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THEORY OF COMPLEXES IN SOLUTIONS.
I. STATISTICAL THEORY

Y; R. Shen and H. Rosen
Department of Physics, University of California
. , and
Inorganic Materials Research Division,

Lawrence Radiation Laboratory,
Berkeley, California 94720

ABSTRACT
- A statistical theory of.complexes in solution is presented.
It takes into account the statistical distribution of a}l attain-
able qomplex configurations and the effect of inért solvent
molecules in a solution. The formalism should be generally
applicéble to problems involving physical and chemical reaction

in solution.
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I. INTRODUCTION
When different moleéular species are brought in contact with‘eaéh

other, molecular complexes may appear as a result of intérmolecular‘
interaction. This often happens in the process of physicai or chémicall
reaction of the §pecies. The subject of molecular comblexes in solution
" has alwéysvbeen of great interest to many research workers. lin particu-
lar, chgrge—transfer complexes in solution have beeh the subject of
active research in recent years.

While experimental reports on the subject of complexes in solution
have been numerous, no satisfactory fheory has yet been developed. The
usual approach is ﬁo assume reaction equilibrium for complex formation,
and then use the mass-action law to find the concentrations of complex
and uncompléxed molecules. There areAtwo obvious shortcomings of this
approach. - First, one usually éssumes tHat only a feﬁ definite complex
configuraﬁions exist in a soiution. For.each complex configuration,
theré is a corresponding reaction rate equation; ‘However, it is conceivable
that in a general case, many attainable complex configurations could
appear with comparable probabilities. This happens particularly with
weak cémplexes. Only in special cases, where fhe interaction énergy is much
stronger for a few compléx configurations than for the otheré, can we
consider it as a good approximation to assume the existence_of.only
these few complex configurations. Second, one usually assumes that the -
equilibrium ¢onstant in the mass-action law is a constant independent
of the molecular concentrations, but this is true only in the case of

4ideal gases.2 Furthermore, one usually neglects, in the above approach,

the effect of inert molecules present in the solution in order to simplify
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the caléulations.
From what we.have discussed here, it is clear fhat.the usual
equilibrium approach‘is certainly unsatiéfactory for describing weak
complexeé in solution, although it might bg sufficient for describing

strong complexesfin some cases. A correct theory must take into account

_the statistical distribution of all attainable complex configurations3

and the effect of inertvmolecules if present. It is the purpose of this
paper tovconstruct such a statistical theory, and to éhow that in the
ideal limiting case our results agfee with those théined from the
equilibrium approach. Wé.ﬁrésent the general formalism in Sec. II. We
then apply the formalism to the special cases of 1:1 complexes in solution
and l:l‘and 1:2 complexes in solution respectively in Secs. III and
IV.V‘The theofy is used to interpret the experimehtal results of Raman
scattefing from iddine complexes in solutions insthe following paper.
ITI. GENERAL FORMALISM

Consider a solution composed of a small amouht of "A" molecules
dissolved in.a solvent mixture of molecuiaf species "B" and "C". 1In
general, all the three molecular species can interact with one another,
and ouf formalism developed in the following can account for this.
However, in order to restrict our discussion to molecular complexes,
we assﬁme that only"A" molecules interact with "B" molecules to form
complexes, with "C" molecules present as inert molecules interacting
only weakly with both "B" and "C" molecules. For charge—transfef
complexes in solution, we may have "A" molecules acting as acceptors,
"B" as donors, and "C" as inert solvent molecules.

Thus, in a solution, each "A" molecule may interact with zero, one,
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or more "B“ molecules depending on the relative positions énd orientations
of the "A" molecule with the surrounding "B" molecules.h The strength
of interaction between an "A" molecule and a "B" molecule should also
be a function of the relative position and orientation of the two
molecules. The inert "C" molecules, although ineffective in interacting
with other molecules, may still affeét the interaction of "A" and "B"
molecules by shielding one from the other. This is particulafly true
for solutions of weak complexes, where around an "A" molecule, no
specific configuration of "B" and "C" molecules dominates. Our formalism
must therefore take into account all possible configurations around an
A" molecﬁle with proper statistical average.

Let us imagine that at any instant the region around an "A" molecule
can Bebdivided into cells of equal volumes. Each cell is normally
filled ﬁith zero or oné molecule. The probability of a cell being
occupied by more than one molecule can be neglected. Let VO be some
volume which co&ers the entire effective interaction volume around the
A" moleculé and contains an integer number of cells of volume Vc' Then,
the n "B".molecules within VO at T e, T with respect to the "A"
molecule could interact with the "A" molecule and the m "C" molecules
at R, —-—gm within Vo could affect the interaction between the "A"
molecule and the "B" molecules. (Here, the notations r and R are generalized
to indicate not only the éositions but also the relative orientations
fo "B" and "C" molecules with resbect to the "A" molecule.) If X
represents a certain physical property of the "A" molecule, e.g., the

oscillator strength of a certain uv absorption band, then since the "A"

molecule is under the influence of both the "B" and "C" molecules, the

»
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quantity X should be a function of the positions and orientations
of "B" and "C" molecules in VO,

o

_ y(n,m) .
R - U R 8
) . o ‘
The corresponding observed quantity should, however, be given by the
statistical average over all possible configurations of "B" and "C"
molecuies in VO,
<X.> =’z / x(n’m)(r —e——r 3 R. ===R ) X
\ ~1 | ~
n,m 0
x p(n’m) (r, —=—-r_3 R, ---R_) dr. ---dR (2)
~1 ~n’ <1l ~m ~1 m
where p<n’m)(rl ——4rn;“Rl -—~Rm) is the probability distribution function
for the n "B" molecules at r ——ern,vand m "C" molecules at Rl’ —_— Rm,
and WQ have the normalization condition
] o™™) g ___gr aR —--aR. = 1.
v ~1 ~n ~1 m
n,m o
From statistical mechanics, the probability distribution function
p(N’M)(rl —==rys Rl ———RM) for N "B" molecules and M "C" molecules in the
entire solutioh is given by
(w,M) .
" e (ry ==-rys B} -=-Ry)
: (3)
1 (N,M)
= tM! - b4 —_— . ——
. [*/NiM! QN’M] exp[-B? (r, e By R, ]
1
where B = 7 /kT

Oy 4y = (l/NiM) Iy exp[-8o (oM ar) ---drydR) --- dR,
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(N,M) . . : L X
and ¢ (rl - Ty Rl ---R ) is the potential function for the particular
distribution of "B" molecules at r, --- Ty and M "C" molecules at Rl — RM.
The normalization condition for p(N’M) in a solution of volume V is
/ p(N’M)dr -—- dr dR, --- dR, = 1 (4)
A ~1 SN BM :
Then, the function'p(n’m) can be derived from p(N’M) a.s5

p(n’m)(r ---r_; R ———Rm) = [1/(N-n)! (M-m)! n! m!]

. (N,M) _
* fv-vo P A~ Ty (5)

As a simplifying assumption, we neglect the correlation between the

system of molecules inside Vo and the system of molecules outside Vo'

(w,M)

Then, the potential ¢ can be written as

(0,M) . (6)

_ . (n,m) ) , (n,m) '
P =U (r ---r 3 R ---R ) + @ <{n+ ——-r ~m+l——_BM)

~1 ~Im 1 ~N?

where U(n,m)(r ~--r ; R —-—Rm) is the interaction potential for the particu-

lar distribution of n "B" molecules at r_ ,---,r and m '"C" molecules at

<1’ ~n
R (n,m) is the remaining part of Q(N’M) depending

o

only on coordinates of molecules outside the volume Vo' We then have,

———,Rm in Vo’ and @'

from Eq. (5),

(n,m)]

p(n,m); [l/(N—n)! (M-m)! n! m! <1/N!M!Q,NM)exp[—BU

exp[-B@’(n’m)]dr -—-dr dR . _---dR (n

8 IV-VO L1 "y e Ty

where QNM can also be written in the form
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1Y+ [1 \
= {“/nm) ) [ /(N-n)! (M-m)! nllni
Q.N-M ( )nam ’ v '
x f expl - ( ]dr ———dr de——-dR
X'fv_v exp[—BQ'(n’m)]dgn+l—- -drydR, +l-——dRM ( 8)
o :

i , .
With Eqs. (7) and (8), we can now obtain from Eq. (2) an expression

(n,m) and interaction

for the obserVedvquanﬁity (X)) in tefms of X
potentials. ‘For a specified Vs ﬁhe maximum value of (n+m) is given
by (VQ/VC). The expression for (X ) can be greatly simplified if
(n+m)max is a small number. In liquid solutions which are nearly
incbmpreSsible, we can assume that each cell is occupied by one and
only one moleculé; the probability of being otherwise should be
negiigible.; Then, for a specific Vo’ the number (n+m) is always equal
to (VO/VC). In the following sections, yé éonsider the special cases
of (n+m)maX being 1 and 2. They appear as good approximqtion to many
physiqalvcases oné encounters in practiée.

ITI. ONE-TO-ONE COMPLEXES IN SOLUTION

Let us first consider the special case where the volume VO is of

one cell volume VC (or (n+m) 1). Each "A" molecule can interact

max
with at most one "B" molecule. This is the case for 1:1 complexes

in solution. Note, howe&er, that our picture is quite different from
the usual picture of 1:1 complexes often assumed in the literature.
Here, the 1:1 complexes have no definite configurafion in general. The
relative position and orientation of the two molecules in a cbmplex may

vary. Only in the limiting case, would a particular complex configuration

dominate.
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From Eq. (7), we find
p(l’o)(f) = V2 exp[-BU(l’O)(I)] "
| o | - (9)
,p(o’l)(B) = (MC%/é) exp[—BU(O’l)(B)] . ’

where . ,

z=cC + vao exp[-BU(l’o)] dr + cerVO exp(-su(o’l)]dg

| 0,0 ,
‘17 fV-VO wxol 50" )]Qflf"dgm/fv-Vo expl-g0 4 O)]dfe“‘dﬁm

= (0,1) (1,0)
Cp = fv-vo exp(-B0' " ]dfl"‘dfwdge“‘dgm/fv-vo exp[-80' 17> Jdr ---dR, .

To find Ci and C2, we notice that in the absence of the "A" molecule, we would

(1’O>(£) = U<0’l)(R) = A® and we should have (l/Vo) fV p(l’o)dr
s . ~ . o ~
M/V. Using Eq. ( 9) together

expect U

B

N, 1 (0,1) .. _ . .
= py= /V and ( /Vo) fvop dlj—pc_
with these conditions, we find readily

@]
"

V(1-gBV°—pCvo) exp[-B( 40 ) ]

(10)

where

exp[-B (&9 )] = (l/Vo)fV_ exp(—BA@)d{.
.0

We therefore obtain, from Egs. (2) and (9)

(x) = {o IV X(%’O) exp[-B(U(l’o) - <A4’;))]d1~' +
(o]

‘B
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(0,1) (0,1)

o+ pCfVo'X exp[-B(U - {AD )ﬂdg}

1
X - -
/{(l I pCV )+

(U(l,o)

+ o [, cxpl-8 - (20 )]ar + p Jy expl-8(u(®1) _ (a0 ) )]d}j}
0 o}

(11)

In the case of liquid solution of constant volume V, there exists
the relation (pB/pBo) + (pc/p'OO) = 1, with p_and pg_ being the
densities of pure donor and pure inert solvents respectively. If we
recall that the liquid is nearly incompressible, then we expect that
in the cell model every cell in the liquid should be occupied, and hence
1‘- (pB + pc)vo ~ 0 in Eq. (11). Physically, we are often interested

in the variation of the quantity
CAX) =(X) -(X,) (12)

as a function of pB, where ¢ XC) is the value of ( X)in the case of

pure inert solvent (pB = 0). In the present case, we have

(x0 =M < A0 eploau{® P jar/f, expl-gul®1ar
(e} Q

(13)

and hence from Eq. (11), we can write

prVo[x(l’O) - ()1 expl-u+OJar

~

(ax) = .
expl-801Var + (1-° o o[, exnl-801% ) 1a

pr v, co’V_

(14)
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Inversion of the above equation leads to the form
Yraxy = (l/Axo) + (l/KAXO pBo)(pBo/pB) (15)
where
b = fvo (x(1-0) _ (X)) expl-8u'>%) ar
x l/fV {exp[—BU(l’o)] - (pCo/pBO) exp[-BU(o’l)}}dE
o
k= [, fexpl-8u'2")) = (Peosp, ) expl-80 01 1yar
o
< /oy Iy eXp[—BU(O’l)]dg.
o

Equation (15) is in the form of the Benesi-Hildebrand equation.
The quantities (AX ), AXO, and K in Eq. (15) corresponds respectively
to the observed uv extinction coefficient (€ ), the uv extinction
coefficient for complexes EC’ and the equilibrium constant Keq in
their equation. However, the physical meanings of AXO and K in our
case are rather different from those of ec and Keq' The Benesi-Hildebrand
equation was originally derived using the mass-action law for 1:1
stable complexes and neglecting the effect of inert moiecules. Here,
from our more general model, AXO corresponds to some kind of average
uv extincfion coefficient for complexes over the interagtion volume,
with the effect of inert molecules taken into account. The quantity K
also depends on the presence of inert molecules, and is clearly different
from Ke . We can, however, show that in the ideal limitiné case, K
becomes equal to Keq

The usual equilibrium constant, Keq’ is obtained from the mass-action
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law, assuming absence of inert molecules (pc = 0),

K., = /o, - o (16)

eq k!Pp

for the case where the density of "B" molecules, Pg> is much larger than

the density of "A" molecules, The density of complex molecules is

pA.
Py From our picture, a 1:1 complex is defined as an "A" molecule with
its interaction volume V. filled by a "B" molecule. Then the complex
concentration can be written as

(l’o)dr

oe =0y [y @

(17)
I .

With the help of Egs. (9) and (10) (with Po = 0), we can now find from

Egs. (17) and (16)

040 fV exp(-8(u120) _ a0 )lar
1
p =
K- pgV.) + f expl- (1 0) _ (A9 )))dr
= f expl (l,O) - (AD ))Jd{/(l - pBVI). (18)

On the other hand, if we let p,= O in Eg. (11), we still have Eq. (15), but

with

[y Ax(150) exp[—B(U(l’o)

_ o]
© fv {eXp[—B(U(l’Oy - (A2))] - 1lar
o]

- (A ) )]ar
AX

(1,0)

K=[, {exp[-B(U - (80))] - 1}ar. (19)
° , .
From Eqs. (18) and (19), we find
Keq = (K + VI)/(l - vaI) (20)
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we then recognize that in the limit V_ + O, the equilibrium constant Keq

I
reduces to K. This is Just the limit of ideal gases. For non-ideal gases,
VI # 0, the mass action law leads to an equilibrium constant which depends
on py as shown in Eq. (20).

In gas mixtures, we can also have pc = constant, but vary pB. For
this case, Eq. (15) still holds if we define (XC Y =(X )DB_O. The
expression for AXO and K would, of course, change accordingly.

IV. ONE-TO-ONE AND ONE-TO-TWO COMPLEXES IN SOLUTION

We now apply our formalism to the case where each "A" molecule
can interact with two molecules. We consider here only complexes in
liquid solution. With n+m=2 in Eq. (7) and (8). An "A" molecule can
interact with zero (n=0), one (n=1), or two (n=2) "B" molecules. The
n=1 and n=2 cases correspond to 1:1 and 1:2 complexes respectively, but

again the complexes here do not have definite configurations in general.

With two molecules in V_, Egs. (7) and (8) yield

p(2’0)=[N(N-1)/2z2]exp[—BU(2’O)]fv_voexp[—sa'”’o)]d53---d§Nd§l--_d§ :
p(1=1)=[NM/z ]exp[_eu(l’l)]f exp[—B@'(l’l)]dr -—-dr dR_---dR .
2 V-V FE- RS | Y B 1
p(o’2)=[M(Mfl)/222]exp[—BU(o’2)]fv_voexp[—8®'(0’2)]d{l—-—dENd§3-——d§M.
(21)

where

z, = (N!M!)2QNM|

2 n+m=2.

Again, we are often interested in the quantity

7
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(AX > =(X ) - (XC )

v v {nm) . (n,m) 3 '
=] fvo [x™™ % - <X 1" "™ ar, ——-ar AR, ---aR_ (22)
n,m : .

n;m=2 |
o

. with

(x,) = (x(0:2) ) o [y x(0:2) exp[-BU(°’2)]dgdg'
A o '

o x 3/}V expf—BU(O’z)]dBdR'
5 | o

we can obtain from Eq. (2 ), after some straightforward manipulation,

2 - 2
CTKaxo =11+ a (PBlog ) + 0(PR/py ) 1/1e(PB/og ) +a (PB/og ) ]

(23) .
where
a ='2fv {(pBo/pco)exp[-B(U(l’l)— (U(O’z) )1 - 1 }d{df'
fo) .

b= fvo3(,pBo/oC0)2exp[—B(U(2’O) - «ul0:2)

2(PBo/oy)  expl-g(ullst) _(y(0:2) )y 4 1 {dgdi"
¢ = zfvoz(pBo/pCO[x(l’l) - XC)] exp[-—B(U(l’l) - <U(°’2) ) )]fdzdz:'

\ 2,0 0,2

d = fvo;(pBo/pCo)g[X(Q’Q)— (x.0] expl-8(u(2:0) _ (y(0:2) )

—2(pBo/pCO' )[X(l’l) - ¢ X0 ] exp[-B(U(l’l) - <U(O’2) ) )];d:sd{"

(24)
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with (ul0s2)

). defined by the relation

expl-&u' 02 1= (v )2 [ expl-gu'® Jarar.

0
We recall thét in the present case, Vobcontains two cells. It may
happen that the "B" molecule in the second cell is shielded from
interaction with the "A" molecule by either "B" or "C" molecule in the
first cell. ' One would expect that if the shielding is strong, then the
"B" molecule in the second cell cannot interact effectively with the "A"
molécule, and our Eq. (23) should approach the Benesi-Hildebrand form

of Eq.‘(lS). In the limit where the shielding is perfect, Eq. (23)

should reduce to Eq. (15). This can be seen by letting U(2,O) > U(l’o),

p(0:2) , 4(0,1) “y(2,0) | 4(1,0) (1,3), 4(1,0)

X > X in Eq. (24), and U

X(l,l) (1,0)

+ X if the "B" molecule is in the first cell.

In the other limit, we assume no shielding, so that X<2’0) = 2X(l’l)

(2,0) _ ,5(1,1) 7

and U We also assume that the intéraction potential

between "A" and "B" is much larger than "A" and "C"-

(230) s> y(1s1) 5y (0,2))

(U This is equivalent toc neglecting the
effect of inert molecules. By keeping only the leading terms in the
expressions in Eq. (24), we can again show that Eq. (23) reduces to
the Benesi-Hildebrand form of Eq. (15). Physically, these assumptions
ﬁean.that the two molecules in the two cells are uncorrelated.

If we plot l/(“AX ) vs pBo/pB, then Eq. (15) yields a straight
line, but Eq. (23) gives a curve with definite curvature. However,
in practice, experimental errors of l/(AX ) at small Py are often

large, so that Wwith the least-square fit, the discrimination between

g. (1) and #q. (23) is difficult, unless the curvature of Eq. (23)
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is large. This happens, for example, when a and ¢ in Egq. (23) are
sufficiently small.

Reoeotly, Deranleau8 has derived_an,equationisimilar to our Eq. (23)
for charge—transfer'complexeo in solution using thé usual equilibrium
approach,._He.assumes that an acceptor can interact with one or
fwo different sites. He then sets up three rate équations for the
formation of the three possible complex configurations. This enabies
him to calculate the average uv extinction coefficient as a function
of donor concentration. His approach, however, has not taken into

account the statistical distribution of complex configurations and

the effect of inert solvent molecules.

| V. DISCUSSION AND CONCLUSION
The main assumption in our deri&ation is thét the molecules
within the_volume Vv, around an "A" molecule are unoorrelated with
molecules outside the'volume. We believe that this is a reasonable
approximation-in most cases; The approximation woﬁld, of course, be
better if the volume VO contains more molecules.

We have derived from our general formalism the results of two

" special cases where an "A" molecule can interact with at most one and

two "B" molecules respeotively. We can; of course, extend the calcu-
lotions to the more general case where an "A" molecule can interact with
at most p "B" molecules. The general expression for l/(AX ) with p
molecqles in Vo should be a quotieot-with pth-orderbpolynomials of
(pB/pBO) in both the numerator and the denominator.:

What we should emphasize in our statistical theory is that we

have taken into account both the statistical distribution of complex
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configurations and the effect of inert solvent molecules. While our
equations‘for l/(AX , Vs pBo/pB appear to be the same as, or close to
those of others, the physical pictures are quite different. Thus,
for exampie, if the spectrum for a complex depends on the complex -
configuration, then by assuming only.one complex configuration, we
should find for complexes in solution two spectra, one for unassociated
molecules and one for complexes. However, if there is a distribution
6f complex configurations, then we should find a group of spectra,
one flor each complex configuration; superimposed on one another according
to the-sfatistical distribution of complex configurations. A practical
examplevis given in the following paper, where we apply our theory to

Raman scattering from iodine complexes in solutions.
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