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The overcoming of an energy barrier by a dislocation segment is 

usually described by means of the general nucleation theory. As a result, 

the rate of the process is expressed as a function only of the maximum 

energy U of the barrier, through the well-known Arrhenius law exp(-U/kT). 

This short note is intended to show that in certain cases, the rate of 

overcoming of an energy barrier is not determined by the maximum energy, 

that is by the top of the barrier, but rather by the energy required by 

the first thermal events in starting the climb up the h.ill. 

(1) 
Let us first recall the fundamentals of the ge~eral nucleation theory . 

The whole theory is the most simply described in its original context, 

phase nucleation. In order to reach a critical size, which has the 

maximum energy, embryos have to grow by addition of single atoms through 

a series of bimolecular equilibrium reactions: 

a + (i - l) t i 
a + i ~ i + 1 (l) 

where a represents an atom of the phase a and i is a cluster of i a-atoms. 

Notice here, that during a single thermal event, the nucleus energy 

increases from G(i- 1) to G(k), so that the backward reaction i + (i- l) +a, 

bringing the system to a lower energy, must be taken into account, in 

equilibrium with the forward reaction.(i- 1) +a. It has been shown that 

solving the whole set of such equilibriums yields a rate depending only on 
(2) 

the top energy of the barrier through an Arrhenius type law. This 

technique has been then extensively applied in solving a number of 

dislocation problems. (3 ) 

Dealing with dislocation problems, little attention has been paid to 

the fact that in general the elementary thermal event does not bring the 
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nucleus size from i to i + 1. For example in dislocation loop shrinkage 

(or nucleation), decreasing the loop size x by one interatomic spacing b 

requires moving roughly x/b atoms. Let us assume a nucleus of size i is 

achieved. The next thermal event may correspond to a very different 

atomic configuration depending on whether (a) the nucleus size is starting 

to change from i to i + 1, or (b) from i to i - 1. Despite the fact that 

G(i- 1) < G(i) < G(i + 1), it may occur in certain cases that the 

backward reaction i + (i + 1) + a is much more difficult to start than 

the forward reaction; it becomes practically negligible as compared with 

the forward reaction if the energy difference after the first thermal 

event, between configuration (a) and (b), is much larger than the thermal 

energy kT. In such a case, the whole preceding theory breaks down, since 

to reach the first unstable product, of size i* + 1 if i* is the critical 

size, the set of successive equilibrium reactions (1) must now be replaced 

by a set of chain reactions: 

a + 1 + 2 

a + (i - 1) + i (2) 

a + i* + i* + 1 

As an illustrative example let us consider briefly the case of the 

I 
shrinkage of triangular prismatic Frank loops, as produced by quenching 

and ageing in a face centered cubic metal. The Frank dislocation in low 

stacking fault f.c.c. metals splits, resulting in a truncated tetrahedron 

of stacking fault (Fig. 1). In order to shrink, the short stair rod 

segment at a corner, has to be dissociated into two attractive Shockleys, 

resulting in the formation of a new 120°-edge. (4) This nucleation can be 

described by an energy diagram G versus x, the length of the newly formed 
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edge expressed in spacings b, which shows an energy barrier, due to the 

stability of stair rods. To vary the length x by one b, a jog must be 

nucleated at the corner A, then propagated by diffusion along AB (Fig. 2). 

It is easy to see that nucleating a jog in order to start to change x in 

X + l nucleation type (l) -- is much easier than doing the same to change 

x in x - l -- nucleation type (2) --. Such a difference has been invoked 

to explain( 5 ) in high stacking fault metals why prismatic loops grow in a 

polygonal shape (involving the type 2 of jog nucleation) and shrink in a 

round shape (type 1). Even a rough estimation, using the elastic dislo-

cation theory, yields an energy difference between jog (2) and jog (l) of 

about ~u~ ~b3/20 ~ 0.25eV, i.e. about as high as the usual jog formation 

energy. At an annealing temperature of 400°C, this means that the thermal 

probability for a jog of type (l) to be nucleated is about exp (~U/kT) ~ 

100 times higher than for type (2). Therefore the reverse reactions in 

this case can be neglected, resulting in a succession of chain reactions 

as in e~uation (2). 

Such a set of reactions is easily solved. To assure no accumulation 

in any reaction products all the reaction rates must be e~ual under steady 

state conditions, i.e.: 

k [l] = ... = k.[i] = k.*[i*] = v 
1 ]. ]. 

where [i] is the concentration of i-sized nuclei, and k. is the rate 
]. 

constant of the reaction a + i + i + l. Assuming a thermal e~uilibrium 

between all the intermediate thermal events from i to i + l, yields 

k. a exp (-~G./kT),, ~G. = G(i + l)- G(i). This means that a higher step 
]. ]. ]. 

~Gn' or a lower kn' induces an accumulation of nuclei n, or a higher [n] 

until compensation takes place in order to keep constant the product 
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kn.[n]. The production rate of final product, that is the rate of the 

whole process is given by 

v = [l] exp (-~G /kT) 
1 

where [l] is the initial concentration of defects and ~G is the height 
1 

G(2) - G(l) of the first step. Obviously if the process involves a non-

conservative motion of dislocations, i.e. if vacancies are created or 

annihilated, the self diffusion energy UD must be added in the activation 

energy as. usual( 2 ), giving as the rate controlling activation energy: 

G = U + ~G 
D 1 

More generally, it is possible to consider a less extreme case. Let 

us assume that the reverse reactions do occur only until some nucleus size 

y: 

a + l ~ 2 

a + (y - l) * y 
a + y ~ y + l 

a + l* ~ i* + l 

The usual nucleation theory yields [y] = [l] exp (-G(y)/kT), and the 

preceding considerations give as the rate of nucleation: 

v = [y] exp (-~Gy/kT) = [l] exp (-G(y + 1)/kT) 

(3) 

From this equation it is clear that our result differs from the usual 

nucleation theory only in assuming y + l < i* instead of y + l = i*, i.e. 

that the reverse reactions may become difficult at some stage before the 

maximum energy size is reached. 

Concerning the shrinkage of Frank loops, it is hard to rule out 

completely the possibility of reverse reactions in the very first steps. 

For example, for a new edge length l = b, or x = 1, the reverse reaction 
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gives back the fully dissociated truncated tetrahedron (Fig. 1). For 

y = l, 2 or 3 it is necessary to evaluate how much energy is gained in 

recombining more or less the attractive Shockleys into stair-rods. However, 

the maximum energy configuration is reached at a stage far beyond these 

first few steps. Therefore, the activation energy is expected to be much 

less than the maximum energy of the barrier. More precise computations( 6) 

show that only this theory can explain the observed shrinkage of Frank 

loops in silver,( 7 ) a metal of low stacking fault energy. A similar 

explanation could account for the collapse of stacking fault tetrahedra. (6) 

The problem of the nucleation rate of dislocation loops in quenched metals, 

still unexplained,(S) will be studied in a separate publication along the 

same line. 

In summary, it is thought that such a modification of the nucleation 

theory could be useful in numerous dislocation problems. It is emphasized 

that the rate controlling activation energy of an activated process should 

not always be identified with the maximum energy of the barrier. Rather 

it may correspond to the first step or the first few steps up the barrier 

in cases where the reverse reaction, going down the hill, contains 

difficult steps compared to any of the forward steps that lead up the hill. 
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Fig. 1 New 120° edge, AB, on a dissociated 
Frank loop 
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Fig. 2 The two kinds of jogs nucleated at 
corner A 
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