucleus S at the origin of coordinates 
0 

has a nonzero average magnetization M . and all other (like) zo 

nuclei in the system have zero magnetization. We define 

l/Teq as the fractional rate of decay of Mzo at t = 0 due 

to mutual spin flips with its neighbors, i.e., the process 

whereby spin energy diffuses 

l/T =(M-l d/dt (M ~t 0 eq zo zo'l = 
C .S +S. with each neighbor Ol 0- l=i= 

away from S to the bulk. Thus 
0 

The dipolar coupling terms 

i are entirely responsible for 

d/dt (Mz
0

), since these are the onl~ high field secular coupling 

terms which do not commute with S
0

z In CaF 2 these 43ca- 43 ca 

terms are weak and are rapidly modulated by the 43ca-19F dipolar 

interaction, which in turn is even more rapidly modulated 

by the l9F-19F dipolar coupling. We may therefore treat the 

S +S._ terms as perturbations, using the extreme narrowing o_ l+ 

approximatioh as incorporated into the master equation for 

the time rate of change of the density matrix. The result 

from Appendix A is 

l 
T eq 

= 
4S(S+l)T 2B 

3 
I c2. 

i(occ) ol 
(60) 

where the sum on i ranges over occupied neighbor sites, with 

= -YB
2
h(l- 3 cos

2e .)/(4r3 .). ·· Ol Ol 
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One must exercise caution in defining a suitable 

average of 1/T to use for an estimate of D. For example, eq 

the familiar procedure of summing over all sites and multi-

plying by the isotopic fraction is inapplicable here, because 

such a sum is do~inated by the first-neighbor contribution · 

and does not represent the bulk behavior but rather that of 

"pairs" of only rare occurrence. Instead we proceed by ob

serving that about 90 percent of the 43ca have no like neighbors 

in the first six neighbor shells. This is deduced from the 

probability (1-f)N that a given N sites of the crystal are 

unoccupied with a species of abundance f. For these 90 percent, 

which we take as representing the bulk behavior, we define 

(1/T ) 
eq av 

= 4S(S+l)T 2B f. 

3 

00 

I 
n=7 

N <c 2 > n on 
8 av 

(61) 

where (c 2 ) is the isotropic average and Nn is the number on 
8 av 

f t . . th th . hb h ll o a oms ln e n nelg or s e . Upon evaluation of Equa-

tion (61) and substitution of CaF 2 parameter values we find 

< > 4 -4 -1 1/T = }. xlO sec . 
eq av 

This estimate is at best good to within an order 

of magnitude. With this reservation in mind we compare the 

paramagnetic ion contribution to T1B with TlA using Equa

tion (59) and taking DA = a
2
/50 T2a, a = 19F - 19F distance, 

and DB= N-~/ 3(1/Te) /50, with (1/Tea> from Equation (61): 
q av · av 
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2 2 )l/4 
TeWoB 3/2Nl/2 

a B 

The quantity in brackets is at least unity, so that with 

(62) 

T2A = 50 ~sec and T1A(Zeeman) = 10 sec we find TlB = 2xl05 sec 
. 2 

as compared with measured values T1B ~ 2x10 sec. This esti-

mate effectively rules out paramagnetic impurities as a source 

of 43 ca spin-lattice relaxation, even with an order-of-magnitude 

error in our guess at DB. We also note that T1B(l/Teq) << l, 

so that the B-spins are on the whole decoupled from one another 

during a period of one spin-lattice relaxation time, 
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IX. CONCLUSIONS AND DISCUSSION 

In concluding our presentation we emphasize three 

major points of our work: 

(1) The thermodynamic model of nuclear double resonance 

dynamics developed a few yea~s ago(l) and applied and tested here 

on the system CaF2 : 43ca has proved highly successful in giving 

a quantitative description of our experimental results. Thus 

the spin-temperature description of nuclear spin energy reservoirs 

tested in a variety of ways by previous workers(l,5,7,l5,l9) has 

been extended to include behavior during dynamical energy transfer 

processes between dissimilar.nuclei. Such processes have been 

shown here to exhibit simple exponential rate character for the 

system studied under the approximations of negligible spin-

diffusion effects and rapid modulation of the dipolar coupling 

between rare and abundant nuclear spins. This simple rate 

behavior will presumably hold for any system under those experi-

mental conditions where the A-B nuclear coupling is weak, 

2 2 
i.e., for TAB>> T2A' even if the condition(~ )AB T2A <<1 

is violated. A system might be envisioned, for example, with 

a rare species having a considerably greater nuclear moment 

than the abundant species, giving (~2)AB T~A )1. In such a 

case the simple rate character found here for all values of 

weB will only occur in the tail of the fluctuation spectrum 

for which weBT2A >>1. At lower frequencies weB the oscillatory 

behavior studied in Section VI will merge with the TAB process, 

as has begun to happen in the data of Fig. 17a, and precise 

... 
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calculations of the total energy transfer process will become 

enormously more complex. This picture will be further 

complicated by spin-diffusion limiting, which will become 
' 

severe in a case where LAB< T2A. 

(2) The present resilllts give a precise calibration of 

the sensitivity of rotating frame nuclear double resonance 

for the system studied. Using the experimentally determined 

-1 
maximum double-resonance rate (E/LAB)max = 10 sec and assuming 

conservatively that a 10% change in the l9F signal level can 

be resolved, one arrives at a minimum detectable concentration 

of 43ca spins of NB/NA = 1.6 x 10-
6 

or about 8 x 1016 nuclei/c.c. 

One might anticipate an order-of magnitude improvement on this 

figure from working at lower temperatures and/or higher frequencies 

to improve the A-spin signal-to-noise ratio and another order 

of magnitude from u,sing a crystal with a weaker spin-lattice 

relaxation process in order to increase the A-B system inter-

action time. These considerations have been discussed in Ref. 1. 

The present results for sensitivity can be easily 

extrapolated to other spin-systems by appropriate changes in 

the parameters appearing in the fundamenta+ double-resonance 

time-constant E/LAB. However, a word of caution is in order 

regarding this procedure. As noted above, significant increases 

in the ratio T2A/LAB will almost surely.result in appreciable 

spin-diffusion inhibition of A-B system energy transfer. Spin-

diffusion will then become a primary consideration for sensitivity. 
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Perhaps the most important result offered by the 

present work with regard to the detection of rare nuclei is 
-

the rr-pulse double-resonance technique outlined in Section VI. 

This method is comparable in sensitivity to the RSDR scheme, 

but is far less dependent upon precise control of experimental 

parameters (i.e., H1 and rna for RSDR) and is in general much 

easier to instrument in the case of a wide-ranging search for 

weak NMR or NQR lines. 

(3). Our experimental determination of the fluctuation 

spectrum of the l9F- 43ca dipolar coupling operator .in CaF2 

is a result of considerable physical interest. The surprising 

outcome of exponential behavior displayed by these spectra in 

Figs. 8 and 9 was not anticipated here, nor was it elsewhere 

to the best of our knowledge. The exponential spectral form 

and associated Lorentzian autocorrelation function a(-r) were 

essential in calculating the double resonance interaction 

time-constant -rAB in Section II, the oscillatory spin-temperature 

behavior with pulsed H
1 

fields in Section VI, and the B-spin 

transverse relaxation time T2B in Section VII, with satisfactory 

results in all cases. 

As to the general validity of exponential spectral 

shape for operators of the form of the factor ~ B.I 
1
. occurring 

i l z 

in the Hamiltonian term J:ip (Eq. (4)), very little can be said 

on a rigorous basis without extensive further study. The 

clear-cut nature of this result is suggestive of a simple 
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under-lying physical mechanism, though none is advanced here. 

Apropos of these results, however, we make the following 

remarks. First, it is clear that the exponential form we 

find is not just an accidental quirk associated with a parti

cular set of l9F_l9F dipolar coupling coefficients, since 

this result holds with H
0 

along both the [110] and [111] 

crystalline axes of CaF2, representing two rather widely 

different forms for J:f~A (Eq. (1)). With H
0 

II [111] for example, 

all first-neighbor terms in ~~A vanish, whereas no first

neighbor terms vanish for H
0 

II [110]. We regret to say that 

the spectral form of~could not be checked with H
0 

II [100] 

owing to the extreme shortness of T2A. 

Secondly, although it is not clear that the present 

results can be extrapolated to paramagnetic systems with spin-

spin interactions of nondipolar charcter (e.g., isotropic 

exchange), we find an interesting,correspondence with the 

exchange-narrowed linewidth results given recently by Gulley 

et al(l7). These authors noted a systematic discrepancy 

between measured NMR and ESR linewidths [(6H)M] and theoretical 

values calculated with the cut-off Lorentzian model [(8H)CL] 

using known values of the second and fourth moments of the 

resonance lines studied. The observed discrepancies (6H)M/(6H)CL 

ranged mainly from 2.1 to 2.8 with one value at 1.48. We note 

that the assumption of an exponential fluctuation spectrum in 

these systems (MnF2, KMnF3 and RbMnF3) leads, on the Anderson-
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Weiss model.theory(l3), to a calculated linewidth (.6.H)EXP 

larger than the cut-off Lorentzian value by a ratio 
I 

(.6.H)EXP/(.6.H)CL = 2.4 and is in reasonable agreement with the 

measured values. One can neither confirm nor deny on this 

basis that the coupling operators in these materials have 

exponential fluctuation spectra, but it does suggest the latter 

form as a good starting point in the estimate of exchange-

narrowed linewidths in these and other paramagnetic systems. 

.,._ 

_j 
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APPENDIX A 

THERMAL EQUILIBRATION AMONG RARE SPINS 

We calculate the rate (1/T ) at which a given eq 

B-spin comes into thermal equilibrium with neighboring like 

nuclei using the following model. Consider an ensemble of 

identical systems in which the spin S situated at the origin -o 

possesses at t = 0 a nonequilibrium average magnetization 

(S >; the other like nuclei S. are assumed to be distributed zo -l 

at random (with average concentration c) throughout the 

crystal lattice and to be initially at the thermal equilibrium 

(S .) 
Zl · = (S z i) , i t- 0 . 

0 

Each spin is further assumed to 

t=O 

be in a Boltzmann distribution of Zeeman states over the 

ensemble. No rf•fields are assumed to be present. 

To simplify our manipulations we represent the 

dipolar field I Bj.I . at the jth B~spin site due to the 
i l Zl 

surrounding A-spins (see Equation (l)) as a randomly varying 

magnetic field h.(t). The h.'s will be assumed to have the 
J J 

rms value and autocorrelation function of the corresponding 

quantum-mechanical operator. With this semiclassical model 

the equation of motion for the density matrix a of the B-spin 

system becomes 

(A.l) 
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I c .. ( s +. s . +S . s +.) 
i> j lJ l -J -l J 

is the intra-B-spin coupling which acts to perturb the value 

of a given (S .). In order to apply the master equation(lO) 
ZJ 

for the rate of change of a we transform Equation (A.l) to an 

interaction representation defined as follows: 

(A. 2) 

with 

Equation (A.l) is then transformed to 

(A. 3) 

* where HBB(t) is the transform of HBB given by Equation (A.2). 

We now apply the master equation to Equation (A.3), regarding 

* HBB(t) as a rapidly modulated random variable, yielding 

(A. 4) 
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In Equation (A.4) the bar, which conventionally(lO) means a 

trace over the thermal equilibrium distribution of lattice 

(or A-spin) states, is taken here as an ensemble average over 

the instantaneous distribution of hj's. 

We may use Equation (A.4) to obtain a formal expres-

sion for the fractional rate of decay of [(S
20

) 

t=O 

which we define to be l/T , i.e., the result we are seeking. eq 

In the high-temperature approximation we write a = L ciSzi 
i 

and a = l c.(eq)S i' It immediately follows from Equation (A.2) 
0 . l z 

l 

that a* =a, and all terms of a*- a in Equation (A.4) vanish 
0 

(initially) except for (c - c (eq))S . Thus 
0 0 zo 

= 
- (S ) J 

zo 0 

t=O 

= 

Tr(S ~*) zo 

[Tr{szo E=B ( 0), ~=B (-T) ,szo]] }dT 

Tr ( s;o) 

t=O 

(A.5) 

·carrying out the indicated commutator and trace operations, 

Equation (A.5) becomes 
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l 
T eq 

= ~3 S(S+l) I c2
. 

j OJ 
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c.c) .. 
av (A. 6) 

where the ensemble average is now indicated by the brackets 

<) We assume all the h.'s to be independent and to have av· J 

the same mean square value (h2 ) and autocorrelation function 

(h.(-r)h.(O)) = (h 2)a(-r), where a(O) = 1. Then the 
J J av 

fundamental procedure of the Anderson-Weiss calculation(l 3 ) 

may be used to evaluate the averages () in Equation (A.6). av 

The principal assumption is that the instantaneous distribution 

of h.'s is Gaussian; therefore the exponentials in Equation (A.6) 
J 

also have Gaussian distributions. The averaging process is 

then carried out straightforwardly(l3) to give 

l 
T eq 

= _38 s(S+l) L c2. 
j OJ 

(A. 7) 
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With the assumption of a short correlation time, expressed 

2 2 2 here as yB(h )Tc << 1~ the exponential function becomes 

-Try ~(h 2)T T 

e c for T >> Tc' using the function a(T) given by 

Equation (15). Finally, we identify rr/2 y~(h 2)Tc ~ l/T 2B 

(see Equation (17) with 8 =.rr/2, weB = 0) • Carrying out 

the integral in Equation (A. 7) we find 

1 4S(S+l) 
T2B I c2. (A. 8) = T 3 OJ eq j 

as given in Section VIII. The sum over j is carried out over 

occupied neighbor sites only and will vary for rare nuclei 

over many o~ders of magnitude, 4epending on the configuration 

of like neighbors in the vicinity of a given B-spin. 

.~ 
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APPENDIX B 

We develop a lineshape model based on the function 
2 2 l/2 

f(t) = exp[c(a - (a +t ) )] to represent the free-precession 

envelope, where the Fourier transform g(w) = FT(f(t)) gives 

the shape of the resonance line. The constants c and a are 

to be related to the moments M
2 

and M4 of g(w), which are 

well-knownC 37 ) to be proportional to the second and fourth 

derivatives of f(t) at t = 0. The favorable properties of 

this model function are that all of its derivatives are finite 

at t = o, all odd derivatives at t = 0 (and therefore odd 

moments) vanish, and g(w) can be made very nearly Lorentzian 

or Gaussian in shape, depending on the values of c and a, 

with a continuous range of intermediate possibilities. The 

Fourier transform of f(t) is a tabulated Bessel function: 

g(w) = 
ac . 2 2 112 

(ac)e K1 [a(w +c ) ] 

2 2 1/2 
rr(w +c ) 

(B.l) 

By straightforward differentiation of f(t) we find 

for the first three even moments of g(w): 

M2 = c/a 

M4 = +~- + c~] (B. 2) 
a 3 a 

M6 = 45[_s + ~ + ~J 
a 5 a 3a 3 
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It is convenient to express the moments in terms of s, the 

2 ratio of fourth to second moment squared (M 4 = sM 2 ), and the 

second moment itself. The ration of sixth to second moment 

cubed then becomes 

We also have 

and 

M6 2 
n = = 5[s -3s+3]. 

M3 
2 

c = 

Introducing A 
-1/2 . = 13 (s-3) , Equation (B.l) becomes 

g ( w) = 

(B. 3) 

(B. 4) 

The Lorentzian and Gaussian limits correspond to (s ~ oo, A ~ 0) 

and Cs ~ 3, A~ oo), respectively. 

The above model is now applied to purely quadrupolar 

broadening of a resonance line, as is found for e = n/2 in 

the audio resonance studies of Section V. With a quadrupolar 

I 

I 
I 
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Appendix B - 3 

broadening operator H~R = 

moments gives for S = 7/2 

2 2 AS 2 (3 cos e-l)/2, the method of 

3(A 2) ( 3 2 2 
M2 = cos e-l) av 

l6.3(A 4) (3 2 4 
M4 = cos e-l) (B. 5) av 

l.4lxlo 2<A 6) (3 2 6 
M6 = cos e-l) av 

where the averages are taken over all B-spin sites in the 

crystal. For want of more detailed knowlege of these averages, 

we assume in the present work a Gaussian distribution of IAI 

values, g,i ving (A 4> = 3(A2)av and (A
6
>av = l5(A 

2
) 3 . Thus av av 

we find from (B.5), E;, = 5.42 and Tl = 78.0. With the line-

shape model Equation (B.3) gives n = So for E;, = 5.42 and is 

therefore an excellent representation of the calculated moments 

in this case. By contrast a cut-off Lorentzian model gives 

(with E;, = 5.42) ann-value more than an order of magnitude 

smaller. 

With E;, = 5.42 we find A = l.ll. The corresponding 

lineshape is plotted in Figure (B.l) in units of w/(AM~12 ) . 

For comparison a Lorentzian curve of equal half~width and 

amplitude at line center is also plotted (dashed curve). The 

model lineshape function is seen to be very nearly of Lorentzian 

shape near the center. The half-width at half-maximum is 

given by ~whalf = 0.84 M~12 , yielding M2 = 1.40 (6whalf)
2

. 
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FI GURE CAPTIONS 

1. Definition of the B-spin effective field in the rotating 

frame, He; viewed from the xyz frame rotating about H
0 

at the B rf frequency m. The Z-axis is the axis of 

quantization of the zero-order B-spin Hamiltonian. The 

X-axis lies in the x-z plane. 

2. Thermodynamic reservoir model of the rare-spin double 

resonance process, showing spin temperatures for each 

reservoir and the associated coupling time constants. 

3. Block diagram of the ADRF double resonance apparatus; 

audio coil and sample not shown; rf gating pulses pro

vided by Tektronix pulse generators. 

4. Arrangement of sample, audio Helmholtz coil, A rf Helmholtz 

coil, and solenoidal B rf transmitter coil. The small 

section of the B rf coil between the two taps serves as 

a receiver coil for A-spin signals. 

5. A-spin irradiation sequence for preparation and monitoring 

of the ADRF state. 

6. Time sequence of B rf irradiation for pulsed double 

resonance experiment, used during B-spin irradiation 

inteval of Fig. 5. 

7. Ratios of heat capacities E measured by pulsed ADRF double 

resonance in CaF2 . Solid lines are calculated curves of 

E vs. flB (Eq.(12)) using atomic concentration of 43ca 

reported in reference 26, including the effect of measured 

crystalline misorientation on HLA" 
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Sa. 

Sb. 

9-

-1 Measured A-B system cross-relaxation rates ~AB as a 

function of f lB ( 9=7r /2) with ~0 II [ 110]. The straight 

line shown is the calculated curve of ~~~ vs. flB using 

Eq.(l7), based only on the assumption of exponential 

dependence on flB" Bottom curve shows the maximum 

fractional rate of A-spin heating which occurs for each 

f lB value in these experiments., 

Same as F'ig. Sa except with H II [111]. 
'V0 

. -1 
Measured A-B system cross-relaxation rates ~AB as a 

function of feB for four values of e,·using B-spin 

saturating pulses between the double-resonance pulses of 

F'ig. 6 with H · II [111]. Solid lines shown are least-squares 
'V0 

computer fits of exponential frequency dependence (Eq. (17)) 

-1 
to the data plots. The theoretical ~AB vs. feB curve shown 

in Fig. Sb is drawn in as a dashed line for comparison. 

10. Dependence of the spectral area A (Eq. {lS)) one, measured 

by pulsed ADRF double resonance, for H II [111]. Area 
'V0 

data taken from rate spectra of Figs. Sb and 9. The 

straight line shown is a best fit to the experimental 

areas (See Table II) of the expected A ~ sin2e law. 

11.. Pulses of H1 and H applied during the B-spin irradiation . a 

interval of Fig. 5 in the RSDR experimental method. 

12. Double resonance spectra taken with )'BH1/21f = 1.29 kHz, 

Ha = 0.34G., and ma/21f = 2.0 kHz (Dpen circles) and 

ma/21f = 1.3 kHz (closed circles). These parameters remained 

fixed while the frequency m at which H1 was applied was 

varied. 
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13. Rotary Saturation double resonance line observed by varying 

w with parameters w~ H and H1 fixed. The saturation a · a 

parameter S was obtained from measured double resonance 

rates via Eq.(29). For these data H1=8.44G~ B= ~~ 

H = • 085G and H II [ lll] . The solid curve is a computer-
a "'o 

fitted Lorentzian as described in the text. 

14. Measurement of TAB/E by the RSDR method. Experimental 

values of TAB (Eq.(29))are plotted by means of Eq.(30) 

for ~0 II [ lll] ~ e = 1r /4 ~ and f eB=8kHz. 

15. 
-1 Measured A-B system cross relaxation rates TAB as a function 

of f B for H II [ 111] and for three ·values of e ~ obtained 
e "'o 

using the RSDR technique. Straight lines shown are least-

squares fits to corresponding data of Fig. 9. 

16. Rotating frame audio resonance linewidths (27rT2:)-l from 

Eq.(3l);as a function of feB for three values of e~ obtained 

using RSDR technique. Solid lines shown are expected 

2 homogeneous (cos B/T2B) plus expected lifetime1 broadening 

(~T~~) contributions. Small quadrupolar corrections are 

included forB= 7r/4~ 1rj6. 

17. Plot of measured transient spin-temperature variation 

5(T') (see Eq.(44)) as a function ofT with ~0 II [lll] 

and B=7r/2 for (a) :t1B=l2.6 kHz and (b) f 1B=2.43 kHz. Solid 

curves are calculated from Eqs.(44) and (42). Dashed 

curve in (b) is obtained by replacing linear ET/TAB term 

in F(T) with E[l-exp(-(l+E)T/TAB)J/(l+E). 
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18. Plot of the B-spin free induction decay f(T ) as measured 
0 . 

with the pulsed double resonance technique (see Eq.(48)), 

for ~0 II [110], m1B/27r = 5.5 kHz, T = 25 msec, and 

N = 32 B rf pulses. The solid curve shown is a fit of the 

Anderson-Weiss model to the f(T
0

) data (see Eq.(49)). 

19. Experimental procedure for measuring B spin-lattice relaxation 

time TlB' as a function of crystalline orientation. (a) 
' shows the B-spin polarization process and varying B-spin 

relaxation interval tR, while (b) shows the procedure for 

sampling the remaining B-spin magnetization MBz (tR). 

The fixed parameters are 8=7r/4, meB/27r = 15 kHz and T = 1 sec, 

while tR varies from,15 to 210 sec. 

20. Plot of the measured spin-lattice relaxation of B-spin 

magnetization, for ~0 II [ 111] and TL = 300°K. The rms 

error bars shown are for the average of five measurements 

at each value of tR' and the straight line shown is a 

least-squares fit to the data, yeilding TlB = 202 ± 19 sec. 

21. Plot of meastired 43ca spin-lattice relaxation time TlB as 

a function of magnetic field orientation in the (110) plane 

of the crystal. The dashed lines show the average value 

of T1B for (a) TL = 355°K, (T1B)av = 169 ± 25 sec and 

(b) TL = 300°K, '(T1B)av- = 236 ± 27 sec. 

B.l Model lineshape function (solid curve) plotted from Eq.(B.4) 

for t-.=1.11 ( ~ =5. 42). For comparison a Lorentz ian curve of 

equal half-width is also shown (dashed curve). 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 
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