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MAGNETIC PROPERTIES OF THE NICKEL—RHODIﬁM SYSTEM
Efic R. Katz’
Inorganic Materiais Reséarch Division, Lawrénce Radiation Laboratory,
and Department of Physics,
University of California, Berkeley, California
ABSTRACT

Magnetostatic and magnetic resonance studies have been performed on
a number of alloys in the Ni-Rh binary system. VThese alloys exhibit
ferromaghetic behavior for nickel concéntrations exceeding 63 atomic per
cent, and paramagnétic béhavior for the more dilute alloys. The earlier
work of Crangile and Parsons, in which the saturation magentization and Curie
temperature as a function of composition were measqred, was extended. The
magnétization as a function of temperature in the range L.2°K < T < 320°K
was measured in thé presence of an externally applied field. These results
were compared with the theory developed by Stoner and Wohlfarth, who
attempted to explain the behavior of weakly ferrémagnetic systems by
treating the magnetic electrons as forming a band. Our results do not
~ agree with the pfedictions of this overly simplified theory. The
magnetocrystalline-anisotropy'was determined from magnetic isotherm measure-
ments, ahd the observed composition depeﬂdence followed the expected form.
The spin relaxation rate was determined from the magnetic resonance
data and compared withvthe composition dependence of the magnetocrystalline
anisotropy, again using the Stonér mpdel. -Again tﬁe observations failed
to obey the behavior predicted by this model, Another model,.similar to
the Anderson model of dilute magnetic alloys, was prbposed, which explains

all our data in & qualitative way.
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MAGNETIC PROPERTIES OF THE NICKEL-RHODIUM SYSTEM
Eric R. Katz
Inorganic Materials Research Division, Lawrence Radiation Laboratory,
» and Department of Physics,
University of California, Berkeley, California
ABSTRACT

Magnetostatic and magnetic resonance studies Have been performed on

a number of alloys in the Ni-Rh binary system. These alloys exhibit

- ferromagnetic behavior for nickel concentrations exceeding 63 atomic per

-cent, and paramagnetic behavior for the more dilute alloys, TheAearlier
"work of Crangle end Parsons, in which fhe saturation magnetization and
Curie temperature as a function of temperature in the range L.2°K.<T<320°K.
was measured in the presence of an exterﬁally applied field. These results
were compared with the'theory\developed by:Stoner and Wohlfarth, who
attempted to explain the behavior of weakly ferromagnetic systeﬁs by
treating the magnetic electrons as forming a band, Our results do not
agree with the predictions of this overly simplified theory. The
magnetocrystalline anisotropy was determined from magnetic isotherm
measurements, and the observed composition dependence followed the expected
form. The spin relaxation rate was determined from the magnetic resonance
data and compared with the composition dependence of the magnetocrystalline
anisotropy, again using the Stoner model. Again the observations failed
to obey the’behavior predicted by this model. Another model, similar to
the Anderson model of:dilute magnetic alloys, was proposed, which explaiﬁs

all our data in a qualitative way.
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I. INTRODUCTION

The nature of the ferromagnetic'sféﬁe in the 3-4d transitidn metals
is not yef‘understood. The basic prbblem is explaining the nature of the
3-d electrons themsélves; which are the_onés responsible for the magnetic
behavior. The'déscriptions of these electrons lies somewhere betweeh the
limits of the two well known modéls, a nearly free electron gas, and the
tight binding épproximation. Thus, these electrons are very difficult to
treét in a quantitative manner.

ﬁistorically, the treatment of magnetism»has proceeded along two
lines: the localized moment, or Heisenberg model, and the band picture.

| The localized moment picture has been applied quite successfully to
ferromagnetic insulators and to rare-earth ferromagnets;, thus it has
received a greater amount of attention.

In this familiasr model, the metal is thought of as containing

.incomplete inner shells {d or f) whose electrons couple together in each

atom, according'to Hund's rule into a_state‘with net spin angular
momentum,js, and associated magnetic momeﬁt. Spins on neighboring atomé,
due to overlap of théir wave functions, may couple together ferromagnet-
ically, the strength of this coupling'interaction being determined by the
overlap, or exchange integral, J, between neighboring sites.

This modgl leads tb quantitaﬁive reiationships between the ferro—-
magnetic transitiop temperature-Tc and the strength of the exchange
interaction, and describes spin waves, critical fluctgations, saturation
magnetization at low temperature, paramagnetic susceptibility, specific
heat, scattering (elastic and ineiastic) of neutrons, and ﬁagnetic

resonance properties.
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However, this approach breaks down when it~is applied to the 3-4
transition metals. Firét, the observed valué of the saturation
magnetization at absolute zero for these metalé leads to magnetic moments
per étom far different from those corresponding to an integral number of
electrons, as required by the Heisenberg model. Second, there is a
large deviation in the.size of the magnetic ﬁoment per atom as derived
from saturation magnetization measurements, and from the magnitude of the
Curie-Weiss susceptibility constant.

Other discrepencies include the following: Large'electronic
specific heat in these materials (e.g., the electronic spécific heat of
ﬁagnetic nickel is about ten times as great as that of non-magnetic
copper). This indicates that the magnetic electrons are mobile. The
presence of high field differential susceptibility, which is difficult to
explain.in a local moments model without resorging to various spiral
maghetic structurés. This susceptibility has been obsérﬁed in various
materials. However, neutron diffraction studies of these materials have
ruled out any such structure. This type of susceptibility follows Quite
naturally from the band approachz. Hall effect measurements3 indicate
d-electrons contribute to conductivity, i.e., that théy are mobile,

In favor of the localized moment picture was thought to be the

p3/2

temperature dependence of the saturation magnetization at low
temperature, and the inélastic neutron scattering (below, and somevhat'
“above Tc), explainable by spin wave theory, which was thought to result
only from locaiized moments. However, recent works, which we shall discuss,
have shown that spin-wave-like excitations also can exist in a running

wvave (band) model of a ferromagnet, and in fact, the band approach also

i



provides accurate description of the experimental neutron scatiering data.
The band approach treats the magnetic electrons as running waves,
forming bands. This approach can be thought of as a generalization of

the picture used to describe the Pauli spin susceptibility in a conduction

electron gas. Such a description is provided in Introduction to Solid

State Phxsicsh.

A very useful approacﬁ to this problem was made by-Stoner, which we
will describe in Section fII. ﬁis theorj makes qualitative predictions
about such a system, using only a very small number of parameters to
describe the system.

In order to test the applicability of his theory, it was éesirable
to find a magnetic system in which one could experimentally vary these
pafameters, and then compare the results of this variation with the
prediétions of the theory. For reasons which we’shall-describe, we felt

that the nickel-rhodium binary alloy system is describable by the Stoner

‘theory, and that the variation in alloy composition provides the desired

‘variation in the parameters describing this system.

5

The Ni-Rh system forms a continuous range of FCC solid solutions
which exhibit ferromagnetic behavior for concentrations of nickel
exceeding a critical value of about 63 atomic per cent6.

Crangle and Parsons7, as part of a study of the magnetization of

" binary alloys of cobalt and nickel with elements of the Pd and Pt group,

noted that the saturation moment of the Ni—Rh system first increased with
increasing rhodium concentration, reaching a maximum near 5 per cent
rhodium, then decreased continuously to 0 at about 37 per cent rhodium.

They attempted to explain the initial increase in magnetization using
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several simple modele, ihcluding the rigid-band model. This model supposes
the shapes and relative positions ef the d and s bands remain essentially
unchanged by the addition of rhedium. Thus, the density of states
functions describing these bands also femains.constant, and the sole
effect of alloying is to contribute additional ca;riers to these two bands.

The initial increese of magnetization with low Rh conceﬁtration
corresponds to abgﬁt 2 holes in the d-band per Rh atom added, as eompared
to the one hole per atom expected from the atomic configurations of Ni
and Rh. Of course, this model provides no explenatien of the decreasing
moment as the Rh concentration is further increased. One must resort to
the band picture for such an explanation. These authors also measured the
. Curie temperature as a function of Rh eoncentration, and found it to
decrease continuously.

Bucher et’al;s measured_the‘high field differential susceptibility
atrl.h9K. for this system, concentrating their efforts in the region
around the critical concentration. They found a symmetric peak behaving
roughly as the inverse of the deviation in alloy compesition from its
critical value. Further, they measured the electronic contribution to
the heat capacity, and found a logarithmic peak at the critical
c0ncentretion. | | |

The explanation of this data cannot be made withinithe framework of
the traditional, or localized moments, description of the magnetic state.
We are thus forced to appeal to the band approach for such an explanation.

Therefore, we decided to use this system to test the applicability
of some of the band approaches in describing a real system.

The first part of our experiments consisted of magnetostatic



measurements with varioﬁs samples of differing composition, ranging from
pure nickel, to a sample consisting of 57 per cent nickel and 43 per cent
‘rhodium. These measurements included determination of the saturation |
magnetization at low temperatures, tﬁe susceptibility in the peramagnetic
region as a function-of temperature, aﬁd the determination of the -
magnetocrystalline anisotropy.

The second part of the experiment was an outgrowth of earlier work
done by Salamon8. He performed magnetic resonance studies in pure nickel
in the viecinity of the Curie point end above. He concerned himself
primarily with the relaxaﬂion rate of the paramagnetic spins, which is
.obtained from the width of the resonance lines. He based his
" interpretation on a localized moments picture, in which, for very high
temperatures, the relaxation mechanism is the exchange-narrowed pseudo-
dipolar interactiong, which is modified as the Curie temperature is
approached from above by the onset of short range order and critical
fluctuationslo

We performed similar measuremehfe on our alloys, both in the
ferromagnetic and paramagnetic regions, with particuler attention devoted
to the paramagnetic region, where we determined the speetroscopic
splitting factor and the relaxation rate, which we compare to the
predictions of the band theory.

_The organization of the remainder of this work will be as follows:

Chapter Two contains the description of the alloy preparation and
analysis, as well as‘the'descriptions of the experimental details. We
also discuss the apparatus used in making the magnetostatic meésuremeﬁts,

and the microwave spectrometer used for the resonance studies.
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Chapter Three is an introduction to the band theory of magnetism. In
the first subsection we show how certain simplifying assumptions regarding
exchange lead to a molecular field approximation in ah electron gas, and
some of the consequences of this field. In the second subsection, we
outline briefly the quantitative approach to this problem taken by é
Stoner, indicating the basic assumptions, the weaknesses, and the con-
clusions reached by this approach. We compare these predictions with
previous experimental work. In the third subsection, we describe another
approach in explaining the magnetic properties of the 3-d series, that of
Hurwitz and Van Vleck. This model is able to treat effects of correlation,
whereas, the Stoner model is not. However quantitative predictions are
difficult with this approach.

In Chapter Four, we discuss our magnetostatic measurements. In the
first subsection we discuss the concentration dependence of the '
saturation magnetization, the Curie temperature, and the magnitude of the
paramagnetic susceptibility. Since the Stoner theory treats these
quantities, we compare our data with the predictions of Stoner. Since
quantitative predictions require detailed knowledge about the dénsity of
states function, we concentrate our attention on the region near the
critical concentration, where certain expansions may be carried out,
leading to predictions about the general relationships between Various
measured quantities. We find several discrepencies between the
theoretical predictions and the observed data. In the second subsection
we discuss the low temperature magnetization data for some of our samples.
We trace the development of the theory of spin waves as it applies to

band ferromagnets, as well as the more important band effects which



influence the temperature dependence of the magnetization, in the
framework of the Stoner model. We then compare our data with the results
of this théory, and find satisfactory agreement. In the third subsection
we discuss our determination of the magnetocrystalline anisofrqpy versus
_;lloy compositidn._ We trace the developmenﬁ of the theory of‘anisotropy,
indicatiﬁg how this theory applies to akband system. We compare this
theory to ?ur data; and again find satisfactofy agreement.

In Chapter Five, we discuss our magnetic resonance studies. We
concentrate our attention on expléining the observed relaxation rateé in
the paramagnetic region, and relate this to the microscopic nature of the
magnetic state. We indicate how the band theory must be modified to
explain our observations.

In Chapter Six, we present a summary of our results and conclusions.
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ITI. EXPERIMENTAL DETAILS

A. Alloy Preparation

Nickel and rhodium for an uninterrupted series of solid solutionss,
which solidify into a F.C.C. structure.

The alloys for the present studies were prepared from high purity
nickel and rhodium powders. The rhodium powder was obtained from Leico
Industries, New York, and was quoted by them as being 99.999% pure. ' The
nickel powder was obtained from Electronic Space Products, Inc., Los
Angeles, and was 99.99+% pure.

The powder sizes were measured under a metallurgical microscope, and
the average particle grain size was found to be = 1 micron diameter for
both of the powders.

The alloys were prepared in batches of 1.6 grams. Desired atomié
compositions were selected, and converted to ratios by weight. The
powders were weighed out carefully, using a Mettler micro—balance; to an
accuracy of 1_40003 gn. This corresponds to i_.02% by weight. The
powders were then thoroughly mixed and put into a zifconia crucible. The
zirconia cricibles were made by grinding down zirconia tubes, obtained
from the Degussa Corp., Kearny, New Jersey. These tubes were 5 mm. I.D.,
8 mm. 0.D., and closed on one end. They were composed of a dense ceramic

- containing 97% ZrO. stabilized with 3% Ca0O. After being ground down to

2

the proper length, they were baked at about 500°C for about 24 hours.
After the powder was put in the crucible, a tightly fitting cap was

cemented on the crucible, using Astroceram, a general purpose ceramic

cement. This did not provide a vacuum-tight seal, but was used to retard

escape of nickel vapor from the crucible during the melting process.



. furnace, using a tantalum sheet which surfounds the hot zone as a

The crucible was suspended in a high vacuum Abar resistance

- o
Il

resistance_élement. The furnace is equipped with Pt-Pt/Rh thermocouples,
but temperature measurements were made with an opticél pyrometerkl
The furnace was evacuated with the powder and crucible inside to a

>

pressufé of less than 10 °~ torr. The furnace was then heated to
500-60090. and held‘there for fivevhours to set the ceramic cement. The
temperature was increased to 1000-1100°C to de¥gas the crucible and
powder inside. -After the-pressure reached less than 3 x 10—6 torr, the.
furnace was held at this temperature for at least one additional hour.
The crucible wés then heated in gradual steps fo avoid any undo
thermal stresses to the. crucible according to the following progranm.
Temperatures given are those read by an optical pyrometer, calibrated for
a black—body radiaﬁor. Due to the non-perfect emissivity of the crucible

material (manufacturer quotes e = 0.24) the actual temperatures are

actually 100-150°C higher. The heating program was as follows:

T = 1550°C ' held for 5 minutes
T = l650°C ﬂeld for 3 minutes
T = 1850°C held.for 3 minutes
T = 1965°C held for 7 minutes

(Tﬁe melting point of Rh is 1966 + 3°C , while nickel melts at lh53°C.)ll
After holding the sample at the highest temperature fof seven minutes,

the heafer,power was shut off completély. The outside Qf the érucible

dropped to 1600°C. in 14 seconds, and to 1400°C. in less than 30 seconds.

The sample was "quenched" as described in order to cross the

solidus-liquidus transition region as quickly as poséible, to make the
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alloy as uniform as possible.

The crucible was allowed to cool to room temperature, and was then
removed from the furnace. It was cracked open, and the alloy, in the
form of a slug 5 mm. diameter X = 8 mm. length was removed.

There was indication of a mild reaction between the inner surface of
the crucible and the outer surface of the slug, which gave the slug a
"glazed" appearance, but the reaction did not appear to penetrate into
the slug.

The slug was placed in an alumina crucible and returned to the
furnace for annealing. It was annealed at 1100°C. for a minimum of T2
hours. It was then removed from the furnace.

Thin disks, 5 mm. diameter by .010"-.020" were sliced off by means
of a carborundum disk saw, for use in the magnetic resonance experiments.
The remainder of the slug was turned down on a lathe into a cylinder,
.105 inches diameter by .145 inches in length, for magnetization

measurements.
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Several of the alloys were analyzed with an electron beam micro-
probe.

During this type of analysis, the sample is bombarded in a high
vacuum with a nérrow-(approximately 1 micron diamefer) beam of mono-
energetic électrons; The resulting X-ray radiation is scanned for
ﬁarious wavelengths corresponding to K-alpha and L-alpha lines of the
elenments beiﬁg scanned. These lines are detected using various crystals
as‘X—ray diffration monochromators, followed by counters. The number of
counts per fixed time interval is related to the concentration of the
corresponding element in the alloy under investigation. Thevdevice'is
calibrafed with known standards of pure elements, and corrected for
background, X~-ray fluorescence, etc.

Our ailoys were scanned for nickel and rhodium. In addition, sinée
the alloys were prepared in a zirconia crucible; they were alsd scanned
for zirconium.,

Since the production of X-rays excited by én electron beam is a
random process, therg.is a statistical distributidn‘inAthe counts re-
ceived in each monochromator channel. Thus, from elemegtary statistiés,
the standard deviation in the number of counts in any'channél is Just
the square rdot of the mean number of counts eipected in that éhannel.

For the ten second interval used, our samples gave approximately
10,000 and.S,OOO counts»fof nickel and rhodium, respectively. Thus the
statistical uncertainty in the number of counts is on the order of one
percent, and therefore the uncertainty in the'cqncéntration'of each of .
these elements was also of this order of magnitude. |

.
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Thus the device was useful only for determining whether or not the
alloy deviated significantly from the corcentration of the ingrediénts,
i.e., if there was excessive evaporétion of one of the constituents,
(nickel has the higher vapor pressure of the two, reaching 1-10 torr at
the highest temperature reached during the melting) and whether or not
there were large local fluctuations in the concentration.

The results of the microprobe’indicated that the composition of the
alloy was, within the limitations of the accuracy of the analysis, equal
to the composition of the ingredients as they were weighed out before
melting, and that there ﬁere no large (i.e. > 1%) fluctuations in the
composition.

Further, the counts received in the zirconium channel were just
equal to the zirconium channel background counts, wifhin the statistical
distribution expected, and indicated that the zirconium concentration
was at least less than 0.1%.

| Metallographic analyses of the samples were also attempted, but no
suitable etchant could be found, so the crystal grain boundaries éould
not be revealed.

Such studies would be desirable, for one could then perform micro-
probe analysis on a particular grain, as a function of the distance from
the grain center to the perimeter. Such a study would show whether the
quench and subsequent anneal We£e sufficient to remove any composition
~ gradients introduced by crossing the solidus-liguidus region in a finite
length of time.

However, the results of the microprobe analyses which were per-

formed indicate, at least, that no gross composition gradients exist.
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C. Microwave Experiment

Ferromagnetic reeonance (FMR) and electron paramagnetic resonance
(EPR) meaeuremenrs were performed using a standard Q-band magic-tee
ricrowave epectrometer. This type,of‘spectrometer has been described
by Feher.12

The spectrometer used had been built'originally for another experi—

i3

ment and the modifications necessary for the present work were incor-
porated.

The cavity and sample unit are shown in figure 1. The cavity was
maintained at the coolant temperature (either TT7°K or L4.2°K).

The sample, in the form of a thin diék, was glued on the closed end
of a hollow copper rodf Inside the rod was a Pt resistance thermometer
eround which was wound a non-inductive manganin heater coilT This.
temperature unit was loosely coupled to the coolant bath with three thin
Brass support struts.

Temperature control was achieved in either of two ways:

Long term constan£ temperatﬁre: The Pt thermometer was used as one
arm of an AC bridge. A secend arm Wae adjusted externally,.and the  im-
balance in the bridge was used to drive the heater power supply. With
this method,.a few millidegrees stability for long term periods was
easily attainable. |

Slow sweep: Heater power was increased very slowly, so that the
temperature rose continuously but slowly. The temperature'change'was
less than a degree during the course of a particular magnetic resonance

sweep.
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In bbth'cases, temperature was monitored with a copper—constantgn
ﬁhermocouple. This was placed very close to the sample on‘the copper
rod. in eithér mode”of temperéture control, the thermocouple gave
accurate méésurement of the temperature.

The cavity was excited in the TE10l mode using a standard klystron

and power supply. Since the cavity was maintained at helium (or nitrogen)

temperature durinhg the course of a rﬁn, independent of sample tempera-
ture, the frequency remained constant, at 29.69 Ge./sec.

The sample, in the form of a thin disk, was placed very close to
' |

an iris in the cavity. The microwave field which bulged out of this iris

impinged on the sample and caused an osciliating magnetic field parallel
tb the surface of the sample. Thus the sample was coupled to the micro-
wave field of the cavity, though somewhat more weakly than if it were
actually placed inside the cavity. |

A slowly varied exterﬁal D.C. magnetic field, H, was applied

parallel to the surface of the sample, but perpéndicular to at least one

cbmponent of the RF magnetic field. This configuration of sample, micro-

wave field, and static field exhibits a resonance in the power absorbed

from the microwave field when the resonance condition

RF

is met. Here

2,31 w. = (a2

2.3.2 - Y .= guE/ﬁ

where g is the gyromagnetic factor of.the magnetic carriers, My is the
Bohr magneton, i is Planck's constant divided'by 2m, and B = (H+huM) is
the magnetic induction,"and»M,is the mggnetization of the samp}e. This

result has been discussed, for example, by Kittel.lh‘ The microwave
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power reflected back from the cavity was monitored with a standard
crystal detector.

The Zeeman field was swept slowly from about 2 koe. to 13 koe. and
then back. The dutput of a DC gaussmeter (rotating coil gaussmeter with
a phase detector and filter providing a DC output voltage proportional
to the instantaneous value of the magnetic field) was used to drive the
X channel of an X-Y recorder, and the change in reflected microwave
power was amplified and used to drive the Y channel.

For technical reasons, this experiment was a DC one, rather than
the usual AC experiment, i.e. one often modulates the Zeeman field with
a small AC component, and uses a phase detector to monitor the reflected
power. The coherent signal observed is proportional to the amplitude of
this audio modulation, multipied by the derivative of the line being
swept, evaluated at the position of the resonance line corresponding to
the instantaneous value of the Zeeman field. ' This signal is also in-
versely proportional to the width of the line. Due to the broad line

widths incurred (AH .01) as well as mechani-

audio modulation Iinewidth's
cal resonances in the system (driven by the interaction of currents
induced by the AC field with the DC field, causing mechanical vibrations
coherent with the AC sigﬁal) the AC method became unfeasible.

The field was then swept yielding X-Y recorder traces of the
regonance line, Data was read off these recorder traces and punched
ocnto IBM cards in pairs: field value and power reflected.

For reasons to be discussed in a later section, the relaxation

process contributing to the linewidth are expected to yield Lorentzian

lineshapes.



~17-~

Thus a general least-squares curve fitting program was used on a

CDC 6600 computer to fit a general Lorentzian line shape with five

' paraméters to the observed data. The five parameters were essentially

Lorentzian'dispersion amplitude, absorption’amplitude, line center, line
width, and position-of baseline.

The reason that‘dispersion is introduced into an absorptiop experi-
ment is that the dispersive part of the magnetic susceptibility (which
in addition to the absorptive part, is also a function of the applied
Zeeman field. In fact, the two are related by the Kramers-Kronig rela-
tions.ls) affects the skin depth, which in turn, affects the surface
impedance.

General eXxpressions forvlosses in such systems (i;e. metallic

systems in a microwave field) as a function of the in-phase and out-of-

phase portions of the magnetic susceptibilities are discussed by Kittel.
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M(H)|T and M(T)l measurements were made with basically the same

H

equipment, involving only some minor modifications.

M(T)IH Measurements. The basic unit used is shown in figure 2.

The sample to be measured is turned down on a lathe into a right circular
cylinder, .105" diameter by .lh2"blength. It was glued onto the end of

a rod of the same diameter which had been turned down from a small piece
of rack material, thus leaving gear teeth along one side. This was
placed in the main body of the unit, which consists primarily of a brass
cylinder, with a hole bored down the center through which the sample
assembly could move. On one side of this was mounted a pinion gear,
whose teeth mesh with those of the sample holder. A teflon backstop was
attached to the rear of the unit, and a lucite coil form, wound with

5000 turns of 1.2 mil diameter wire, was attached to the front end. A
teflon pad and cap were used to close the front end of the coil. These
two teflon pieces were used to reproducibly limit the travel of the
sample in and out of the coil as the pinion was turned. The whole unit
was suspended by means of stainless steel clamps from the top of a brass
can. The can was sealed vacuum tight with Wood's metal, and suspended
in a dewar by means of four stainless steel tubes, soldered to the can on
one end, and to the upper dewar flange on the other end. One of these
four stainless steel tubes was positioned over the pinion gear, and a
drive shaft was run thrqugh.the upper flange, using an O-ring seal, down
the tube to the pinion gear. Thus by turning the drive shaft from

above, the sample could be driven in and out of the pickup coil.

~
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The other stainless steel tubes were used to.run electrical con-
nections down to the can, and‘as a vacuuﬁ line, through which the can
could be evacuated. |

From Faraday's Law, the EMF picked up by a coil inside of which the
magnetic induction is changing is given by

d > a
2.h.1 €MF=-5¥ B - dA
‘ area inside
coil windings

When the sample is outside the coil, the magnetic induction inside the

coil is given by Bo = Ho’ where HO is the externally applied field

ut
(usually 8 koe. in these studies, to insure saturation). When the
sample is inside the coil, the magnetic induction inside the sample is
- given by

. A
2.k.2 B, =B+ b

in in

where Hin is the field inside the sample. From elementary magneto-
statics we can write this as:

. £ A LY Y

. = - + 47T

2.4.3 By, = H - NM LM
where N is the demagnetizing factor of the cylindrical sample.

. & £y A ¢ A
2.4.4 5% B, =H + (Lr-N)M
According to Bozorth,16 for the dimensions of our samples the expected
demagnetizing factor is about 2.4 cersteds/gauss-magnetization. (Our
measured values came very close to this value. )

The field outside the sample volume, but inside the coil windings

can be thought of as being due to fictitious surface poles induced on

the sample end faces and which are proportional to the magnetization of

the sample. These "fringing" fields are then also proportional to the

v‘ﬁ '
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magnetization.

2.4.5 B = MF(x)
245 Fringing X

E I} .
where f(x) is some function of position depending upon sample size and
shape. . It is the same for all of our samples, since they were all
identical in size and shape.

Thus the average induction inside the coil, with the sample in, is
given by

in)avera e = Ho + [othervterms, each of which is proportional
a8 to the magnetization of the sample]

N
2.4.6 (B

Thus, the net change in magnetic induction within the volume en-
closed by the coil windings, when the sample is moved from outside the
coil to inside the coil, is directly proportional to the magnetization.
of the sample. |

Integrating Faraday's Law with respect to time, one finds

2.4.7 f(EMF) at < AB «

"around coil Msample
windings

To meke the measurements the temperature around coil windingé of
the saﬁple was varied by placing the can in a coolant (usually liquid
helium at 4.29K). Then.power which was applied to the heater windings
with a regulated current source was increased very slowly. The tempera—
ture was monitored with a copper-constantan thermocouple, mounfed on
the sample holder. The coil was connected in series to a helipot, and
the total resistancebwhich was thevsum of the resistance of the coil
windings and the helipof was monitored with a Wheatstone Bridge, and
was maintained to within 1% of some predetermined constant.value (about
3.3K) as the resistance of the coil windings changed, because of the -

temperature change.
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The coil, now with the equivalence of fixed windings resistance,
was connected to a low drift operational-amplifier  current integrator,
whose output is proportional to the time integral of the current (i.e.,
charge) through the input.

The sample was initially outside the coil. The output of the
integrator circuit was set to zero. The gate to the integrator circuit
was opened, the sample moved into the coil volume, and the gate to the
integrator was closed. The output voltage from the integrator was
measured with a Rubicon potentiometer and noted, along with the tempera-
ture. From equation 2.4.7, this voltage is directly proportional to the
magnetization of the sample. This process was repeated at various values
of temperature over the range we could cover, 4.2°K to about 320°K.

The overall system was calibrated with & pure nickel sample, whose

17

values of magnetization are well known, due to Weiss and Forrer.

-

Thus M(T) curves for all the samples could be measured. '

M(H),_ Measurements. The system was modified somewhat for these

T

measurements. First, a bucking coil was wound, placed near the pickup
coil but off axis, and connected in series opposition to the pickup coil.
The EMF's induced in the two coils when HO was changed cancelled each
other to within about 1%. The remaining 1% was balanced out as follows:
The temperature was fixed. The sample was removed from the coil
volume in the usual way. The gate to the integrator was opened and the
field swept to some large value. The negative output of the integrator
circuit Qas fed into one channel of an operational amplifier voltage
adder. The output of the DC gaussmeter was fed into another channel,

which had a variable coefficient. The coefficient was adjusted so that
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changes in the magnetic field produced no changes iﬁ the oﬁtput of the
adder. This nulling adjustment had to be done in fields lafge enough to
satﬁrate the sampie,-sinde the pickup coil still‘picked up the change in
magnetization of the.sample, although only about 5% as strongly as with
the sample in the coil. |

With these adjustmenté, any change in HO glone prodgced nolchange in
the output;of the circuit., The sample was then inserted in the coil, and
the field swept from O té a value large enough so that M(H) was deterf

mined. Thus the instantaneous integral [ &(1)
0

ENT(t')dt' was proportional
to M(H) only. |

The output of the DC gaussmeter Wasvalso used to drive the X channel
of an X-Y recorder, and the output of the adder (now proportiocnal to
M(H)) was used to drive the Y channel. The vaiue of the:ordinatevof
these traces was noted (or extrapolated) at H=8 koe. Thus the graphs
could be calibrated using the previous measurements of M(T)IH'

Also, since the samples were férromagnetic, the initial slope of the
curves gave tﬁe demagnetizing factor, so that M as a function of the internal

field could be determined. The values given by the slopes were very

close to thbse predictedl6 for the sample geometry.
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ITT, INTRODUCTION TO THE BAND THEORY OF MAGNETISM

A. Exchange and the Molecular Field Approximation

The subject of ferromagnetism among itinerant electrons is a very
large if not well understood cne. An excellent survey of the subject
has been presented in a monumental work by Herring.l Especially enlighten-
ing, for our purposes, is Chapter Six of this work. It may be noteworthy
to state that this book alone contains 478 references for the period pre-
ceeding its publication.

Needless to say, this paper could hardly begin to cover all the as-
pects of this tremendous field of study. However, a relatively brief
survey, relevent to the experimental work done during the present studies,
will be attempted.

Although this section may at first appear samewhat lengthy, it is
felt that this presentation is, in fact, necessary in order to acquaint
the reader with some of the more important ideas associated with this
type of approach in explaining the magnetic properties of a large class
of substances.

The subject probably began in 1929 with the publication of a paper
by Blochl8 in which he demonstrated the possibility of ferromagnetism
among a band of (conduction) electrons, obeying Fermi-Dirac statistics,
and interacting with each other via a Coulomb repulsion.

As is well known from elementary quantum mechanics, the total energy
of a given pair of electrons, whose spatial wave functions overlap when
their coulomb repulsion interaction is considered, depends on whether
the spins of these two electrons are parallel or anti-parallel. This

result stems from the fact that the Fermi statistics, which the electrons
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must obey, requires that the total wave function of the two electrons must
be an antisymmetric linear combination of the individual electron wave
functions (spin and spatial perts). Let us consider these two electrons

as being in a metal. We imagine that we have solved the equations of

.motion for the electrons in the pericdic potential'of the lattice sites,

negleéting for the time being, the effects of the electron-électfén inter-
action. We assume there is.sufficient nearest neighbor overlap between
the atomic states to yield a solution of the Bloch running wavé type. We
then.consider the effects of the electron-electron interaction as a pertur-
bation, and calculate its effect on the energy of the system.

Since the spatial charge distribution between two electrons is
different for the parallel and anti-parallel configurations, there will
be a difference in the interaction.energy. For éur free electrons with
a repulsive interaction, thé interaction energy is lower when the two.
electrons are aligned parallel. This is because the exclusion principle
automatically keeps the two electrons'separated spatially if their'spins
are.parallel, feducing the net amount of positive repulsive interaétion
energy with respect to the anti-parallel case. This is the origin of the
so-called exchange energy.

Bloch calculated this exchange energy in his paper, and showed:
under what conditions, within the simplifying assumptions invélved in our
discussion thus far, this leads to ferromagnetism. He found, essentially,
that one needs iow density of electrons with large effective mass. For
the unscreened Coulomb interaction, which,‘hOWever; is never achieved iﬁ

real metals, he found that the condition for ferromagnetism is:

3,1.1 : rs> 5.45
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where r igs the radius of a sphere Jjust containing the volume associated
with one electron in the lattice, expressed in units of the Bohr radius

*
appropriate for the effective mass of the electron m. That is:

3.1.1 a) r, = ro/ao
3.1.1 b) r = radius of sphere containing the volume
: o) . .
assoclated with one electron
2, %2
3.1.1 ¢) a_ = 1 /m e

e is the electron charge

When this condition is met the exchange energy gained in aiigning all the
electrons parallel to one another more than offsets the increase in
kinetic energy necessary to produce a magnétized state. To create such
a state, we must raise electrons from the configuration where allowable
k-states are @oubly occupied, (one in each of the two allowed spin direc-
tions), to a configuration where k-states are only singly océupied (i.e.,
in one spin direction only, usually defined as the spin up direction).
This configuration requires the filling of electrons.in states of much
higher k (and hence much higher K.E.) than the non-magnetic configuration.

However, in this calculation, Bloch neglected the effects of corre-
lation. Not only does the electron-electron interaction éhange the energy
of the system described by some (fixed) set of wave functions in the way
Jjust described, but it also modifies the wave functions themselves; in
this case, in such a mamner as to keep electrons farther apart than for
the case of non-interacting electrons.

Thus, electrons which are anti-parallel and would be allowed to
approach onc another fairly closely (giving rise to relatively large
interaction energy) in an uncorrelated model, are kept apart when corre-

lation effects are included. The energy difference between the unparallel
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state and the parallel state for two electrons, which was given by the
exchange integral between the two states describing the electrons, is now
greatly reduced. The problem of correlation plays an essential role in
the calculation of the properties of a band of electrons, and determines
fof example, whether or not the elecfrons can even become ferromagnetic.

At the present time, it is not known whether a singie and of eiectrons-
can prbduce ferromagnetism, Qhen correlation is taken into account.

Although from a theoretical standpoint, it has not been proved whether
or not a simple band system can become ferromagnetic, we will adopt a
phenomenological approach, and assume it can. |

For the present, let us neglect the effects of finite temperature,
‘i.e., we restrict dur discussion to absolute zero.

Then the normal péramagnetic state 1s one with half the elecfrons
in the spin-up state, the other half in the spin-down state. For v
simplicity, we consider our crystal to be made up of N atams, each contri-
buting one electron to oﬁr band. Thus there are N electrons, which we
assume are describable by Fermi-Dirac statistics; We further assume the
effective mass approximation, so the density of states ié proportional to
El/2 (i.e., N(E) = constant x El/g).

 In this picture, .the unmagnetized state of the system simply looks
like figure Ya. The magnetized state looks like figure Mb, where the
_eléctrons fill all the allowable states of one sub-band, which ﬁas
been depressed strongly in energy by the exchange interaction, the re— 1
maining electrons occupyiﬁg states in the other sub-band. Then there is
a net unbalance in the number of spins in the two spin directions, lead-
ing to a net magnetic moment. Due to the complete saturation one one

sub-band, this case is termed strongly ferromagnetic. (To conform to the
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N/2 - n/2

(c) Weakly magnetic
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%-d transition series, and to our alloys, we will assume that thé d-bands
are more than half full, so the carriers in this band are holes. Thus
the magnetic pfopertiés come about from the'féct that there are more holes,
or Vacancigs, in one spin sub-band tﬁan the other. The treatment:fér the
case when the d-band is less than half full, and the carriers ére eiectrons,
proceeds in‘a similaf fashion.) Thus nickel, with a saturationlmaghéti-
zation corresponding to 0.6 Bohr magnetons per atam, arises froh the fact
that the d-band contains .54 holes per atom with a g-factor of 2.2
(yielding 1.1 Bohr magnetons per hole)).
Another case may occur if the exchange interaction is too weak
to depress one subrband far enough to cause it to fill completely. This
case is depicted in figure kc. .In this case, there is only partial trans-
fer of carriers from one sub-Eand to the other, so that only a small frac-
tion of the eligible magnetic carfiers contribﬁte to the net magnetization.
.That is, the net moment arises from the difference in“the mmber of carriers
ih.the two spin directions; For obﬁiousyreasons, this case is Calied the
weakly ferromagnétic case,.and as the exchange interaction strength is
decreased; the magnetizatioﬁ decreases to zero, We will'discuss this
.case in more.detail later.
To see how this depression of one of the spin sub-bands comes about,
we consider the effects of the exchange interaction in more detail.
We first develop fhe molecular field approximation for a band system,
which turns out to be of great use.
If thé electrons are deséribable by Bloch plane-waves,the exchange
interaction between any two electrons, one is the étate describable by

5*

wave vector k, the other in a state k', is given by2

¥This result follows immediately from the overlap integral between two plane
wave states. The result is the Fourier transform of the effective electron-
electron interaction.



-30~

N 2
3.1.3 J(k, ¥') = 7 —T:;——:ng , V= volume of the crystal

for the case of a bare Coulomb interaction, and by

2
= oo 1 by

3.1.4 Ik, k') = § —5—p 3

[k - kT kT

for the more realistic case of a screened Coulomb interaction. The screen-
—_)

ing parameter Ks’ which prevents divergence as [k - k'] -0 results from

electron-electron effects (correlation), which tend to screen out the long

range Coulomb effects by redistributing the electrons throughout the lattice.
>

This screening parameter is treated by Kitte12 and an order of magnitude

estimate is given by

5.1.5 KS2 = 6ﬂNe2/Ef, N = number of electrons per unit

volume

where Ef is the Fermi energy.

In the effect mass approximation Ef is'given by
(5w ?/
*
2m

3.1.6 E

f

Then the screening length becomes on the order of magnitude of an inter-
atomic distance, which we call do.

In this case, KS is large compared to most values of |E1—~Kﬂ]
occuring for pairs of electrons in a real metal, so we neglect the first
term,in.the denominator of expression 3.1.4 in comparison to the screen-

ing term. Using the estimate
3.1.7 | K, ~ 1/dO

and the fact that V = N(dO)B, we find

2
e 1 e
5.1.0 Jav N d Jinteratomic/N



-31-

Although this can be considered little more than a dimensiomal argument,
it does display an important feature of the eichenge; namely, that the
exchange between two itinerant electrons is ronghly l/Nltimes an exchange
interaction parameter describing two electrons at neighboring atoﬁic sites.
The 1/N factor arises from the fact that each electron is spreadvovervall
N atomic sites, nith probability amplitude l/N at eech site. 'HoWever,
on the average, each site has the contributions from all N electrons in
the band, so there is still one electron associated'witn each site.

We then write the exchange 1nteraction between two electrons, one in

the state k the other in state k' as

3.1.9 ) = -% Sa -

exch 1? K

-A
where SA is the spin of the electron is state k and Sa is the spin of

the electron in state k', and where :we have’ supressed the k- dependence of
the exchange interaction, for the time being, the justification_being that
the screening‘greatly reduces the k-dependence.

We then consider the change in.energy of an individual electron in
some state,.i,stemming from the exchange interaction with all the other
electrons, as we go from the unmagnetized state to a magnetized state.

In the uwmagnetized state, there are N/2 electrons parallel to any given
electron, and N/2 electrons antiparallel (geglecting 1, the electron in
question, in comparison to N, the total number of electrons). Then the

energy of this electron is

=y J = J3, .32
3,1.10 Boon(® = - T = B E‘q\ - 2o §5% 0 5,
| d"k
NV T L, 1 Ny T, 1
= =) Y (+ = Y
S (2) 5 u) () 7 ( )
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Where we have summed equation 3.1.9 over all spin peirs, cmstructed from
\EE with the spins of all the other electrons in the lattice, and where the
sum is broken into two sums, one involving the electrons in thé crystal
whose spins are parallel to the electron being conéidered, the other sum
involving electrons whose spins are anti-parallel. Here, EE.is the
kinetic energy of the electron in the state-E; and the dot product between
the spins is +1/L4 for parallel spins, and -1/4 for anti-parallel spins.
Thus in the non-magnetic state, the gain in exchange energy fof any parti-
cular electron from other electrons in the lattice parallel to it is Jjust
off-get by the loss from the equal number of electrons anti-parallel.
Now, let us consider the magnetized state, with (N/2 + n/2) electrons

with spin up and (N/2 - n/2) electrons with spin dowﬁ. Then the energy

of our sample electron, if it has spin up, generalizing equation 3.1.1O

is given by

Sel.1l Bootar B = 4 - FGD @ - §G-D P
Jn
= % "I

and if it has spin down, its energy 1s given by
3.1.12 E (ki) = e +38
total k LN

However, we recall that the magnetization of ocur sample is, in this case,
given by

.1. - e
5.1.15 M v

where U is the magnetic moment carrier and V is the volume of the sample.

Therefore

M

3él.1Ba n =
i

Thué, electrons in states with their moment parallel to the overall mag-
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netizatidn of the sample have their éﬁergyflowéred én amount proportionél
to the magnitude of the‘magﬁetizafion, ﬁhile ﬁhose electrons antiﬁarallel '
to this direction have their énergy raised by this amount. Since an

extérnally applied.magnetic field directed along the magnetizatim direc-

‘tion will have the same effect on the elecﬁron energles, we say that we

may replace the exchange interaétion by a (fictibious) magnetic field,
proportional to both the exchange interaction strength, and the magnitude
of the magnetization. The coefficient of magnetization'(whose‘dimensions.

are the same as that of field, i.e. Oersteds) is usually much greater

than unity. This approximation is knosn as the molecular field apprqxif»

mation,

We can now see how the mgnetized state, as shown in figure o, ¢
comes about . Tﬁe unmagnetized state undergoes trénéfer of elections
among the spin states in a éelf—COnsistent way, éo thatbthe up-states are

preferentially occupied, causing each of the k-up states to lower its

“total energy, and each of the k-down states to raise its energy. (Thus

the k-up band shifts downward fran its non-magnetic position while the
spin‘down band moves up.) This allows electrons to spill over from the
down sub—bandlinto tﬁe ﬁp sub-band and distribute themselves as shown
in the figures 4b or Le, | ‘

One of the consequences of this mélecular fieid, when it is not
étrong enough to bring about ferromagnétism, is an enhancement of the
paramagnetic susceptibility, over its value were the exchange not present.
More accurately, the molecular field.decreases the inverse susceptibility
by a constant term (indebendent of temperature if th¢ molecular field co- .
efficient is independent of temperature. Actually, for reasons which we

shall discuss, the strength of the exchange interaction can became slightly

- temperature dependent, so that the molecular field constant does also).
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The proof of this statement is trivial, and is demdnstrated by Stonergé
the proof being independent of the model chosen to describe the origin

of the susceptibility in the first place. Then this theorem simply states

~ ~
where X is defined by M= X H
Xo is the value in the absence of exchange

and ¢ is defined by
-3 -
fot.ria, = M

andF/I\ is the magnetizat ion.

Having demonstrated the effects of the exchange interaction on the
energy of the system, we now turn to a discussion of the magnetic suscep-
tibility of our bands. We consider the magnetization of such a system
in the presence of an external field, at T = O.

We consider the free energy, F, of our system. Following our pre-
vious discussion, the magnetized stéte differs from the unmagnetized
state by having distribution (N/2+n/2t, N/2 - n/2!) instead of (N/2t, N/2V).
We rewrite the exchange energy in a slightly different form for this
discussion. |
~S\ -

.S

~ — —)
3.1.15 B, = -J(Sl . sg) - J(1L -8 1 N

3.) = 6 - J
1 . sl = constant -

so that the exchange energy is shifted by a constant, and is equal to
zero 1f the two spins are anti-parallel, and -J/EN when the two sPins are
parallel, To calculate the change in internal energy due to exchange, on
going from the wmmagnetized state to the magnetized one, we calculate the
change in the total number of parallel spin pairs. This is done easily,

as follows:
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Uhmagnefized State
(§/2) - (8¥/2 - 1) ~ /b
(§f2) + (W2 - 1) ~ /4

} totai - ¥ /2

Number of t pairs

Number of 4 pairs

Magnetized State

_ '
Number of t pairs = (N/2 + n/2)(N/2 + nf2 - 1) ~ -Nf— + %N- + -’,1— total =
' ' - SR =R

. ¥ o, p° — + =

Number of ¥ pairs = (N/2 - n/2)(N/2 - n/2 - 1) ~ T-7+17 | 2 2

|
3.1.16 Change in number of parallel spin pairs = n2/2
Then since each parallel spin pair reduces the internal energy by J/?N

we obtain

2

' ' _=J n
5.1.17 VAN Fexch'— 5% C P

We next consider the kinetic energy. In order to effect this transfer,

we must raise electrons to higher k-states. The average increase in

K.E., of these electrons (i.e., the ones which are transferred), per electron

is-

5.1.18 1l number of electrons raised ' 1 n/2 :
ot 2 single sub-band density of states 1/2 + N(E

oy

1
MOJ
i
feal fa)

H

where N(E) is the density of states (for the entire crystal, evaluated
"in the non-magnetic state).
The number of electrons transferred is n/?, Thus the in¢rease in K.E.

of the system is

o
: i 1 n - N
. = 4 - i
5.1.19 A Fy w. HNZEfS -

Finally, there is a term, -1/2 H-M in the free energy describing the

interaction of the system with the external field. Recalling also that
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%.1.20 M= nu (p = magnetic moment per electron)

we can write the free energy as a function of n, twice the number of elec-

trons which are transferred.

1 n? J n2 1
5.1.21 F=TW—Q—N'§——2—HHH

OF 1 n J 1
3.1.22 =05 - -z pH =0
n 2 NEEfs 2N 2
solving we find
1w H N(Ef)

3.1.23 n =

- M
3.1.24 X = T

defining N(Ef)/N = n(Ef) = density of states/atom

2
W N(E,)
3.1.25 X =

2
= — = N(Ef) - 8
l-Jh(Ef)

where MQN(Ef) is the value of the susceptibility when J = O and
1

S = Stoner enhancement factor = =———————
1-J ‘n(Ef)

This result holds in general, provided the molecular field approxi-
mation is valid (i.e., the exchange interaction is independent of the
electron states involved, etc.)

For a free electron gas, we have
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3,1.26 ' N(Ef) g—g—
3
50:.]-'27' . n(Ef) = E-E—;
2
3.1.28 X =5N; { % -
BTe - 5 J/Ef

where Ef = kaf defines the degeneracy temperature, and kb is the Boltz-
mann constant. We see that as J approaches O (vanishingly small exéhange
interaction), the susceptibility approaches the usual Pauli paramagnetic

7

susceptibility expression, which can be found in ISSP.2 We also note
that this expression diverges as J‘—) %-Ef. The loss in kinetic energy
is more than offset by the gain in exchange enefgy as.we transfer |
electrons, and it becomes energetically favorable for the system to

acquire a net magnetic moment, even in the absence of an externally

applied magnetic field (i.e., the system becomes ferromagnetic).
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B. Stoner Theory

It often becames necessary to discuss the temperature variation of

M or X as a function of T or H quantitatively. One approach to this

problem which has proven quite useful, was presented in a series of papers

by Stoner in the 1930's

.28’29’30 He calculated the relative occupations

of the 2 spin sub-bands, considering the effects of an externally applied

magnetic field, and finite temperatures, under the following assumptions:

The electrons form a single band.

They obey Fermi-Dirac statistics.

The exchange can be treated by the molecular field approximation,
i,e., we treat the electrons as being subjected to a fictitious-
field proporticnal to the magnetization, in addition to any
externally applied fielas.

We make the effective mass approximation. Then the density of
state functions for each sub-band is proportional to the square
root of the kinetic energy:

B 1/2
N(Ek) = constant + E_

variable parameters in this model are:

The degeneracy energy or temperature EO = kb . Té (also written
Ef = kb . Tf) associated with the Permi statistics. For more
general band shapes, which have been camsidered subsequently,

one then considers the density of states and its first and second
derivatives, evaluated at the Fermi level: N(Ef), N?(Ef), and
Nt (E:f:); , . ,

The number of carriers in the magnetic (d-) band. This may be

non-integral. e.g., for nickel it is taken to be .54 holes per

atom.
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3. ‘The molecular field constant, or exchange interaction strength,
I/W= 8

The molecular field is given by

3,2.2 - ', Hie = k0! é/ﬂ:v"ff_:w '
where & is the fractional magnetization, (the number_éf unbalaPced
magnetic carriers, divided by the total number of carriers in the magnetic
band)'and‘u is the magnetic moment per carrier. 6' has dimensions of
temperature and invthé limit of very narrow bahds, o' » Tc, the transition
or Curie temperature. It is apparent that there are several Weaknesses
in this model. Some of them are: |

‘1. Neglect of maﬁy body effects (correiatiOn). For example, it
has been shown fhat many‘body_effects lead to spin-wave like excitations
at low tempeiatUre, a point we will return to later. | |

2. Neglect of the effects of fluctuafions. E.g., near Tc’ shdrt_
range order will make the molecular field'apprbximation a kad one. |

3. Effects of.having real band shapes rather than the s imple
effective maés épproximation. This affects thé results of the theory
'quantitatively, |

4. Dependence of Fermi degeneracy témperature (hénce the“sfaﬁistics)
ard the exchange inferaction on lattice spacing, which depends on temperature.

5. Présence of_othér bands. For example, finite temperatufeé excite
interband transitibns, changiné the number of carriers in the magnetic
band, and further serve.to modify the exchange intefactioﬁ strehgth.

In spite of these shorfcomings, the Stoner theory has'met‘with a
great deal of success, and ﬂnprovements héve been adaed in the years |

following its first appearance, so that it now represents a Tairly good
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basis for describing same of the properties of an itinerant electron gas.
Stoner introduced a convenient notation, which we will follow. The

basic equations which describe the system, from Fermi statistics are

%
3.2.3 Fn(te) - é £ (e,n) N (e) de
3.,2,3a £(e,n) = [exp { (e-1)/ ka} + 1]t
3.2.3b . no= €, * kb 6' £+ pH
where

n = number of magnetic carriers (per atom)

N = number of atoms/yolume

W = magnetic moment per electron

= gf2 e By (g is the spectroscopic splitting factor, = 2, and*ub is
‘the Bohr magneton)
kb9'= moleculay field constant (kb = Boltzmann constant)

N(e)= density of states per atom

€ = chemical potential for the system (Fermi energy)

(o]
¢ = relative fractional magnetization
= M(H,T)/Nnp

= (number of unbalanced magnetic carriers)/(Total number of magnetic

carriers)

¢ = relative fractional magnetization at T = O
= M(0,0)/iinp

T = Ferranagnetic transition (Curie) Temperature

Thus there are two equations, (corresponding to the pius and minus
signs) and two unknowns, (eo and ¢). For solution of these equations,
as we have stated previously,va parabolic band shape was assumed (N (E)
proportimal to El/e).

Implicit in the solution is the Fermi-Dirac function
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r(n) = 3/ [0 E_Sx

2k F, . ——
3 5 /2 (n) =

Applied to Ferromagnetism

For KbG'/eo 2 2/3 the solution of these equations lead to spontaneous
magnetization'fbr sufficiently low temperatures.
What is remarkable, in this model, though,fis that for k@'/eo in the

-1/3 x .793701, one finds O < go < 1. 1In other

“range 2/3 > kbe'/€o <2
words, for a certain range of the interaction strength the band is only
partially saturated. This corrésponds to the 1limit of weak ferromagnetism.
Then for kbe'/eo > 2-1/5 we have go =' 1l; i.e., the exchange is strong
enough to completely saturate the magnetization at low temperature.

Stoner lists the solution of the equations in inverse tabular form;
For example, he lists ka/Eo'as a function of Ed and &(T) in the range
2/3 < kbG'/eo 552_1/3 (along with kbe’ as a function of EO) for equal_'
spacings of go and &(T) for the same range of kbe'/éo for equally spacedv
values of kge'/eo and £(T). This inverse solutioh was necessary.in order
to solve the equations numerically using the previously tabulatédvvalues
of Fermi-Dirac function.

When these numerical.relationszafe inverted, oné'ébtains the depeh-
dence of M (actually ¢) on T for T < T, for various velues of the_relgfive
eXChangé interactiqn parameter, kbe'/éo. One also obtains 5% as a'funcﬁion
of kbe'/eo. | |

It is instructive tO'cqnsidéf briefly, how this partial nagﬁetizatioﬁ
in the ferromagnetic state qomes about., Let us consider the change in
internal energy of the system (at T = 0) as We proceed continuousiy from
the uhmagnetized state, to a magnetized.one,.by'transferring électrons;~
See figure 5. |

There are, as we have indicated, two contributions to this energy.
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- (We are considering thevferromagnetic éase, S0 fhere is no extefnally'applied
field.) One is the deéreaée'in ehe rgy dﬁe t o exchan ge, Brought about by
 increasing the total number. of parallel spin pairs. This must offset'the.
second contribﬁtion which is théwincrease in kihetlc.energy due to the
fact that we are'raising electrohs fran states (slightly) below the Femmi
level of one spin band,»and_are placirg them in the hiéher un§occupied
states (slightly) abbye the Fefmi level in the other spin band.

In the effecfive_mass approximation, the (new) Fermi level of eadh
éf these sub-bandg iﬁ proportional'to (Ni)e/B where N+ and N- refers td the
number of eleétrons in the spin up or spin down (sub) bands, respectively.
Thus |
3.2.5 | Efi « [N/2 n/e]g/5
Now the average energy per electron in each of these_sﬁb-bands is well
known to be 2/5‘Ef%. The total number of electrons in each of these bands
ié tN/E + n/2]. ‘The total_energylof éach of theée sub-bands is obtained
by multiplying the average energy of one électroh in the sub-band.by the

number of electrons in that sub-band. We find

3.2.6. EE.E. « /et n/é]5/?

‘The total K.E. of the system is_fhe sum of the K.E. of the two sub-bands
comprising the system, and is given by

Beotal kp, © [N/E’f,n/2]5/3‘+ (v/2 - n/2)°%1

3,2,7. E
or, expressing it in terms'of the relative maghetizatidn, éo %:n/N,

Biotal K.E. © Bo [ (LF E)77+ (1 -¢)7"]

_where'Eo is the original Fermi energy.

The exchange energy, which is proportional to the total number of

parallel spin pairs, can be expressed similarly as



I

; . 2 2
3.2.9, E_on -k, © [(1+ E,O) + (1 - &o) 1

and the total energy is the sum of these two contributions. Adding these
two contributions and expanding the results in a Taylor series in io, one
finds
Ly 2 2 N 6
< (= - ' + + +
3.2.10 E(¢) «( 5 B, -Kk0') £E"+2/8LE & " +0 ¢

o]
For k_be' = 2/3Ef, the first term in the expansion is zero. To second
order in EO it cost no energy to increase the magnetization of the system
from zero. For kbe’ just slightly greater than 2/3 Eg, it costs a
negative amount of energy for the magnetization to begin fo increase,
and electrons begin to switch sub-bands, i.e., the gain in exchange
energy slightly more thén offsets the needed K.E. to raise the electrons
to the higher k-states. However, as Eo (or equivalently, n) gets larger,
the density of states in the region from which the electrons are being
supplied gets smaller. Thus the K.E. required to raise these electrons
becomes progressively larger (the th and higher terms in our expansion),
until a point is reached where further increase in Eo no longer reduces
‘the total energy of the system; that is, £ continues to increase until
E(&O) reaches a minimum.

For the parabolic band shape assumed, Stoner showed that the

position of the minimum in energy with respect to variations is related

to Kbe' JE ¢ by the closed rélation
' _ y2/3 . \2/3
3.2.11. k8 /Ef = 1/25o ((1+g ) -(1-¢6)77]

A Taylor expansion of the right hand side of this equation leads to the

approximate relation between §_ and kbG'/Ef:

. 2 L
3.2.12. k8 /Ef = 2/3 + 4/81 38 +6§O + ...
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On meaéuring the saturation magnetizati@n of Ni and Cu-Ni élloys
as a function of temperature in‘phe fer;omagneticrregion, and attempting
to fit thig data.to the valuéévpfedicted by Stoner's calculations, it wa.s
discovered that the Stoner mpdéL did not describe the shape of these
curves very well. | | .

Hunt52 attempted to expilain this by including highér order terms
in the exchange intéi‘action: | |

2 1 i

3.2.15. (8) ™ -1/2k 6" &5 - A k8" £ + ...

Eexch
The presence of the higher order terms is given the understandable

Justification: In the molecular field approxination, we assumed implicitely

that the exchange interaction between all pairs of electrons in the magnetic

band was the same, independent of the k- states of the two electrons
involved. Physically, this is not the case. There ig some k-dependence

in the exchange interaction. For a screened Coulomb interaction, for

- example, we showed

Ure®
v

3.2.,1&;

1.
®-% % +k°

J (k,k') ~.

where K is the screening parameter.
Thus, as we transfer électrons, and thus increase &, we change
the distribution among the various k-states, and therefore, change the

average exchange interaction. By symmetry;vthis effect must be the same

for plus and minus &, i.e., it must be an even power series of &. A

by Hunt.
Hunt- then found that the formula relating the value of Eo which
minimizes the total energy, as one varies kbe'/Eo, is modified from

equation 3.2.11 and now takes the form
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5.2.15  KOE (1+At®) = 1/es [(1+ £ )27 (1 -8 )%

By making the appropriate modifications to the values of M(T) found
by.Stoner, he found he could obtain excellent agreement between the theo-
retical and experimental values by assuming A = .10 for pure Ni, decreasing N
continuously woth increasing Cu content to A = O for 20% copper.

Taylor expansion of Hunt's relation (equation 3.2.15) leads to the %

approximte relation between € and kbG'/EO.

: ' 2 . 4 .. 2 2. . Lo "
3.2.16. kbG /EO =3t (8I'- 3) F O'éo + 0.

This relation is plotted in figure 6 for A 5 O (Stoner limit), and for

A =,10. Also plotted on the same figure is the relative Curle temperature ,
i I

— ' . ..
kac/Eo as a fuhction of kbe /Eo in the Stoner limit.
S - . . 2, .
For A > Acritical = 2/27 % 074 the coefficient of §o in expression

3.2.16 becomes negative. The two values of ¢, for values of kbe'/Eo

slightlyvless than»2/5 corresponding to statipnary values of E(§o)
correspond to first a maximum then a minimum in the energy as a function

of éo. This can be seen from a Taylor expansion of the energy

E (&) k 61
3.2.17 —-’—E—‘?——z(— }?’ -
o) b

+.

Sl

- L
) E°+ (4/81 -AKEVE) E T+ ...

This case leads to metamagnetism, whereby the application of a suffi-
ciently strong magnetic field; and the subsequent removal, will leave
the material in a magnetized state. Such a proposal was made in an article #
by Wohlfarth and Rhodes.BB‘

Anothér remarkable feature of this médel, which should be apparent
ffgm our discussion, 1s that in the 1limit of weak ferromagnetism,vsince
neither sub-band is saturated, and since application of an extermal field
will cause the parallel sub-band to become lower in energy and the anti-

parallel sub-band to become higher in energy, additional electrons will
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switch sub-bands, further increasing the magnetization. This leads to a
finite value of the susceptibility in the fefromagnetic state, even at T=O.
Indeed, this high field differential susceptibility has already been
noted in Ni-Rh6 as well as in other weakly ferromagnetic substaﬁces.
For example, it has been measured in the weakly ferromagnetic intermetallic
compound Zang.Bh The fact that this high field susceptibility may be due
to a canted ferromagnetic spin arrangement, (which would then be modified
by application of a strong external field, leading to increase net magn-
etization) was ruled out by neutron diffraction measurements on this sub-
stance.35 In fact, these measurements indicate that the magnetization of
this substance is distributed throughout the lattice, with apprecilable
‘density between lattice sites (as opposed to being localized at the aétual
lattice sites themselves).lending further credence to the suggestion that
Zan2 is an itinerant ferrcmagnet. It has been suggested36 that the
ferromagnetism of this substance is due to ferrcmagnetic impurities
(probably iron) introduced during preparation, (or contained in the
raw zirconium used ﬁo prepare the specimen) but mofe recent studies57
~in which the impurities were controlled at very low levels, indicate that
this material is indeed intrinsica.lly  a weak ferromagnet.

In ZrZn,, the high field susceptibility remains essentially constant

2’
up to the highest field attainable, which in the case of the measurements
of Foner et al.36 was 150 koe., This high field differential susceptibility
has been treated quantitatively by'Wohlfarth.38’39

It should be apparent to the reader that the effects we have been
discussing depend critically on the band structure of the mgnetic electrons.
Until now, we have considered only a parabolic” band,. where the density of

1/2

states varied as E . We expanded the energy of repopulation of the elec-
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trons among the two spin sub-bands in a Taylor series, around the unper-
turbed Fermi surface. vaiously, the coefficients of the various powers
of EO depend explicitely on the density of stétes function in the neighbor-
hood of the Fermi surface, so our results will be modified acéordingiy.
For example, the critical value of kbe"/Eo leading to ferromagnetism can
be modified from its value of 2/3. The quantitative relationship between
kbG'/EO and Eo will also be modified by including the actual band shapes
as well as will other relationships (dependence of Curie temperature on
kbe' and EO). We shall return to this point later. However, itiis félt
that the qualitative fedtures of this model remain intact, i.e., the de-
creasing relative magnetization and Curie temperature as the exchange
interaction parameter ka'/Eo is reduced. | |

Thus, we should be able to explain the decreasing magnetization of
our alloys with increasing Rh concentration, which, from the data In the

region of dilute Rh content, indicates that the addition of Rh actually

increases the number of magnetic carriers.

Stoner Theory - Paramagnetism

Continuing with our discussion of the Stoner theory, Stoner also
calculated the magnetization as a function of appiied field in the para-
magnetic temperature range (and hence the paramagnetic susceptibility).

'Wohlfarthul interpolated Stoner's results, and graphed what he
calls the normalized inverse susceptibiiity,(&o/é) (ubH/kaﬁ)as a function
of T/TC for various values of L3 (or equivalently, kbe'/EO, since the two
are related by Stoner's relationship, eguation 3.2.15); One can show thié

normalized inverse susceptibility is simply

3 ubH ubM

e . b O
5.2018. g T — T
C C

L
X

o
o
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where Mo is the saturation magnetization and X is the usual susceptibility,
M/H. This equation then defines the susceptibility in temms of Stoner's
calculated gquantities. He showed that this susceptibility obeys roughly
a Curie-Weiss suscepbibility law, but with the Curie constant becoming
a slowly varying function of temperature.

One uses equation 3.2.18 to determine the susceptibility from the
theoretical values determined by Stoner's calculation. One then writes

this susceptibility in the Curie-Welss form

3.2,19 X =
where C = N “eff/B kb and ueff is the effective Curie magneton number.

One then finds the Stoner expression can be written in the form

3.2.20 a : -EE = - TC anat _ T ~ ?c ? nsat:
2. kb TC 3 Tc‘ , ( 2 /s 2)‘ - T, qg :
Hoere/Myp C
where n is the number of Bohr magnetons per atom, determined from sat-
sat ’ .

uration maghetization, and Ao igs the magnetic moment per atom in units

of by as determined from the Curie susceptibility constant. Then the
slopes of Wohlfarths curves (i.e. equation 3.2.20) are just equal to the
quantity 3nsat/q02f . This quantity, as we have mentioned, is samewhat
temperature dependent. We plot anat/ch versus EO for two diffetent
‘temperatures, 1.5 TC and 2 Tc in figure 7. We remind the reader, however,
that these gquantitative results are valid only in the Stoner approximation
and will be modified by the inclusion of the correct band shapes.

We notice that in the limit of weak ferromagnetism, (EO < 1) the
ratio nsat/qc2 gets small, or qc/nSat gets large. Thus, in this limit,
the number of carriers per atom, determined by the susceptibility, will
be much larger than that determined by the saturation magnetization.

This was discussed by Rhodes and Wohlfarth,ho and applied to a number of
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~weakly ferromagnetic materials. He found two classes of substances, one
with 4 nearly equal to nsaﬁ’ which he ascribed as being due to the fact
that these materials were dilute local moment ferromagnets, and a secord
type, where the ratio of d, ton a

sat

temperature of the substance, increased smoothly with decreasing Tc. This

when plotted against Tc’ the transition

is expected in a band magnet, (see figure 6). If E_ is taken to be
relatively constant from substance to substance, and if we attribute the
weakness of the ferromagnetism to the relative weakness of the exchange,
we see that as EO gets small, then kaC/EO will get small, or equivalently,
kac will get small. Thus, these authors contend that the qc/nsat versus
TC curves (where TC varies from substance to substance) are in a sense,
equivalent to qc/nSat versﬁs Eo curves. The observed form of his curves
conform qualitatively to the behavior predicted by this theory.

In order to test the Stoner theory, Y/\TohlfarthLEL attempted to explain
the magnetostatic data obtained by previous workers for the Cu-Ni system.
These alloys also exhibit contimously, almost linearly, decrea: ing satura-
tion magnetization with increasing copper concentration. However, from a
rigid band picture, this behavior is expected, primarily because each
copper atom added to the alloy, containing one more electron than a nickel
~atom, adds one electron to the 3-d and lL-s bands. Since, from electronic
specific heat measurements it is known that the density of states in the
d-band at the fermi level is about ten times that of the lU-s band, of the
electrons introduced by the copper, one-tenfh go into the 4-s bands where
the occupy equally spin up and spin down states, and nine-tenths go into
- the 3-d band, or equivalently, .9 holes are removed from this band. Then
the number of holeé in.the d-band, with atamic concentration, c; of copper

is
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3.2,21 - no= LSk - ge

and the magnetic moment per atom; with g = 2.2 is, in units of Bohr magpetoﬁs,
Hb:

3,2,22 | Dt = 1.1 (.54 - .9c):z‘.6 -c, as observed.

Nevertheless, Wohlfarth argued that this effect is enhanced sqmewhat
Ey the fact that the exchange interaction decreases with increasing copper
concentration, causing the reiative magnetizatibn Eo to also decresse.
Then the overall magnetization is simply the product of the number ofvhole-
carriers in the d-band, multiplied by the relative magnetizatién factor,
determinéd by the exchange parameter, kbe'/Eo, which also varies with
concentration.

Wohlfarth determined EO as a function of concentration from two
independent methods within the framework of the Stoner model.

First, ﬁsing the rigid bandvapproximation, and the factvthat Eo varies
as (N)g/3 he inferred Eo(c). He used ﬁhe experimental values of T, to
deﬁermine Tc/Eo° Then,.using Stoner's figure 6, he determined éo(c) =
e (T /B, -

The second method involved the ratio of magnetic carriers as deter-
minedvby paramagnetic susceptibility, and by saturation magnetizatioﬁ.
From Stoner's relations between §O and this ratio, he obtained an ihdepen-'
dent determination of Eo(c). He obtained excellent agreement between -
these two methods.lvHowever, since the decrease in saturation magnetiza-
tion, M_ ., is due primarily to the fillirg of d-band vacancies, the
effects of kbe‘/Eo on the overall magnetization are masked. On the other

hand, in the Ni-Rh system, where the addition of Rh increase the number

of magnetic carriers, the decrease in MS

at is due entirely to decreasing

éo, S0 this system is even more desirable for such studies. .

:
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In addition to the work of Hunt, which we described, there have been
additional refinements in the Stoner theory. Some of them are as follows.

Effect of overlapping bands. We suppose, as in the case of nickel

the d-band with its high density of states, is overlapped by the s-band
with a low density of states. We have just Seen that such an overlapping
band affects -the number of électrons which go ihto the d-band upon alloying.
There is yet another effect of overlapping bands. At higﬁ temperatures,

the electrons are not only excited from one sub-band to the other, giving
rise to redistribution among the two spin directions as described by
equation 3.2.3. but somé’electrons;afe also excited from the d-band to the
s-band. This serves to further influence the temperature dependence of

L3

Ite
the magnetization. These effects have been discussed by Band, Lidiard

-~ and Wohlfarth.ul

Band shape effects. Open bands, closed bands, bands of different

shapes, both overlapping and non-overlapping were discussed by Elcock,
Rhodes, and Teviotdale.hu They found that various susceptibility vs.
temperature relations were possible, including some show ing maximum
in the susceptibility as a function of increasing temperature. They
applied their results with some success to Pd and Pd:Ag.

Very weak magnetism limit. The theory of itinerant ferromagnets,

in the limit of very weak ferromagnetism, has been worked out by a number
of authors: D.M, Edwards and E. P. WOhlfarth,h5 E..P. Wohlfarth,h6 J. Mathon.h7 |

In this 1limit, solution of the magnetization equations may be carried
~out in terms of the value of the density of states function and its

derivatives, evaluated at the Fermi level. Thus, the knowledge of the

entire band structure becomes unnecessary.
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The first of these papers concerns itself primarily with the magnetic
isotherms of such a system. However, the results of this theory are modified
by the presence of spin waves at low temperature. We will return to fhis
point in a later sectim. '

The second paper also derives.quantitative results for a ve;y weak
Stoner ferromagnet. Both papers applj these results quite suécessfully
to the observed data for the weakly (itinerant): ferromagnetic inter-

metallic compound, ZrZn They fit the observed isotherms for this material

o
very well to those predicted by the theory, except‘af the very lowest tem-
peratures, where spin wave contributions are expected to cause such devia-
tions. .

The third paper discusses sane of the electrical and’magnetic pro-.
‘perties for a weakiy ferromagnetic system of alloys, in the vicinity of
the critical concentration. The author aésumes that the density of states
is a smoothly. varying function of energy near the Fermil surface. He also
assumes that the exchange and Fermi energy are smééthly varing functions

of concentration. He assumes these parameters may be expressed as a

Taylor expanision about the'critical cdncentratioﬁ:

3.2.25 K 0'(c) = k8 + B Ac + B(AC) +..L .

b éritical
3.2.24 E (c) = Eolccriticai + R Ac +.S(A¢)? o vnan
- where Ac  is the deviation of compositibn from its critical value.
We will use the results of these authors when we discuss our>magnetd-
static measurements in the next section. o |
Spin waves It has been demonstrated by a number of authors that.
spin wave excitations can exist in a band.ferromagnet;binfluencing thé

magneto-static properties. We will also discuss this at length in' a later

- gsectiom.
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C. Hurwitz-Van Vleck Description

For campleteness sake, we should also describe briefly a slightly
different approach to ferromagnetism, the so-called Hurwitz-Van Vleck,
or minimum polarity model.

This model was described by Hurwitz,l\l8 Van Vleck,49 and later h
reviewed by Van Vleck.

We may think of this approach as a generalization of the localized
“momernt (Heisenberg) description, to include the effects of the overlap
of the neighboring d-wave function orbitals. This spatial overlap allows
eléctrons to hop fram one atomic site to another.

(This can be seen from a perturbational approach. One can calculate
the transition probability, using the Golden Rule; of an electron making -
a transitién from one localized atomic state to a neighboring one. This
is related to the matrix element:EAB connecting these states, which,

by definition 1s related to the overlap integral:

3.3.1. Ky =/ oG  H@E ¢ (r) ar
atom A interaction atom B
where the ¢ (r) is the wave function localized at atomic site, 1.
atom 1 .

This is non-zero if there exist sane region of space where both atumic
wave functions are non-zero simultaneously. This is just the conditim
of nearest neighbor overlap.)

The overlap also broadens the atomic d-states into bands of finite

(but narrow) width. This picture is simply the tight binding approximation

. o
and 1is treated, for example, in Principles of the Theory of Sol£g§.5

The result of this electron hopping is that the distribution of
d-electrons throughout the lattice is changed from its value in the

extreme localized (i.e., no overlap) case.
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In the case of pure nickel, for example, we may think of the
individual atomic sites as being. in different states of ionization, or -

9

pola.rity-; ‘i.e.,’ some atomsi_a;re in fbe le éonfigur_a_ti_on, some in the 47,
dg, etc. vThe fractiomal distribution v-'of- such stat_es 1s subject to _f:he'
auxilliary condition that the ..polarity_ averaged over the enﬁiré samp le
must -cor'respo,nd to the ob’sefved ﬁagheti’c moment. For pure nickel, the
a.verage polarity is symbollcally ertten d9°1+6, t-o correspond t.o. the
observed value of SLL holes per'a-tom. (Note'.' at the time these papers
were publlshed the g.value for Ni was not known, ‘and was assumed to be 2,
Since 1t is now known to be 2.2, there are actually .5k holes per a.toms,
whereas Van Vlecks! descr_lptlon was b_ased on _._6. This correctlon makes
no esserltial difference in the discussioh.) .Iinpl_icitly 'assumed invthis
model is that th-ére is some mééha.nisr_n to_ céuse these 'mor'r.lents to- alig'n.
- parallel to Aeat.ch other at low tgmpératurg, |

With fhis ﬁodel ﬁe aré in é. position to trea.f the efféctsv of corre-
lation. We do so by acknowledglng the fa.ct that it takes more energy to
doubly ionize a site (d ) than to singly ionize’ it (d9) It is just
the Cou_lomb (electron-electron) interaction which makes the energy of
thése higher i)blarity:states of.larg_e.‘ Therefére, vby req_uiring the
number of sites in states of high polar ity to be small, we can describe
tﬁe effects of cozfrélat ion. We may then choose, as V"a.n‘Vle_ck'\originally :
| did, to rule out completely the_stait_es of high‘polarity. We then say that
the system is in a sfate of nﬁnhnumvpoiar‘ity_. ' For nickel we woﬁld'have
L6 per‘ cent of the Sifes in .Bdlo and the remaining 54 per cent of the
sites in the 3d9 conflguratlon, yielding the average value of 3d9 4o as

required.
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On the other hand, we may choose not to rule out the high polarity
states completely, but give them small but finite probabilities.

We do this Because the minimum polarity approximation over-estimates
the effects of correlation. In real metdls, there is screening of the
Coulomb interaction by other d-electrons, and by the s-electrons.

9

Thus the energy of a d8 state is not as much higher than a d

52

state 1n a
metal as it is in a free atom. C. Herring” has suggested that the highly
mobile L-s electrons largely screen out the effects of the fluctuations
in the polarity, making such fluctuations energetically mo.fe favorable
than they would otherwise be.

By restricting ourselves to minimum -bolarity states only, we are
in effect, restricting the eléctronic wave functions too severely, forcing
them to be more localized in space than necessary, thereby increasing
their kinetic energy. By allowing some small fraction of site to become
ionized to d8, or higher, we reduce the kinetic energy more than we
increase the potential energy, and thereby reduce the total energy of
the system.

We can also understand the presence of some high polarity states
from the following argument: The various atanic d-states overlap with
neighboring sites and with each other, so a pafrticular atomic state is
actually described by a linear combination of many atomic wave functions
(which form a camplete orthonormal-set).,

One can then calculate the probability of a particular polarity
state at some given site by calculating the probability of vacancies in
the appropriate number of atomic localized states at that site from the
coegfficients of the unperturbed atomic eigen-functions appearing in the

linear combinations which describe the true wave functions.
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The relative fraction of these higher polarity states were
estimated by Van Vlec_k.50 | |
The presence of these higher polarity states is attfactive from

a theoretical standpoint. It allows an additional cqntributioh‘to

the exchange, namely the Hund's rule type coupling, which tends to align
electronic spins located on the same atomic site. Iﬁ fact, it’is felt

By many authors that such a contribution to the exchange may be necessary
‘in order to cause a band of éiectrons to become ferromagnetic.

Another consequence of this Hund's rﬁle coupling, is that spin
étates (at lea st a few of thém) are allowed to have spin quantum number.

S = 1 (or even higher), due to the coupling of individual S = 1/2 electrons
at the same site. In the Stoner model (and in the minimum polarity model
for pure nickel), all of the.magnetic carriers have S = 1/2. The

presence 'of these higher spin quantum number states lead to certain con-
sequences. For example, it affects the angular deéendence of thé magneto-
:crystallineanisotropy (to be discussed in a later section).

This (narrow) band model has same of the features of other band
models, e.g., large contribution to the'specific heat from‘magnetic
electrans, mégnetization_corresponding to non-integral Bohr magneton
numbers, and spin waves. However, numberical results fram this model
are almost impossible to obtaiﬁ. In order to make qﬁantitative calcu-
lations in this model, one needs to know the ionization energiesvinvolveé
in the states of different polarity; Although these energies are known

Trom spectrographic data for free ions, they are not known in the case
of metals, ﬁhere screening effects occur.

In any event we may state that while the Stoner approach neglects

the effect of correlation (except in considering the screening in the long
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range Gioulomb interaction), this model overestimates these effects. The
real description probably lies somewhere between the two limiting extremes

of this model, and the Stoner model.
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IV, MAGNETOSTATIC MEASUREMENTS IN NI-RH

A. Saturation Moment and Paramsgnetic Suscept ibility'
: ’ -

As we mentioned in the introduction, the saturation mbment and
the Curie temperature have alreadyibeen measured fégfa’number df:allqys
in this system. Cfangle ani Parsons7 meaéured these quantitiés for the _ .
Ni-Rh system (as well as for!some related élloys). They éﬁteméted fo
analyze the‘ mgnetization dalta in thé dilufe regién using thev‘rigid band
picture (and also a localized moments picture, with a maénetic‘momeht
‘assoclated with each atom, d&f"fering for the two species in the alloy);
v HoWever, they did not have much success. ‘In the Ni-Rh system, the
. addition of Rh was observed fd contribute the magnetic moment equivalent
tb two holes per atom of Rh a@ded, instead of ohe, aé is expected by its
atanic conf-igumtioh. They ia,lso found similar discrepencies in the other’
systémé i they studied. < For the Ni-Rh system, no explanation was‘offered ‘
for the contimuous g_g_c_l_'_gea_s_e_e_’i:'an saturat ion momen{: which occured foiv'_"il‘flcrea."se:
in the Rh concentration over about .five pér’ cent. |

We will attempt to provide an explanation pf this using the .Slté_nver'
model as a basis. o | .

For our studies, the magnetizétion was meaéufed as descfibed in
section II. The physical dimensions of the samples were accurately ﬁea—
‘sured as was the weight. WiFh these measurements, we accurately deter-.
mined the .aver_age density of. our samples. We determined the density of
our alloys expected in the ideal case, using the lattice parameter - |
versus conc.entrat ion data determined by Luo and Duwez ,5 who detenﬁi-hgd
these curves by X-ray diffraction measurements. We Wefe then able to  :
calculate the porosity of our samples, resulting from the preparation.

With this information, we could express our observed values of ma-gn'et i-

zation in termms of Bohr magnetons per atomic unit.
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In figure 8 we plot the magnetic moment per.atom, extrapolated to
T%O as a function of alloy concentration. Includéd on this plot is the
previous data of Crangle and Parsons. We note the agreement between
these two sets of data.

Figure 9 shows the measured values of the Curie temperature for these
a lloys, again including the data of Crangle and Parsons. We determined
TC by extrapolating the high temperature imverse susceptibility versus
temperature plot to the value of T giving l/X = O, In the high temperature
region, this plot was quite linear, and the extrapclated value was seen
to be independent of the external magnetizing field. Again, agreement with
Crangie and Parsons measurements was quite good.

We also display the saturat ion ﬁoment per atom as a function of the
Curie temperature in figure 10.

In order to determine the relative magnetization, EO, it is
necessary to make some‘assumptions about the effects of alloying upon
the number of d-carriers in the system.

We assert that each atom of Rh added to the alloy system has the

effect of contributing some number of holes, N to the

holes ‘added’”
common d-band, which we assume is betweén 1 and 1 %4.n (Since the d-band
is expected to have a much higher density of states than the overlapping
4-s band, most of the holes added should, in fact, go into the d-band,
with perhaps, one tenth of them gging into the s-band.) We will see that

the results we obtain are not critically dépendent on the value we

assign to Ny oo naded’

55

The Jjustification for our assumption is described by Pauling. -He
plotted the magnetic moment per atom for alloy of the 3-d transition

ferromagnetic elements with other elements in the 3-d series, as a function

e g
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of the average atomic number of the alloy, which is the weighted average
of the atomic numbers of the two constituents. He found that in many
cases, the net magnetic moment behaved just as”if the addition of the
solute contributed or removed carriers fram the magnetic - band, the
number comtributed or removed depending on the difference between the
number of eléctrons in the solvent and solute. For example, we hawve seen
the addition of Cu, with one more electron per atom than Ni, when added
to nickel decreases the saturation moment by one Bohr magneton per copper
atom added, since the electron contributed by the copper fills one vacancy
in the spin down sub-band, removing one magnetic carrier., Similarly,
Pauling found the addition of zinc to nickel, with two more electrons per
atom, decreased the saburation moment twice as gquickly as did copper.
Cobalt, on the other hand, with ‘one less eiectron per atom than nickel,
increased the magnetic moment 'by about one Bohr magneton per added atom.

When palladium, with atomic configuration 5370 is added to nickel
(3d8 432 = 10 outer electrons), over a large range of concentration the
magnetic moment remains constant.% Thus the addition of each Rh atom
with one less electron than Pd, is expected to contribute about e hole.7
However, we have noted that in the dilute region, the magnetization data
has indicated that this number is about two holes per atam added. We
attribute this to s-d mixing, which we will discuss later.

Ih the more concentrated Rh concentration region, we assume this
number decreases somewhat, becoming closer to the expected vallue of 1.

We then interpret our data using two separate sets of assumptions

h,1.1 case l.' Nholes added - 1

L,1.2 case 2.

Nh oles added 1.5
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We then calculate~thebeffective number of magnetic carriers for these

two cases..

' ' ' = +
h.1.3 | case 1. N les total b +e
‘ = . + (
holes total 6+ 1.5

h1.k, case 2. N

. | | -
where ¢ is the concentration of Rh. We have implicitiy included the fact
that g = 2.2 over the‘range of intereét, which is consistént with ourf
mégnetic resonance experiments.

The ratio betwéen the mmber of magnetic carriers per atom inférred
above, and the measured value of the low temperature saturatién.magnetizé—
tion, éan then be used to calculate the relative magnetization, _Eo.

We plét 50 as a function qf the rhodium concentrat ion for our two .
sets of assumptions, in figures 11 and 12, We see that in both cases
‘these relations are quite linear from the critical concentration to a

qancentration quitevhigh in nickel. We will discuss this from the point
of view of the Stoner theory in the next sub-sectilon,.

We also shcwaéo VSe TCvfor the case N 1. (The second-

holes added

case, = 1,5, leads to qualitatively the same results, and

Nholes added
is therefore not shcwn.)v See figure 13%.

Figure 14 shows the variation of the Curile constant describing the
paramagnetic suéceptibility of our alloys. This is expressed in terms
of the effective Curie: maéneton humber, q, defined by the equations

C
T-T
¢

2 2 2
N(q ) N<q  >n
l".l.6 C = < = <

3k 3k,

where N is the number of atoms per unit volume, [ the magnetic moment

k1.5 X(T) =

N 21 . .
per carrier (= 5 ‘g ub), g 1s the spectroscopic splitting factor, Hy



-68-

I

p

1.1

- O [Ta¥ - o\
Q . . °
o (@ o o o

UOT3eZT1oUSE SATIEToY

Fig., 11

0.2

0.1

0.0

Atomic per cent Nickel



IR T A

A S
o
UOTFBZTISUSEY SATIRTOY

Fig. 12

100

90

60

Atomic per cent Nickel °




-T0-

1.0

0.9

C.8

0.7

0.6

n\ -3 o\ (o]
L3 L] L] N L3
(@] o (o] Q

uoT}eZTPUTe SATIETOY

Fig. 13

=)
(@

0.0

700

600

500

4,00

300

200

100

Temperature (°K)



2,0

l.8
l.é

1.4

1.2

1.0

- 0.8

0.6

0.4

0.2

~T1-

T T T T T
. o G |

[ ‘0o o

- | 0

9]

— O

”" C‘)<qc2>l/2

— A (<qc2>+g‘2/h)»l/2 ~-g/2
[ A T R N
L0 50 60 70 80 90 100

30

Atomic per cent Nickel

Fig. 14




is the Bohr magneton, and the spin, S, of the electron is 1/2. In deter-
mining'.qC from < qca>, we must acknowledge the quantum mechanical nature
of the electron spin.

| Let us consider the following argument: We considervthe magnetic
moment of each carrier, in units of Bohr magnetons. Then»the effective

magneton number is defined from the equation
4.1.7 qQ = g-+* 8

However, in deriving the Curie-Weiss susceptibility law, it is the square
of the magnetic moment which enters the problem. Quantum mechanically,

this is given by

2 2
4.1.8 a, = 8 - 8(s+1)
expanding, we find

' 2 2

k.1.9 gQS +g28-qc = 0
solving for S taking the positive root,

2 Jh 2 2

. + :
4.1.10 g . - ® * Ve theg
2g2
and recalling equation 4.1.7, we find
h.1.11 ' a, = (qc2 +g2/4)l/2 -1
for g = 2, this reduces to
h.1.12 2 1/2
a, = (q, +l)/ -1
. . 2. 1/2

a form often used in the literature. We hawve plotted < Q. > 47 and

q, as a function of ¢ in figure 14. We see that as . remains fairly

constant over the entire range (while n goes to O at.c ), with

sat critical

the exception of a slight dip near Coritical®

We will now attempt to relate our data to the predictions of the

Stoner theory.
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B.  Comparison with Theory - Sdlution of Stoner Equations

It is apparent from equatiori 3.2.3 that the magnetic pi‘operties in
genei‘al depend critically on the density of states function describing
_the tand of magnetic electrons. However, in the l'i;nit of weak'ferr'omag-
nestism, the Eands shift only a small amount with respect to each’ other,
hence, énly those electrons near the Fermi level are involved. In this
1imit, one may express the solution of the Stoner equation in terms of
the density of states function and its derivatives, evaluated at the (n.on-
magnetic) Fermi level. " |

Equation 3.2.3 was solved in this limit by Edwards and Wohlfatr‘ch,LL5

25

V\Tohlfarth,h6 and Thompson, Wohlfarth and Bryan. They find that the

fractional magnetization, €, is described by the equation. ‘

3

L.2.0 (2/n) N(Ef) '[kbe'g + »H] = & [1l+a (T/Tc)2] + Yy &+ QE.S

where '1‘c is the transition temperature,

1 2. 2 2 '
h.2.1 o= T (g T )T (0 - v,)
and
L.o.2 :
te 1 n 42 2
v o= T {W} (Dl -1/3 02)
and where : -
h.2.3 o = 4N(E) N(E)'
m - a4 B
» E=Ef
N(Ef) = density of states at non-magnetic Fermi level per

atom per spin direction

n = number of magnetic carriers per atom (= .54 for pure Ni).

Solving equation _H.Q.O in the limit of H= 0 and T = 0, and again defining

£ = g

we find a relation between kB' and & .
0 T=0 . “o
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b2k, 2

51

: 2
t = +
N(E;) k 6 L+vyeE
Using equations 4.2.0 and L4.2.4 we find the relation between Tc/Tf and

£ (where T, = Ef/kb): ,

2
o}

h.2.5 o =7vyE
where T, is defined in terms of O in equation Lh.2.1.
These authors also show that one can write the expression describing

the magnetic isotherms in the form \

' ' o 2 X H
M (g |2 M T | =%
h.2.6 [M (0,0) | = M (0,0 L- T, |T M (0,0)

where M (H,T) = magnetization at field H'and temperature T, and where
2 2
L.t X, o= NN(B) w/y g

where N is the number of atomic sites per unit volume and p is the magnetic

moment per electron, = % g thy e

In order to make use of these equations, we must find an expression

for the terms involving the Dm. For a parabolic band, we recall:

4.2.8 N(E) = 5n52 gl/2 _ , gl/?
1+Ef

In this case, the terms involving the v, can be evaluted as follows:

1 -1
l"-.2.9 Dl = 2 Ef
k,2.10 _ R
% = -1 B
Therefore
' 2 1 2
h,2,11 [ul _02] = '35 Ef
and
2 1 2
4.2.,12 [o,"- 1/3 02] = 3 E,
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We then generalize 4.2.8, 4.2.11 and 4.2.12 to non-parabolic bands, by

defining the functions 8,0 815 &°

a3 e = P e, 2
f
| 2. - 1 _
L2 i _
b.2.15 (0,7 - 1/30,) = gy(B) + 75 Eg 2

In the limit of parabolic bands, these functions all approach the value 1.
In terms of these functions, the parameters @ and 7Y can be evaluated.

We find, using equation 4.2.1, 4.2.2, 4.2,13, 1L, and 15,

. _ ﬂE TCE
and £ ( ).
o 8 (E
L2317 oy s e e E
T g f@®m)
' €o f
Then equation 4.2.4 becomes
4.2.18 k. 6 | g, (E,)
: — g (E.) = 2/3 +L4/81 TR SO
E o' T 2 o
f g, (E,)

This is a generalization of equation.B.E.lE. gO(Ef) > 1 implies a large
density of states at the Fermi surface. We see that a large density df
states can lead to ferromagnetism with relatively Weaker-exchange inte;—
actions than in the caée of low dénsity of stateé. ‘This ié juét a re-.
statement of equatiéhs 3.1.25 and 3.1.28; i.e., that the Stoner condition

for ferromagnetism is J‘N(Ef) > 1. Equation %.2.5 can then be written

E g (E,)
b2.19 T fr. = 5 L .
| g, (Bp) g(Ep)
g, (E.)
he.ga T /T, = .30 / e T

‘V 2 go
e ? (8,) g (E)
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We may eliminate &  from equations 4.2.18 and 4.2.19, to relate Tc/Tf

directly to kbe'/Ef. We then find
t ~ y “ 2 b
4.2.20 k 6'g (E)= 2/5 + (4/81)(1/ .09)gl(E S (T /T)

We may similarly evaluate the susceptibility parameter XO. ' .

From equations 4.2.7 and 4.2.17 we find

: 3
_ 2 g “(E,)
L,2,21 nhNu 0 f 2
X = 81/8
0 / ~[ KTf ] g, (Ef) ' l/go
or using equation 4.2.19
_ _ | .
h.2.22 Y m 09 | 81 nw .2 | g, (Ep) T,
0 i) k, T, g, (E) D2

[¢]

We also solve the magnetic isotherm equation (equation 4.2.6) for several
limiting cases.

Low femperature, valid to high fields \

A T=
In the limit of T = 0, defining €= MM(%é gjo)
)
we find, usinhg equation L4.2.6
2X H
; 0
> - + A ——r————
[1+ &) - [1+ €] 70,0

the?efore, 2 A M (H,T=0) 2 Xo H

Pe =

M (0,0) & “M(0,0)

Therefore, the low temperature (high field) differentiallsusceptibility

is given by | - ’;
. . ° - . = x

k.2 23 Xdlfn o

provided X H = A M << M(0,0)

Low field susceptibility

By defining X =AM/AH and using equation 4.2.6, one findsh6
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2.2k X(T) = x_[1 - (T/TC)E]_]f T<T,

42,25 _ 2 -1 ‘
, X(T) = gxo[(T/Tc) - 1] T.>>T>T

Be defining the paramagnetic Curie magneton number from equation
3.2.19, ff. and using equatims 4.2.22, and 4.2.25, we find
N T g (E.)
2 A e £ .
.2.26 ~ A6 o Sl
b 2 . <qc ) 0 ::'_[LI-TC g]__(-EfS

If we evaluate this at T = 2 Tc’ we find

h.2.27 ’ S g (E.)
2 £ 1) f

- {g ") = L8 ni= =

c | T, 8y (Bg)

or using equation 4.2.19 to eliminate Tf/Tc

2

4,2.28 )

‘ 0 : f ' l/§,
‘/gl (E.) &, (Ef} ©

In order to put this into a form often used in the literature,

(E

| g
2> = 6,06 n '

weusen_, = n & to Vrite 4,2.28 in the following way
W® | g2 (2,)

wR2 el 606 ot  1e’”
sat yer Be) & (Bp)

or , '
3n_ g, (B.) g, (E.)

4.2.30 —S2t o g5 ‘[l L= I 502

' {a,7) g, (Eg)

This equation is the analytic form of the graph of figure 7, valid for -
small éo. | | - |

In order to compare our data with the predictions of the Stoner
theory we calculate the dependence of these magnetic parameters on the

concentration, in the vicinity of the critical concentration. We begin

our discussion by stating that there is nothing special about kbe' and E,
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near the critical concentration, other than the fact that they happen to
form the ratio 2/3. In the foregoing solutions, it was assumed that the
density of states function N(E) was a smooth function of E. If we adopt
a rigid band model, we see that the addition of Rh to the alloy changes the
number of carriers in the d-band, thereby shifting the Fermi level accord-
ing to the equation

E
4.2.31 n(e) = {)f N(E') dE'
‘wheré n is the number of d-carriers at alloy concentration ¢, and

N(E') is the rigid band density of states function. Thus E_ will vary

f

smoothly with the concentration c. Even if the band does change shape,
and if we allow the s-band to change its position with respect to the d-

band, we still expect E_, to be a continuous function of concentration.

We should expect it to be expressible as a Taylor series in the concen-

T

tration, expanded about some arbitrary (but non-singular) value of c,
which we conveniently pick as the critical concentration. We should

then be able to express the Ferml energy in the form

4,2,32 Ef(c) = E, (cCrit

) + Ac+ 62(A D%+ ...

€1
where A ¢ is the deviation of the Rh concentration fram its critical
value.

Similar discussions pertain to the dependence of the exchange para-

meter with concentration. Then

. .
& A +5 +
B¢ 5 (A ¢) .o

' = t +
h.2.33 kbe ‘(c) kb6 critical
We then take the ratio of these two quantities.
' 2
! t . +0 +5
4.2.3L kbe _ _ kbec.rlt' 1 Ac 2(A c)” + ...
o E - erit 2
f E, tegdet e (be) + L,

¢c ., +Ac
erit !
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We can rewrite this as

1 ' gt
' kbe - kb crit
Ef » B crit

I, C
(l (&) /.8 g = €1/Bp
£

h,2.35

c
which can be put in the form

. k 67 kbG’
v ‘g crit A : 2.,
4.2.36 E, - orit (1 B, B e __52( c) eed)
1e f ‘
. o B ' _ ‘erit
There is no a priori reason to expect Bl = (Sl/kbe orit el/Ef )

to be zero. Thus we expect kbe'/Ef (c) to vary as the first power of
deviations in the concentration from its critical value.

With this assumption, we can calculate how we expect the magnetic
parameters to vary with cqncentration.

We define

7 = S R ——

Ee

using equation h.2.l8, no, the critical value for ferromagnetism is

42.39 Ny = ? - orit

| g, (B,7 )
then
L.o2.ho n(Ae)= 17 ~+nl-A’"'+...
where , = Bl no

We first discuss the high field susceptibility near the critical

concentration. Combining equations 4.2.21 and %.2318, we find

2
b2kl % - n Ny L
difn k T R -
£ g, (Ep) KO'/E, -2/3

which is valid in the ferromsgnétic region.
In the paramagnetic region, generalizing our discussion of the mole-

cular field theory (c.f. egn. 3.1.25)

¢rit) A

c +

—

?
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L.2.k2 _ s
X = xpauli X
w2 R
T .
Ky Te K0 N(E,) 2/5

which we re-write as

: para n N p? 1
h.2.43 X = T
- . ' 4 -
bt g (B "k O'/E, -2/3

-We may then write the low température suseeptibility, walid for both
ferromagnetic and paramagnetic regions as
n N u2 1
ky, Te g (E) kO6'/E. -2/3
“PoN T kb T

By using equations 4.2.38, 39, and 40, we find:

2 A
nNu 1
he2.h5 X(e) = kT, ny & e

- We therefore expect the low temperature susceptibility to diverge as

4,2, uh

X =

l/CA,c) as we approach the critical concentratibn, in agreement with the
dependence reported by Bucher, et al.6 From equation 4.2.19, we expect

Tc/Tf to vary linearly with go. Since T, should vary only by a small

f
amount as we wvary the concéntration a small amount from the critical
value, we expect Tc to vary linearly with Eo’ as observed. (See figure 13).

To discuss the variation of §O with concentration, we combine

equations 4,2.38, 39 and with 4.2:18., We then find that

E »
k2.6 £ (c) = 9/ Eo B (V2 (a2

1
\lg2 (E;)

and go(c),is expected to vary as (A c)l/g.' Again, by using equation

4.2,18, one can show

k,2.h7

~ | 1 1/2 | 1/2 . :
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and the Curie temperature'is alsobexpected to Vary as (& c)l(2 We noté
that oqr‘experimental va lues disagrée with thié prediction, displaying
a remarkably linear relationship in both cases (See figurés 9,11, and 12).
In our discussion, we are assuming the density of states function is

smooth enough, so that small_changes_in the concentration, which shift
the Fermi level, dé not cause the functions gl(Ef) to vary tooﬁdra;tically
fran their value.at the critical concentration. This assumption should
be valid if there is no singularity at the critical concentration.
| We.also find disagreement between theory and experiment when we
plot the'Curie magneton number‘versus concentration.

~ Fram equation 4.2.28, we expect (ch) to diverge as 1/go or, using
equation 4,2.46 we expect this quantity to diverge as l/(A~c)l/2.
However, we see in figﬁre 1k, that there is no such tendency; but

q, remains fairly constant, with a small dip near the critical concentration.

Discussion of results

We see that ocur data disagrees with the predicﬁions of the Stoner»
theory; We offer sbmevpossible explanations.

1. The behavior predicted by the Stoner theory may be valid only
over a very narrow region of concentration. This region may be too
narrow to be observed in our measurements. However, this does not seem
veryvlikely unless the density of states near the Fermi leVel correspond-
ing to the critical concentration, or the variation of the band shape
with concentration in this region, varies very rapidly.

2. Our assumptions leading to equations %.2.32, £f. my not be valid.
The density of state function at the va lue corresponding to Efcrit may

be singular. Then Ef would no longer be expressible as
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crit :
= + . + cee
Ef(c) Ef N A c

but for example, might also include a term in the sum going like el/é(A c)%/2
Such g singularity (for example, of the Van Hove form) could also lead to
a strong concentration dependence of the normalized derivative functions
gl(Ef(c}) and ge(Ef(c)), causing them to vary as (A c)l/2 instead of the
expected form

g; (Ef(c)) ~ const. +const., - Ac+ ...

1
56, 57

However, band calculations in pure nickel do not predict such violent
discontinuities in the density of states function (or its derivatives),
although they do show a broad peak near the top of the band, containing
about .8 - 1 electrons per spin direction separated from the rest of the
band by a smooth (and not very shallow) minimum. In fact, this minimum
may bé responsible for (kbe'/Ef) fgo(Ef) reaching its critical vaiue where
it does, but unless the density of states varies quite sharply here, the
Stoner predictioﬁs should still apply. That this minimum ?s not very
shallow is supported by the electronic specific heat data of Bucher et
al. in the vicinity of the critical concentration.

5. The s-d interatction may modify our results samewhat. It is
well known that the s and d bands overlap. Thus, there is ad-mixing of
s amd d states, resulting in the formation of a d-like band with high
dehsity of states, and an s-like band with low density of states. As
we vary the alloy concentration, we may vary this interaction causing a
shift in the position and shape of these two bands, so that equation
4.1.4 is not strictly valid. As we increase the Rh concentrationy many
of the holes introduced might go into the s-band. Then the mmber of

magnetic carriers might vary in some complicated way as a function of c,

go the value of &O(c) we inferred are incorrect, and the (A c)l/2 depen-
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dence is masked. Although such an effect may explain the :initial rapid
increase in nsat(c)lczo’ only under very special circumstances could we
é}@ect this tendency to mask the (A c)l/2 dependency which is expected,
and cause it to appe.ar linear.

Again, this seems highly unlikely.
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C. Low Temperature Variation of Magnetization
Elementary Exéitations in Band Ferromagnets

According to the Stoner model, which we have been discussing thus
far, the effects of finite temperature on the magnetization of the system
can be treated by solving equation 3.2.3 as a function of temperature.

One assumés the distribution of single particle (hole) states are degcribed
by applying Germi statistics to the energy states available (which are
described by the density of states function for the band). The effects

of increasing T are to decrease the magnetization, M, because the higher
temperatures tend to excite particles fian their lowest energy states to
higher energy states, bringing about a redistribution of the electrons
among the two spin sub-bands. These excitations are usuvally termed single
particle or Stoner excitations. Under most conditions, more spins are-
excited fram the majority spin sub-band to the minority spin sub-band

than vice versa, thus éausing M to decrease with increasing T.

Depending upon the strength of the exchange interaction, i.e.,
whether or not the magnetization is complete, the temperature dependence
of this contribution to the low temperature saturation magnetization
follows one of two forms.

In the case of strong ferromagnet, (see figure 15a) there exists an
energy gap, &, between the top of the full band and the Fermi level of
the partially filled sub-band. This leads to an exponential approabh to

25

saturation at low temperatures, of the form

MM (T)
h3.1 T - _E%Ql exp (4 /{th) |

[ov]
where n is the number of carriers, I(T) = [ N(E) exp (-E/ka) dE, amd
0

A MSp is the deviation of magnetization from the value at T=0 due to
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these Single particle excitations. In the limit of weak ferromagnets,
there is no such gap (see figure 15b). Then from equation 4.2.6, with
O and T < '_['C we obtain .

M_ (1)

4.3.2 __ME()GT = |1 - (T/Tc)2

which can be expanded for T << TC

' AV (T)
433 ——ﬁp-(ér)— ~ (1/2)(°/r,)

However, it is known that there is still another type of excitations
in a band of interacting electrons, which also can phange the magrietization.
There are collective excitations, brought about by mlstny—body correlat ion
effects, and can be thought of as spin waves.

58

Herring and Kittel” demonstrated the possibility of such excitations

in a continuous ferromagnetic medium, from the assumption tlat there is

95

a contribution to the energy of the system varying as
) - a0
L3k E = A|VMENF

They Jjustified the form of thié term, which arises fran the exchange
interaction among the electrons. Since this interaction tends to align
the electrons parallel to each other, &nd local deviations from this
state, are described by the magnitude of ré ‘ .f‘/ll, according to these authors,
this lead to an energy contribution of the form shown.

This tendency for the magnetism to remain uniform in direétim'through-
out the sample is termed exchange stiffneés, and the coefficient of the
,\Vl ‘—I\"II term in the energy, A, is tefmed the exchange stiffness cqnstant.
It is this térm, for example (in conjunction with. the magnetocrystalline
a_nisotropy), which detemines the thickness and energy density of the tran-

sition region between magnetic domains, the so-called Bloch walls.
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These authors then showed that the energy of these collective exci-

tations vary as

, , .
L1.3.5 Bp - (2 & 9/s) 4 ~ Dg° o :

where Q is the atomic velume, S is the spin of the_carrier,‘a the wave

vector of excitation andlq’is equal to ra'. "This result.is[valid;.at
least, for small q. |

They then poihted out that this disperéibﬁ rélation leads‘to the

‘

familiar Bloch T3/2*law in the low temperature saturation magnetization,

They also suggested that these two types of excitations which we
havé mentioned, espeqially at low temperétures,:can be treated as_acting
independently. Thus, the contributions to the specific heat and to the_
deviation of the satﬁration magnetization at low temperatures can expressed

as the sum of these two coutributions. Then for wéak férromagnets, the
‘ .
low temperature magnetization is expected to vary as '

4.3.6 : ]_"ﬁj(g%j ~ 1 -A T5/2 _BT® -

where the coefficient of‘the TB/2 term is related to the exchange stiffness.

29

Herring”” did a many body célculation'of the exchange stiffness

coefficient. using a perturbational appreach and the random ghase apprpxi-_
mation, to calculate thé energy of sinusoidal‘disturbances in the systenm
described by wave vector“a. He also found that the energy of these dis;
turbances varied as q2.

- This work Was extended by a number of authors. Particular attention
was paid in explaining the neutron diffraction phenomena in the 3-d tran-
Qition ferromagnets. |

~Elliott and Marshall6o had explained the previocusly measured neutron

diffraction data quite successfully, using a localized monents approaéh.'

|
|
|
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Included in their discussion were inelastically scattered Laue spots
(corresponding to collisions of neutrons with magnons) at low temperature,
critical scattering below and abc;ve Tc, and. pai-amagnetic scattering.

Kubo et al6l and Izuyama et al.62 discussed these effects fram the ' |
standpoint of the band picture of magnetism. They showed the neutron | -
scattering cross section is related to the dynamic susceptibility function
X (3, ®), describing the system (which is essentially the response function
of the system to a perturbation at frequency ® and wave vector ?1‘) , using
the fluctuation-dissipation theorem.65 They proceeded to do a many-body
calculation of the dynamic susceptibility within the random phase approxi-
mtion, making certain simplifying assumptions about the electron (quasi-
particle) energies, and their interactions. They found that in addition ‘
to the expected single particle excitations leading to poles (which accord-
ing to Elliott6h lead to rather weak poles in the neutron scattering cross
section, i.e., weak Bragg spots), thefe are also poles for values of '
(4, ©(q)), corresponding to collective excitations, where the dispersion
relation for these excitations folloved a form o (4) ~ D q°.

Other authors also calculated the exchange stiffness coefficient

65

using varying approaches, most based upon the RPA, and include Thompson,

67

Edwards,66 Mattis, Edwards.6

In the second of these papers the author demonstrated the separabi-
lity of the two types of excitations. In the fourth of these papers,. .
Edwards shows that the presence of singie particle excitations sets an
upper limit on the allowed wave vectors (and hence on the rumber of
allowable independent modes) of the collective excitations. This limit

occurs at the intersection of the dispersion relations of the two types

of excitatims. Above this threshold, the collective excitations are
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critically damped by the single particle excitations.

L5

Edwards and Wohlfarth = stated that a good estimate of this maximum

wave vector for the spin waves is given by

b.3.7. Upoxe = (8 ™ nN/A) &

where N is the number of atoms per unit volume, n is the number.of magnetic
carriers per atom and Af is thevsurface area of paramagnetic‘Fermi surface.
This critical wave vector is Just the average value of the difference of
the radii of the spin up and spin down Fermi surfaces. When collective
excitations have a wave vector larger thanvthis value they can then excite
single particles fram one sub-band.to the other. |

The change in magnetization at finite temperatures due to the spin

wave contribution is determined by calculating the nﬁmber of such excitas

tions as a function of temperature, and noting that each spin wave reduces
the net magnetization by one Bohr magneton. Then the expressim for the

b5

reduction in magnetization is, according to Edwards and Wohlfarth

4,3.8

33 =~
A M - b dg
sw(T) - J

~hﬂ5  exp (hmq/ka) -1

 where the integral is carried out over the allowed values'of q.

These authors evaluated this integral, using the dispersion relatim

2
4.3.9 md = Dgq
and. obtain
K k T,
SW T c D

. e el 2 .

in the 1imit D qmax/ ka << 1, which holds for very weak ferromagnets at
reasonable low temperatures.

69

Expressions for D have been worked out by Izuyama and Kubo,

Doniach and Wohlfarth, © and Edwards.* In the limit of weak ferro-
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magnetism, they showed that this parameter can be expressed as

) o2 9 D
. — _ ! + 1
L.3.11 D = {nx (kbe ) 3/36} [N(Ef) E, N (Ef)] 3
where n is the number of carriers per atom, R the nearest neighbor distance,
and N(Ef) the density of states per atan. For a parabolic band, this

generalizes to

~ B
4,3,12 DR 3z E, g

(where we can generalize this expression to other band shapes by using

R2
o

equations 4.2113, 14, 15)
Using this expression for D, the expression for 9o (4.3.7), and
our expression relating §o to kbe'/Ef (section 4.2), we find after, a

little algebra

AM_(T) i A : *
4.3.13 SW numerical factor depending Slowly varying T
-] . ~ T

M (0) on band structure . function of
. ) composition

valid in the limit 1 >> T/T_>> go.2

In the extreme low temperature limit, T/’I’c << '“;02, thé temperature |
is so low that the exponential-factor in the integral automatically rules
out spin waves with wave vector approaching Uy’ ar_'id the intergr‘al can
be carfied out over all of g-space. In this case, ‘the maximum in the

allowable value of g does not affect the fiml result, and we obtain

* .
Numerical factor depending on band structure depends on factors like

AfR2 and dimensionless ratios between & and kbe'/Ef depending on the

g.(E ), as well as numerical constants on the order of unity. These are
ivf

modified by changes in alloy composition through Ang, n, Ef/kbe', and

gi(Ef).
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A M (T) v . /slowly varying\ .
Lb.3.1L S .| pumerical function of ) g— (T/T )32
- M (0) factor s £ . c :
composition o)
| . . R 2 .
These two forms join continuously in the region T/Tcsz §O .

Thus, at very low temperatures, the spin wave contribution varying

3/2

as T should dominate the single particle contribution varying as
(T/TC)Q,.while at higher tempefatures, where the single particle excifa-
tions damp. large wave vector spin waves, the single particle contribution,v
still varyinglas T2 should now daninate the spin wéve.term.&hich is linear
in T in this region.

Of course, fhe exact value of the coefficient of the spin wave term
depends éxplicitly on the band structure, and thus varies %rom one.system
to another, so the temperature where the single particle contribution
becomes dominant depends on the band sﬁructure.

For example, the magnetic‘isotherms for the weak itinerant ferro-

T2

magnet Zane were measured experimentally by Ogawa and Sakamoto, :and

|
”5 They found that at all but the

were analyzed by Edwards and Wohlfarth.
very lowest temperatures, the saturation moment was described very well

by the expression,

4.2.15 2
[_WI\%%Z] = (}1 -TQ/TCZ)

i.e., single particle excitation form.
In figure 16a-f; we present our low temperature magnetizat ion data

for several of our samples plotted both as

M (1 ,1)7]° o -
T VS, (T/TC) to display Stoner excitations
: o) . .

and
M (HO,T)

M
ol

5 ’ ,
VS. (T/TC)B/ to display spin waves
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with HO the externally applied field, and Mo is some normalizing value of

M chosen for convenience, near M(0,0).

Discussion
Although there is some experiméntal scatter in our data points, the
W vs. i (Stoner).plots seem toibe quite linear up to a value of (T/Tc)2~ by
(or"(T/Tc) ~ J6)L Theh, these plots become concave upward, due. to
the effects of the externally applied (saturating) magnetic field, which
incfeases the magnetization to a value larger than that which would occur
in its absence. However, this field is necessary to ensure_ﬁacroscopic
saturation of the magnetizétian, which is brought about by rotating the
magnetic doﬁains along some pfeferred'(i.e., the external field) direction.
Not only does this linearity of this plot agree with the predictions
of the Stoner theory, but the slope of these plots is also close to the
value predicted by the theory. Fram equation 4.3.2 we see that a plot of
M(T)2 vs T° should be linear; and should intersect the W axis at T- = Tcz.
Our curves intersect at (T/Tc)2 between .8 and .9, corresponding
to (T/TC) between .9 and .95, in good agreement with theory.

We also see on the Ni- 0 Rh 30 plot, that the curve is concave

3/2

7

upward at very low temperatures, but on the T plot, this region is
quite linear.
Tt should again be pointed out at this point that similar plots

of the mgnetization of ZrZn 45,46

5 also showed excellent agreement with

-the Stoner theory, except at the very lowest temperatures, where the spin
wave contribution, varying at T5/2 is expected to dominate the single

particle contribution, varying at T2.



C=99-

- D. Magnetic Isotherms - Magnetocrystalline Anisotropy

Measurements of the magnetization as a.function of the extérnally'
applied fiéld, HO, for varipus vglues of témperature were mde, as explained -
in section II. .

For a strong, or iocalized moment férromagnet, the description of fhese
curves are fairly well understood. A.coﬁprehensiVe survey can be found

in Ferroma.gnetism.73 For weak ferromagnets, the description will be

altered somewhsat.

In the very low applied field region, the permeability (and hence
the susceptibility) is very large. for samples with definable demagneti-
-zing factors, which are not unusuallé small (ruling out long needle-
shaped samples and toroids), the magLetic field inside the sample (i.e,
the internal field) will be the sum of the externally applied field and

the demagnetizing field

b1 = -NM

Hdemag
where N is the demagnetizing factor in direction of field. Due to the
high susceptibility in this region, the magnetization will assume a value

which will maintain the intermal field at a very small value. This can

be seen by the following derivation:

l"oh‘og . H. § = H - NM
int 0

also, from thé definition of the susceptibility, X, we have

L. 4,3 M = XH

int
therefore
bk | M = X(HO - M)
solving
b5 | M(L/X +N) = H
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but 1/X is very small and assumed to be negligible in comparison to N,

therefore
L
and
L7
. = H -NM=~O
int o) :
(actually, to first order in 1/X
b L, 7a | Cl
By ® % o << Ho)

Equation 4. 4.6 provides us with a very useful relationship. It states that
the initial slope of the M vs. HO curves are determined solely by the de-
magnetizing factor. The values we calculated from our measured slopes
corresponded quite well -to the values expected from our sample dimensions.
The demangetizing factor for right circular cylinders as a function of
length to diameter ratio is graphed in Bozorth.16 The value obtained by
our slope method was about 2.4 Oersted per gaussbmagnetization, varying
somewhat from sample to sample, due.to porosity and slight differences

in the sample dimensions. Knowledge of these demagnetizing factors was
quite useful, for we could then determine the internal field at all the

values of H_, given H_ and M(HO). This knowledge was necessary to

determine the anisstropy of our samples.
The variation of the observed susceptibility with applied field is
described by the domain theory of mgnetism (see Mégggﬁism,73 also

L
Introduction to Solid State Physics. ) The damain theory also applies

to band ferromegnets.
According to this theory, the large initial (i.e., low field) suscepti-
bility is due to domain wall displacement, which changes the relative |

volumes of magnetic domains magnetized paraltel and anti-parallel to the

direction of the applied field.
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For slightly larger values of the field, the sus eeﬁti‘eility, X = M/H,
is determined by.domain retation. The megnetization (which is relatively
constant in magnitude). within each domain is rotated into the direction
of the applied magnetic'field. In the case of a weak ferromagneﬁ, the
. magnitude of M within a domain also increases (but usually‘ quite slowly)
with the.applied field. This term does not dominate until viftﬁally all
of the domains are lined up along the field direction (which usually dees
net occur until HO reaches several kilo-oersteds. For fields larger than
this, the magnetization is observed fo increase linearly. From this slope,
we can calculate the rate of increase of the intriﬁsic, or domaiﬁ, ma.g-
netizaﬁion. We can extrapolate this slope backwards, imto the region of
doma, in rotation, to estimate the intrinsic magnetization in this region aléo);g

Then, for iﬁtermediate values of.Hé, the approach tovsaturation.
of the macroscopic magnetization is determined by domain rotations. For
, polycrystalline-samples such as we have, in the absence of exterml fields,
the nagnetizafion direcﬁiOn within individual domains is determined by
nagnetocrystalline anieotropy (for a discussion of this, see Bozorth,
ep. cit). Thie aniSotropy-eauses the energy density within a damain to
depend on the angle between the magnetizatien direction and the various
crystallographic directions. PFor a cubic system, the anisotropy enefgy

(as we shall see) has the form

_ 2 2, 2 2.3 2 (0.2 2 2y
b8 B o= K (o oy topT ot ta” o) t K, (070 T ”,)

where the @, are the direction cosines of M alorng the three crystallo-

1
graphic axes; while the interaction with the externally applied fieid has

the form

L. 4.9 , ' Ey = M HO cos ¢
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where ¢ is the angle between HO and M, The overall magnetization within
a domain aséumes the value minimizing the sum of these two cormtributions.
Thus, the effec£ of large external fields is to rotate»the magnetization
within a domain away from the crystallographic directions of easy
magnetization, and into the direction of applied field.

Bozorth writes an approximate expression, due to Becker and Boring,
which describes the approach to saturation of a sample composed of a randomly
distributéd collection of polycrystals. The result, to lowest order in
1/H is s |

8 K

h.k,10 M(H) 1 - L - (terms involving K., l/HB, ees)
M 2 2 2
0 105 H M -

where H is now the field acting on the danains (i.e., the internal field),
M_ is the assymptotic value of the observed magnetization, equal to the

intrineic (domain) magnetization, and K, is the anisotropy constant

1
defined in equation 4.4.8, which in general, varies quite rapidly with
temperature.

As we have stated, for weak ferromagnets the domain magnetization
is itself a function of the external fieid, However, it can be written

in the form

= + i
k.11 M (H) M, Xoipn * B

so in equation 4, L4.10 we simply replace M by the value appropriate to the

applied field. For all of our samples where K, could be determined, -f

1
this was a small effect.

Our observed isotherms were then corrected for the demagnetizing
factor and the differential susceptibility, and fit to a function of the
form of equation h.&.lO, thereby determining Kl.
In this way we were able to determine the anisotropy constant as

a function of alloy composition, at various temperatures. . These results

are shown in figure‘l?.
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The error bars shown on fhis figure indicate only the distribution
in Kl found by calculating it for various values of H along the curves
of the approach to saturation.

Also shown on this graph is the anisotropy for Ni, which is listed
in Bozorth,_and which was determined by more accurate (single crystal)
measurements. We see that this value comes fairly close to our value,

The observed deviation probably stems from the following: We have
implieitly - ignored the contribution from the K2 term, and our measurement
probably represents a kind of weighted average of these two constants.
.Secondly, as Bozorth points out, the approach to saturation is critically
dependent on strains and heat treatment,  and this could also affect our
results quantitativély.

However, these errors should probably vary in the same way for all
of our samples, and the relative shape of this curve is probably fairly
accurate.

We see the anisotropy decreases with increasing temperature as‘ex—
pected. We also show the results of the measurements at the lowest
temperature we attained in our experiment (L4.2°K) as a function of cam-
position in figure 18. In figure 19, we show the low temperature aniso-
tropy versus the square of the observed saturation magnetization (expressed
in Bohr magnetons per atom of alloy) for our samples. This graph appears
to be linear in the region near the critical concéntration, and extending

up to at least 80 per cent nickel.

Discussion

In order to discuss the anisotropy measureménts, we will first outline
briefly the theory of anisotropy in cubic crystals. |

As our model of a magnetic material, we suppose we have a cubic

array of magnetic dipoles forming a lattice. We further suppose for the time
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being, that at absolute zero they are all parallel to the macroscopic mag-

netization direction, and hence, to each other. Such a deseription should

apply equally well to localized moment magnets and band magnets. In the

case of the band magnets, suppose the d-wave functions are & the tighf

binding type. Then the electranic charge density (dnd hehce, the spin
densitY) Should peak at the atomic sites. Even if the wave functions are
not of the tight binding typez they at least retain the symmetry of the
ionic lattice. In any event, we should be ablevto associate an identical
dipole moment to each atomic site, although this moment may be spread out
through the atomic cell in the latticé. In the band case, hQWever, the
dipole: moment per atom is n-(gfubﬂg)-éé where n is the number of
carriers per atom. This corresponds to n/2 (1 + 50) p t and n/2 (1 - go) uod
at each lattice site.

Thus, even though the individual eleCtrons,>each witﬂ spin 1/2,
are in rapid motion, the moment per atomic site is the time éverage of
the contributions of all the 2lectroms, yielding

b h,12 ‘
<n>net = n go

or

() = & 8

where ( ) denotes the quantum mechanical expectation value.

It is an experimental fact that the total energy of a magnet depends

on the relative orientation between the magnetization and the crystallo-

‘graphic axes. For cubic systems, the lowest order expression is

of the form

. ' 2 2 2' 2 2 2 2 2 -
e ‘ . = K_. + + .
L4 13 Ean 1 (al o a, oz3 + aB ozl) Kg(ozl o, 043 :) +

where ai is the direction cdsine of M along the'ith crystallographic axis.
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One might expect even a lower order term varying as

2 2 2
K + -+
ok, 1k 5 (ozl -, 045 )
but for a cubic system v
2 2 2
: + + =
h.h. 15 oy o, oz5 1 )

so this term reduces to a trivial constant.

We then akk, what interactions can contribute such a term to the
overall energy of our system, .i.e., what interaction will change the
energy of a lattice of parallel dipoles as they are all rotated through
the same angle, thereby remaining parallei to each other, but changing
their orientation with respect to the crystal axes, and hence to the
vectors directed between them.

The strongest interaction between our dipoles is the exchange inter-
action, the interaction responsbile for.keeping the dipoles parallel to
~each other in the first place. This interaction is of the form J—élféé;
and depends only on the relative orientation “between two dipoles, so
cannot contribute to the anisotropy.

Next, we consider the magnetic dipole-dipole interaction. The

interaction between two dipoles is given by the well known expression75

bk, 16 E I - 3 - 0 @y 3)
dip-dip r3 v r5

whemeﬂil and'ﬁé are the two dipole monents and T is the radius vector

directed between them.
~3

For inee electrons, the dipole moment is related to the spin S by N
. ot —
hoh,17 Ho= g S

and the interaction takes the form



o
3 — — ; 5} (Sl . r) (32 e r)

4. 4,18 Edip—dip = C (ro/r)r 8, * 8, - X

_where

h.k.19 o= 4 ubg/;o3

énd r, is the nearest neighbor distance.
This energy is anisotropic, depending not only an the relative ofienta-
tion between two given spihs, (gl ‘Agg),:but also 6n their orientation
with respect to thévradius vector directed between them, through thei
' (-—Sll -7 (dS‘2 ";‘) part of the interaction.
Howe?er,-in a cubic system.when these interactions are summed over
all pairs of dipoles, this term also reduces to a trivial constant. That
is to say, a system of Earallei magnetic dipoleé on a cubic lattice dis-
plays ne ahisotropy. |

As Van Vleck76

pointed out, in order to achieve anisotropy from a
system of parallel magnetic dipoles, one must ascribe a Qquadrupole moment

to these sites. Then,.from the quadrupole-quadrupole interaction, one

obtains a term in the interaction enérgy varying as76
Vo : 10,3 —~2 = =02
L4, 20 Eipp ~ Y (ro/r) (sl r) (s, " r)

which does yield anisotropy in a cubic system.

However, it is well known that‘WbO for S less than 1. Quantum
mechanically, S = 1/2 spins have no quadrupole moment. For S=1 or greater,
_ hOWever? we can get a contributgén to the Kl term in the anisotropy.

However, for pure nickel, as well as our alloys, it would be hard
to jusﬁify the presencé of such a contribution. In a tight binding
model, following the discussion of the Hurwitz Van Vlieck approach to
10

correlation, most of the tight binding states can be described by a 4

or d9 configuration, i.e., O or 1 holes at any atomic site. It isconly
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in a rare number of cases. that an atomic site will be in a d8, d7, etc..
state, because of the relatively high polarity energy of such states;

i.e. correlation keeps more than one hole from a site at a time. For
multiple holes at dan atomic site, we would:have carriers with S=1 or
higheir, due to Hund's rule coupling, which cauples S=l/2 holes together
into a state of the highest nmltiplic;ity allowed by the exclusion prin-.
ciple. This could lead then, to quadrupolar coupting, but the fraction

of such sites is expected to be small, bhence the contribution to the aniso-
trop‘y weak.

It has been pointed out, however, that the dipolar interaction is
able to yield anisotropy; but only in second order. The dipolar interaction
does not commute witlﬁ the exchange interaetion, but acts a a perturbation.
A system of parallél dipoles can lower its energy slightly if the dipoles
tilt s.lighfly with respect to each other. These tilted dipoles then pre-
cess aroﬁnd their original (i.e., the macroscopic magnetization) dimcﬁed
with a conical half angle, whose order of magnitude is C/J. This leads

to an effective contribution to the Hamiltonien of the form

4. L.2 = = P
SRR NS5 N O bl CHE L C)

~in the 1limit C << J.
Thus one obtains an anisotropy from the dipolar interaction when'
this interaction is carried out to second order. This interaction leads

2
to a value of K. = C°/J, where K, is defined in equation 4.4.13. This

1 1

can be demonstrated by calculating the expectation value of :Hpert for a .
given site, assuming all of the S are aligned along some direction with
direction cosines s i=1, 2, 3, along the tliree crystal axes. We"

sum this interaction over all the allowed dipole pairs, by direction T
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~ from our central site to all the other sites in the lattice. Owing to

6
1/r dependence of the interaction, the sum converges rapidly, and can

be approximated by a sum over the nearest neighbor sites only. The

1

ing cubic sites, yield the angular dependence found in equation 4. %.13,

> an > a2 . . .
(5. - r) (82 + r)  part of the interaction, when summed over these neighbor-

' : 2 »
while the coefficient of this expression becomes C~/J. Included in deri-

. | _ 5
ving this angular dependence is expansion of the identity (al + a22

2.2
+ =
3 )
2 : _ :
17 which transforms the quartic dependence of the direction cosines in
equation 4.4.21 to the biquadratic dependence of  equation 4.4.13.

The results one obtains in this way are about a factor of 50 too small,'

in'B-d ferromagnets, for

when compared with the experimental values of Kl

example, pure Ni.

In orde? to explain the observed anisotropy, one needs an interaction
of the diplar or quadrupolar type, but much stronger than that arising
fram the purély magnetic interaction. Such an interaction was shown to

76

exist by Van Vleck. It results from spin-orbit coupling.

The orbital magnetic states are quenched by the crystal potential.

From atomic physics, one knews-that there exists a spin-orbit interaction99
2
f H 1 av () |=» > = =
hok.22 :ﬂspin-orbit B 5—52232 T ar LS. = A L -8

between the electron spin and the orbital motion of the electrm in the

———

atomic potential. Here, L is the orbital angular mome ntum operatar, A

is the expectation value of the bracketed quantity for the states invblved
éﬁd V(r) is the (spherically symmetric) atamic potential. This intefaction
éctsviike a perturbation on the drbitalvstates, tending to ﬁnquénch the
angular momentum and thereby perturbs the oribtal state. Thus a spin at

a. given site perturbs the orbital wave function associated with phis site.

This orbital wave function overlaps neighboring wave -functions, and perturbs
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them, which in turn, interact with thé spins on these sites. It.is in
this way that there exists an effective coupling between electron spins,
similar to the couplings we have been discussing, but with a much stronger
coupling coefficient, which we call D. Thus the S=1/2 spins can couple
with a strong dipole-like, or pseudo-dipolar interactiomm, S=1 spins, with
a pseudo-quadrupolar intéraction, etc.

One might suspect that in the presence of these spin-orbital effects,
the electron spins could couple directly to the orbital states, which
convey the cubic symmetry, and thgs feel the anisotropic forces directly,
rather than having to interact with each other through this indirect (and
fourth order in spin-orbit couping parameter) process. In othef words; we

might expect presence of a term

4. k.23 H . ~B {(SO‘)lL + (P + (Sv)h}

anis
where O, B and ¥ refer to the cubic directions. However, the presence
of such a term is impossible, quantum mechanically, for S less than 2;
therefore, such a contribution to the anisotropy is very unlikely.
Thus, for a system of localized spins, with S;l/z, we obtain an

anisctropy constant

b2k K, = D/I

where D is now the pseudo-dipolar coupling constant. However, this result
is modified by the fact that in the case of band fefromagnets, the averaée
momernt associated with each site is reduced. However, this reduction in
the magnetic moment (ﬁ), or equivalently, the expectation value of the
local spin, (§>, does not affect the magnitude of the spin-orbit coupling

T

marameter very seriously. Then the magnitude of D itself remains un-

changed as we decrease go. Generalizing equations 4.4.16, 18 and 21 we have
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2 = a2 -~ a2

b 42 H L0 e . }

5 ert /35 = 2)° ((s,) )
where (5;) = éo Si and ISil = 1/2. Thus this interaction is reduced by
a factor of §Ou, due to the diminisghing of the moment by a factor of'&o.

The factor of J.in-the denominatoris the exchange stiffness between
two sites, tending to keep them parallel. It results from the exchange
interaction; which we still suppose is describable by a molecular field

approximation. Then

‘ t
h.b.26 Hmol field ~ kbe 50

kbe' is assumed to be relatively constant as we vary composition, causing
go to vary. The energy difference between a moment in the directiom parallel

and anti-parallel to M is

L k.27 Ay LT

Eex ~ (W Heff
k%28 S-S S XA
'h.u.eg - o~ 'JO &OQ

where J is fhe value of J which appearscin equation 4.k.24 for £ = 1.
Then the anisotropy constant is determined by calculating‘the expectation
value of this interaction as a function of the direction cosines describing
how the {gi) are aligned with respect to the crystal axes. Combining_

 these results we see that XK. should vary as

1
L.h30 5 (0) = (/3) go2
where we have allowed X; to be a function of temperature, Kl(T), but
our present discussion is restricted to T=0., Indeed this is Just whét
‘we ébserved near the critical coneentration.

Williams and Bozortﬁ78 measured the anisotrbpy for Cu-Ni alloys,

and when their values of Kl were plotted against the saturation magnetiiation
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of the alloy, they also found a quadratic dependence.
Actually, the theoretical justification for this quadratic dependence
can be made stronger than the crude argument we presented.

&

Brooks published a paper dealing with the anisotropy of itinerant
ferromagnets. He assumed wave functions of the tight binding form. For

the atomic functions he uses the cubic triplet Tg.

b3
¢, = yzf(r)
¢2 = zxf(r)
s = xyf(r)

From these, he constructs three bands

4.h.31a -1/2

S A =
@ = W2 e (1) ¢ (- D)

(where-? denotes the lattice sites, N is the total number of atoms),

and assumed the nearest neighbor wave functions overlap. Thus the Hamil-
tonian matrix mist be re-diagomlized, since this overlap perturbs the

local states. He then included the spin-orbit interaction, whose strength
he describes by a parametér, A. He set up the secular equation for the
energy eigenvalues, inéluding the contribution from the molecular field.

He then solved the secular equation, cobtaining a geﬁeral expressim fér the
contribution to the anisotropy constant from electrons in various k-states
(his equation 23).

| For Low relative magnetization, his expression can be expanded in

a power series in EO (related to his parameter ). The resulting expression
is proportional to A)+ and is a polynomial in eo’ whose lowest order terms
are linear in §O, varying as Eo/elh, and §O/€2u, where €; and €, are

the energy differences for the states of the same wave vector but in the



two gands higher thén the lowest band. Also included are terms of higher
order in go’.el and.eg. To calculate the total contribution to Kl, these
terms must be summed over all the singly occupied k-States i.e., the states
~contributing to.the oﬁserved magnetization. For low go, this contributes
anocther factor of Eo, causing K, to vary as Eoe, to lowest order in £,

as . observed.

. Of course, this result is sensitive to band stfucturé, and éontains
terms of higher order in éO, a féct which can aécount for the deviation
fram this quadratic relationship which is observed at the higher nickel
concentrations. |

Thus, - our observed anisotrépy data seems to follow the predictions
of the band theory. In developing this theory, we did not use the Stoner
model of ferromagnetism .explicitly, but simply‘assumed that within a
band picture, one is able to distribute the magnetization throughout‘the

lattice in such a way that each lattice site has an identical small

moment associated with.it.
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V. MAGNETIC RESONANCE STUDIES

A. Background

For interprgtation of our magnetic resonance data, we will follow |
the approach taken by Salamon.lo He studied the Electron Paramagnetic
Resonance of pure nickel near the Curie temperature, using a bimodal
cavity spectrometer.8o Depending upon the type of unbalance created
between the two modes of this cavity, the microwave losses. of such a i
system can be made prbportional to various linearly independent, .linear
combinations of Xiﬂw) and Xg(w). These are,.respectively, thevin-phése
or inductive, and out-of-phase, or resistive, parts of the frequency
dependent magnetic susceptibility of the sample placed in the cavity.

He Qas thﬁs able to extract Xl and X2 from his observed line shapes.

Our unimodal microwave reflection spectrometer also exhibits losses

14,81

proportional to a linear combimtion of Xl and X2.
If the transverse component of the ma,gnétization (i.e., the component
in the plane normal to the applied static field) relaxes to its thermal

equitibrium value (of zero) according to

5.1.1 d_MT/dt = V-MT/T2

(where T2 is a parameter having dimensions of time)

10,82

then one can show that the resonant behavior of the susceptibility

can be described by

( / (a)o - o) T,
5.l.2a X (@) = X /2 o T :
1 o) o2 2 2 -
1+ (o - aao) T,
5.1.20 X (g) x X oo 1
2 o] o2 2 2
1+ (o - mb) T,
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L .
where® X is the static susceptibility, = Mz/Ho’ ®_ is the resonant
frequency stemming from the gyromagnhetic nature of the electrons cotri-
ibuting to the magnetization. ~For our experimental field configuration

(i.e, H  parallel to the face of the sample, )

. small shift pro-
5els3 w = <y [(H + 4mt) - (H)]l_/2'=' Y (BH)l/2 + portional to aniso-

° tropy which vanishes
as T is increased to
T .
c
and
5.1.L v o= oew /8

The half-intensity width, or half-width of this resomance line is given
by

5.1.5 (A ml/z) = 2/t

Since we sweep the applied field (causing ®_ to be .swept) and hold ®

fixed at the microwave frequency @ _, the half-width, in terms of the field

rf’
is _ _ :
5.1.6 i_ CCam ) = 2,

Our observed lines were fit on a compﬁter to a general linear
combination of Xl andL.X2 def;’Lned in equation 5,1.2., In most cases, the
Fit" was very good, and we were thus able to determine T, and g = 'yﬁ/ub.

We would like to discuss these parameters from the standpoint of
the microscopic model Qf‘ our system.

The behavior in the fefromagnetic region is quite complica;ted, a,nd
not thoroughly understood quantitatively. In this region, the tra.nsverse
ﬁagqetization relaxation rate is usually __thpufght' of as r‘esulting. frqm'
scattering of magnons whosé components of wave ’vector. are between O and
1/6 (where ® is the R.F. skin depth) in the z direction (normal to the
surface of the sample) and O in the transverse direction. (This is the

so called uniform precession mode.) These relaxation processes are discussed,
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for example, by Spark.s,85 and include interactions of magnons with other
magnons, phonons,. conduction electrons, surface and volume pits and im-
perfections, strains, impurities, and crystallographic grain boundaries.
There is also a naturally occuring width in a polycrystalline sample
due to the spread in resonance frequencies resulting fram the various

crystallite orientations. The width of the spread is of the order
5.L.7 AH w Kl(T)/M(T)

These processes are quite dependent on sample guality. For very pure
strain-free single crystals of nickel; ferromagnetic linewidths as
narrow as 150 Oe. have been observed,&L whereas our linewidths were at
ieaSt 2000 Oe. We are therefore, unable to discuss the ferromagnetic
linewidth quantitatively from the standpoint of the fundamental properties
of the system.
However, the principle relaxation mechanism in the paramagnetic 3
region is the spin-spin (dipolar) interaction.
Following Salamon, the macroscopic (transverse) relaxation rate of
M may be related to the microscopic relaxation rate, i/Té, for the individual

spins, and leads to the relation

1. ¢c Bl |-
0108 — T — . s .
2 TEM T M [Tﬁz]'
M :

where l/T2 is the relaxation rate of M, and is proportional to the

observed linewidth, g

1. 1
5.1.8a AH = = —
where H/M = 1/X is the inverse magnetic sus ceptibility appropriate for .

the applied field H and temperature T. Also,

5.1.9 C = N/ K
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where B is the magnetic mament of the individual spins which are relaxing
at the rate l/T2 and N is the number of such spins per unit volume. We
recognize C as the classical Curie constant for the system.

This temperatﬁre dependencé, which causes a narrowing of the line
as we approach Tc from above, follows frgm general thermodynamics argu-
ments about irreversible processes. Salamon presented a simplified
physical argument which demonstrates this relation. It has also been
discussed by Kittel anvaortis86 as a geheral thermodynamic result (for
the part of the relaxation rate stemming from the non-secular portion of
the dipolar interaction at least). This result is also discussed for
a magngtic system using a more general (quantum mechanical calculation

of the auto-correlation function of the magnetization) approach by Mori

and Kawasaki.87 Their results takes the farm
o110 1 o MTeray
ol. T2M T T—Q_ :

but this reduces to equation 5,1.8 when the inverse :susceptibility is
expressed in the Curie-Weiss form.

" We are then left with the problem of caiculating the spin relaxation
rate, l/TQ, in the paramagnetic region. The intéraction responsible for
this relaxation, as we have stated, is the (pseudo-) dipolar interaction
between the individual spins, which is modified, as we shall see, by the
exchangé'interaction.

Bloembergen, Purcell, and Pound88 considered the effects of the
dipolar interaction on the relaxation rates between nuélear moments in
liquids, but the results are easily generalized to the effects of pseudo-
dipolar interactions between electrons in a solid. They also considered

the effects of the relative motion of these moments which provides a
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random time variation (i.e., Markoffian modulation) of this interaction,
which occurs over a“time scale Tc’ called the correlation time. They

showed that in the static case, the half-width is given by

' l ‘
where Wy is the precession rate of a magnetic carrier &u% to its dipolar
interaction with its nearest neighbors. Defining the dipolar interaction

from equation 4.4.18 and again introducing the pseudo-dipolar interaction

strength, D we find

5.1.12 oy ~ D/f

(c.f.‘also Principles of Magnetic Resonance, page 29 for a qualitative
— )

discussion of this precession rate). In the case of short correlation
time, l/Tc >> mb, they showed the half width is reduced by a factor
Wy /Tc, yielding

5.1.»15 (A @) ) = %« w.

2 p e p << LT,
89 :
Van Vieck considered the effects of exchange. He calculated
the second and fourth moments of the dipole perturbed Zeeman levels.

He found a second moment (expressediin frequency) given by

5.1.1k4 AP ng
and a fourth moment
5.1.15 <A(D)+>'~ 2o ?° ® >
°e By O e @
5.1.15b : (mL*)z o w < o
s n e D
where
o, = J/f

He showed that this corresponds to a half-width
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. 2 ,
5.1.16a (Aml/g) = o Ane ® >

5.1.16b

= <
(Ao /2) @, ®e =~
He thus showed that the exchange served to randomly modulate the dipolar
interaction at a rate

5.1.17 w, = 1/7e - J/4

and ascribed some physical significance to this fact.

P pe considered (atleast one of) the effects

In the second paper
of the ferromagnetic transition. As the spin system orders (as it will
for T > Tc in the presence of an external_field) the amount of randomness
in the dipdlar fields at the various sites decreagses. He showed that

this effectively reduces the second moment, and hence the halfAWidth,

according to the relation

5.8 @) = (572 - (5 H%) )

where (g e Si) equals the average moment of some random spin site
equals O in the paramagnetic region
equals g My F§Zi1 at T=O»

Wwe can rewrite equation 5.1.18 as
5.1.19 (2”) = 0 (0) - ¥ (1)) (Amm2>

This result is in addition to the thermodynamic result we quoted
-previously in equation 5.1l.8. It is simply a consequence of the fact
that as tﬁe magnetic system orders, the amplitude of the random fluctuating
dipolar fields decrease according to the above factor. Thus, at T=0, the
© dipolar width vanishes , according to our discussion so far. This is
because all the spins are aligned parallel, so every spin sees an identical

local magnetic field, so the local Zeeman levels are no longer broadened.
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91

However, Keffer”’ ™ demonstrated that the lineawidth at low temperature
due to zero-point motion of the spins (purely a quentum mechanical effect)
approaches a-non-zero value. This value vanishes - in the classical limit - ;
(i.e , as S gets large but the overall magnetization is held constant).
This effect arises from the non-secular terms in the dipolar Hamiltonian,
which can only contribute Fo the relaxation if the Zeeman levels are mixed,
as in the case where J >> Z;é .This mixing is discussed by Anderson and
Weiss92 and also leads to the so-called 10/3 effect.

However, for our samples,‘M(T) was already down to about half of
its values at T=0 for T=Tc’ so that in the paramagnetic region, the loss
of disorder in the dipole distribution, as T, is approached from abové
is probably a small effect.

Thus, combining our results, we find

C H

5.1.20 (& Hl/2) =Y ¥ ¥ [1/T2]
2
5.1.20a 1/, = @y T

where fc'is the appropriate correlation time between random changes in
the dipole distribution, C=N u2/5kb, ana p is the magnetic moment per
carrier.

This relation is modified by yet another process as the Curie
temperaturecis approached from above. The onset of short range order has
been shownlo to interfere with the exchange modulation process, slowing
the random modulation rate down somewhat as the Curie temperature is
reacﬁed. This becomes significant at a temperature about ten per cent
above the Curie temperature. This mumber is a consequence of the mmber
of nearest neighbors of each site. Thus, in order to extract the

microscopic relaxation rate fran the observed linewidth data, we must
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apply equation 5.1.20 to data corresponding to femperatures ﬁigher than
' T, by at least ten per gent. ' |

We now consider the problem of calculating CDD and Tc for our band
magnét. We recall the important features of the model‘we are using. We
are considering & band of mobile electrons, which are in rapid motion. A
fraction (1 + g')/2 .0f these’ electrons.have spin up,.and the remaining fraction
(1 -£)/2 have spin down. . At any partiéular lattice site, an ‘electrén
resides for a time, 7, then hops to a neighboring site, and iksreplaced
at the original site by another electroﬁ. Since there are more spin
up electrons than spin down ones, thevaverage magnetic moment at each
éite, wheﬁ averaged over many hopping times is g “b -é *E. | As the tempera-
ture is increased, ‘the fraction of electrons with spin up decreasés, s0
the averagé moment associated with éach site decreases.

The origin of anisotropy in a fer?-omagnet is a static process.

In section L.k, we associated the quantum mechanical average value of
the moment per site ﬁith each laﬁtice site. We then calculated the
quantum mechanical expectation value of the energy of orientation of
the average moments.

The relaxation of the spins, however, is a dynamic process. We
must therefore, treat ocur system as a collection of rapidly mbving o
individual électrons when we attempt to calculate the relaxétion rate_v.

One . can show that the hopping time for such a system is given
roughly by

e.loe | = h = ‘
5.1.21 , Thop . /Eo l/cnhop
where EO is the band width, or Fermi energy. The electrons also exhibit

an exchange interaction with each other. The exchange interaction between

two electrons near the same site is the full molecular field kbe', which
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we call J to conform to the literature. These two electrons also experi-
ence the full pseudo-dipolar dnteraction strength, approjpriate to S=l/2
electrons, D, Thus, the dipolar precession rate, Wy - of these fast-
moving electrons is still given by equation 5.1.12.

This dipolar field is interrupted by two random processes, the

hopping rate
= E /A
5.1.22 O op EO/

and the exchange rate

5.1.23 (Dex = J/ﬁ

We mention at this point that for our weakly ferromagnetic system,

5.1.24 J Eo

Tt is intuitively obvious that the modulation rates from independent pro-
cesses are additive. That is, the net modulation rate is the sum of the
two individual modulation rates. Then we generalize equat ion 5.1.16a and

obtain 5

a)D ‘ 5
o N Ve = (1/2) @y T
ex hop

5.1.25 1/T

where © =~ ﬁ/Eo ~ #/J.

This can be written, using our expressions for @ (5.1.12) and we (5.1.23)

5.1.26 1/1, = (1/24) D?/J

In order to extract l/T2_ from the observed linewidth data, using
equation 5.1.20 we must also calculate C = N u2/5 k . It is obvious
from ocur present discussion that since we are dealing with the effects of
rapidly moving individual electrons, the value of the moment, p, we must

use to evaluate C is the magnetic moment of an individual electon,

5.1.27 u

g Ky S

S 1/2



thus
) ] - 5 B
5.1.28» | C = N(.,§._ g ”b) /3 ky | |
We recall that our expredsion for the dnisotropy constant is given.

by an expression, equation 4.4.30,
2,2
Kl(O)» ~ (D°/7) &

We thus have a relationvbetweéh T, (i.e., the linewddth) and Kl(O) (the

anisotropy constant at T (0).
5.1.29 1/7, ~ K. (0)/¢ 2
® . . 2 ~ l O

This relation was discussed by Cooper‘and Keffer85 for a localized magnet
(¢ = 1). They showed that.if the anisotropy does not arise from any
(pseudo-) quadrupolar iﬁteraction terms (see our discussion of the ani-
sotropy),vthat the linewidth and Kl(O) should vary as DE/J. However,
they also pointed out that at finite.temperatures, duevto lattice expan-
sion, that the coefficients D and J may become (slightly) temperature
dspendent. They estimate thatitheratio D2/J may change by as much as

0 per cent between T=O’and.T=Tc. Then our relation, equation 5.1.29

should be modified:
) k, (0)

4
T, 2
2 Eo

where f£(T) probably lies in the range 1/2 < £(T) < 2, for T only slightly

5.1.30

ff’(T)' B

higher than Tc.
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B. Data and Discussion

Invfigures 20a-d, we show raw linewidth vs.ﬁtembérature data for
séveral of our samples. |

The decrease in lineﬁidth witﬁ increasibg teﬁperature for NﬁBORhQO
ig attributed to'the‘decrease in anisotropy occurring as Tc ig approgéhed
from below. |

In figures 2la-c, we plot the individual spin relsxation rate, 1/,
vs. temperature, using.equation 5.1.8, 8a, 9, and using 5.1.27 for the
value of C. | | |
| In figure 22 we plot the con@osition,depéndence of l/Té‘fof the
spins.in thg paramagnetic region-by evaluating l/Té at T = i.l Tc or
greater.--Included on this plot is. the value for pure Ni fbund by
Salamon. ‘ | | |

Also shown in figure 22 is Kl(O)/goelvs. concentration, multiplied

by a factor to meke these two quantities equal for pure nickel. According

to‘equation 5.1.30, these two curves should follow roughly theAsame con-
centration dependence. ‘

It is apparent from this plot tﬂat equation 5.1.30 simply does
not describe our system with the‘valueg of l/T2 determined according‘to
our discussion. |

| In figure 23 we ShOW'avplOt:Of'Kl(O)'Vé. céﬁcentration as well asv:
l/T2 vs. concentration, the Kl‘plot again éuitably normalized. In this
caée, we. find excellent agreement between the two curves.

The fact that Kl(O) and the values of l/12>dbserved by using

equation 4.1.20 scale together as go decreases, strongly suggests several



6.0

5.6

N
.
[AV]

-~
[ 2
(83

N > b
= o S

»
<)

127

Linewidth (kOe.)

T T T

Temperature (°K) |

Fig. 20a

O Helium Temperature Range '7&
A Nitrogen Temperature Range
- 1
&
| - 2 —
I3
S o ——d
___ 8
2
__ ? —_
g ° |
8 8 8 —
-
T I |
. » c .
R T T Y O O
10 20 30 40 50 60 70 80 90 100

110



Linewidth (kOe.)

72

6.8

6ol |
6.0 |

5.6 |

5.2

L8

Lol |

l-l»-o

3.6

3.2

2.8

2.4 1

2.0

Temperature (°K)

Fig. 20b

[t o——
- ]
I —
[o]
et o 0-—‘
)]
J I—— —
o
| .oo.o ]
o 8 o o °
(@]
. o ]
N
20 40 60 80 100 120 140 160 180 200



202 *STd

Linewidth (kOe.)

4.C
3.8

3.6

3ok

3.2

3.0
2.8

2.6
2.1

2.2

2.0 —

1.8

1.6

r 1 1T 17 ] 1 1T 7T 7TrT 1T 171771771
| %, _
- o —
| o _
_— ) —
[~ . i —

0
. (=] e
o %9 _..
. o o )
:— oo © » oowoooocooo"ooa —

Temperature (°K)

| o
NN TN N TR U TN O N N DO O Y A O R A

80 90 100 110 120130 140 150 160 170 180 190 200 210 220 230 2!.,,0 250 260

a6’ -



POg *ITd
Linewidth (kOe.)

2.4

2.2

2.0

1.8

1.6

1.4

1.2 |

|

Temperature (°K)

260

~0%T-

280 300



-36T-

T T T T 1T 1T 17 1T T
O 8-21-68 Run
6 X'lolosec._l — X 6-11-68 Run - .
7 4-29-68 and 5-29-68 Runs
X
g ¥ oe v X
o bl— v o 5 3 x * ;? o
iS . (v o
g V§
R L
e 7 3 ]
b \
32— )
: 8
o
1b— X
0] ' fc ‘
N T U I O 1 Y A B
0 10 20 30 40 50 60 70 g 90 100 110

Temperature (°K) -



=1%2a

2.8x10  sec l l l [ [- l , [ i

2,6 }—

O 3-23-69 Run
X 7-17-68 Run

2.2 }— © —_—

2.0 +— —

108 — (v}

1y 4— ° X X —_
1.2 (— X ' —

1.0 - — —

Relaxation Rate .

.2 e, ' T ———

I

C 20 4,0 60 80 100 120 140 160 180

Temperature (°K)

Fig. 21b



3.2x10 7 seg. 1|
3.0 pmm '0?00
2.8__.

2.6

2oy ‘o , : | o

oTg *Btd

2.0 L

|
°o

1.8 —

Relaxation Rate

l.6 L_.

unyg 69/9/¢-0

1.2 —

Lo bbb L L L4t

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

Temperature (°K)



lOl2 sec.-‘l

Relaxation Rate

@ Relaxation Rate
>D K1(0)/§O2 -
B I

80 90 100

Atomic per cent Nickel

Fig. 22



1072

Relaxation Rate

(5 5m

O T R A
L B
Sec.-l —— —
— —
10t _
A
1010} ]
— —
— —
® Relaxation Rate o
0K (0) | —
107 ] l . | »
100

60 70 80 90

Atomic per cent Nickel

. Fig. 23



2136

important modifications in our microscoplc model of our ferromagnet.
First, we must acknoWwledge the fact that we are dealing with a band of
electrons constructed from localized d-states which overlap in space with .
their nearést neighbors, Thus, there are, in reality,. two types of ex-
change in our system. The first is the large intra-atomic exchange,
resulting from the intra-atomic Coulolb interaction between all the d-
electrons associated with an atomic site. This interaction tends to lead
to tﬁe formation of local moments. This was discussed by Anderson93
when he attempted to explain the formation of local moments in dilute
alloys of magnetié elements in non-magnetic hosts.

The second type of exchange 1s the inter-atomic type, resulting
from overlap of neighboring atomic wave functions. It is mich weaker
ﬁhan the first type, and is responsible for the ferromagnetic alighmenf_
of the local moments.

We will discusg’this model further, but first we will consider the
consequences of such a model with respect to the' relaxation rate.

Let us assume that .the intra-atomic exchange results in the fo-x'matvion
of localized magnetic mr‘Jments, which, ‘f‘or eertain ranges of the parameters

describing the system, may have small amplitude. That is, ‘

5.2.1 (s?‘i> =t F, |

N :
5.2.1a lsil = 1/2 ' : A
5.2.1b T )y =ew(s)

where i denotes a random lattice site.
We further assume that these moments remain constant in magnitude as the
temperature is increased to above the Curie temperature, but are allowed

to become disordered. Then the -dipolar interaction of these reduced moments
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between neighboring sites can be written in the formm (following equations

L 4,16, 18, and 25)

. - N .
5.2.2 , Mbip = D (8,) * (8,) (o, i=1,2,3)

where f(ai) is the appropriate function of the direction cosines: ai between
the spin directions and the crystallographic axes. Or, re-ordering the

terms
N

‘ N

M = S . -

5.2.2a | Dip (s;) « (D (s,) x £(xy)]

It is the guantity in the brackets which causes the diploar precession of
—

the random-spin:site (Sl>. We see that the precession rate mD(é) is

reduced from the value corresponding to &=1 by a factor of &. That is

5.2.5% , mb(g) = £ ay

1
where a>D = -);,I—D.

Of course, these reduced moments now arise from very rapid fluctua-

tions of localized atomic wave functions. The magnitude of the moment

-
associated with ocne of these instantaneous state is g Ky S, but these

states fluctuate at the very high intra-atomic exchange rate, mintfa

Jintra/ﬁ » and time-average to the smaller, observed state with
-—
moment, &€ - g Hy S.

One might then expect that each magnetic site i1s influenced by the
large dipoiar interaction with its nearest neighbors. The precession rate
due to the instantaneous dipole moment‘is the full dipolar rate, mD =‘D/ﬁ.
, which is

However, this moment is modulated at the very high rate, wintra

so rapid, that the overall contribution to the relakation rate,
1/T2 = (l/ﬁ)(De/Jintra),»is small enough to be dominated by the dipolar
interaction between time-averaged quantum:mechanical expectations of these

localized states.
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These reduced moments are modulated by the inter-atomic exchange

couplings with their nearest neighbors. This modulation rate is given by
AE
ex

(D - A ——— T ———
ex ol

5.2.4,

where A EeX is the energy difference between two localized states being
in the parallel configuration, or the anti-parallel one. (This can be
demonstrated by general uncertainty-principle arguments.) We showed

during the discussion of the anisotropy, that

- 0,2 2
5.2.5 BB = KO - T

Then the relaxation rate between the reduced localized maments due to the

inter-atomic exchange modulation of the dipolar interaction between these

reduced moments is now

o 2(¢)
5.2.6 1/, = > . %ll-ng/J
®_(1)

This is essentially the same result we obtained fran equation 5.1.26,
during.whose derivation the intra-atomic exchange was neglected.

However, the formation of these localized states also changes the
value of the Curie constant C appearing in equation 5.1.201which we used
to calculate T2 from A H.

The expression for C is given by
2
5.2.7 : C=Nu/3k_b

In the Stoner model, the electrons acted indepéndently, and their magnetic
moment, per magnetic carrier, was-;'= gugg. In the present model, the
electrons assoclated with a lattice site are ¢oupled to a state with re-
duced moment (W) = & gpbgi We assume this coupling to be independent

of T, so these states maintain a constamt amplitude as the temperature

is increased above the Curie temperature. The observed decrease in magneti-
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- zation arises from the'disordering among the localized states,'as in any
other localized moment magnetic material. It is clear that the Curie

constant for such a system is determined by the reduced moment. Then

we wfite, us ing the fact that t (T) = gO:

5.8 o(8) = o(e) = W (¢ ewS)/sk, = &5 c (t1)

Then equation 4,1.20 becanes

50209 | C (g) 5 4 CET
: o . _E I oo
SR T N
c (&.=1)
5.2.10 _ > Vo . H 1,02
SRty T T )

It is the quantity in the parenthese Which was determined byﬁappiying
equation 5.1.20 to the observed linéwidth data, using the value of C
appropriate to the Stoner model (i.e. C (&=1)). Thus, according to the
%)

present model, we have actually determined (;f% ° §O
| The discussion of the anisotroy, Which was based.on the average
value of the localized moment wés independent of how this reduced average
localized moment arises, i.e., whether it is due to inter-atomic hopping
or intra-atomic coupling, Thus, the results of that discussion are valid

in this model also. Then combining equations 4.4.30 and 5.2.6., we

see that equation 5.1.30 is still valid. We re-write this equation in

vthe form
B N 2y .
5.2.10 | S e5) = K (0) - £(T)

which now agrees with the experiment (figure 23). Thus, with the assump-
tion of a localized state, and consideration of the effect of this
assumption ori the Curie constant, we obtain excellent agreement bétween

the expected variation in the anisotropy and the observed linewidth.
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The two assumptions central to this result are:

1. Very strong intra-stomic exchange, which provides localized
moments which vary with alloy composition. This interaction also provides
a very rapid modulation of the individual atomic states forming these
moments, which masks the effects of the dipolar interactim between the
insténtaneous values of the local moment.

2, These local manents remain essentially constant in amplitude as
the temperature is increased. This contributes a Curie4Weissvt§rm to the
paramagnetic susceptibility, but with an amplititude corresponding to the
small localized moments. Since these moments remain constant in amplitude,
Wy rema ins essenfially constant as T is increased.

Such a microscopic model of a ferromagnet has been discussed by
a number of authors.

oL

Lederer and Blandin® described one such model. They present a
Hartree-Fock description of the magnetic electrons in which both the intra-
.atomic exchange and the ordinary exchange stemming from the inter-atomic
interaction are included. They sho&ed the intra-atomic coupling contr ibutes
a term to the total energy of the system which makes it favorable to
create local moments, and the inter-atomic exchange makes it favorable
to align these moments. They discuss three possibilities:

1. Both of these terms are weak. This case leads to a non—magnétic
state.

2. Intra-atomic exchange is just below the value necessary to pro-
duce a local moment, but the extra energy gained by the coupling between
such moments when they exist is enough to cause the unmagnetized state

to decrease its energy and produce ordered localized states. They then

consider the wave vector dependence of this inter-atomic coupling, whose
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magnitude depends on the wave vector describing the distribution of these
local moments. (That is ]il = O corresponds to ferromagnetism,
|a| = m/(lattice constant) corresponds to the classical anti-ferromagnetic
distribution, and other values of q describe various~anti-ferromagnetic
spin density wave states.)95 By raising the temperature in this type of '
substance, one'destroys the order and therefore one losesiitsccontribution
to the energy. Thus, abové the transifion temperature, the system becgmes
non-magnetic, with no localized moments. - They suggest that this describes
the case of chromium, which is a spin density wave anti-ferromagnet
below its transition temperatﬁre, but has no local moments above this
temperature.96
3, The intra-atomic exchange 1is very strong. This leads to local-
izea moments at all temperatures. These moments ofder below a critical
temperature depending on the strength of the inter-atomic exchange.
Above this temperature, one obfains a disordered array of local moments.

97

A similar model was also discussed by Liu. This author generalizes
the Anderson model, which we have mentioned. The Anderson model explains
the existence of magnetic moments in certain dilute alloys of magnetic

solutes in non-magnetic hosts. According to this model, the d-electrons

interact with each other at a particular atomic site via the intra-atomic

Coulomb interaction, and with the conduction electrons via the s-d ex-

change interaction. The d-states are broadened by admixture with the con-
duction electron states into a band as a result of JSd’ and split fup
states from down states) by the intra-atomic exchange. Anderson showed
that for certain ranges of the parameters describing these interactions?
there is a net difference in the occupation numbers of the spin directions
associated with each atom. This difference in occupation numbers gives

rise to the localized moment associated with the atom, and may be non-
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ihtegral, as in the band picture. Then at low temperatures, when the spins
order (assuming there is an additional interaction present to cause them
to do so), the magnetic moment per site may be a (small) non-integral

[
number of Bohr magnetons.

Liu. demonstrated an interesting feature of this model. He calculated
the magnetic susceptibility from this model and showed that in the para-
mgnetic region the number of Bohr magnetons assoclated with each site,
as determined by the magnitudé of the Curie constant describing the
observed susceptibility, can be greater than that deduced from saturation
nggnetization measurements., The ratio of these two quantities depends in
a complicated way on the values of the parameters describing the system.
Basically, this arises from the fact that the external field causes an
enhancement of the magnitude of these local moments. This fits in very
nicely with our observed magnetostatic measurements.

He then extends the Anderson picture fo a collection of dense (rather
than dilute) Anderson local moments, and includes the effects of the
overlap of neighboring wave functions. He shows that this overlap leads

to an exchange interaction between these moments of the Heisenberg type

between neighboring moments:'

- -
5.2.11 Hexch = 2J (sl) -(sg)

He also shows that this model gives rise to spin waves and critical fluctua-
tions. He present additional evidence favoring this model, based on Fermi
surface measurements which he relates to predictions of this model. The
reader is referred to this paper.for further details about this model. |
However, our data seems to indicate that this is the type of band

approach necessary to explain the magnetic behavior of our system.
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C. 'Sbéétfoscopic Splitting Factor
Thebgevalué for free electrqns is about 2.00., In a free atom, the
g-factor differs from thisvvalue, due to the spin-orbit interaction, which
couples the spin moment, with g=2, to orbital moment with g=1. In a
ferromagnetic metal, the orbital angulaf:momentum is quenched.h However,
as we have diséﬁssed, the spih orbit intéraction is still preéent. It is

stiil able to ghange the energy splitting.between adjacent Zeeman ievels

from the value corresponding to the g=2 case. This change 1s treated for

the localized moments case by Slichter75 and for the bénd model by Brooks.79

The fractional shift in g in both cases is of the order Ag/gzsA/ég where

A is the spin orbit coupling pafameter and A is the splitting between

the originally degeneratevorbital states, which are mixed and split by

the crystalliné field.

Another mechanism causing g-shift is the s-d exchange interaction.

98

It occurs in a manner analagous to the Knight shift in NMR. The frac-

tional g-shift from this mechanism is about Jsd/Ef'

We présent our spectrographic splitting factors for our samples
in table I. We note that there is relatively little change in it over
the entire range of composition covered in our experiments. This would

indicate that the band structure is relatively constant.
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Table I. Spectroscopic splitting factor as a function
of alloy composition.

Nickel i

concentration : , S _

(at.%) . . . g-factor
100. ) | o035
90, T 2040 £ .10
8o. o ‘fé,ja.i..os-.'f
70. o 2.6t .08
66.7 _— 2.30 + .05
6h, BT 2.30 * .10
. - 2w
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VI. SUMMARY AND CONCLUSIONS

We.have Seen that in order to explain same of the magnetié'propetties

of thevnickel-rhoaium system, i.e;, the continuouSiy decreasing saturaﬁion
'moment, relatively large‘parémangétic susceptibility, and low temﬁenature
high field differential susceptibility, we must abandon the “traditional
or ldéalized-momenﬁ description in favor of a band approach.

The simplest such dppfoach‘hds beeh treated by Stoner, and his
results hdve been expanded by mahy subsequent authofs. This appréach treats
the magnetic electrons as a conduétion eléctron gas, but account 1is téken
of the exchange arising from the electron-electron inferaction, as well
as the Fermi statistics required to describe these electrons. However,
we have'demgnstrated that this approach is an over simplication in the
case of Ni-Rh, althdugh it has met ﬁith a gfeat deal of succéssvin describ-
ing thevweakly ferromagnetic'infermetallic canpound, Zang. In the case
of our system, thevprediétions of this theory do not agree with the
experimental observations 6f the ccmpoéition dependence of the saturation
m@gnetization and;the paramagnetic susceptibility. Like:the.Stoner moael,
a more gccurate description must associate a small maghetic moment, whose
magnitude varies with alloy composition, with each atomic site. This
assumption is supported by our anisotropy data, and is consistent with
the other magneto-static data. By examining the electron spin relaxation
rate as a function of alloy composition; . and comparing it with the
observed variation in the magneto-crystalline anisotropy, we can draw
cetrtain conclusions about the microscopiec nature of the_magnetic state.

Our data has_indicated that central to this problem is the intra-
atomic exchange iﬁteraction, wﬂich is responsible for the formation and

composition dependence of localized magnetic moments. This interaction,
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in addition to the inter-atomic exchange interaction, which causes
these localized momenﬁs to order into a ferromagnetic state at sufficiently
' iow temperature, 1s responsible for the magnetic behavior of the system.

Our system, then, may be thought of as being distinct from Zane,
the latter seeming to be well described by the more simple Stoner model.
This is understandable, as Zan2 is composed of two non-magnetic elements.
Neubfon diffraction studies have demonstrated that “the spin density is
quite large between lathtice sites. Thus it may well be that it is simply
a fo'rtuifous accident that the density of states at the Fermi level
and the excharnge paramefér for this material have the necessary values
to créater ferromagnetism in fhe way described by the Stoner model.

In the.case of Ni-Rh, however, the alloys are composed of one
magnetic élement, diluted with a non-magnetic one. In the case of pure
nickel, the magnetic electrons, while certginly mobile and band-like,
retain a tight binding form. Thej are, therefore, to be considered as
being strongly associated with the individual nickel lattice sites. Thus,
as rhodium is added to pure nickel, one might expect that the magnetic
moments are still closely related to the lattice sites (whether only the
nickel sites; or both the nickel and the rhodium sites), and the descrip-
tion of our system should really start with this idea as a basis. This
is indeed the basis of the Anderson model, and the geheralization upon

- which we have based our purposed description of Ni-Rh.
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‘Fig. 5
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FIGURE CAPTIONS

Microwave cavity and temperature control unit.

Farédayfs Law magnétization measﬁfément unit.

Figdfe 3 has‘been deletea.

Schematic representation of the distribution of eiectrqns in
the spin-up>and spin-dowﬁ states. 4. non-mggnétic caée.

b. strongly ferromagnétic case. c. WGakly férromagnetié
éase. | o

Schematic representation showing the transfer of electrons
necessary to proceed from the non-magnetic state to a magnetic‘
stafe. |
Relative.magnetizatioﬁ and Curie tempefature vs. relative

exchange parameter in_the Stoner model. a. Relative_magneti-

zatilon, go, versus relative exchange interaction strength,

kb@'/Ef, with fpurth order exchange coefficient, A ;v.lO.
b. Same as (a); except A = O.

¢. Relative Curie temperature, kl;TC/Ef versus rélative
exchange interaction strength.

5nsat/<q02) versus the relative maggetiiation, go, in the
Stoner model. Here n

sat

units of Bohr magnetons- as determined by saturation magnetiza-

is the magnetic moment per atom in

tion measuréments and . is the magnetic moment per afdm

as determined by fitting the paramagnetic susceptibility to
a Curie-Weiss law. Upper curve is evaluated at T =;2Té and
the lower curve is evaluated at T = 1.5 Té) where Tc is the

Curie temperature.
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Fig. 8 Saturation magnetization at T # O vs., nickel concentration
for Ni-Rh. @ Saturation magnetization is éxpressed in units of
Bohr magnetons per atomic site.

Fig. 9.  Curie temperature vs. nickel concentration for Ni-Rh.

Fig. 10 . Saturation moment per atom vs. Curie temperature for Ni-Rh.

| Satﬁration moment is in units of Bohr magnetons.

Fig. 113 ::. Relative magnetization, go, vs. nickel concéntration. go is

determined by assuming each Rh atom added to the alloy con-

tributes one magnetic carrier to the magnetic band.

Fig. 12 Relative magnetization, go, vs. nickel concentration. go is
determined by assuming each Rh atom added to the alloy con-
tributes 1.5 magnetic carriers to the magnetic band.

Fig. 13 Relative magnetization, go, VS. Curie temperature for Ni-Rh.

is determined by assuming each atom of Rh added to the alloy
conttibutes one holg to the magnetic band.

Fig. 1k Magnetic moment per atom of alloy vs. nickel concentration.
hb is the number of Bohr magnetons associated with each
atomic site, as determined by the paramagnetic susceptibility.
Here, (qce) is the square of the Curie magneton number, which
is determined from the slope of the inverse susceptibility vs.
temperature curves.

Fig. 15  Relative positions of spin-up bub-band:and spin-down sub-band
for a band ferromagnet. (a) Strong ferromagneti Shows énergy
gap, A, between top of majority carrier sub-band and minority
carrier Fermi level. (b) Weak ferromagnet. ~There is no such

band in this case.
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Square of magretization vs. square of températuré for

N1.667_Rh,333' Here TC is the Curie temperature and Mb is

a convenient normalizing constant, chosen near M(T=0).

Magnetization vs. (T/Tc)5/2 for Ni, ge -Rh 5z

'Same as Fig. l6a,'except alloy cbmpbsition is Ni _.-Rh

.70 7.30°

Same as Fig. 16b, except alloy éoﬁpdsitionlis Ni 76—Rh 30°

Same as Fig. 16a, except alloy composition is'Ni‘75—Rh o5

Same as Fig. 16b, except alloy composition is Ni-75-Rh 25.

Anisotfopy constant vs. nickel concentration for Ni-Rh.

Numbers on figure denote temperature at which the anisoﬁropy

was determined.

Anisotropy constant (at L4.2°K) Qs. alloy compésition.
Anisotropy constant (at 4.2°K) vs. square of saturation
magnetization.

Magnetic resonance linewidth vs. temperature for Ni.667—Rh;355'
Magnetic resongnce linewidth vs. temperature for Ni.7o-Rh.30;
Magnetic resonapce linewidth vs. temperatufe for Ni.75-Rh.25.
Magnetic resonance linewidth vs. temperature for Ni.8O-Rh.20‘
Relaxation.rate vs. temperature for Ni.667'Rh.355' De#ermined
using Eg. 5.1.20,

Relaxation rate vs. temperature fqr,N1.7o-Rh.30.b

Relaxation rate VS. temperature for Ni.75-Rh.25.

Paramagnetic spin relaxation rate vé} alloyccomposition.

Also shown is the.fUnction of anisotfopy, Kl(O)/gog,to compare
with Eq. 5.1.30. '

Paramagnetic spin relaxation rate vs. alloy composition. Also

shown is the anisotropy constant chox as a function of alloy

composition.
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apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
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