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FAR-INFRARED GENERATION BY NONLINEAR OPTICAL INTERACTION 

Dillard Wayne Faries 

Department of Physics, University of California 
and 

Inorganic Materials Research Division, 
Lawrence Radiation Laboratory, 
Berkeley, California 94720 

ABSTRACT 

Tunable narrow-band far-infrared generation by nonlinear optical 

mixing is achieved for the first time. Two ruby lasers, simultaneously 

Q-switched by a single rotating prism, and operated at different 

temperatures are used as primary sources. The laser ~earns, with typical 

peak power of one megawatt in an area of 0.2 cm2 , a divergence half-angle 

of 1 to 2 mrad, and a pulse duration of 30 to 50 nsec, are combined and 

mixed in a nonlinear crystal, primarily lithium niobate (LiNbo
3

). The 

nonlinear polarization at the difference frequency induced in the 

crystal acts as a source for generating far-infrared. Tunability f~om · 

1.2 cm-l to 8.1 cm-l and from 21 cm-l to 37 cm-l is achieved by varying 

the lasing temperature and selective Q-switching of either R1 or R2 

transitions. The output power is increased by phase-matching. Peak 

powers up to about 20 milliwatts are achieved. Variation of power with 

deviation from phase-matching is measured. The far-infrared radiation 

is analyzed with a far-infrared Fabry-Perot interferometer, yielding 

values consistent with the difference of the two ruby laser frequencies. 

Calculations for the power output including effects of laser mode-struc-

ture, absorption, birefringence, boundary conditions and phase-matching 

are presented and compared with experimental results. 
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I. INTRODUCTION-

The motivation for difference freq~ency generation of electromagnetic 

radiation in the far-infrared region is twofold. Firstly, it offers 

the possibility of providing a useful source of radiation for spectroscopy 

in the far-infrared. Secondly, the nonlinear far infrared difference 

frequency generation has only been sparingly studied and needs to be 

placed on a firm foundation both experimentally and theoretically. The 

common motivation involved is a more complete understanding of the 

nonlinear interaction of electromagnetic radiation with matter and thus 

a better understanding of the nonlinear optical properties of matter. 

We will be primarily concerned with the nonlinear optical process 

of difference frequency generation itself. This involves interaction 

of three electromagnetic waves in a crystal,. two high frequency waves 

(in our case, visible light) and one far infrared wave at the difference 

frequency of the two visible sources. This is closely related to other 

nonlinear processes1 •2 (electro-optic effect, sum-frequency generation, 

parametric processes) which have been studied much more extensively. 

In principle, the study of difference frequency generation should 

yield information about the nonlinear material at energy levels 

corresponding to both the high frequency and low frequency waves. In 

practice, spectroscopic measurements using only one frequency can often 

yield more information more easily. (The information obtained by 

the two different methods is generally not redundant because different 

selection rules apply to the two cases.) Thus, in the long run, the. 

use of difference frequency sources for spectroscopic sources may be 

the stronger motivation. However, we will spend very little time on 
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this aspect. 

"Exploratory spectroscopic studies in the region between 0.05 and 

3 mm in wavelength [3 to 200 cm-l in wave number] began more than 50 

years ago but progress has been greatly impeded by the lack of suitable 

bright sources so that the spectroscopy here has lagged well behind 

that in other parts of the spectrum."3 There is certainly no lack of 

transitions in this region of the spectrum: magnetic levels (e.g. 

cyclotron resonance of electrons with small effective mass), phonons, 

-Vibrational levels of larger molecules, rotational levels of small mole-

cules, crystal field splittings, energy gaps in superconductors, etc. 

The primary sources, mainly used in other regions of the spectrum, are 

.not entirely satisfactory when extended into the far-infrared. Electron 

beam devices such as the klystron, magnetron, etc., are useful for 

low frequencies. Their efficiency falls off rapidly with increasing 

frequency. With considerable trouble, electron beam devices_have been 

-1 able to extend to 25 em • By using harmonic generation (multiples 

of the fundamental frequency) , one can obtain higher frequencies with 

resultant great loss of efficiency. An additional disadvantage is the 

limited tunability of the frequency (~ ±. 5%). On the other hand, hot-

body sources are usefUl for high frequencies. They produce broadband 

radiation, whose power spectrum falls off rapidly with decreasing 

frequency. 2 For example, a perfect black body of surface area l em and 

temperature of 5000°K will do quite nicely for lighting a room, 

radiating approximately 1000 watts of radiation, much of which is visible, 

but it delivers only about l milliwatt in the entire range from 

0 to 50 cm-l into a solid angle of 2rr. By contrast, difference 

w' i 

·., 
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frequency generation is capable of producing peak powers of milliwatts 

11 l .d · h f b d 'dth on the. order of 0.01 cm-l in . a sma er so· 1 angle w1 t requency an 1-11 

Thus, we can see some of the potential o~ this method. Let us turn 

now to a brief introduction to.the nonlinear process. 

It is usually assumed that away from resonance, the polarization 

+ + + + 
P is linearly proportional to the applied electric field E: P = XE 

where X is, in general, a tensor. One would not expect the linearity 

+ 
to be good at all field strengths, particularly as E becomes non-negligible 

compared with the atomic electric fields. Thus, one should expect an 

+ 
expansion in higher powers of E should be appropriate. The first-order 

nonlinear term implies frequency mixing because a product of two different 

frequency components yields frequencies.which are linear combinations 

of the applied frequencies, namely sum and difference. Quantum mechani-

cally speaking, difference frequency generation means a loss of a high 

frequency photon and a gain of a slightly lower frequency photon with the 

creation of a difference frequency photon. In. particular, let us consider 

two discrete frequency components in plane-wave form 

+ + . 
E.(r,t) = 
~ 

1/2 [l. exp(ik.z- iw.t) + c.c.],i = 1,2. 
~ . ~ ~ -

This will result in a polarization of frequency w
1 

- w2 

(1) 

PN18
(w

1
- w

2
) = 1/2 [x~2 ) &

1
&

2
* exp[i(k

1
- k

2
)z- i(w

1
- w2 )t] + c.c] 

(2) 

and a polarization of frequency w
1 

+ w
2 

PN18
(w1 + w

2
) = 1/2 [x~2 ) &

1
&

2 
exp[i(k

1 
+ k

2
)z - i(~ + w

2
)t] + c.c] 

(3) 
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We expect such polarization waves to create new fields at the new 

1 h 
. 4 

frequencies. In particu ar, if w
1 

= w
2

, we get the second armon1cs, 

and the de fields. 5 Higher-order nonlinear terms will, in general~ give 

any linear combination (with integral coefficients) of frequencies 

involved, e.g. 3w
1 

- 2w2 . These terms are much smaller and can usually 

be ignored. 

Consider now only the difference frequency generation. We may 

note from Eq. (2). that the wave-vector and thus the phase of the polari-

zation wave at w
1 

- w2 is determined by the wave-vectors of light at 

w
1 

and w2 . On the other hand, the wave-vector of the propagating 

radiation at the difference frequency is determined by the index of 

refraction of the medium at frequency w
1 

- w2 . These two wave-vectors 

at w
1 

':.... w2 will, in general, .be different because of dispersion. The 

result is that the polarization wave and the radiation will be alter-

nately in phase and out of phase as they propagate through the medium. 

This results in an oscillatory behavior of the power generated as a 

fUnction of the thickness of the generating medium. If w
1 

w .. .. .. .. 
and k = ~·n(w), then we may define a momentum mismatch, ~k = k

1 
k

2 
k. 

By using the birefringence of a crystal to compensate for the dispersion, 6 ' 7 

we can make ~ = 0, a worthwhile ac~omplishment as we shall soon see. 

Assuming a. monochromatic wave in a non-magnetic (ll = l) current-free 

medium, Maxwell's equations easily reduce to the wave equation 

~X~ ... 2 .. 
X E ~D = o. (4) 

c2 

.. 
The displacement vector D is given by 

' 
)'IIi 

' 

,,, 
~' 
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~ ~ 
4 
~L ~NL . ~ 47T~PNLS D = E + TIP + 47TP = tE + 

~L ~NL . 
where P and P are linear and nonlinear polarizabilities, respectively, 

and PNLS is given by Eq. (2), with PL being swept into the tE term and 

any l~cal field corrections being swept into the susceptibilities 

... . d ( 2 ) ( R 1 68 6 ) · £ an Xn... see ef. , p. - 9 Let us make the following non-essential 

but simplifying assumptions: (1) infinite plane waves propagating in 

the z-direction, E(;) = l/2(l(z)eikz + c.c.); {~) V•l = 0; (3) 

1 a2& a& . 
-- <<- · (4) &(o) = O·, (5) nonlinear medium of length i with no 
k 2 az ' a2: 
discontinuity in e:, i.e., no reflections at boundaries; ( 6) e: is a 

scaiar; (7) k is real, i.e., no absorption; and (8) the beams producing 

the nonlinear polarization are not depleted, thus leaving PNLS with 

no z-dependence other than phase. Assumption (3) means physically that 

the rate of growth of the amplitude & with z. does not change drastically 

within a wavelength. All of these assumptions give us a simplified 

case for estimating the generated power as a function of input powers, 

frequency, momentum mi9match, and length of crystal. From assumptions 

(1) and (2), Eq. (4) can be immediately transformed to 

(4a) 

which is a wave equation with the nonlinear polarization wave acting as 

a driving force. Making the substitutions and using assumption (3), we 

immediately obtain 

-2ik at az "*" "*" * a.
1 

tr.
2 

exp ( illkz) . (4b) 
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Upon integration and squaring the absolute value, we obtain the power 

output to be proportional to 

. 2 ~~. k2) Sln --
2 ( 5) 

Thus we get power output proportional to (1) the square of the frequency, 

( 2) the product of· the power of two input· sources, ( 3) the sq_uare of 

a nonlinear susceptibility and (4) the square of the length of the 

nonlinear medium, provided 6k = 0. For ~k Q ~ 2TI, the power output is 

down considerably. The case of ~k*O shows the oscillatory behavior 

mentioned earlier. 

The implications are clear. The dependence on the power of the 

input sources, coupled with the size of the nonlinear susceptibilities, 

implies a requirement of high power not satisfied until the advent of 

the laser. The frequency dependence, aided considerably by the fact 

that high frequency photons carry more energy and are thus more easily 

detected, means that high-frequency production,·e.g., sum frequencies 

or large difference frequencies, is a much easier task. On the very 

low frequency end, detection is again very good where one can use 

waveguides and rectifiers.. Thus the difference fr~quency generation at 

3 GHz,the frequency separation of two axial modes of a ruby laser, was 

seen .quite early8 a~ was the visible difference frequency between the 

ruby laser and the 3115 A0 line of a mercury discharge. 9 In spite of 

the difficulties, the far-infrared region is very enticing because 

tuning the high frequency inputs by a relatively small amount, such as 

could be obtained by temperature-tuning the ruby laser, would result 

in a far-infrared source with large tunability
10 
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Several groups have reported fixed frequency far-infrared 

radiation by difference frequency generation. 11 
Z~rnike and Berman 

~1 
detected radiation near 100 em resulting from the mixing of an 

unknown_number of modes from a single pulsed neodymium glass laser. 

12 . . 
Yajima and Inoue used the R

1 
and R

2 
lines of a single ruby laser to 

-1 generate a fixed frequency, V = 29 em Zernike13 and Van Tran and 

14" 
Patel have used the 9.6~ and 10.6~ C02 laser transitions to produce 

radiation in the 100 cm-l range. We have used two simultaneously 

Q-switched ruby lasers, tuned both by temperature and to the different 

-1 
R-lines, to produce tunable, harrow band radiation from 1.2 em to 

. -1 . 1 1 
8.1 em and from 21 em- to 37 em- • This is but a small step in 

what promises to be a very fruitful area of research. 
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II. EXPERIMENTAL APPARATUS 

Lasers 

The lasers used are fairly typical ruby lasers. The cylindrical ruby 

rods (0.05% Cr+3) have end faces cut parallel within 2 seconds of arc 

and flat -to );_/10. Qpe rod is 3t inches long and has a diameter of t inch; 

the other is 4 inches long with a diameter 
. 3 
of 8 inch. The fact that 

we used two different sizes is an accident of history and not a 

purposeful, calculated move. The rod in each case is surrounded by 

_a cylindrical glass shield through wh~ch fluid is circulated to 

maintain the ru?y at a fixed temperature. Around the glass shield is 

a helical xenon flash lamp through which a capacitor bank ls discharged 

to produce a pumping light which pumps the Cr+3 ions into an excited 

metastable state within a few milliseconds. (See Fig. 1 for an 

energy diagram of Cr+3 in ruby.) The energy discharged through the 

lamps varies from about 500 joules to about 2000 joules. The flash 

lamps are cooled only by contact with the air and a slow flow of 

nitrogen gas (approximately 4 cubic feet per minute). Thus the lamps 

are not flashed too frequently, generally once every five minutes. The 

lamps are housed in a cylindrical reflector with polished silver 

surface, but this was found to be non-critical. Diffuse surfaces 

make little change in the threshold pumping power required for lasing. 

Electrical connections to the flash lamp are made with flexible leads 

to reduce mechanical vibrations transmitted from the lamp to the 

rest of the system. 

In order to produce two different frequer.cies with the two lasers, 

' 
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4. VU/UIIA F2 2 

F2 

V/111/1/Jt 4F ' I 29cm·• 

t 

0 . 

R1 (69 4 3 A) 

I o. 38 em·• 

t 
XBL 698-1117 

Fig. 1 Energy level Diagram of Cr+3 in Ruby. There is a fast 
radiationless

2
transition from the F levels to th2 meta

stable state E (lifetime of 3 msec). Thus the E levels 
become more populated than the ground state levels through 
optical pumping on the F levels. 
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16 17 . we operate the two lasers at. different temperatures, ' e1ther both 

lasing on the R1 transition or one on the R
1 

.transition and the other 

on the R2 transition (Fig. 1). A wide range of temperature tuning is 

required for a wide range: of frequency tuning. Above room temperature, 

the linewidth broadens rapidly with temperature increase,17 the gain 

thus decreases and laser action is impractical. At liquid nitrogen 

temperature, the gain gets very large. To prevent spontaneous lasing 

action from extraneous surfaces, the rods must be cut at the Brewster 

angle and a m~chanism for Q-switching other than the rotating prism is 

required. However, the rotating prism is necessary for our synchroni-

zation scheme (see the section on synchronization of pulses). If we 

were able to use one laser from room temperature down to 77°K, this 

would represent a range of difference frequencies, lv (Room temperature) -

v (cooled)!, from 0 to 18 cm-1 • This might be possible to achieve with 

more versatile means of synchronizing the pulses such as Kerr or 

Pockels cell Q-switching. 

As the next best thing, we attempted to use dry nitrogen gas, 

cooled in heat-exchange coils by liquid nitrogen. This was capable of 

cooling the ruby to about -l00°C. There were, however, large temperature 

gradients along the rod, causing a very erratic behavior of the laser. 

We were thus forced to go to coolants with more heat capacity, namely, 

' 
liquids. Several liquids were tried and rejected for a variety of 

reasons such as reaction on 0-rings or plumbing hoses, fear of low 

flash points, and insufficiently low freezing point. One failure worth 

mentioning is the use of silicone oils. It is not easily learned, 

without possibly catastrophic experience, that a reaction occurs under 

I 

~~ 
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high-intensity lamps, leaving a brown precipitate and releasing gas. 

It is also difficult to remove from cracks, does not evaporate, and 

may come back to haunt a laser many weeks after its intended banishment. 

Ethyl alcohol, on the other hand, keeps the laser quite happy. 

The temperature control system consists of a bath of approximately 

one gallon of fluid, a_thermoregulator to switch a heater on or off, 

and a pump to circulate the liquid through the laser. The thermoregu-

lators are good for control to ±O.Ol°C. The problem of overshooting 

the desired temperature and the problem of circulation make control 

no better than ±O.l 0G. In order to avoid overshoot, the heating and 

cooling must be closely balanced. In the room-temperature control, 

tap water cools the bath via -coils in the water. For the cooled laser, 

the ethyl alcohol is cooled by· flowing through copper walls of a 

bucket of dry ice. This is capable of cooling the laser below -50°C, 

but regulation is not good below -40°C. With a temperature coefficient 

of 0.135 cm""1 /°K,16 this gives us a tuning range of over 8 cm-l 

To complete the laser, an optical cavity is required, two mirrors 

providing feedback to the amplifying medium, ruby, to provide 

oscillation (see Fig. 2). The oscillation condition is that a round 

t . thr . .h th . t . ld . 1 . - 2~ - -1 h . r~p oug e cav~ y y~e s ga1n , 1. e. , r 1 r 2 e - w. ere 

r
1 

and_r2 are the reflectivities of the mirrors,~ is the length of the 

ruby rod, and g is the gain per unit length. Generally one mirror's 

reflectivity is high, the other being lower, maintaining the laser 

oscillation condition but allowing as much power as possible to leave 

the cavity and be used. The high reflectivity mirror is discussed 

later, being determined by considerations of power and timing. 
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~ L ·I 
r, 

Ruby 0 D 
I<J t>l 

Mirrors 

XBL 698-1118 

Fig. 2 Simple Laser Cavity. r
1 

and r
2 are the reflectivity of the mirrors. 

I 
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··Special considerations for producing the R
2

- line are also discussed 

later. We will now consider the low reflectivity or output mirror. 

The cavity_ formed by the two mirrors. essentially forms a Fabry-Perot 

interferometer, which will support standing-wave oscillations separated 

in wave number by 1/21, call~d the free spectral range of a Fabry-Perot 

-1 
interferometer. L is ~ypica~ly 50 em, making ~v - 0.01 em • Since 

-117 
the fluorescence.linewidth of the R-transitions in ruby is 5- 10 em 

at room temperature, we should expect many lines to lase and give a 

broad frequency band, i.e., on the order of a few wavenumbers broad. 

This is illustrated in the Fabry-Perot interferogram of the laser output 

of Fig. 3a. With a spacing of 0.25 em between the plates of the 

Fabry-Perot, this shows the output to be about 1 cm-l in breadth. One 

would like to make the frequency band as narrow as possible, increasing 

the power per unit frequency width. This is possible by the use of a 

. 18-21 resonant reflector as the output m~rror. This consists .of two 

glass optical flats aligned parallel with a spacing of 2.5 em. Each 

set of two surfaces form a low reflectivity Fabry-Perot interferometer 

used in reflection. Th 1 . k 'th . 1 . t .. 1 18 b t e coup ~ng ma es e ana ys~s non- r~v~a , u 

basically there are maximum reflection coefficients spac~d in wavenumbers 

. 1 
by 

2
d, the free spectral. range for a given pair of surfaces. The 

longer spacings in the reflector are about 2.5 em, yielding a free 

-1 spectral range of 0.2 em • The shorter spacings, the thickness of the 

-1 flats, yield a free spectral range on the order of 1 em , thus 

modulating the reflectivity vs. wavenumber with this period. This 

leaves a few modes, spaced by 0.2 cm-1 , with higher reflectivity at the 

output mirror and situated near the peak of the fluorescence line, which 



Fig. 3 FabYy-Perot Interferograms of Laser Output. (a) Output at 

-1 low resolution (free spectral range of 2 em ). (b), (c), 

(d) Output with a resonant reflector in the laser cavity at 

low resolution (b) and at high resolution I (c), (d)] (free 

spectral range of 0.5 cm-1 ). The laser beam is diffusely 

scattered by a ground glass before the interferometer. 

The pictures are obtained by placing a camera, focused at 

infinity, directly after the interferometer. Smaller 

spacings of the Fabry-Perot plates give a larger free 

spectral range , less resolution, and a set of rings of 

larger radii [Fig. (a), (b)]. If the source has spectral 

content narrower than the instrumental linewidth of the 

interferometer, a set of narrow rings appears [Fig. (b)]. 

Fig. (a) shows a spectral content of many lines, not. 

completely resolved, with a total width of approximately 

-1 half the free spectral range of 2 em Fig.- ( c ) and (d) 

-1 each show two frequency modes separated by 0.2 em In 

Fig. (c), one mode is dominant; Fig. (d) shows modes of 

nearly equal intensity. 

~-

I 
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are favored to satisfy the oscillation condition. Thus the laser generally 

lases in one or two of these modes, illustrated by interferograms 

of the outputs shown in Fig. 3. 

Synchronization of Pulses 

The simple cavity in the above discussion is unsatisfactory for 

the following reason: The energy comes out in a long irregular train 

of pulses, with a total-pulse length of the order of a millisecond. It 

would be useful not only to compress the energy in the frequency domain 

but also in the time domain. One should like to hold back the energy 

stored in the Cr+3 ions until the gain is large and all the energy will 

be dumped into a short pulse, with duration on the order of tens of 

nanoseconds. There are several well-established methods 22 of doing 

this, so-called Q-switching methods: Oscillation is prevented by 

lowering the Q of the cavity, (lowering feedback or introducing losses). 

At a time when the gain is large, the Q is "switched" to a higher 

value and oscillations are allowed. The most common methods are 

saturable absorbers, dyes placed in the cavity to provide loss until 

the absorption saturates, rotating reflectors, providing feedback only 

for the short time in which they are aligned properly, and Kerr or Pockels 

cells acting as fast electronic shutters. 

Now we add a complication. Not only do we want to produce Q-switched 

pulses, but we want to produce them-in two separate lasers at the same 

time. To synchronize the millisecond non-Q-switched pulses is not 

difficult 23 : Simply starting the flash lamps from a common pulse 

would generally suffice. The Q-switched case is more difficult. 

Two methods using saturable dyes are of historical interest. 

•·: 
' ' 

i 
'll; 
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24 · II ( ) Soffer and McFarland used one Q-switched laser to "burn a hole saturate 

the absorption) in a saturable dye of another laser cavity. This 

resulted in .a delayed "synchronized" pulse, delays being consistently 

on the order of 100 nanosecond. Gr~g~-a.~d Thomas25 achieved tremendous 

synchronizatioh {± 3 nsec) of five lasers by interlocking the cavities, 

using each of several saturable absorber cells in more than on-e cavity. 

As· useful as this technfq_ue was for increasing power for production of 

plasmas, it is useless for our problem because the freq_uencies locked 

together as well as the timing. Thus one did not have two independent 

lasers .at the same time. A rather specialized techniq_ue was used by 

VanTran and Kehl26 to Q-switch a neodymium and a ruby laser together. 

A beam splitter with high reflectivity at the ruby freq_uehcy and high 

transmissivity at the neodymium freq_uency was used to combine the 

two cavities, Q~switching both cavities with a single rotating prism. 

~~is was q_uite effective but was limited to special cases where the 

freq_uency difference of the two lasers is q_uite large. 

The following property of the roof-top prism allows us, in principle, 

to Q-switch any number of lasers independently from a single rotating 

prism, changing the temperature, relative timing, direction_, or laser 

material at·will. Any ray -enterl,ng the broad face in the plane ~erpendicu

lar to the roof edge is reflected back parallel to itself. (Total 

reflection occurs over a small range of angles.) The independent optical 

paths of two lasers are both centered at the roof edge, but at an angle 

to each other !Fig. 4]. The prism is rotated about a horizontal axis, 

with its roof edge perpendicular to the axis of rotation. With a laser 

pumped, Q-switching begins when the roof edge of the rotating prism 
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Fig. 4 Top view of two lasers Q-switched from the same rotating prism. The prism reflects an 
incoming ray back parallel to itself. 
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reaches the position perpendicular to the optical path of the laser. 

Therefore the relative timing of the two lasers can"be controlled by 

slight tilting of the optical path of one laser with respect to the 

horizontal plane [Fig. -5]. If the cavity is bent using prisms 

{see Fig. lOb], the·timingcan·be controlled by tilting a prism [P21 

without changing the direction of the laser output. A rotation rate 

of 400 cps and a screw with 80 threads/inch on a lever arm of 12 inches 

makes a fine tuning of a few nanoseconds possible. 

Upon trying the synchronization, we find a jitter, an inconsistency 

in relative timing, of as much as 50 nsec. With pulses of approximately 

30:...:.50 nsec pulse length, this is·not a hopeless situation, but it is 

discouraging. Let us consider the variables involved and their possible 

effects and remedies. The possible causes of jitter are: (1) 

mechanical vibration, (2) variations in the temperature of the ruby

rods, (3) variations in the timing of the initiation of the flash, 

(4) variations in voltage applied to flash lamps, ( 5) variations of 

pumping power of the flash lamps due to other reasons. 

We have taken several precautions against mechanical vibrations. 

The rotating prism is mounted on a separate steel and concrete column, 

with rubber mounts to absorb vibrations. The laser tables are mounted 

on a l-inch thick steel plate on a heavy wooden table. As mentioned 

before, the flash lamps are connected with flexible leads_ to avoid 
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shaking the table upon flashing. While the other variables might be 

expected to vary their effect according to the threshold and how close 

to threshold one is working, mechanical vibrations should be more 

consistent, provided no changes are made in the mechanical system. Since 

the jitter varies greatly, sometimes small and sometimes large, mechanical 

vibration apparently has a small effect. 

Variations in the temperature of the ruby rod can be made easily 

to check its effect. We can control the temperature to ± O.l°C. 

Fig. 6 shows a series of pictures with a change of temperature of l.2°C 

for one of the lasers. Tens of degrees are required to move the relative 

timing 100 nsec. Thus vre seem to be on the safe side here. 

The initiation of the flash requires an explanation. A diode and 

a small light are placed near the rotating prism at a given point on 

a circle around the axis of rotation. When the prism faces the light, 

it reflects the light into the diode, giving a pulse, marking the time 

when the prism passes this point. The pulse is amplified, fed into 

a Del-a-Gate (LRL Counting Equipment) which produces a sharp 6 volt 

pulse used to initiate the flash. The time of initiation before the 

prism aligns with the laser cavities can be varied by moving the light 

and diode around the axis of rotation. The pulses from the Del-a-Gate 

come every 2.5 msec and are found to have a jitter of 5 )lsec. This 

appears to be caused by electronic pickup and could probably be 

eliminated. However, Fig. 7a shows the size of the effect. A change 

of 100 )lsec results in a 50 nsec change in laser timing. Thus a jitter 

of 5 )lsec in the length of the millisecond flash before Q-switching 

should result in only a few nanoseconds of jitter. 
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Fig. 6 Effect of temperature on relat i ve timing of laser pul ses . The 
laser s ignals are displ ayed on a s ingle oscillos cope trace at 
a sweep rate of 100 nsec/di v , one l aser signal being delayed 
by 125 nsec. Each photograph shows two trials. (a), (b ) 
temperatures of the t wo l asers are equal. (c), (d) tempera 
tures of the t wo l asers differ by l. 2 °C. Relative timing 
is essentially unchanged . 

.. 
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Fig. 7a Effect of timing of init i at i on of flash on relative timing 
of l aser pul ses. The l aser s i gnals are d i splayed on a sing 
oscilloscope trace at a sweep rate of 100 nsec/div, one 
lase r s i gnal being delayed by 125 nsec . The interval be 
t ween initiation of the f l ash and the Q- sw itched pulses i s 
100 ~sec l ess for trace (c) t han for all the other traces. 
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The voltage variation can, of course, have a strong effect near 

threshold; a small variation can be the difference between lasing or 

not lasing. Thus we must work sufficiently higher than threshold, 

100- 200 volts. In this regime a further increase of 100 volts may 

change the timing by 50 nsec. Since the voltage can be easily set 

to ± 10 volts, this represents_ no problem. 

This seems to lay the blame on some inconsistency in the flashing 

of the pumping lamps. It may be simply a problem of getting them to 

a stationary operating temperature. The larger laser shows a strong 

time dependence in its power output, the first shot being strong and 

subsequent shots being weaker. Accompanying this, the relative timing 

walks off by approximately 100 or 200 nsec. (See Figure 7b) Since the 

lamps are different (even if they were made identical, they would 

generally be used at different operating conditions), it is reasonable 

that fluctuations will affect the timing adversely, particularly since 

the cooling for the lamps is quite poor. · If the lamp conditions become 

approximately equal, then fluctuations should be small. This condition 

was apparently reached in using the larger laser for lasing on the R
1 

line. This is because the threshold for the R
2 

line in the smaller 

laser is more nearly equal to the _R
1 

line threshold in the larger 

laser. At worst, approximately half of the attempts at synchronization 

in a given run yielded considerable overlap; at best, as in the R
1

- R
2 

runs, nearly all attempts were useful. Making the lasers identical 

and in a s~~etrical set-up might improve the situation, but by 

nature these experiments are not symmetrical: We want different fre-

. quencies from the two lasers. A set-up with water-cooled lamps does 
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Fig. 7b Change of r el ative timing of laser pul ses with warming of 
fla sh l amps . The l aser s i gnal s are d i spl ayed on a s ingle 
oscilloscope trace at a sweep rate of 50 nsec/d i v , one 
l ase r signal being delayed by 125 nsec. Re l ative timing 
changes b y more t han 100 nse c as the l amps warm up from 
the four consecut i ve f i r ings . 
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seem worth trying: 

Operation of the Laser at the R
2 

Transition 

gQ 
The gain factor, g, in the oscillation condition, r

1
r

2
e = l, 

can be written as 

g = a(nu - ~) ( 5a) 

where a is proportional to the transition probability between the upper 

and lower states of the active medium and n , n are the populations 
L u 

of the lower and upper state, respectively. When n
1 
~ nu' then 

g < 0 and the usual z-dependence of light in the medium exp (-jgjz) 

represents a loss. If nu > n
1

, then g > 0 and the negative absorption 

implies gain in the medium, exp (gz), with g > 0. 

In the case of the ruby laser (see Fig. 1), both the 2A and theE 

+3 states of Cr are populated by the flash and represent upper states 

while the ground states 
4
A

2 
represent the lower states. Because of 

fast relaxation between 2A and E, they remain in approximate thermal 

equilibrium with each other, the ratios of their populations being 

~ -1 given by a Boltzmann factor exp (- /kT), where~= 29 em . is the 

energy separation between 2A and E. At room temperature, this means 

nE == 1.12 n2A. This in itself discriminates against the R
2
-transition. 

Thus, even if the transition probabilities for R
1 

and R
2 

transitions were 

equal, R
1 

will always reach the lasing threshold first. Because of fast 

relaxation between the two levels, the 2A level will be drained as the 

E leve-l is being drained. · Further discrimination occurs in the transi.:.. 

tion probabilities: 
1 II 1 II 

a(R
1 

): a(R
1 

) : a(R
2 

): a(R
2 

) = 10: 2: 7: 4, where 

1 and II refer to ordinary and extraordinary polarizations, respectively. 27 

I( 
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The combination of the Boltzmann population ratio and the ratios above 

gives Fig. 8, a 
1 1 28 

plot of g(R
2 

) versus g(R
1 

). The equation is given 

in Fig. 8. Using such plots with the oscillation condition including 

. any losses introduced, one can determine conditions, e.g. reflectivity 

of mirrors, length of rod, pumping power, under which R
2
-oscillation 

will occur provided we discriminate sufficiently against R
1 

by some 

means. 

The simplest means, in principle, to discriminate against R
1 

is to 

place a polarizer in the cavity, allowing only extraordinary polarizations 

II II (note that a(R
2 

): a(R
1 

) = 2:1). However, this requires very high 

p~~ping powers, requiring several times the population difference to 

h . h · l · . t A th ac 1eve t e same ga1n as R
1 

, and 1s thus not very conven1en • no er 

. . . . f'l 't . 28 
s1mple means 1s the use of 1nterference 1 ters as cav1 y m1rrors, 

selectively reflecting R2 . This is a useful technique but limited to 

a narrow band of frequencies. Acquiring an interference filter capable 

of withstanding Q-switched laser powers and providing sufficient 

discrimination between the R
1 

and R
2 

lines over a range of temperatures 

is not easy. 

12 29 30 31 . 32 Several people ' ' have successfully used the Lyot_ - ~hman 

filter to produce lasing action at the R
2
-transition. The filter 

consists of a plate of birefrigent material (in our case, quartz) between 

two parallel polarizers. The optic axis of the plate is perpendicular 

to the direction of propagation and at 45° to the polarization trans-

mitted by the polarizers. Defining a "retardation wavelength", >..R, by 

(5b) 
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Relation between Gain of R~ 
1 

- Transition and R1 
The equation is 

1 
1 a(R2) 

g(R2) = 1 
a(R

1
) 

(
1 + 3x\ (R1) 
3 + X) g 1 

where N is the density of Cr+
3 

and X= 

N (1 -X) 
3 + X 

exp ( -l::,./kT) • 

Transition. 

., 
1 
I 
I 
I 



·-

-29-

where A is. the vacuum wavelength, n , n are the extraordinary and 
o e o 

ordinary indices of refraction, we see that a plate thickness, d, of an 

integral number of "retardation wavelengths" results in no change in 

the polarization in passing through the quartz and thus 100% trans-

mission through the filter. Half-integral number of AR means a change 

in the polarization by 90° and a resultant zero transmission. At inter-

mediate thicknesses, the transmission is given by 

2 Tid 2 Tid ( T = cos -- = cos \"" ne - n ) • 
AR Ao o 

{ 5c) 

A given thickness of quartz alternately passes and stops light as one 

sweeps the frequency. By changing the thickness one changes the_ 

frequency difference between pass and stop bands. One should like to 

choose a thickness such that we get a pass band at R
2 

and a stop band 

at R1 . The thickness specifies the distance between bands. To actually 

tune the pass band to R2 , one can use several methods. One can change 

29 12 30 the temperature, or one can rotate the crystal. , Rotation about 

the c-axis increases the path length as (cos e)-1 , e being the angle 

of incidence. Rotation about an axis perpendicular to both the beam 

and the c-axis also increases the path length as (cos 8)-1 , but decreases 

2 the index difference as cos 8; thus there is an effective decrease in 

crystal thickness as cos e. cos e moves slowly near e = 0 so that fine 

tuning is easily achieved. 

We use a single polarizer and a 1 em thick quartz plate (see Fig. 9a). 

The light passes through the polarizer and quartz plate, is reflected 

and again passes through the quartz plate and the polarizer. Thus we 

have a complete Lyot-~hman filter, the single polarizer serving as.both 
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Cavity Configuration for Lasing at R
2
-Transition. 

F = flash lamp, M = dielectric-coatea mirror, 
P = prism, P0 = polarizer, Q i quartz, R = ruby rod. 
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polarizers and the 1 em quartz plate acting as a 2 em quartz plate 

because of the double traversal. We rotate the quartz crystal about 

the axis perpendicular to both the beam and the c-axis. In order to 

keep the threshold from becoming too high, a 70% dielectric-coated 

mirror is used as the output mirror. The threshold pU!Il.ping power is 

about 50% higher for this sit~ation than for. R1 - line production using 

the 25% resonant reflector. Theoretically, one could eliminate the 

polari~er. This requires that the gain for· a round trip of R2 through 

the cavity be larger than the gain for a round trip of R
1

• With the 

quartz plate set properly, the polarization of the R2-line will return 

from its double traversal of the quartz plate unchanged while polarization 

of the R1-line will be rotated by 90°. Thus, the condition to make the 

. l l II R2 transition lase before R
1 

1s 2g (R2 ) > g(R
1 

) + g(R1 ). This is 

l l II 
possible theoretically since 2a(R

2 
) > a(R

1 
) + a(R1 ). The relation 

l . 
between g(R

2 
) and g(R

1 
), derived from the Boltzmann equilibrium 

condition na,/nE = exp~~ J, is given by 

l 

2g(R}) = -2~~-(R.....:2"--)--::-II-[l + 3 expi-~/kT)] [g(Rll) + g(Rlll )] 
a(R1 ) + a(R

1 
) 3 + exp(- /kT) J 

where N is the density of chromium ions. 

l 
- N a(R

2 
) 

This equation is 

r~ -exp(-:/kT~ 
L3 + exp(- /kTU 

(5d) 
plotted in 

Fig. 9b. The condition for the R
2 

line to lase first is only reached 

l 
for g(R1 ) greater than 0.2. Since our typical operating condition is 

l 
near g(R

1 
) = 0.1, this requires prohibitively high pumping powers for 

our system. 
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Relation of Competing Gains in Case of No Polarizer in 
1 II 

The dotted line describes the relation g(R
1

) + g(R1 ) 

The solid line describes the actual relation between 
1 II 1 1 II g(R
1

) + g(R
1

). If 2g(R
2

) > g(R
1

) + g(R1 )~ the laser can lase 

on the R
2 

transition without a polarizer in the cavity. 

., 
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Fig. 10a shows two spec.tra of the laser output, one showing the R1-~ine, 
the other showing the R

2
-line. The width of the lines is due to 

a wide slit on the spectrograph. 

Normalization by Sum-Frequency Generation 

Since the synchronization may have considerable jitter and laser 

pulses may vary in their spatial and temporal d~pendence, the space-time 

overlap on which the total output of difference-frequency radiation 

depends may vary wildly from shot to shot. It is thus important to have 

a normalization procedure, a ·process to eliminate the dependence on 

the space-time overlap. Simultaneous detection of another nonlinear 

process of the same order, the sum-frequency generation, should serve 

the purpose. Normalization by sum-frequency generation is ideal for 

eliminating fluctuations in the time overlapping, which is the major 

difficulty in our experiments, but is not so effective for eliminating 
\ 

fluctuations in the space overlapping because the effects of spatial 

structure of laser beams on sum and difference frequency generation are 

different. This will become clear later, when the effect of a finite 

beam is treated in the theory. 

Another problem appears: the second-harmonic generation of each 

laser frequency also occurs and must be eliminated. This problem has 

33 . 34 
been solved by the techniques of Maier et al. an~ Armstrong . 

A nonlinear crystal of symmetry 42m or 43m {potassium dihydrogen 

phosphate, KDP, in our case) is cut with faces perpendicular to the 

110 and mounted with the z-axis vertical, the x-y plane horizontal. 

From symmetry requirements the only non-zero nonlinear susceptibility 

coefficients Xijk (Pi = Xijk EjEk)' are Xxyz' Xzxy' ~zx' 12 
One laser 
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XBB 697-4903-A 

Fig. lOa Laser output spectra using spectrograph. 
(a) lasing on R2 transition. (b) lasing 
on R1 transition. The width of the lines 
is due to a wide slit and overexposure. 

.. 
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is polarized vertically, the other horizontally. The horizontal polari-

zation produ.ces only P ~ at the second-harmonic frequency_; the vertical 

produces no second harmonic. Thus the second-harmonic can be eliminated 

by a polarizer passing only horizontal polarization. The combination 

of vertical and horizontal gives sum-frequency polarizations P and P • 
X y 

The ratio of sum-frequency to second-harmonic radiation detected can thus 

be made as high as 50 or 100. 

Complete Experimental Set-up (see Fig. lOb) 

The pulses of the two lasers are detected by two biplanar photodiodes, 

whose outputs are displayed on a Tektronix 519 oscilloscope. One output 

is delayed by-a 125-nanosecond delay line to separate the displays. 

2 Typical outputs are one megawatt in an area of 0.2 em , a divergence 

half-angle of 1.5 mrad; and a pulse duration of 30 nsec. This power is 

usually distributed into two frequency modes separated by 0.2 cm-l The 

two beams are made coincident and parallel (within one minute of arc) 

by careful a~justment of a prism (P4) and the dielectric-coated beam splitter. 

The beam splitter is nominally 50-50, but reflects more vertical 

(perpendicular to the plane of incidence) polarization and transmits more 

horizontal (about 65%). Our lasers are polarized, one vertically, 

one horizontally. Thus the combined beam goes into two branches, one 

more powerful than the other. The higher intensity beam is made to 

impinge on a nonlinear crystal for difference frequency generation. 

The crystal is mounted on a rotatable table directly in front of a light 

pipe leading to a far-infrared detector. A black polyethylene fi'lter 

cuts the laser radiation, passes the far-infrared. The other branch 

goes to the normalization scheme. 
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Fig. lOb Total Experimental Schematic. A = axis of rotation, 
B = microscope-slide beam splitter, BS = dielectric-coated 
beam splitter, C = nonlinear crystal, D = optical detector, 
D = far-infrared detector, F = flash lamp, G = filter, 
M0 = resonant reflector, P = prism, P = polarizer, 
PM = photomultiplier, 0 = oscilloscoBe, R = ruby rod. C0 
is the sum-frequency crystal, Cl the difference frequency 
crystal. The oscilloscopes are Tektronix 519 (02 ) and 
556 . ( 01). . 
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The far infrared signal is detected using a crystal of n-type InSb 

(futley35 detector) at T = 1.3°~ in a magnetic field of 5500 Oe. It is 

biased with a constant voltage of 0.25 volts and the current is measured 

'using an operational amplifier with a feedback resistor RF = 205 k51. 

The response time of this system is 2 ~sec. The sensitivity of the 

detector was measured using a black body at 200°C and a filter passing 

-1 only 0-50 em This showed the average noise equivalent power in a 
-6 -

5 x 105 Hz bandwidth to be 10 watts. However, since the sensitivity 

- 35 
is certainly not uniform in this energy region and since there are 

inevitable local syste:m resonances at long wavel~ngths·, the absolute 

values of the infrared power may _be in error by an order of magnitude. 

For this reason, emphasis is on relative powers in our measurements. 

Signals from the sum-frequency generation (1P28 photomultiplier 

output) and the difference-frequency generation are displayed simultaneously 

on a dual-beam oscilloscope (Tektronix 555 or 556). The scope is 

triggered by the laser pulses, via the 519 scope. 
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III. THEORETICAL APPARATUS 

Summary of Coritents 

A list of the various aspects of a general calculation is presented. 

Values of nonlinear susceptibilities, effects of multi-mode lasers, and 

phase-matching are discussed. A calculation of power which includes 

the effect of finiteness of the beam is done in the following way: 

The laser beams produce a nonline~r polari.zation source of finite extent~ 

The intensity of radiation produced by the nonlinear polarization is 

integrated over the collectior.1 system •. This calculation is useful for 

simple cases. For the case where absorption, birefringence, or boundary 

conditions have appreciable effects, a more complete calculation is 

needed. For this case, we Fourier analyze the nonlinear polarization 

source and use an analysis of plane wave sources to obtain the total 

power collected. 

.. ! 
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III. THEORETICAL APPARATUS 

The simple introductory calculation presented earlier has many 

obvious deficiencies. Any serious quantitative calculation has to 

include treatment of many factors not mentioned in the simple calculation. 

A comprehensive treatment of all aspects of the problem is out of the 

question. A fairly comprehensive listing of these aspects is as follows: 

(1) Numerical values of the nonlinear susceptibilities, their relation 

to electro-optic coefficients, and their dispersion relations, (2) possible 

depletion of the lasers, (3) .effect of finite transverse cross-section 

and the resultant diffraction (this includes the effect of focussing 

the beam), (4) finite collection angle of detection system, (5) effect 

of the mode structure· of the lasers, ( 6) ·local field effects, ( 7) boundary 

conditions at surfaces of crystals, (8) near~field effects, i.e.; the 

effect of the size of the generating volume being only a few far ir A1 s 

in extent, (9) incorporation of absorption, (10) effect of birefringence, 

(11) phase matching, both collinear and non-collinear, (12) lack of 

homogeneity of the crystals, and (13) effect of mode-locked pulses. 

This by no means represents a table of contents for this section. Some 

topics will be treated at some length; others will be ignored. Even 

the ordering is meaningless because of the interrelationships among 

them. Before launching into more general calculations, let us briefly 

discuss a few aspects which can be singled out conveniently. 

Since there have been few experiments in difference frequency 

generation, we would be hard pressed to find values of the nonlinear 

susceptibility if it had no close relationship to other more familiar 

effects. Considerable work has been done ih relating the susceptibilities 
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of various effects. Using assumed time-averaged free energies.which were 

not rigorously correct, a set of permutation symmetry relations were 

a · a 36 A · · a · t · 37 · · t h · 1 · · er~ve . . rlgorous . erlva lon uslng quan um mec anlca mlcroscoplc 

expressions for the nonlinear susceptibilities yields 

Xijk (w3 =-w1 + w2 ) = Xjik (w1 =- w3 - w2 ) = Xkij (w2 = w3 - w1 ). This 

says that a difference frequency susceptibility is equal to a sum 

frequency susceptibility, with a juggling of indices and frequencies, 

but using the same set of frequencies. There is in general dispersion 

with respect to all three frequencies. If w2 is small, i.e., if there 

are no resonances near or below w
2 

and thus little dispersion below w2 , 

then xkij (w2 = w3- wl) = xijk (w3 = wl + w2) ~ xijk(~ = wl + 0). 

Thus for most purposes, we could use X (w = w + 0) to find O'J.r susceptibility. 

It will be recognized that this gives a polarization at the frequency 

of an incident field in addition to the linear polarization and thus 

gives a contribution to the index of refraction which is linearly dependent 

on an applied static electric field. This is the well-known and well

studied electro-optic effect. A little algebra38 reveals the relationship 

w. 
VlS 

e: ~ . 
+ n) = =.t:!_ r 41T j2k 

vhere r j~ k ~ = (t. ·~ ) . ancl n is a. low frequency. 

(5e) 

n j2 39 
Thus the electro-optic coefficients · carry over almost directly 

for difference-frequency experiments at low frequencies. At higher 

frequencies and for materials not studied electro-optically, one must 

go to calculations49 involving some simple model. General quantum-

mechanical expressions for susceptibilities are generally limited by 

the lack of knowledge of matrix elements. Calculations of susceptibilities 

I 

~ 
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are important and interesting, but we will not treat them here. 

Calculations are most easily done for given single-mode operation 

of each of the two lasers, i.e., for pe~fect spatial and temporal 

coherence. Ruby lasers are generally not perfectly coherent. The 

most obvious sign of multi-mode operation is the angular spread of 

the beam, which is considerably larger than the diffraction angle of a 

perfectly coherent beam. A coherent beam of cross-sectional area A 

and wavelength A will have a divergence solid angle n such that 

An/A2 ~ 1. A typical ruby laser will have An/A2 = N where N, the 

number of modes is on the order of 100. We shall first carry out calcu-

lations assuming single-mode laser beams. 
..... .. ..... 

Phase-matching requiresthat k1 - k2 = k, for large difference-

frequency output power. 
w. 

. ..... 
The length of the wave-vector k. is equal to 

- . - 1 . 

1 
Cni. Since the index of refraction is generally much larger at the 

low frequencies, l'kl is generally larger than lk~l - l'k2 1. There are 

two ways to achieve the phase-matching: noncollinearly and collinearly. 

Since l'k
1

1, l'k2 1 are much longer than l'kl, a small angle between k1 and k2 
..... ..... 

can easily make k
1

- k
2 

sufficiently large (see Fig. 11). This is 

called non-collinear phase-matching. - It does not require birefringence 

and can be used for large difference frequencies. Collinear phase-matching 

requires manipulation of the indices of refraction. Birefringence 

is a convenient means. Propagation along the optic axis yields ne = n
0

; 

n is the extraordinary and n the ordinary index of refraction. n 
e o e 

moves away from n as the angle between the optic axis and the propaga
o 

tion direction increases, In - n I reaching a maximum at 90°. Using e o 

the larger index for the larger frequency w
1

, we can increase the 
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Fl.g. ll Noncollinear Phase-Matching (not to scale). The laser wave-vectors, 
+ + 
k

1 
and k

2
, are several orders of magnitude longer than the far-infrared 

+ 
wave-vector k. 
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n
0

(w
1 

- w ) 
collinear !'k - k2 ! from C 2 continuously to approximately 

lne- n0 I(~J This is sufficient to phase-~tch low frequencies, but 

is .generaliy limited to wave-numbers below 200 cm-1 . For example, 

using LiNbo
3 

with n - n ~· 0.08 and n (infra~ed) ~ 6.5 and ruby lasers 
o e . 

as ,sources, we are limited to ab.out '180 cm-l- ' 

A simple calculation which is much more useful than our introductory 

plane~wave calculation is as follows. Let us assume two beams as before, 

propagating in the z-direction and producing the nonlinear polarization 

(Eq. 1,2). However, let us confine.the beams to a cylinder of radius 

a (The axis of the cylinder is the direction of propagation.) A 

nonlinear polarization of frequency w = wi - w
2 

and wavevector 

' k1 - k2 = k + ~ = -~ n + ~ will be produced in the cylinder of radius 

a and length £ , the length of the nonlinear crystal. We neglect the 

effect of the boundary by asslllii:ing the detector is buried in a dielectric 

medium which matches the index of refraction of the norjlinear medium 

(see Fig. 12). We want to integrate over the contributions of the 

poiarization wave in the far field approximation to find the radiation 

field at the detector. The general expression for this is 

(Sf) 

-+ 
-+ -+ -+ 

where r 1 varies over the source region, r over the detection region, I 

-+ 
is the unit tensor and s is the unit vector in the direction of r -+I 

- r . 

To compute the integral we assume that the angular dependence of 
-+ 

(! - ss) ·P = p (transverse) is' small) that r; -:.;I I = r in the demominator, 
-+ -+ 

and that I; -· ; 1 I = r - r 
1 

•r in the exponent. The assumption on the 
r 

-+ 
angular dependence is Justifiable if P is roughly perpendicular to s 
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Fig. 12 Schematic for Calculations of Power Output. The laser beams produce a nonlinear 
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and the integration is over angles small with respect to ~/2 insine 

the crystal (the cosine function varies slowly near zero). Integrating 

the Poynting vector over the detector yields the total far infrared 

power W collected by the detection system. 

W= (6) 

ld2 t.k 
where n = ~ (1 +~-cos ~), a= ka sin~,~ is the angle between the 

incoming beams and the generated radiation, and ~ max is the maximum 

angle collected in the detection system. 

The two terms in the integral represent the phase-matching term 

and the diffraction from a circular aperture. If the beam radius 

a is large so that ·the angular ·spread is small, the Bessel function 

diffraction term will be large only for small ~, ~ ~ !...:_; the phase
ka 

matching term will be approximately constant for small ~ and may be 

taken outside 

of the output 

the integral. When we are collecting essentially all 

(~max>>!_), then the integral becomes on the order 
ka 

1 of ~ . We thus obtain the same functional form we obtained in the 
k a 

plane-wave approximation. 

We have assumed here a distant detector covering some finite area. 

What is our actual detection system? We have a light pipe entrance 

near the nonlinear crystal. The power entering the pipe is proportional . . 

to JR !E(r)l 2 d~, where R is the spatial extent of the opening into the 

pipe. If the beam is smaller than the opening and the pipe is placed 

close to the crystal, essentially all of the radiation enters the pipe 

and Parseval's theorem applies. Thus the power entering the pipe is 

proportional to J !&(k)!
2 

d
2
k, where the integral is _over all 

-+ 
directions of k. (&(k) is the Fourier transform of E(r).) However, 
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the pipe is tapered, essentially focusing the radiation 

onto the detector, so that radi-ation entering at too large an angle will 

not reach the detector. Thus, there is ~n angular cutoff, a maximum transverse 

-wave vector, it1 max, beyond which radiation is not detected. The power 

detected is proportional tofklmaxj&(k)j 2 d2k-. One can show that this 

integral leads to the same expression as Eq. 6. Physically, this is 
- +.- + 

true because the field E(r) at a point r far away from the small source 

~ ++ + + 
is given approximately by &(kJ exp(ik•r) witn k parallel tor. Calcu-

lations with Fourier components in the k-space often turns out to be 

simpler and more straightforward. Such a calculation follows. 

The general approach is as follows. The Fourier components of 

the nonlinear polarization in the crystal are found from the Fourier 

components of the incoming field. The plane-wave solutions for each 

Fourier component are calculated in a slab, including absorption and 

boundary conditions. (The slab is assumed infinite in the transverse 

dimensions since the nonlinear polarization is confined to the beam 

size and is not affected by the boundaries in the transverse direction 

except by reflections.) The electric field amplitude is constructed 

from its Fourier components, and its absolute square is integrated over 

the ~patial-aperture R to obtain the power~- In general, there is a 

cutoff in k-space also because the detector system can only accept 

radiation in a definite solid angle, so that the power is proportional to 

JR jJkl max &(k)e ik•; d2k 12 d2r. 

In the case where essentially all of the radiation enters the aperture, 

this is simplified (as discussed above) to the much simpler integral 

• i 



.. 

-47-

Let us proceed by finding the plane-wave solutions with absorption 

and boundary conditions. Let us assume a slab of nonlinear medium with 

boundaries perpendicular to the z-axis. ·(This is a definition of the 

z-direction and has nothing to do with the c-axis of a crystal, 

which may be arbitrarily oriented.) Let us consider an ordinary ray; thus 

E can be treated as a scalar. The wave e~uation and Maxwell's e~uations 

take the form 

V• D = V• (EE + 47rPNLS) = 0 (6a) 

for a non-magnetic, charge-free, current-free medium. PNLS takes 

form of P exp(i 
-+ -+ ... -+ -+ 

(see 2) the k •r) where k is given by k
1 

- k2 E~. and s s 

may in general be complex if there is absorption of the laser radiation 
-+-+ 2 

by the medium. Letting E =&{k,z )eik•r · k2 = ~and 
' 2 c 

lks - ~~ << k, the wave equation transforms to 

assuming 

2 a& 47rw p i&z (a ) -2ik - = e exp - - a z 
z az c2 1 2 L 

(7) 

where & = Re (k - k ) , z sz 
a 
2 

aL 
- Im k, ~ = Im k

1 
= Im k2 , and P1 is the 

component of P perpendicular to ks. The-condition •, jks- kj << k, is 

a condition which is experimentally desirable in order to obtain higher 

power input; that is, phase-matching over a distance of many wavelengths 

and absorption lengths being much greater than a wavelength. P1 may 

have a z-dependence, in which case we must return to e~uatio·n (7) for 

any given functional dependence. The case of P1 being constant occurs 
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frequently enough to warrant writing the result: 

[ 

2 ] 2 2 
1
1 - (~ 2cxL) z - 2 cos Akze. (cx2. - cxL.) z_ 

= 21TW I p I =-...;+:.._::.e -~--=,___..:=---:-=:::.=-....:::u:::;.=.:~-...:._---..._ 

C
2
ik,l 

1 
· (8k)2 + (~- ~)r 

.(8) 

This result is a solution to the inhomogeneous wave equation which goes 

to zero at. z = 0. This agrees with the result of Bey, Giuliani, 

and Rabin
41 

for a similar case. 

Now let us include the boundary conditions. The situation is 

pictured in Fig. 13. We assume 'f!h~ following forms for the electric 

fields: 

.... .... ex 
El [&1 + f(z)] e in'k •r -2 = 1 e z 

.... .... a 

E2 &2 
in'k •r 2 (Q z) = e 2 e - (8a) 

.... .... .... .... 
E3 &3 e 

ik •r 
E4 &4 

eik4 •r = 3 ' = 

where E
1 

and· E
2 

are respectively the forward and backward propagating 

electric field inside the crystal, E
3 

and E
4 

are respectively the 

reflected and transmitted electric fields outside the- crystal, 

n = n' + in II is the index of refraction of the material' I k. I = w /C' and 
~ -' 

f(z) is a solution to the inhomogeneous wave equation chosen such that 

f(O) = 0. In the same approximation as before, 6.k, a << k, we can 

find H orB from Maxwell's equations, match the boundary condition~4 for 

E and H, thereby finding &
4 

as a simple function off(~). The case 

with & perpendicular to the plane of incidence is distinct from the 

.. 
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parallel case. The results are 

where 

n ~osei - coset 

rl - n cosei + coset 

cosei - n coset 

ru = cosei + n coset 

kz = k n' lz 

2ik R] 
(9) 

e z 

2ik RJ e z 

and ~ is just a phase factor. -The absolute squares of these quantities 

are of-interest. 

I &4l I - 2 ~o 2 l + _...::.__2---~.0 -2 sin 2 kz2 
2 _ lf(2) 1

2 
e:_c:JJl (1 +. r1 )

2 
[ 4rf e-c:JJl J-1 

( -u.-. ) ( l -u.<- ) · 1 - r 1 e - r
1 

e 

I f(2 > 1
2

1 n 12 
e -ae <1 + ru )2 

. 2 4 2 
(1 - ru e ) 

.[ 4 2 -a2 r
11 

e 
2 

1 -
___:.:.__ __ ~_ . + s1n 
(1--r~ e4 )2 

k 2 
z J

-1 

(10) 

The terms in the brackets are precisely the form for transmission in 

Fabry-Perot interferometers. Thus we can see a resonance effect due 

to the spacing of_ the two boundaries of the crystal. 
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Now we want to find what the plane-wave nonlinear polarization 

sources are for given laser inputs. For as much generality as we can 

handle, let us assume focused beams with Ga·ussian transverse cross-

section. An unfocused beam is a special case of the focused beam. We 

first find the general form of such beams within the crystal. Combining 

the two electric fields to form the nonlinear polarization, we get a 

polarization source as a spatial function. The transverse Fourier 

transform yields the plane-wave sources which our formalism above 

requires. This is similar to a calculation for second-harmonic 

generation by Bjorkholm. 42 

First we want to describe the laser beam 1vithiri the crystal. In 

general, one might have the crystal interf'ace at any point along the 

beam, at any distance from the focal point~ One might then describe 

the laser in vacuo or air and treat ref'raction at the crystal boundaries. 

Since refraction is not linear but follows Snell's law, the minimum 

beam radius and thus the beam spread inside the crystal would depend 

on the position of the interface. However, in the regime where the 

focal spot size is many laser wave lengths, the difference is 
. ··- •' 43 

insignificant. (The diffraction angle <P. is small, sin <P :::= <P, and 

ref'raction is nearly linear.) This is necessarily satisf'ied for 

most far-infrared experiments because we want the beam radius to be 

larger than the far-infrared wave length to keep the f'ar-infrared 

diffraction angle smali enough for collection in a detection system. 

The fact that the difference-frequency wave length is much longer 

than optical wave lengths, scaling up diffraction accordingly, forces 

us to have small angular spread of the laser, ~/k << 1 where ~ is 
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transverse wavevector. Thus we will treat the laser as if it were in 

air, introducing the crystal later without changing the focal spot 

size. 

In the focal plane, at z = 0, the electrical field with a given 

polarization and a Gaussian_intensity profile is given by 

(lOa) 

The beam focal spot radius is w , defined as the radius at which the 
0 

intensity falls to e-2 times its value on axis. 

The field at other points in space can be found by Fourier 

analysis of the focal plane di str_i but ion E ( x ,y, z = 0, t) exp [ ik z] , z 

which yields a sum of plane waves of 

with (ko)2 = (ko)2 + (ko)2 + (ko)2 = 

0 0 0 ~0 ~ ] the form ~(k ,k ,k ) exp[ik •r - iwt 

- X y Z 

2 . X y Z 
w lc2. Fourier analysis of th€ 

focal plane distribution of the electric field amplitude gives 

(11) 

where kT2 = k2 + k2 and o(x) is the Dirac delta function. The delta 
- X y -

function relating k~, ~' 
0 

are values of kT 

0 and k represents an approximation inasmuch 

as there 
0 

greater than k ·- This means that the focal 

plane distribution cannot be represented strictly by a group of mono-

chromatic plane waves. However, as long as the Fourier components 

associated with ~ > k0 are very small, our approximation is very good. 

The requirement is -~ -k0 w >> 1 or k0
/ o << 1 for~ with appreciable 2 o T k -~ 

Fourier components. This i.s equivalent to the condition that the 

.. I, 

• ! 
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transverse dimension of the beam is much larger than a wave length. 

Inversion of Eq• 
ko 

(11) is easy, assuming T/ko << 1. 

Ew e . (x2 + y2) (l _ ik
0

z [ 
E (x ,y , z , t ) = ~1:;;;..--+-~-c-- exp - 2 2 

(12) 
~~ . ' w (l + t; ) 

' . 0 

where 

This is the expression for the electric field of the beam in all space, 

assuming no interfaces, All details are specified by the single 

parameter w
0

• This form has been obtained using confocal resonator 

44 4 theory. ' 5 An unfocused beam.is specified by the same form. The 

divergence of the beam specifies w and the beam radius at the point 
' 0 

of interest, with the divergence, specifies the distance to the 

fictitious focal plane. 

The radius of the beam is 

(12a) 

1 2 The length parameter ~ = 2 kw 
0 

, called the Rayleigh range in 

antenna theory, is the value of z for which the power density falls 

to half of. its value at the focal plane. 

Now let us consider placing a crystal interface at z = z . At 
0 

+ 
the interface, the tangential components of k will be continuous. 

normal component will change according to the index of refraction, 

which will.depend on direction in the case of an extraordinary ray. 

Thus, for z > z , assuming E parallel to the surface, we can write 
0 

The 
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E ./2-rr(l 2) . [ v2~J & (k ,k ,k ) = exp- -+--.. X y Z w 2 wo 

X 6 [kz - 1] exp(-(k
2 - k;)2 ik z + ik

0z) (13) 
z 0 z 0 

where k = ~ n and n, the index of refraction, can depend on direction c 
for extraordinary rays. 

Now we wish to invert E~. (13) for both extraordinary and ordinary 

k wave propagation, again dropping high order powers of T/k. For 

ordinary rays, k is simply given by~ n
0

• For the extraordinary ray, 

we need the directional dependence. Defining the x-direction such 

that the optic axis is in the x - z plane we may write 

2 cos8 sin8 (n n ) 
k = k' + --------~~-~~o ____ e~ 

n' k - k' + z;k 
X X 

(14) 

where k' = w n (8) = ~ n' is the wave-vector at normal incidence to 
C e C 

the interface, at angle 8 to the optic axis; n and n are respectively 
o e 

the ordinary and extraordinary indices of refraction. 

The result of inversion for the ordinary rays inside the crystal 

(within a constant phase factor) is 

- E ikz [ 2 2 ] E(r) = we. exp _(x + Y ) (1 - i~) 
1 + ~~ w2 (l + ~2) 

0 

(15) 

· 2 (z - z ) 
0 where ~ = ----~--~ 

k w
2 For the extraordinary polarization, 

we have 
. 0 

E(r) 
E eik I Z [{ 2 2} w ·. . [x + z;(z - z

0
)] + y (1 

= exp 
1 + i~ I W2 (1 + ~I 2) 

0 

(16) 

.;_,1 

! 
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2(z - z ) 2z · 
Where ~I : .. O + ~ 

k' 2 kow2 
We want to combine one ordinary and one 

wo 0 

extraordinary wave to make a polarization wave which is phase-matchable. 

We will assume two frequencies w
1 

> w
2

, producing a polarization wave 

at w = w
1 

-· w
2

. Which frequency component is to_ be ordinary depends 

on whether the crystal is negative, positive, or uniaxial, but the 

calculation is reallythe same.- We assume w1 to be the ord~nary wave, 

w2 the extraordinary and want a polarization of the form of Eq. (2). 

The form is reduced by neglecting terms which are small for reasonable 

for visible or near-visible light sources, difference frequencies 

less than or on the order -1 of 100 em 
' 

Similarly, 
. ~l (kl ~ k2) 

<< 1 requires 
kl 

of the Rayleigh range, i. e • , we d_o not 

These are all reasonable limitations. 

The result is 

* 

and beam spreads with kT/k << l. 

that we are not too far out 

let the beam diffract too much. 

(17) 

where z' = z - z . The -transverse Fourier transform is 
0 * X E E i(k1 - k2)z ikxl;z'/2 

P(~,z ') 
~ w2 2 = w e e 

2 0 

(18) 
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. -The calculation of f(Q. ) IEq. 9] is then carried out by finding the 

particular soltuion. of the d.ifferential equation IEq. 7] for each Fourier 

. component of P.i. . The field components parallel and perpendicular to 

the plane of incidence are calculated separately, subject to the 

appropriate boundary conditions [Eq. 10]. Finally, to find the total 

power detected, assuming that all the far infrared radiation goes into 

the collecting light pipe, we simply integrate the output from the 

crystal, j&(k)j 2 , over the solid angle collected in the detection 

system. The calculation is clear in principle but too lengthy to write 

out in detail. It must be carried out numerically by computer,·except 

. under extreme simplifying assumptions. Results of some numerical calcu

lations are discussed in the next section. 
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IV. RESULTS OF EXPERIMENTS AND COMPARISON WITH THEORY 

A. Summary of Experimental Results 

For quick reference, a summary of experimental results are presented 

here without discussion. Fig. 14 shows oscilloscope traces of the laser 

pulses with corresponding outputs of the difference-frequency and 

sum-frequency detectors. The peak powers obtained at phase-matching 

-1 in 0.047 at were: 1 milliwatt at 8~1 em em LiNb0
3

, 20 milliwatts 

8.1 -1 in 1.5 em LiNb0
3

, 5 milliwatts at 29 em -1 in 0.15 em LiNb0
3

• em 

The variation of the power of the difference frequency output of the 

. -1 
1.5 em LiNb0

3 
crystal at 8.1 em as a function of the angular deviation 

I 

from the phase-matched angle is shown in Fig. 15. The corresponding 

-1 . 
curve for 29 em generation in the 0.15:cm LiNb0

3 
crystal is shown 

in Fig. 16. The respective phase-matching angles are 9.5° and 18.2° 

from the c.;..a.xis. 

Signals were detected down to a frequency of 1.2 cm-1 , giving us 

ranges of tunability from 1.2 cm-l to 8.1 cm-l and 21 cm-l to 37 cm-1 . 

The frequency of the output was verified by measurement with a far-

infrared Fabry-Perot interferometer. Transmission curves for the 

lower frequency range {6.4 and 8.1 cm-1 ) are shown in Fig. 17, for the 

higher frequency range{28.8.and 35.8 cm-1 ) in Fig. 18. These curves 

indicate a half-angular divergence at the Fabry-Perot of greater than 

or equal to 30° for the 8.1 cm-l case; it is considerably less than 

30° for the higher frequency range. 

Comparison of power outputs in LiNbo
3 

and quartz gives an estimate 

of the relative electro-optic coefficients: r
22

(LiNb0
3

): r
62

(quartz) ~ 8.5. 
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Fig. 14. Correlation between Time Overlap of Laser Pulses and Strength 

of Sum and Difference Frequency Signals. The laser signals are 

displayed on a single oscilloscope trace (a)·with one laser being 

delayed by 125 nsec. Sum frequency·signals (b) and_difference 

frequency signals (c) are displayed on a dual beam oscilloscope. 

Larger time overlap (upper) results in larger sum and difference 

frequency signals. The difference frequency signals correspond 

to a peak power of about one milliwatt. 

·Fig. 15. 
-1 . 

Phase-Matching Curve for 8.1 em in 1.5 ?m LiNb0
3 

Crystal. 

Variation of the power of the difference frequency signal as a 

function of the angular deviation from the phase-matched angle. 

The angles refer to the inside of the crystal. 

Fig. 16. Phase-Matching Curve for 29 cm-l in 0.15 em LiNb0
3 

Crystal. 

The dashed li~·e ·is ( s~nn l the theoret~cal curve for no absorption. 

The solid line is the theoretical curve including absorption, 

·a -1 ex = 1 em • 

Fig. 17. Fabry-Perot Scan of Difference-Frequency Output. The upper 

scan (a). is for a temperature difference ~T = 60°C of ~he two 

lasers. For the lower scan (b), ~T = 47°C. The theoretical curves 

are Airy functions, calculated from the geometrical properties 

of the Fabry-Perot reflectors and averaged to account for the 30° 

collection half-angle. 

Fig. 18. Fabry-Perot Scan of Difference-Frequency Output Using R
1 

and 

R2 Lines. The first scan (a) shows·a difference frequency of 

-1 . 1 
28.8 em ; the second scan (b) shows 35.8 em- • 
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Mixing of R 1 and R2 with R2 
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· B~ · Comparison with Theory · 

Let us first consider the experiment using two crystals of 

different thickness. Our crystals were.of lithium niobate, LiNb0
3

, 

thickness 0. 047 em and 1.5 em. The lasers, operated on the R -transition, 
1 I 

were separated in temperature by 60°C., corresponding to 8.1 cm-l for -

. . ~ 4 
the difference fre~uency. The power obtained from the 0.0 7 em 

crystal was about 1 milliwatt, in approximate agreement with a 

calculation using E~. (6), including effect of mode structure, for 

typical laser pulses as input. The power was calculated for single-mode 

lasers with power and angular divergence correspondipg to single 

modes within the multimode lasers. The result was then multiplied by 

the number of modes to give the total power. Power, rather than field 

amplitude, are added because of the incoherence. The 1. 5 em crystal 

yielded about 20 milliwatts, experimentally. The plane-wave theory 

2 suggests a z -dependence of power versus length, implying a ratio of 

about 1000:1 for the power output from the two crystals, compared to 

the experimental 20:1. A computer calculation using the formalism 

presented in the last section yielded a ratio of 60:1 when applied to 

-1 the single difference-fre~uency 8.1 em • Let us consider the various 

effects involved here. 

There are three effects, besides the fluctuations of the normali-

zation process and possible local resonances at long wave lengths in 

the detection system, which should be kept in mind in any experiment 

comparing powers. The first is long-term changes in the sum-frequency 

output. The crystal used (KDP) is water soluble; thus surfaces are 

damaged by exposure to air. A comparison of power overlaps of the two 
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lasers and thus of the expected difference-frequency power output can . 

not be done reliably by this method over long periods of time. Perhaps 

more -important is the alignment of the two lasers. A small misalignment, 

say iO minutes of arc, has no effect on the non-phase-matched sum-frequency 

generation, but may cut the difference-frequency generation almost 

co.mpletely. This again makes any long-term comparison difficult. With 

care in alignment and some luck with the reproducibility of the lasers, 

these problems represent at worst a factor of two uncertainty. The 

third effect, inhomogeneities of the crystal, may be worse. They may 

46 
be present due to the crystal-growing process or may be induced by 

47 . 12 the lasers. . Yajima and Inoue have tried to include this effect 

in the effect of beam divergence, measuring the beam divergence after 

traversal of the crystal. 
48 

Byer has used the second-harmonic power 

and phase-matching curve to help choose crystals with minimum inhomogeneity. 

We have not included this effect in our calculations .. 

The various effects involved in the calculations are intermingled 

in the equations, but it is worthwhile to try to sort them out for 

discussion. First let us consider the effect of the boundary conditions. 

The index of refraction at 8.1 cm-l is 6.5549 at phase-matching. This 

yields a reflectivity r 2 at normal incidence of 0.54. The factor in 

the denominator of the Fabry-Perot factor [Eq. 10] becomes, with small 

4r2 
absorption, 2 = 10.2. Thus we see that the output with 

(1 .,.. r )2 

plane-waves and a slab goes up as the square of the length but with 

deep modQlations, the peaks being about 10 times the valleys [Fig. 19]. 

In a long crystal, two effects will average this out. First, the 

absorption coefficient 50 of LiNb0
3 

at 8.1 em -l is about 1. 4 em -l. The factor 

~ : 
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-~ \ 2 2 -~ 
e . - 9 for~ = 1.5 em lowers the effective reflectivity ref~= r e · 

cutting the modulations to about 20%. Moreover, 1. 5 em contains about 

150 half-wave lengths; thus the angle of collection is large enough, 

about 0.076 radians measured inside the crystal, to average over a 

large fraction of a modulation cycle. This corresponds to· the shrinking 

of Fabry-Perot rings as the spacing is increased until more than the 

central spot enters the detection system. For the 0.047 em crystal, 

-1 8.1 em coincidentally falls on a peak, representing 5 half-wave lengths. 

The peak is about 3 times an average value. Thus the expected ratio 

for simple plane-waves would be expected to be reduced by a factor 3 

if we hit a peak in the thin crystai. Experimentally, this did not 

materialize. We should be able to change the temperature of one laser, 

thus scanning the wave length, and find factors of 10 in variation. We 

find variations by a factor of 2. One reason is the lack of monochroma-

ticity. -1 Several wave lengths separated by 0.~ em cannot all appear 

at a peak. Thus the variation should be less than a factor of 10, 

perhaps 5. The further reduction may be due to diffuse reflections at 

the edges of the crystal. The existence of the peaks and instability 

in frequency may have been responsible for variations of a factor of 

2 in the normalization scheme using thin crystals. The normalization 

was considerably better for crystals where length or absorption averaged 

out this effect. 

The absorption is seen already to have an effect involving the 

boundary conditions [Eq. 10]. It also appears in Eq. (8). ·Qualitatively, 

absorption of the far infrared radiation limits the effective length 

for generation to the last absorption length of the crystal; any 
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. radiation generated before this is absorbed. Combining Eq. (8} and 

Eq. (10), a. = 1.4 cm-l yields a value for the power generated in the 

.. -1 . 
1.5 em crystal four times smaller than_for.a. = 0 em , averaged over 

the effects of the boundary conditions. This is a reasonable number, 

since. the absorption length, ·· 1 /a., is about half of the length of the 

crystal. The effect of absorption in the 0.047 em crystal is small. 

Another possible reduction in power output in a longer crystal is 

due to the birefringence. Birefringence causes double refraction, 

causing two finite beams to "walk-off" from each other, limiting the 

distance over which the beams may overlap. An alternative viewpoint 

is this: Finite beams have an angular spread due to diffraction. 

Birefringence causes the index of refraction to change with direction; 

thus different parts of the beam have different indices of refraction. 

The result is that only one part of the beam can have perfect phase-

matching and the length of interaction for various parts of the beam 

is limited by the lack of perfect phase-matching. Ho•rever one wishes 

to interpret it~ the effect is included· in our calculations [Eq. 18] 

in the appearance of the variable ~. Let us assume the modes of the 

lasers have a divergence half-angle of 2 mrad [intensity falls to e-
2 

times peak intensity] and propagate 50 em before striking the crystal 

interface .. The resultant radius at the laser output is w = 0.011 em 
0 

and at the crystal w. (1 + ~2 ) 1/2 = 0.1 em, ~ being equal to 9. The 
0 

factor, '' defined in Eq. 14 and calculated at the phase-matching 

angle, is equal to 0.0122. For a given Fourier component of the 

polarization wave, the dependence on 1;; appears in Eq. (18) as 
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t ~2z , 2 kx~z 'I; J 
exp- 2w2 It is apparent that for ~z' - w

0
, i. e., 

. 0 
crystals on the order of 1 em long with the beam described above, 

there is a sizable. effect. The effect 9n the total power output, 

obtained by integration on z', k , and k , is not clear because of 
X y . 

complexity of the function. A c.omputer calculation for our experimental 

situation (1.5 em LiNb0
3 

and the beam described above) showed little 

change in total power from the case of ~ = 0. The reason can perhaps 

be seen by rewriting the entire exponential of Eq. (18) in the following 

form: r ~2 z ,2 

exp [ -2w-~-( 1-+-~-:-2) 

In the first term, there is a sizable effect when ~z' - w (1 + ~2 )112 . 
0 

In our case, ~z' << w (l + ~2 ) 1/2 • The appearance of~ in the last term 
0 

represents a shift of the intensity distribution along the k direction. 
X 

The shift is appreciable if ~z'~ > w (1 + ~2 )1 /2 . The total collected 
- 0 

power would be different if the shifted components are not phase-matched 

or they produce radiation outside the collection cone. The shift is' also 

dependent on z', making its. overall effect on the total power difficult 

to estimate. For our case, this effect is apparently small. It 

should be mentioned that ~ ~ 0 as 9 ~ 0 ~/2 [Eq. 14]. This has been 

used in second harmonic generation to avoid the birefringence effect. 

Temperature variation of the refractive indices is used for phase-matching 
'IT 51 

at e = /2. 

In both Eq. (18) and Eq. (6), we recognize that the angular 

dependence of the output will take the.form of the diffraction of the 

1. :/: 
.\..:-. 

! i 
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polarization· source. For the single mode of 2 mrad divergence assumed 

above, the angle at which the amplitude of P(kT) falls to P(o)/e for 

·8.1 cm-l radiation is 4.9° from the beam axis ins1de the crystal. 

Radiation at 4. 9° from the normal to the crystal interface is· refracted 

-to an angle of 34° outside the crystal. Thus we should expect a 

half-angle divergence of 34° for tbe radiation produced, provided the 

entire range of angles is sufficiently well phase:-matched. _The phase 

inismatchwe are-concerned with here is not a mismatch due to variation 

of refractive indices with angle. It is a mismatch due to noncollinearity: 

the far infrared radiation emerges-at an angle~ with-respect to the 

laser beam.- This is illustrated in Fig. 20, the functional form being 

identical to the mismatch inn of Eq. (6). For_a 1.5 em LiNb0
3 

crystal and &(0) = 0, n corresponding to the 4.9° mentioned above is 

1r14 , {.sinnn_\2 ~ _o. 8 . \ } ~ Thus there is little decrease in power output in 

this crystal due to phase-mismatch and the angular spread of the output 

should be very close to the-diffraction pattern of the polarization 

source. 

The variation of the far infrared power as the 1.5 em LiNb0
3 

crystal is rotated through the phase-matched direction is shown in 

Fig. 15. ThO experimental points are compared with the (•~n~
2 

curve 

plotted assuming that the output of each laser is split equally between 
I 

-1 two frequencies separated by 0.2 em Since the peaks are resolved, 

the peak power should be down by a factor of 2 from that calculated 

above for single frequency inputs. The position of the peak in Fig. 15 

agrees within experimental accuracy with the phase matching angle of 

9.5° from the optic axis computed using n = 2.189 and n = 2.273 (at 
e o 
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-k 6k(0) 
------------+ ---- --.. 

-----------(:> 

XBL 698-1131 

Fig. 20 Phase Mismatch Due to Noncollinearity. The upper figure shows 

the collinear mismatch, with laser wave vectors given by 
wl w2 

k_ = --- n and k2' = --- n and the difference frequency wave -J. c o c e 
wl - w2 

vector given by k -=------~ n. • 
c J.r 

The lower figure shows 

an additional mismatch due to noncollinearity 

&(~) = &(0) + k(l- cos<P). Boundary conditions require 

Ll..lt to be in the z-direction. -JJ 
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. . 52 -1) 49 
the laser frequencies) and n .= 6.55 (at 8.1 em • It has been 

0 

suggested_that effects which decrease the power below that of the 

simple theory, effects such as _absorpti~n, double refraction, and 

optical inhomogeneities in the crystal, must simultaneously broaden the 

phasematching curve. -This is not strictly true. Let us consider the 

plane-wave solution of a single Fourier component as an illustration. 

The phase-matching curve is given by the power as a function of the 

mismatch ~ (see Eq. 7) 
2 

w(~) a: (19) 

F P ( ) t t d a/2 0 g.et the fam1"l1· ar (si~ n)2 
form. or 1 z cons an an = a

1 
= , we 

It is also apparent that decreasing P1 , keeping it constant, or increasing 

a, a
1

, maintaining a/2 = a
1

, can decrease the power by any arbitrary 

amount without changi~g the phase-matching curve. Physically, the 

absorption of the laser means a decre.ase in contributions to the output 

as we progress through the crystal; the nonlinear polarization-

decreases as the laser is absorbed. Absorption of the far infrared 

radiation means an increase in contributions to the output as we 

progress through the crystal; the radiation produced near the entrance 

·face of the crystal is absorbed more than that produced near the 

exit face. The result is that Eq. (19) again involves a Fourier 

transform of a constant function from 0 to 2. 

Generally, the special conditions above are not applicable. An 

effect such as absorption would decrease the effective length, making 

the Fourier transform and thus the phase-matching curve broader. 

However, the change is slow. 
1 . . 

The absorption length /a must be several 
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times· shorter than the crystal length before the width at half 

maximum changes significantly. A concrete example is shown in Fig .. 16. 

This can be understood as follows. The.phase-matching curve for an 

exponential ~unction with a full width of Q at e-l of the maximum 

value has a width at. half maximum of 1. 25/fl compared to 2. 8/fl for the 

phase-matching curve of a constant function from 0 to Q • For the 

phase-matching curves to be equally broad in the two cases, the effective 

length of the medium in the exponential case can be reduced by a factor 

of 2. There is a considerable effect on the tails of the curves and 

good experiments should show this. 

We may summarize the above as follows: Using the simple monochromatic 

plane~wave solution gives a ratio of 1000:1 for the output of the 1.5 em 

crystal to that of the 0.047 em crystal. Including the effect of absorption 

reduces the ratio by a factor of 4. Including the effect of boundary 

conditions reduces it further by a factor of 3. {This factor is in 

doubt because of inability to see large variations in the 0.047 em 

crystal with change in frequency.) A further reduction of a factor of 

2 occurs because several frequency modes cannot all phase-match in the 

longer crystal. Effects of beam divergence because of birefringence 

or noncollinear phase mismatch are not very large. Further reductions 

must be attributed to th~ problems mentioned earlier, such as optical 

inhomogeneities and misalignment of the two lasers. 

Typical far infrared wave length measurements are shown in Fig. 17 

as Fabry-Perot transmission curves. The solid curves are obtained from 

the Airy formula by integrating over the finite collection angle so as 

to fit the decrease in Q with increasing order number. The assumed 
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collection half-angle was 30°. It must also be assumed that the angular 

spread of the ~utput is th~s large, or larger. This is in accord with 

our estimate above and is confirmed experimentally by the. fit of these 

curves and by crude measurements of the angular variation which indicate 

considerable output at angles up to 30°. The finesse was computed 

from the geometry of the mesh. · The wave lengths used for the fit 

were within a-few percent of those preaicted by the known temperature 

dependence of the ruby laser frequency. The fit shows unambiguously 

that we are observing a difference frequency with a bandwidth less than 
. -1 

the - 1 em resolution of the interferometer. The linewidth of the 

-1 two frequency modes from each laser is less than 0.02 em , leading to 

4 -1 a predicted linewidth of less than 0.0 em for each of the three 

far infrared frequencies produced. 

Using a 0.3 em LiNb0
3 

crystal, the temperature difference was 

lowered to determine the minimum frequency we could produce and detect. 

-1 We were able to detect radiation at ~T = 9°C, corresponding to 1.2 em 

-1 radiation.· We were thus able to cover the range from 1.2 em to 

8 -1 .1 em , the high frequency limit being determined by our temperature-

control system. 

By using one laser at ~he R1-transition, the other laser at the 

R2 transition and varying the temperature difference we can produce 

radiation from 21 cm-l to 37 cm-1 • Examples are shown in Fig. 18 by 

the Fabry-Perot wave length measurements. It will be noticed that the 

effect of averaging over angles seen in Fig. 16 is absent. This 

is because the wave lengths are shorter by a factor of about 4, giving 

a narrower angular divergence by about the same factor. This gives a 

II! 
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divergence half angle _of 9° outside the crystal. 

The phase-matching curve for production of the difference frequency 

at 29 cii1-l is shown in Fig. 16. The crystal thickness is 0.15 em and 

the absorption coefficient50 a is 18 cm-l The theoretical curve for 

no absorption is shown for comparison. The width at halr-maximum is 

changed very little while the wings show a definite effect. 

The peak power for this case was about 5 milliwatts compared to 

the 1 milliwatt for 8.1 em-l-in the 0.047 em crystal. Since the 

-1 absorption length at 29 em is about ·equal to the crystal length used 

8 -1 for .1 em generation and we are in the regime of collecting the 

entireangular spread, implying w2 dependence of power on frequency, we 

-1 could guess that the power at 29 em should be about 15 times the 

-1 power at 8.1 em Computer calculations give a factor of 12. Since 

the power of the R2-transition laser is reduced by a factor of about 

two from its power in the R
1
-transition, we should expect a factor of 

6 compared to the factor of 5 observed. In view of the difficulties 

in both calculations and experiments, this agreement must be considered 

fortuitous. 

We also compared the far-infrared power generated from a 1 em thick 

crystal of quartz to that from the 0.047 em LiNb0
3 

crystal. From this 

measurement we estimate the ratio of the electro-optic coefficients 

r 22 (LiNb03): r 62 (quartz) to be 8.5. According to other measurements, 53 

the ratio is 3.7. This must be considered satisfactory agreement. 

.. ; 
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C. Discussi_on 

Opportunities for further research in this area are numerous. 

Primarily,· the need is .·for -better and more versatile experiments. 

Possible improvements include the following: (1) more sensitive and/or 

faster far infrar~d detectors, (2) improvements in quality and choice 

of nonlinear crystals, (3) improvements in the laser sources, (4) 
--

use of other laser or non_;laser sources,-and (5) use of other configura-

tions, e.g. non-collinear phase--matching. 

With increased demand for optical quality crystals of many 

different materials, there has been considerable improvement in crystal 

quality. The considerable amount of work in electro-optics gives us 

the nonlinear susceptibility for low frequenci_es for many substances. 

The far infrared absorption spectra is not as widely studied and is 

important to know. Much work needs to be done in studying the 
. -

properties which result in high difference-frequency power outputs. An 

ideal crystal would be transparent to the lasers and the far infrared, 

have large nonlinear susceptibilities, be easily obtainable in good 

quality large crystals, be highly resistant to optical damage, and be 

phase-matchable. 

Improvements in the laser sources, particularly the divergence, 

should produce signific~nt increases in power. If the spatial coherence 

of the laser sources is good enough to make the divergence of the 

far infrared output less than the divergence which the collection system 

can handle, we can increase the power by choosi~g the optimum focusing 

of the lasers into the crystal, provided that the crystal can withstand 

the higher powers. Consideration of Eq. (18) can give us the basic 
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ideas. 

X E 
. wl 

The coefficient 
2 

remains constant upon increased 

2 focusing, i. e. , decreasing w 
0 

•.. The are~;~. 7TW 
0 

decreases and the intensity 

IEI 2 increases to make the energy passing a given plane constant. Along 

~ith decreasing w, we get an increase in angular spread, i. e., larger 
0 

kT are allowed before the exponential cuts off. Thus, with the coefficient 

remaining constant, we would expect an increase in power proportional 

to the increase in divergence·solid angle, i.e., proportional to ~ , 
w 

until other effects begin to cut the generation of far infrared rad~ation. 

The angular cutoffs are the collection angle and the lack of phase-

matching due to non-collinearity, expressed in Eq. (6). There is an 

angu(~~r~:;,endent phase 

exp · x2 J) but this 

mismatch due to the birefrigence (the term 

term, with ~ typically less than 0.01, is always 

less important than the non-collinear phase mismatch. The z-dependence 

of P(kT,z) reveals two effective lengths which also may cut off the 

expected increase in power, provided they become shorter than the 

crystal or absorption length. They are the Rayleigh range, 

1 2 
zR = 2 kLw

0
, kL being the laser wavevector, and a characteristic length 

w 
depending on the birefringence,£~=~ The Rayleigh range is an 

.effective length of the focal region and appears in Eq. (18) in the 

dependence on ~; an increase in 1~1 .means movement away from the focal 

point, a larger, less intense beam, and a resultant decrease in the 

angular divergence. The characteristic length .21; represents the 

distance of signi~icant overlap of the extraordinary and ordinary beams. 

The regions of importance of these effects should at least be 

mentioned. Assuming 1;- 0.01, £ - 1 em (crystal thickness),£~ and zR 
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being on the order of.the lengthof the-crystal implies w - 0.01 and 
0 

.thus a divergence of the output for frequencies\)~ 100 cm-1 greater 

than the collection cutoff of 30° •· Noncollinear phase mis~a~ch (Fig. 20) "' 

· - 8n ( -1 causes a cutoff at smaller angles than 30° for v > r- em ), n being 

the far infrared refractive index. 
hl 

Thus for v ~ 100 em -l and the crystal ~~
r~ 

considered here, either the colle_ction or phase-matching cutoff is 

the limiting factor in increasing power by focusing. This is only 

an instructive particular example and the conclusions should not be 

indiscriminately applied. 

The range of tunability of the ruby lasers is quite limited. Other 

systems should be better. One possibility is stimulated Raman scattering 

of ruby laser frequencies .. Using various liquids and temperature 

tuning the ruby laser sources would provide considerable tunability. 

The disadvantages are considerable loss of power and broadened linewidths. 

A system using two dye lasers would be tunable over the entire far 
I , 

infrared region. The power, linewidth, and divergence will perhaps 

never-be as good as the ruby laser, but they may be quite adequate. 

Professor Y. R. Shen has suggested the use of a mode-locked 

neodymium laser, whose linewidth is on the order of 100 cm-l The 

spectral output is a series of lines, spaced by 
1 -1 . 

2£ em where £ is the 

length of the laser cavity. There is ideally a fixed phase relationship 

between all the lines (all are in phase at ~ome time), resulting in 

22 a temporal output of _a series of sharp pulses, separated in time by /c. 

The total energy and overall time duration are comparable to ruby 

lasers. Thus each of the N spectral lines has about 1/N times the 

power of a typical ruby laser, a given pair producing difference frequency 

\ i 
I 
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1 2 powers down by the factor /N • However, if our difference frequency 

. is not near the extreme difference frequency possible with the given 

.bandwidth, there are on the order of N pairs producing the same difference 

frequency in phase, cancelling the 1;N2 factor. Thus in the ideal 

·case, the power for a given difference·frequency.line would be comparable 

to the power produced by two beating ruby lasers. Moreover, all 

difference frequencies which are phase-matchable would be produced at 

comparable power levels. The mode-locking is not ideal and this estimate 

is thus expected to be an order of magnitude or so too large. Nevertheless, 

this system shows great promise. 

An example of other possible configurations is a simple non-collinear 

phase matching configuration. . The primary advan'i;age here is the ability 

to use crystals without birefrigence. An additional feature is an 

increased sensitivity of the phase-matching to divergence. The 

phase mismatch due to a given angular deviation or divergence of one 

of the lasers is proportional to sin ~ cos ~ where ~ is the angle 

between the far infrared wave vector and the laser beam wave vector. 

The power will thus be decreased for noncollinear phase-matching 

because various parts of the divergent laser beams will not phase-

match. The output would be more collimated. 
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54. In calculating H for the boundary cond~tion, :; is neglected. 

,,, 

This corresponds t~ neglecting fields generated in a boundary 

layer of thickness ~7T, where A. is_the far infrared wavelength in 

the medium. Thus the calculation is valid for transmitted fields 

if the thickness of the crystal is several wavelengths. 

I , , . • 

\ 
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