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THEORY OF COMPLEXES IN SOLUTIONS. 
I. STATISTICAL THEORY 

Y. R. Shen and H. Rosen 

Department of Physics, University of California 
and 

Inorganic Materials Research Division, 
Lawrence Radiation Laboratory, 
Berkeley, California 94720 

ABSTRACT 

UCRL-19058-Rev 
Part I 

A statistical theory of complexes in solution is presented. 

It takes into account the statistical distribution of all attain-

able complex configurations and the effect of inert solvent 

molecules in a solution. The formalism should be generally 

applicable to problems involving physical and chemical reaction 

in solution . 
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I. INTRODUCTION 
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When different molecular species are brought in contact with each 

other, molecular complexes may appear as a result of intermolecular 

interaction. This often happens in the process of physical or chemical 

reaction of the species. The subject of molecular complexes in solution 
i 

i has always been of great interest to many research workers. In particu-

lar, charge-transfer complexes in solution have been the subject of 

active research in recent years. 1 

While experimental reports on the subject of complexes in solution 

have been numerous, no satisfactory theory has yet been developed. The 

usual approach is to assume reaction equilibrium for complex formation, 

and then use the mass-action law to find the concentrations of complex 

and uncomplexed molecules. There are two obvious shortcomings of this 

approach.· First, one usually assumes that only a few definite complex 

configurations exist in a solution. For each complex configuration, 

there is a corresponding reaction rate equation. However, it is conceivable 

that in a general case, many attainable complex configurations could 

appear with comparable probabilities. This happens particularly with 

weak complexes. Only in special cases, where the interaction energy is much 

stronger for a few complex configurations than for the others, can we 

consider it as a good approximation to assume the existence of only 

these few complex configurations. Second, one usually assumes that the 

equilibrium constant in the mass-action law is a constant independent 

of the molecular concentrations, but this is true only in the case of 

. ideal gases. 2 
Furthermore, one usually neglects, in the above approach, 

the effect of inert molecules present in the solution in order to simplify 

• J ., 
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the calculations. 
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From what we have discussed here, it is clear that the usual. 

equilibrium approach is certainly unsatisfactory for describing weak 

complexes in solution, although it might be sufficient for describing 

strong complexes' in some cases. A correct theory must take into account 

the statistical distribution of all attainable complex configurations 3 

and the effect of inert molecules if present. It is the purpose of this 

paper to construct such a statistical theory, and to show that in the 

ideal limiting case our results agree with those obtained from the 

equilibrium approach. We present the general formalism in Sec. II. We 

then apply the formalism to the special cases of 1:1 complexes in solution 

and 1:1 and 1:2 complexes in solution respectively in Sees. III and 

IV. The theory is used to interpret the experimental results of Raman 

scattering from iodine complexes in solutions in the following paper. 

II. GENERAL FORMALISM 

Consider a solution composed of a small amount of "A" molecules 

dissolved in a solvent mixture of molecular species "B" and "C". In 

general, all the three molecular species can interact with one another, 

and our formalism developed in the following can account for this. 

However, in order to restrict our discussion to molecular complexes, 

we assume that oniy"A" molecules interact with "B" molecules to form 

complexes, with "C" molecules present as inert molecules interacting 

only weakly with both "B" and. "C" molecules. For charge-transfer 

complexes in solution, we may have "A" molecules acting as acceptors, 

"B" as donors, and "C" as inert solvent molecules. 

Thus, in a solution, each "A" molecule may interact with zero, one, 
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or more "B" molecules depending on the relative positions and orientations 

4 of the "A" molecule with the surrounding "B" molecules. The strength 

of interaction between an "A" molecule and a "B" molecule should also 

be a function of the relative position and orientation of the two 

molecules. The inert "C" molecules, although ineffective in interacting 

with other molecules, may still affect the interaction of "A" and "B" 

molecules by shielding one from the other. This is particularly true 

for solutions of weak complexes, where around an "A" molecule, no 

specific configuration of "B" and ''C" molecules dominates. Our formalism 

must therefore take into account all possible configurations around an 

"A" molecule with proper statistical average. 

Let us imagine that at any instant the region around an "A" molecule 

can be divided into cells of equal volumes. Each cell is normally 

filled with zero or one molecule. The probability of a cell being 

occupied by more than one molecule can be neglected. Let V be some 
0 

volume which covers the entire effective interaction volume around the 

"A" molecule and contains an integer number of cells of volume V . Then, 
c 

the n "B" molecules within V at r --- r with respect to the "A" 
o -1 ' ' -n 

molecule could interact with the "A" molecule and the m "C" molecules 

at R1 ---R within V could affect the interaction between the "A" 
- -m o 

molecule and the "B" molecules. (Here, the notations r and R are generalized 

to indicate not only the positions but also the relative orientations 

fo "B" and "c" molecules with respect to the "A" molecule.) If X 

represents a certain physical property of the "A" molecule, e.g., the 

oscillator strength of a certain uv absorption band, then since the "A" 

molecule is under the influence of both the "B" and "C" molecules, the 
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quantity X should be a function of the positions and orientations 

of "B" and "C" molecules in V 
o' 

X= X(n,m)(r --- r · R ---R ). 
. -1 -n' -1' m 

I 

(1) 

The corresponding observed quantity should, however, be given by the 

statistical average over all possible configurations of "B" and "C'' 

molecules in V , 
0 

( X ) = I J V X ( n ,m) ( ::1 
n,m o 

r . 
-n' 

( n m) ( where p ' ~l ---r ; R1 ---R ) is the probability distribution function 
- n - -m 

for the n "B" molecules at ~l ---r and m "C" molecules at R --- R 
-- -n ' -1 ' -m ' 

and we have the normalization condition 

I fv (n,m) d ---dr dR ---dR = 1. 
p ::1 -n -1 m 

n,m o 

From statistical mechanics, the probability distribution function 

(N,M)( ---r · R ---R ) for N "B" molecules and M "C" molecules in the 
p ::1 N' -1 -M 

entire solution is given by 5 

= [1 /N!M! CLM] exp[-S¢(N,M)(~1 --- r; R --- R)] 
~N, - -N -1 ~M 

( 3) 

where 
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and ~(N,M)(r --- r ; R ---R ) is the potential function for .the particular 
~1 ~N -1 ~M 

distribution of "B" molecules at ::1 --- ::N and M "C" molecules at ~l --- ~M· 

Th 1 . t. d. t. f ( N ,M) . 1 t. f 1 V . e norma 1za 1on con 1 1on or p 1n a so u 10n o vo ume 1s 

f p(N,M)dr --- dr dR --- d~- = 1. 
V ~1 ~N -1 ~M 

(n,m) (N M) 5 Then, the function p can be derived from p ' 1 as 

p(n,m)(r ---r ; R ---R) = [1 /(N-n)! (M-m)! n! m!] 
~l ~n -1 ~m 

x fv-v 
0 

(N ,M) 
p dr ---dr dR ---dR . 

~n+l ~N ~m+l ~M 

(4) 

( 5) 

As a simplifying assumption, we neglect the correlation between the 

system of molecules inside V and the system of molecules outside V . 
0 0 

Then, the potential ~(N,M) can be written as 

~(N,,M) = U(n,m)(r ---r ; R ---R ) + ~,(n,m)(r ---r · R ---R ) (6) 
~1 ~n ~l ~m ~n+l ~N' ~m+l ~M 

(n m) ( where U ' r ---r ; R1---R ) is the interaction potential for the particu-
~1 ~n - ~m 

lar distribution of n "B" molecules at r
1
,---,r and m "C" molecules at 

~ ~n 

R
1

,---,R in V , and ~,(n,m) is the remaining part of ~(N,M) depending 
~ -m o 

only on coordinates of molecules outside the volume V . We then have, 
0 

from Eq. ( 5 ) , 

x fv-v exp[-S~,(n,m)]dr ---dr dR ---dR 
-n+l -N -m+l -M 

(7) 
0 

where ~M can also be written in the form 
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~ = t/N!ML~m [
1
/(N-n)l (M-m)! nl m] 

x fv exp[-SU(n,m)]dr ---dr dR --~dR 
-1 -n -1 -m 

0 

x J . exp[-f3q)'(n,m)]dr ---dr dR ---dR. ( 8) 
V-V · -n+l -N -m+l ::..N 

0 

i 
Wi~h Eqs. (7) and (8), we can now obtain from Eq. (2) an expression 

for the observed quantity ( X ) 
. (n m) 
1n terms of X ' and interaction 

potentials. 

by (V /V ). 
0 c 

For a specified V , the maximum value of (n+m) is given 
0 

The expression for (X ) can be greatly simpJ.:ified if 

(n+m) is a small number. In liquid solutions which are nearly max 

incompressible, we can assume that each cell is occupied by one and 

only one molecule; the probability of being otherwise should be 

negligible. 

to (V /V ) . 
0 c 

Then, for a specific V , the number (n+m) is always equal 
0 

In the following sections, we consider the special cases 

of (n+m) being 1 and 2. They appear as good approximation to many 
max 

physical cases one encounters in practice. 

III. ONE-TO-ONE COMPLEXES IN SOLUTION 

Let us first consider the special case where the volume V is of 
0 

one cell volume V (or (n+m) =1). Each "A" molecule can interact c max 

with at most one "B" molecule. This is the case for 1:1 complexes 

in solution. Note, however, that our picture is quite different from 

the usual picture of 1:1 complexes often assumed in the literature. 

Here, the 1:1 complexes have no definite configuration in general. The 

relative position and orientation of the two molecules in a complex may 

vary. Only in the limiting case, would a particular complex configuration 

dominate. 
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(9·) 

Z = c
1 

+ Nfv exp[-BU{l,O)] dr + c
2
Mfv exp[-SU(O,l)]d~ 

0 0 

c
1 

= f exp[-S~,(o,o)]dr ---dR If 
V-V -1 -M V-V 

[ 8"' 1 (l,O))d exp - ~ r ---dR 
-2 -M 0 0 

To find c
1 

and C
2

, we notice that in the absence of the "A" molecule, we would 

expect U(l,O~(:~) ~ U(O,l){~) = M> and we should have (1 /V
0

) fv p(l,O)d: 

= p · = N/V and (1 /V ) J p(O,l)dR = p = M;v. Using Eq. ( 9) ~ogether 
B o V - C 

0 

with these conditions, we find readily 

where 

C = V(l-p V -p V ) exp[-13< 6.~ ) ] 
l B o C o 

c = 1 2 

exp[-B <6~ >] - (
1

/V
0

)/v exp(-86.~)d:· 
0 

We therefore obtain, from Eqs. (2) and {9) 

<X) = {pBfV X{l,O) exp[-S(U(1 ,O) - < 6.~.>)]dr + 
0 

(10) 

... 
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X 
1

/{(1 - p V - p V ) + 
B o Co 

+ p fv exp[-S(U(l,O)- <t~ > )]d~ + p (V exp[-S(U(O,l)- <M? > )]d~} 
B o d o 

{11) 

In the case of liquid solution of constant volume V, there exists 

densities of pure donor and pure inert solvents respectively. If we 

recall that the liquid is nearly incompressible, then we expect that 

in the cell model every cell in the liquid should be occupied, and hence 

l- (pB + Pc)V
0 
~ 0 in Eq. (11). Physically, we are often interested 

in the variation of the quantity 

( !::.X > = ( X > - ( XC ) (12) 

as a function of pB, where ( XC) is the value of ( X) in the case of 

pure inert solvent (pB = 0). In the present case, we have 

( XC ) = ( X( 0,1) ) = f V X(O,l) exp[-8U(O,l)]dR/j exp[-SU(0,1 )]dR 
- v -

0 0 

(13) 

and hence from Eq. (11), we can write 

p. J v [ X ( 
1 

' 0 ) - · < X > ] exp [ - SU ( 1 
' 
0 

) ] dr 
B 

0 
C -

< t::.x> = ----------~--~~----------------------~--~-
P (V exp[-SU(l,O)]dr + [1-p /p ]p fv exp[-SU(O,l)]dR 

B" - B BO co -
0 0 

(14) 
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Inversion of the above equation leads to the form 

where 

K = fv 
0 

0 

x 1;fv {exp[-BU(l,O)] - (PCo/pB
0

) exp[-BU(O,l)]}d: 
0 

(1 0) p (0 1) 
{exp[-{3U ' ] - ( Co/pB

0
) exp[-BU ' ]}d: 

X 1/ J Pea v 
0 

(0 1) 
exp[ -BU ' ]d:. 

(15) 

Equation (15) is in the form of the Benesi-Hildebrand equation.
6 

The quantities ( f.:.X } , f.:.X , and K in Eq. ( 15) corresponds respectively 
0 

to the observed uv extinction coefficient ( £ ) , the uv extinction 

coefficient for complexes e:C, and the equilibrium constant K in eq 

their equation. However, the physical meanings of f.:.X and K in our 
0 

case are rather different from those of e:C and K The Benesi-Hildebrand eq 

equation was originally derived using the mass-action law for 1:1 

stable complexes and neglecting the effect of inert molecules. Here, 

from our more general model, f.:.X corresponds to some kind of average 
0 

uv extinction coefficient for complexes over the interaction volume, 

with the effect of inert molecules taken into account. The quantity K 

also depends on the presence of inert molecules, and is clearly different 

from K We can, however, show that in the ideal limiting case, K 
eq 

becomes equal to K eq 

The usual equilibrium constant, K is obtained from the mass-action eq' 

"' 

• 

'II' 
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law, assuming absence of inert molecules (pc = 0), 

for the case where the density of "B" molecules, pB, is much larger than 

the density of "A" molecules, pA. The density of complex molecules is 
i 

pK. From our picture, a 1:1 complex is defined as an "A" molecule with 

its interaction volume v1 filled by a "B" molecule. Then the complex 

concentration can be written as 

(17) 

With the help of Eqs. (9) and (10) (with Pc = 

Eqs. (17) and (16) 

0), we can now find from 

PAPB fv exp[ -S(U(l ,O) - < M ) ) ]d~ 
I 

0 

(18) 

On the other hand, if we let Pc= 0 in Eq. (11), we still have Eq. (15), but 

with 

D. X 
0 

f D.X(l,O) exp[-6(U(l,O)- <M>) )]dr 
v -

= --~0--------~~~------------------
J V { exp [ -13 ( U ( 1 , 0 ) - ( M ) ) ] - 1} dr 

0 

K = fv {exp[-S(U(l,O) -<D.~>)] - l}dr. 
0 

From Eqs. (18) and (19), we find 

(19) 

(20) 
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we then recognize that in the limit VI~ 0, the equilibrium constant K 
eq 

reduces to K. This is just the limit of ideal gases. For non-ideal gases, 

VI * 0, the mass action law leads to an equilibrium constant which depends 

on pB as shown in Eq. (20). 

In gas mixtures, we can also have Pc = constant, but vary pB. For 

this case, Eq. (15) still holds if we define (XC> =(X> The 
PB=O 

expression for 6X and K would, of course, change accordingly. 
0 

IV. ONE-TO-ONE AND ONE-TO-TWO COMPLEXES IN SOLUTION 

We now apply our formalism to the case where each "A" molecule 

can interact with two molecules. We consider here only complexes in 

liquid solution. With n+m=2 in Eq. (7) and (8). An "A" molecule can 

interact with zero (n=O), one (n=l), or two (n=2) "B" molecules. The 

n=l and n=2 cases correspond to 1:1 and 1:2 complexes respectively, but 

again the complexes here do not have definite configurations in general. 

With two molecules in V , Eqs. (7) and (8) yield 
0 

p( 2 ,0)=[N(N-l)/2Z ]exp[-SU( 2 •0 )Jf exp[-S~'~ 2 • 0 )]dr ---dr dR ---dR . 
2 V-V -3 -N -1 -M 

0 

p(l,l)=[NM/Z ]exp[-SU(l,l)Jf exp[-S~'(l,l)]dr ---dr dR ---dR . 
2 V-V -2 -N -2 -M 

. 0 

p(0, 2 )=[M(M-l)/2Z ]exp[-SU(0, 2 )Jf exp[-S~,(0, 2 )]dr ---dr dR ---dR. 
2 V-V -1 -N· -3 ::..M 

0 

(21) 

where 

z
2 

= (N!M! )2o ___ , 
'TIM n+m=2. 

Again, we are often interested in the quantity 

,, 
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( !J.X ) = ( X ) - ( XC. 

< x > = < x(o, 2 ) > = f x(0, 2 ) exp[-BU(o, 2 )]dRdR' 
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(22) 

we can obtain from Eq. ( 2 ), after some straightforward manipulation, 

2 2 
1 /( !J.X ) = [ 1 + a ( PB/ PBo) + b ( PB/ PBo) ] / [ c ( PB/ PBo) +d ( PB/ PBo) J 

where 

a= 2fvJ(PBo/pc
0

lexp[-B(U(l,l)_ (TJ(o,2 ) > )] - 1 

b = f 1(PBo/p )~xp[-S(u( 2 ,0) - < U(0, 2 ) > )] 
V Co 

0 

(23) 

c = 2fvj (PBo/Pc}x(l,l) - < xc > J exp[-B(u(l,l) - < u< 0 •2 ) > )]!d::d:' 

d = fvo1(PBo/pco)2[X(2,0)_ ( xc>] exp[-B(U(2,0)- <u(0,2) > }] 

-2(PBo/pco )[x(l,l) - < xc> J exp[-B(u(l,l) - < u< 0 •2 ) > ll}d:O.::' 

(24) 
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with < U( 0 •2) } defined by the relation 

exp[-13< U(0, 2 ) } ] = (1 /V )2 J exp[-13U(0, 2 )]drdr'. 
0 v 

We recall that in the present 

0 

case, V contains two cells. 
0 

happen that the "B" molecule in the second cell is shielded from 

It may 

interaction with the "A" molecule by either "B" or "C" molecule in the 

first cell. One would expect that if the shielding is strong, then the 

"B" molecule in the second cell cannot interact effectively with the "A" 

molecule, and our Eq. (23) should approach the Benesi-Hildebrand form 

ofEq.,(l5). In the limit where the shielding is perfect, Eq. (23) 

should reduce to Eq. ( 15). This can be 
. (2 0) (1 0) seen by lett1ng U ' ~ U ' , 

0
(o,2) 

~ 0 (o,l) x(2,o) ~ x(l,O) in Eq. ( 24)' and u(l,])~ u(l,o), 
' 

x(l,l) ~ X(l,O) if the "B" molecule is in the first cell. 

In the other limit, we assume no shielding, so that x( 2 ,0) = 2X(l,l) 

and u( 2 ,o) = 2U(l,l). 7 We also assume that the interaction potential 

between "A" and "B" is much larger than "A" and "C" 

(u( 2 ,0) >> U(l,l) >> U(0, 2 )). This is equivalent to neglecting the 

effect of inert molecules. By keeping only the leading terms in the 

expressions in Eq. (24), we can again show that Eq. (23) reduces to 

the Benesi-Hildebrand form of Eq. (15). Physically, these assumptions 

mean that the two molecules in the two cells are uncorrelated. 

If we plot 
1 

/UJ.X } vs PBo/ pB, then Eq. ( 15) yields a straight 

line, but Eq. (23) gives a curve with definite curvature. How~ver, 

1 
in practice, experimental errors of /< !J.X } at small pB are often 

large, so that with the least-square fit, the discrimination between 

l•:q. (J~·) aud l•:q. (;_)3) is djf'fi.cult, unless the curvature of Eq. (23) 

J 

1'. 
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is large. This happens, for example, when a and c in Eq. (23) are 

sufficiently small. 

Recently, Deranleau8 has derived an equation similar to our Eq. (23) 

for charge-transfer complexes in solution using the usual equilibrium 

approach. He assumes that an acceptor can interact with one or 

two different sites. He then sets up three rate equations for the 

formation of the three possible complex configurations. This enables 

him to calculate the average uv extinction coefficient as a function 

of donor concentration. His approach, however, has not taken into 

account the statistical distribution of complex configurations and 

the effect of inert solvent molecules. 

V. DISCUSSION AND CONCLUSION 

The main assumption in our derivation is that the molecules 

within the volume V around an "A" molecule are uncorrelated with 
0 

molecules outside the volume. We believe that this is a reasonable 

approximation in most cases. The approximation would, of course, be 

better if the volume V contains more molecules. 
0 

We have derived from our general formalism the results of two 

special cases where an "A" molecule can interact with at most one and 

two "B" molecules respectively. We can, of course, extend the calcu-

lations to the more general case where an "A" molecule can interact with 

at most p "B" molecules. The general expression for 1 /< !:J.X > with p 

th 
molecules in V should be a quotient with p -order polynomials of 

0 

( PB/ pBo) in both the numerator and the denominator. · 

What we should emphasize in our statistical theory is that we 

have taken into account both the statistical distribution of complex 

I I 
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configurations and the effect of inert solvent molecules. While our 

equations for 
1 /<~X > vs PBo/pB appear to be the same as, or close to 

those of others, the physical pictures are quite different. Thus, 

for example, if the spectrum for a complex depends on the complex 

configuration, then by assuming only one complex configuration, we 

should find for complexes in solution two spectra, one for unassociated 

molecules and one for complexes. However, if there is a distribution 

of complex configurations, then we should find a group of spectra, 

one for each complex configuration, superimposed on one another according 

to the statistical distribution of complex configurations. A practical 

example is given in the following paper, where we apply our theory to 

Raman scattering from iodine complexes in solutions. 

ACKNOWLEDGEMENTS 

This work was done under the auspices of the U. S. Atomic Energy 

Commission. 



l. 

-17-

REFERENCES 

UCRL-19058-Rev 
Part I 

See, for example, the review articles by R. S. Mulliken and 
I , , . 

W. B., Person, Ann. Rev. Phys. Chern. 13, 107 (1962); G. Briegleb, 

Elect'ronen-Donor-Acceptor-KomplEkxes (Springer-Verlag, Berlin, 1961); 

L. J. Andrews and R. M. Keefer, Molecular Complexes in Organic 

Chemistry (Holden-Day, Inc., San Francisco, 1964). 

2. T. L. Hill, Introduction to Statistical Mechanics (Addison-Wesley 

Publishing, Inc., Reading, Mass. 1960), p. 276. 

3. L. E. Orgel and R. S. Mulliken, J. Amer. Chern. Soc. 79, 4939 (1957). 

4. Since we assume low concentration of "A" molecules, we can neglect 

the probability that a "B" molecule can interact simultaneously 

with more than one "A" molecule. 

5. See, for example, J. 0. Hirschfelder, C. F. Curtis, and B. B. Bird, 

Molecular Theory of Gases and Liquids (John Wiley and Sons, Inc., 

New York, 1954). 

6. H. A. Benesi and J. H. Hildebrand, J. Amer. Chern. Soc. 71, 2703 (1949). 

7. We let the potentials be infinite when two molecules appear in the 

same cell. 

8. D. A. Deranleau, J. Am. Chern. Soc. 91, 4044; 91, 4050 (1969). 



,.~ 

.. 

LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 



....;.. ---. 

TECHNICAL INFORMATION DIVISION 
LAWRENCE RADIATION LABORATORY 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

A .... 


