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MAGNETIC PROPERTIES OF THE NICKEL-RHODIUM SYSTEM 

Eric R. Katz 

Inorganic Materials Research Division, Lawrence Radiation Laboratory, 
and Department of Physics, 

University of California, Berkeley, California 

ABSTRACT 

Magnetostatic and magnetic resonance studies have been performed on 

a number of alloys in the Ni-Rh binary system. These alloys exhibit 

ferromagnetic behavior for nickel concentrations exceeding 63 atomic per 

cent, and paramagnetic behavior for the more dilute alloys. The earlier 

work of Crang~e and Parsons, in which the saturation magentization and Curie 

temperature as a function of composition were measured, was extended. The 

magnetization as a function of temperature in the range 4.2°K < T < 320°K 

was measured in the presence of an externally applied field. These results 

were compared with the theory developed by Stoner and Wohlfarth, who 

attempted to explain the behavior of weakly ferromagnetic systems by 

treating the magnetic electrons as forming a band. Our results do not 

agree with the predictions of this overly simplified theory. The 

magnetocrystalline anisotropy was determined from magnetic isotherm measure-

ments, and the observed composition dependence followed the expected form. 

The spin relaxation rate was determined from the magnetic resonance 

data and compared with the composition dependence of the magnetocrystalline 

anisotropy, again using the Stoner model. Again the observations failed 

to obey the behavior predicted by this model. Another model, similar to 

the Anderson model of dilute magnetic alloys, was proposed, which explains 

all our data in a qualitative way. 

. ,. . ·~ . . ·', ;: 
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was measured in the presence of an externally applied field. These results 

were compared with the theory developed by Stoner and Wohlfarth, who 

attempted to explain the behavior of weakly ferromagnetic systems by 

treating the magnetic electrons as forming a band. Our results do not 

agree with the predictions of this overly simplified theory. The 

magnetocrystalline anisotropy was determined from magnetic isotherm 

measurements, and the observed composition dependence followed the expected 

form. The spin relaxation rate was determined from the magnetic resonance 

data and compared with the composition dependence of the magnetocrystalline 

anisotropy, again using the Stoner model. Again the observations failed 

to obey the behavior predicted by this model. Another model, similar to 

the Anderson model of dilute magnetic alloys, was proposed, which explains 

all our data in a qualitative way • 
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I • INTRODUCTION 

The nature of the ferromagnetic state in the 3-d transition metals 

is not yet understood. The basic problem is explaining the nature of the 

3-d electrons themselves, which are the ones responsible for the magnetic 

behavior. The descriptions of these electrons lies somewhere between the 

limits of the two well known models, a nearly free electron gas, and the 

"t;ight binding approximation. Thus, these electrons are very difficult to 

treat in a quantitative manner. 

Historically, the treatment of magnetism has proceeded along two 

lines: the localized moment, or Heisenberg model, and the band picture. 

The localized moment picture has been applied quite successfully to 

ferromagnetic insulators and to rare-earth ferromagnets1 , thus it has 

received a greater amount of attention. 

In this familiar model, the metal is thought of as containing 

incomplete inner shells (d or f) whose electrons couple together in each 

atom, according to Hund's rule into a state with net spin angular 
__., 

momentum, S, and associated magnetic moment. Spins on neighboring atoms, 

due to overlap of their wave functions, may couple together ferromagnet~ 

ically, the strength of this coupling interaction being determined by the 

overlap, or exchange integral, J, between neighboring sites. 

This model leads to quantitative relationships between the ferro-

magnetic transition temperature T and the strength of the exchange 
c 

interaction, and describes spin waves, critical fluct~ations, saturation 

magnetization at low temperature, paramagnetic susceptibility, specific 

heat, scattering (elastic and inelastic) of neutrons, and magnetic 

resonance properties. 

-------------~-- ----· 
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However, this approach breaks down when it is applied to the 3-d 

transitio~ metals. First, the observed value of the saturation 

magnetization at absolute zero for these metals leads to magnetic moments 

per atom far different from those corresponding to an integral number of 

electrons, as required by the Heisenberg model. Second, there is a 

large deviation in tpe.size of the magnetic moment per atom as derived 

from saturation magnetization measurements, and from the magnitude of the 

Curie-Weiss susceptibility constant. 

Other discrepencies include the following: Large electronic 

specific heat in these materials (e.g., the electronic specific heat of 

magnetic nickel is about ten times as great as that of non-magnetic 

copper). This indicates that the magnetic electrons are mobile. The 

presence of high field differential susceptibility, which is difficult to 

explain in a local moments model without resorting to various spiral 

magnetic structures. This susceptibility has been observed in various 

mater~als. However, neutron diffraction studies of these materials have 

ruled out any such structure. This type of susceptibility follows quite 

2 naturally from the band approach Hall effect measurements 3 indicate 

d-electrons contribute to conductivity, i.e., that they are mobile. 

In favor of the localized moment picture was thought to be the 

T3/ 2 temperature dependence of the saturation magnetization at low 

temperature, and the inelastic neutron scattering (below, and somewhat 

above T ), explainable by spin wave theory, which was thought to result c 

only from localized moments. However, recent works~ which we shall discuss, 

have shown that spin-wave-like excitations also can exist in a running 

wave (band) model of a ferromagnet, and in fact, the band approach also 

... 
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provides accurate description of the experimental neutron scattering data. 

The band approach treats the magnetic electrons as running waves, 

forming bands. This approach can be thought of as a generalization of 

the picture used to describe the Pauli spin susceptibility in a conduction 

electron gas. Such a description is provided in Introduction to Solid 

State Physics4. 

A very useful approach to this problem was made by Stoner, which we 

will describe in Section III. His theory makes qualitative predictions 

about such a system, using only a very small number of parameters to 

describe the system. 

In order to test the applicability of his theory, it was desirable 

to find a magnetic system in which one could experimentally vary these 

parameters, and then compare the results of this variation with the 

predictions of the theory. For reasons which we shall describe, we felt 

that the nickel-rhodium binary alloy system is describable by the Stoner 

theory, and that the variation in alloy composition provides the desired 

'variation in the parameters describing this system. 

The Ni-Rh system forms a continuous range of FCC solid solutions 5 

which exhibit ferromagnetic behavior for concentrations of nickel 

exceeding a critical value of about 63 atomic per cent6 . 

Crangle and Parsons7 , as part of a study of the magnetization of 

binary alloys of cobalt and nickel with elements of the Pd and Pt group, 

noted that the saturation moment of the Ni-Rh system first increased with 

increasing rhodium concentration, reaching a maximum near 5 per cent 

rhodium, then decreased continuously to 0 at about 37 per cent rhodi~~. 

They attempted to explain the initi&l increase in magnetization using 
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several simple models, including the rigid-band model. This model supposes 

the shapes and relative positions of the d and s bands remain essentially 

unchanged by the addition of rhodium. Thus, the density of states 

functions describing these bands also remains constant, and the sole 

effect of alloying is to contribute additional carriers to these two bands. 

The initial increase of magnetization with low Rh concentration 
. 

corresponds to about 2 holes in the d-band per Rh atom added, as compared 

to the one hole per atom expected from the atomic configurations of Ni 

and Rh. Of course, this model provides no explanation of the decreasing 

moment as the Rh concentration is further increased. One must resort to 

the band picture for such an explanation. These authors also measured the 

Curie temperature as a function of Rh concentration, and found it to 

decrease continuously. 

. 6 
Bucher et al: measured.the high field differential susceptibility 

at 1.4°K. for this system, concentrating their efforts in the region 

around the critical concentration. They found a symmetric peak behaving 

roughly as the inverse of the deviation in alloy composition from its 

critical value. Further, they measured the electronic contribution to 

the heat capacity, and found a logarithmic peak at the critical 

concentration. 

The explanation of this data cannot be made within the framework of 

the traditional, or localized moments, description of the magnetic state. 

We are thus forced to appeal to the band approach for such an explanation. 

Therefore, we decided to use this system to test the applicability 

of some of the band approaches in describing a real system. 

The first part of our experiments consisted of magnetostatic 

~ 
I) 
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measurements with various samples of differing composition, ranging from 

' pure nickel, to a sample consisting of 57 per cent nickel and 43 per cent 

rhodium. These measurements included determination of the saturation 

magnetization at low temperatures, the susceptibility in the p~amagnetic 

region as a function of temperature, and the determination of the 

magnetocrystalline anisotropy. 

The second part of the experiment was an outgrowth of earlier work 

8 done by Salamon . He performed magnetic resonance studies in pure nickel 

in the vicinity of the Curie point and above. He concerned himself 

primarily with the relaxation rate of the paramagnetic spins, which is 

obtained from the width of the resonance lines. He based his 

interpretation on a localized moments picture, in which, for very high 

temperatures, the relaxation mechanism is the exchange-narrowed pseudo­

dipolar interaction9 , which is modified as the Curie temperature is 

approached from above by the onset of short range order and critical 

fluctuations 10 . 

We performed similar measurements on our alloys, both in the 

ferromagnetic and paramagnetic regions, with particular attention devoted 

to the paramagnetic region, where we determined the spectroscopic 

splitting factor and the relaxation rate, which we compare to the 

predictions of the band theory. 

The organization of the remainder of this work will be as follows: 

Chapter Two contains the description of the alloy preparation and 

analysis, as well as the descriptions of the experimental details. We 

also discuss the apparatus used in making the magnetostatic measurements, 

and the microwave spectrometer used for the resonance studies. 
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Chapter Three is an introduction to the band theory of magnetism. In 

the first subsection we show how certain silnplifying assumptions regarding 

exchange lead to a molecular field approximation in an electron gas, and 

some of the consequences of this field. In the second subsection, we 

outline briefly the quantitative approach to this problem taken by 

Stoner, indicating the basic assumptions, the weaknesses, and the con­

clusions reached by this approach. We compare these predictions with 

previous experimental work. In the third subsection, we describe another 

approach in explaining the magnetic properties of the 3-d series, that of 

Hurwitz and Van Vleck. This model is able to treat effects of correlation, 

whereas, the Stoner model is not. However quantitative predictions are 

difficult with this approach. 

In Chapter Four, we discuss our magnetostatic measurements. In the 

first subsection we discuss the concentration dependence of the 

saturation magnetization, the Curie temperature, and the magnitude of the 

paramagnetic susceptibility. Since the Stoner theory treats these 

quantities, we compare our data with the predictions of Stoner. Since 

quantitative predictions require detailed knowledge about the density of 

states function, we concentrate out attention on the region near the 

critical concentration, where certain expansions may be carried out, 

leading to predictions about the general relationships between various 

measured quantities. We find several discrepencies between the 

theoretical predictions and the observed data. In the second subsection 

we discuss the low temperature magnetization data for some of our samples. 

We trace the development of the theory of spin waves as it applies to 

band ferromagnets, as well as the more important band effects which 
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influence the temperature dependence of the magnetization, in the 

framework of the Stoner model. We then compare our data with the results 

of this theory, and find satisfactory agreement. In the third subsection 

we discuss our determination of the magnetocrystalline anisotropy versus 

alloy composition. We trace the development of the theory of anisotropy, 

indicating how this theory applies to a band system. We compare this 

theory to our data, and again find satisfactory agreement. 
I 

In Chapter Five, we discuss our magnetic resonance studies. We 

concentrate our attention on explaining the observed relaxation rates in 

the paramagnetic region, and relate this to the microscopic nature of the 

magnetic state. We indicate how the band theory must be modified to 

explain our observations. 

In Chapter Six, we present a summary of our results and conclusions. 

I~ 

""' 
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II. EXPERIMENTAL DETAILS 

A. Alloy Preparation 

Nickel and rhodium for an uninterrupted series of solid solutiorts 5, 

which solidify into a F.C.C. structure. 

The alloys for the present studies were prepared from high purity 

nickel and rhodium powders. The rhodium powder was obtained from Leico 

Industries, New York, and was quoted by them as being 99.999% pure. The 

nickel powder was obtained from Electronic Space Products, Inc., Los 

Angeles, and was 99.99+% pure. 

The powder sizes were measured under a metallurgical microscope, and 

the average particle grain size was found to be "" 1 micron diameter for 

both of the powders. 

The alloys were prepared in batches of 1.6 grams. Desired atomic 

compositions were selected, and converted to ratios by weight. The 

powders were weighed out carefully, using a Mettler micro-balance, to an 

accuracy of~ .0003 gm. This corresponds to~ .02% by weight. The 

powders were then thoroughly mixed and put into a zirconia crucible. The 

zirconia cricibles were made by grinding down zirconia tubes, obtained 

from the Degussa Corp., Kearny, New Jersey. These tubes were 5 mm. I.D., 

8 mm. O.D., and closed on one end. They were composed of a dense ceramic 

containing 97% Zro2 stabilized with 3% CaO. After being ground down to 

the proper length, they were baked at about 500°C for about 24 hours. 

After the powder was put in the crucible, a tightly fitting cap was 

cemented on the crucible, using Astroceram, a general purpose ceramic 

cement. This did not provide a vacuum-tight seal, but was used to retard 

escape of nickel vapor from the crucible during the melting process. 

• 
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The crucible was suspended in a high vacuum Abar resistance 
·I' 

furnace, using a tantalum sheet which surrounds the hot zone as a 

resistance element. The furnace is equipped with Pt-Ft/Rh thermocouples, 
.· .,,. 

but temperature measurements were made with an optical pyrometeri. , 

The furnace was evacuated with the powder and crucible inside to a 

pressure of less than 10-5 torr. The furnace was t.hen heated to 

500-600°C. and held there for five hours to set the ceramic cement. The 

temperature was increased to 1000-1100°C to de-gas the crucible and 

powder inside. -6 After the pressure reached less than 3 x 10 torr, the 

furnace was held at this temperature for at least one additional hour. 

The crucible was then heated in gradual steps to avoid any undo 

thermal stresses to the crucible according to the following program. 

Temperatures given are those read by an optical pyrometer, calibrated for 

a black-body radiator. Due to the non-perfect emissivity of the crucible 

material (manufacturer quotes e = 0. 24) the actual temperatures are 

actually 100-150°C higher. The heating program was as follows: 

T = 1550°C held for 5 minutes 

T = 1650°C held for 3 minutes 

T = 1850°C held for 3 minutes 

T = 1965°C heJd for 7 minutes 

(The melting point of Rh is 1966 + 3°C ' while nickel melts at 1453°C. )11 

After holding the sample at the highest temperature for seven minutes, 

the heater power was shut off completely. The outside of the crucible 

dropped to 1600°C. in 14 seconds, and to 1400°C. in less than 30 seconds. 

The sample was "quenched" as described in order to cross the 

solidus-liquidus transition region as quickly as possible, to make the 
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alloy as uniform as possible. 

The crucible was allowed to cool to room temperature, and was then 

removed from the furnace. It was cracked open, and the alloy, in the 

form of a slug 5 mm. diameter X ~ 8 mm. length was removed. 

There was indication of a mild reaction between the inner surface of 

the crucible and the outer surface of the slug, which gave the slug a 

"glazed" appearance, but the reaction did not appear to penetrate into 

the slug. 

The slug was placed in an alumina crucible and returned to the 

furnace for annealing. It was annealed at 1100°C. for a minimum of 72 

hours. It was then removed from the furnace. 

Thin disks, 5 mm. diameter by .010"-.02011 were sliced off by means 

of a carborundum disk saw, for use in the magnetic resonance experiments. 

The remainder of the slug was turned down on a lathe into a cylinder, 

.105 inches diameter by .145 inches in length, for magnetization 

measurements. 
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B. .Aii.aJ..ysis of Samples. 

Several of the alloys were analyzed with an electron beam micro-

probe • 
. I.~• 

During this type of analysis, the sample is bombarded in a high 

vacuum with a narrow (approximately 1 micron diameter) beam of mono-

energetic electrons. The resulting X-ray radiation is scanned for 

various wavelengths corresponding to K-alpha and L-alpha lines of the 

elements being scanned. These lines are detected using various crystals 

as X-ray diffration monochromators, followed by counters. The number of 

counts per fixed time interval is related to the concentration of the 

corresponding element in the alloy under investigation. The device is 

calibrated with known .standards of pure elements, and corrected for 

background, X-ray fluorescence, etc. 

Our alloys were scanned for nickel and rhodium. In addition, since 

the alloys were prepared in a zirconia crucible, they were also scanned 

for zirconium. 

Since the production of X-rays excited by an electron beam is a 

random process, there is a statistical distribution in the counts re-

ceived in each monochromator channel. Thus, from elementary statistics, 

the standard deviation in the number of counts in any channel is just 

the square root of the mean number of counts expected in that channel. 

For the ten second interval used, our samples gave approximately 

10,000 and 5,000 counts for nickel and rhodium, respectively. Thus the 
•· 

statistical uncertainty in the number of counts is on the order of one 

percent, and therefore the uncertainty in the concentration of each of 

these elements was also of this order of magnitude. 
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Thus the device was u~eful only for determining whether or not the 

alloy deviated significantly from the cor"centration of the ingredients, 

i.e., if there was excessive evaporation of one of the constituents, 

(nickel has the higher vapor pressure of the two, reaching 1-10 torr at 

the highest temperature reached during the melting) and whether or not 

there were large local fluctuations in the concentration. 

The results of the microprobe indicated that the composition of the 

alloy was, within the limitations of the accuracy of the analysis, equal 

to the composition of the ingredients as they were weighed out before 

melting, and that there were no large (i.e. > 1%) fluctuations in the 

composition. 

Further, the counts received in the zirconium channel were just 

equal to the zirconium channel background counts, within the statistical 

distribution expected, and indicated that the zirconium concentration 

was at least less than 0.1%. 

Metallographic analyses of the samples were also attempted, but no 

suitable etchant could be found, so the crystal grain boundaries could 

not be revealed. 

Such studies would be desirable, for one could then perform micro­

probe analysis on a particular grain, as a function of the distance from 

the grain center to the perimeter. Such a study would show whether the 

quench and subsequent anneal were sufficient to remove any composition 

gradients introduced by crossing the solidus-liquidus region in a finite 

length of time • 

However, the results of the microprobe analyses which were per­

formed indicate, at least, that no gross composition gradients exist. 
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C. ~owave Experiment 

Ferromagnetic resonance (FMR) and electron paramagnetic resonance 

(EPR) measurements were performed using a standard Q-band magic-tee 

microwave spectrometer. This type of spectrometer has been described 

12 
by Feher. 

The spectrometer used had been built originally for another experi-

13 ment and the modifications necessary for the present work were incor-

porated. 

The cavity and sample unit are shown in figure 1. The cavity was 

maintained at the coolant temperature (either 77°K or 4.2°K). 

The sample, in the form of a thin disk, was glued on the closed end 

of a hollow copper rod. Inside the rod was a Pt resistance thermometer 

around which was wound a non-inductive manganin heater coil. This 

temperature unit was loosely coupled to the coolant bath with three thin 

brass support struts. 

Temperature control was achieved in either of two ways: 

Long term constant temperature: The Pt thermometer was used as one 

arm of an AC bridge. A second arm was adjusted externally, and the irn-

balance in the bridge was used to drive the heater power supply. With 

this method, a few millidegrees stability for long term periods was 

easily attainable. 

Slow sweep: Heater power was increased very slowly, so that the 

temperature rose continuously but slowly. The temperature change was 

less than a degree during the course of a particular magnetic resonance 

sweep. 
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Fig. 1 



-15-

In both cases, temperature was monitored with a copper-constant:a.n 

thermocouple. This was placed very close to the sample on the copper 

rod. In either mode of temperature control, the thermocouple gave 

accurate measurement of the temperature. 

The cavity was excited in the TElOl mode using a standard klystron 

and power supply. Since the cavity was maintained at helium (or nitrogen) 

temperature during the course of a run, independent of sample tempera-

ture, the frequency remained constant, at 29.69 Gc./sec. 

The sample, in the form of a thin disk, was placed very close to 
i 

an iris in the cavity. The microwave field which bulged out of this iris 

impinged on the sample and caused an oscillating magnetic field parallel 

to the surface of the sample. Thus the sample was coupled to the micro-

wave field of the cavity, though somewhat more weakly than if it were 

actually placed inside the cavity. 

A slowly varied external D. C. magnetic field, H, was applied 

parallel to the surface of the sample, but perpendicular to at least one 

component of the RF magnetic field. This configuration of sample, micro-

wave field, and static field exhibits a resonance in the power absorbed 

from the microwave field when the resonance condition 

is met. Here 

2.3.2 

where g is the gyromagnetic factor of the magnetic carriers,~ is the 

Bohr magneton, n is Planck's constant divided by 2TI, and B = (H+4TIM) is 

the magnetic induction, __ and M- is the magnetization of the sample. This 

result has been dfscussed, for example, by Ki tte1.
14 

The microwave 
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power reflected back from the cavity was monitored with a standard 

crystal detector. 

The Zeeman field was swept slowly from about 2 koe. to 13 koe. and 

then back. The output of a DC gaussmeter (rotating coil gaussmeter with 

a phase detector and filter providing a DC output voltage proportional 

to the instantaneous value of the magnetic field) was used to drive the 

X channel of an X-Y recorder, and the change in reflected microwave 

power was amplified and used to drive the Y channel. 

For technical reasons, this experiment was a DC one, rather than 

the usual AC experiment, i.e. one often modulates the Zeeman field with 

a small AC component, and uses a phase detector to monitor the reflected 

power. The coherent signal observed is proportional to the amplitude of 

this audio modulation, multipied by the derivative of the line being 

swept, evaluated at the position of the resonance line corresponding to 

the instantaneous value of the Zeeman field. This signal is also in-

versely proportional to the width of the line. Due to the broad line 

widths incurred (6H d" dul t• LLi "dth < .01) as au ~o mo a ~on/1 new~ -
well as mechani-

cal resonances in the system (driven by the interaction of currents 

induced by the AC field with the DC field, causing mechanical vibrations 

coherent with the AC signal) the AC method became unfeasible. 

The field was then swept yielding X-Y recorder traces of the 

resonance line. Data was read off these recorder traces and punched 

onto IBM cards in pairs: field value and power reflected. ,; .. 

For reasons to be discussed in a later section, the relaxation 

process contributing to the linewidth are expected to yield Lorentzian 

line shapes. 
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Thus a general least-squares . curve fi tti.ng program was 1:1sed on a 

CDC 6600 computer to fit a general Lorentzian line shape with five 

parameters to the observed data. The five parameters were essentially 

Lorentzian dispersion amplitude, absorption amplitude, line center, line 

width, and position of baseline. 

The reason that dispersion is introduced into an absorption experi-

ment is that the dispersive part of the magnetic susceptibility (which 

in addition to the absorptive part, is also a function of the applied 

Zeeman field. In fact,· the two are related by the Kramers-Kronig rela­

tions.15) affects the skin depth, which in turn, affects the surface 

impedance. 

General expressions for losses in such systems (i.e. metallic 

systems in a microwave field) as a function of the in-phase and out-of­

phase portions of the magnetic susceptibilities are discussed by Kitte1.
14 
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D. · Magnetostatic Measurements 

M(H)IT and M(T)IH measurements were made with basically the same 

equipment, involving only some minor modifications. 

M(T)IH Measurements. The basic unit used is shown in figure 2. 

The sample to be measured is turned down on a lathe into a right circular 

cylinder, .105" diameter by .142" length. It was glued onto the end of 

a rod of the same diameter which had been turned down from a small piece 

of rack material, thus leaving gear teeth along one side. This was 

placed in the main body of the unit, which consists primarily of a brass 

cylinder, with a hole bored down the center through which the sample 

assembly could move. On one side of this was mounted a pinion gear, 

whose teeth mesh with those of the sample holder. A teflon backstop was 

attached to the rear of the unit, and a lucite coil form, wound with 

5000 turns of 1.2 mil diameter wire, was attached to the front end. A 

teflon pad and cap were used to close the front end of the coil. These 

two teflon pieces were used to reproducibly limit the travel of the 

sample in and out of the coil as the pinion was turned. The whole unit 

was suspended by means of stainless steel clamps from the top of a brass 

can. The can was sealed vacuum tight with Wood's metal, and suspended 

in a dewar by means of four stainless steel tubes, soldered to the can on 

one end, and to the upper dewar flange on the other end. One of these . 
'\ 

four stainless steel tubes was positioned over the pinion gear, and a 

drive shaft was run through the upper flange, using an 0-ring seal, down 
.. 

the tube to the pinion gear. Thus by turning the drive shaft from 

above, the sample could be driven in and out of the pickup coil. 
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The other stainless steel tubes were used to run electrical con-

nections down to the can, and as a vacuum line, through which the can 

could be evacuated. 

From Faraday's Law, the EMF picked up by a coil inside of which the 

magnetic induction is changing is given by 

2.4.1 EMF J ..l> ... 

B · dA 
area inside 
coil windings 

When the sample is outside the coil, the magnetic induction inside the 

coil is given by B t = H , where H is the externally applied field ou 0 0 

(usually 8 koe. in these studies, to insure saturation). When the 

sample is inside the coil, the magnetic induction inside the sample is 

given by 

2.4.2 "' B. 
ln 

... .\ "' 
= H. + 47TM 

ln 

where H. is the field inside the sample. From elementary magneto­
ln 

statics we can write this as: 

2.4.3 
... ~ ... ~ 

B . = H - NM + 47TM 
ln 0 

where N is the demagnetizing factor of the cylindrical sample. 
... ... . ... 
B. = H + (47T-N)M 

lTI 0 

16 According to Bozarth, for the dimensions of our samples the expected 

demagnetizing factor is about 2.4 oersteds/gauss-magnetization. (Our 

measured values came very close to this value.) 

The field outside the sample volume, but inside the coil windings 

can be thought of as being due to fictitious surface poles induced on 

the sample end faces and which are proportional to the magnetization of 

the sample. These "fringing" fields are then also proportional to the 
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magneti. z a ti on. 

2.4.5 
~ ~ ~ 

B · · = Mf(x) Fringing.· 
~ ~ 

f(x) is some function of position depending upon sample size and where 

shape. It is the same for all of our samples, since they were all 

identical in size and shape. 

Thus the average induction inside the coil, with the sample in, is 

given by 
... 

2.4.6 (B. ) = H + [other terms, each of which is proportional 
~n average o . . ] · to the magnet~zat~on of the sample 

Thus, the net change in magnetic induction within the volume en-

closed by the coil windings, when the sample is moved from outside the 

coil to inside the coil, is directly proportional to the magnetization 

of the sample. 

Integrating Faradey's Law with respect to time, one finds 

2.4.7 J(EMF) ddt . 1 cx:6.B. ex: M aroun co~ sample 
windings 

To make the measurements the temperature around coil windings of 

the sample was varied by placing the can in a coolant (usually liquid 

helium at 4.2°K). Then power which was applied to the heater windings 

with a regulated current source was increased very slowly. The tempera-

ture was monitored with a copper-constantan thermocouple, mounted on 

the sample holder. The coil was connected in series to a helipot, and 

the total resistance which was the sum of the resistance of the coil 

windings and the helipot was monitored with a Wheatstone Bridge, and 

was maintained to within 1% of some predetermined constant value (about 

3. 3K) as the resistance of the coil windings changed, because of the 

temperature change. 
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The coil, now with the equivalence of fixed windings resistance, 

was connected to a low drift operational-amplifier current integrator, 

whose output is proportional to the time integral of the current (i.e., 

charge) through the input. 

The sample was initially outside the coil. The output of the 

integrator circuit was set to zero. The gate to the integrator circuit 

was opened, the sample moved into the coil volume, and the gate to the 

integrator was closed. The output voltage from the integrator was 

measured with a Rubicon potentiometer and noted, along with the tempera­

ture. From equation 2.4.7, this voltage is directly proportional to the 

magnetization of the sample. This process was repeated at various values 

of temperature over the range we could cover, 4.2°K to about 320°K. 

The overall system was calibrated with a pure nickel sample, whose 

values of magnetization are well known, due to Weiss and Forrer. 17 

Thus M(T) curves for all the samples could be measured. 

M(H)T Measurements. The system was modified somewhat for these 

measurements. First, a bucking coil was wound, placed near the pickup 

coil but off axis, and connected in series opposition to the pickup coil. 

The EMF's induced in the two coils when H
0 

was changed cancelled each 

other to within about 1%. The remaining 1% was balanced out as follows: 

The temperature was fixed. The sample was removed from the coil 

volume in the usual wa;y. The gate to the integrator was opened and the 

field swept to some large value. The negative output of the integrator 

circuit was fed into one channel of an operational amplifier voltage 

adder. The output of the DC gaussmeter was fed into another channel, 

which had a variable coefficient. The coefficient was adjusted so that 
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changes in the magnetic field produced no changes in the output of the 

adder. This nulling adjustment had to be done in fields large enough to 

I 
saturate the sample, since the pickup coil still picked up the change in 

magnetization of the sample, although only about 3% as strongly as with 

the sample in the coil. 

With these adjustments, any change in H alone produced no change in 
0 . I 

the output of the. circuit. The sample was then inserted in the coil, and 

the field swept from 0 to a value large enough so that M(H) was deter­

mined. Thus the instantaneous integral J t(H) EMF( t 1 )dt 1 was proportional 
0 

to M(H) only. 

The output of the DC gaussmeter was also used to drive the X channel 

of an X-Y recorder, and the output of the adder (now proportional to 

M(H)) was used to drive the Y channel. The value of the ordinate of 

these traces was noted (or extrapolated) at H=8 koe. Thus the graphs 

could be calibrated using the previous measurements of M(T)IH' 

Also, since the samples were ferromagnetic, the initial slope of the 

curves gave the demagnetizing factor, so that M as a function of the internal 

field could be determined. The values given by the slopes were very 

close to those predicted16 for the sample geometry. 
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III. INTRODUCTION TO THE BAND THEORY OF MAGNETISM 

A. Exchange and the Molecular Field Approximation 

The subject of ferromagnetism among itinerant electrons is a very 

large if not well understood one. An excellent survey of the subject 

has been presented in a monumental work by Herring. 
1 

Especially enlighten-

ing, for our purposes, is Chapter Six of this work_. It may be noteworthy 

to state that this book alone contains 478 references for the period pre-

ceeding its publication. 

Needless to say, this paper could hardly begin to cover all the as­

pects of this tremendous field of study. However, a relatively brief 

survey, relevent to the experimental work done during the present studies, 

will be attempted. 

Although this section may at first appear san-ewhat lengthy, it is 

felt that this presentation is, in fact, necessary in order to acquaint 

the reader with some of the more important ideas associated with this 

type of approach in explaining the magnetic properties of a large class 

of substances. 

The subject probably began in 1929 with the publication of a paper 

by Bloch
18 

in which he demonstrated the possibility of ferromagnetism 

among a band of (conduction) electrons, obeying Fermi-Dirac statistics, 

and interacting with each other via a Coulomb repulsion. 

As is well known from elementary quantum mechanics, the total energy 

of a given pair of electrons, whose spatial wave functions overlap when 

the:ir coulomb repulsion interaction is considered, depends on whether 

the spins of these two electrons are parallel or anti-parallel. This 

result stems from the fact that the Fermi statistics, which the electrons 

~· 

,. 
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must obey, requires that the total wave function of the two electrons must 

be an antisymmetr±c linear combination of the individual electron wave 

functions (spin and spatial pe.rts). Let us consider these two electrons 

as being in a metal. We imagine that we have solved the equations of 

. motion for the electrons in the periodic potential of the lattice sites, 

neglecting for the time being, the effects of the electron-electron inter-

action. We assume there is sv£ficient nearest neighbor overlap between 

the atomic states to yield a solution of the Bloch running wave type. We 

then consider the effects of the electron-electron interaction as a pertur-

bation, and calculate its Bffect on the energy of the system. 

Since the spatial charge distribution between two electrons is 

different for the parallel and anti-parallel configurations, there will 

be a aifference in the interaction energy. For our free electrons with 

a repulsive interaction, the interaction energy is lower when the two 

electrons are aligned parallel. This is because the exclusion principle 

automatically keeps the two electrons separated spatially if their spins 

are parallel, reducing the' net amount of positive repulsive interaction 

energy with respect to the anti-parallel case. This is the origin of the 

so-called exchange energy. 

Bloch calculated this exchange energy in his paper, and showed 

under what conditions, within the simplifying assumptions involved in our 

discussion thus far, this leads to ferromagnetism. He found, essentially, 

tm t one needs low density of electrons with large effective mass. For 

the unscreened Coulomb interaction, which, however, is never achieved in 

real metals, he found that the condition for ferromagnetism is: 

3 .l.l r > 5.45 s 
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where r is the radius of a sphere just containing the volume associated 
s 

with one electron in the lattice, expressed in units of the Bohr radius 

* appropriate for the effective mass of the electron m. That is: 

3.l.la) r = r /a s 0 0 

3.1.1 b) r radius of sphere containing the volume 
0 associated with one electron 

3.1.1 c) 2/ * 2 a fl. me 
0 

e is the electron charge 

When this condition is met the exchange energy gained in aligning all the 

electrons parallel to one another more than offsets the increase in 

kinetic energy necessary to produce a magnetized state. To create such 

a state, we must raise electrons from the configuration where allowable 

k-states are doubly occupied, (one in each of the two allowed spin direc-

tions), to a configuration where k-states are only singly occupied (i.e., 

in one spin direction only, usually defined as the spin up direction). 

This configuration requires the filling of electrons in states of much 

higher k (and hence much higher K.E.) than the non-magnetic configuration. 

However, in this calculation, Bloch neglected the effects of corre-

lation. Not only does the electron-electron interaction change the energy 

of the system described by some (fixed) set of wave functions in the way 

just described, but it also modifies the wave functions themselves; in 

this aase, in such a manner as to keep electrons farther apart than for 

the case of non-interacting electrons. 

Thus, electrons which are anti-parallel and would be allowed to 

approach om: another fairly closely (giving rise to relatively large 

interaction energy) in an uncorrelated model, are kept apart when corre-

lation effects are included. The energy difference between the unparallel 
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state and the parallel state for two electrons, which was given by the 

exchange integral between the two states describing the electrons, is now 

greatly reduced. The problem of correlation plays an essential role in 

the calculation of the properties of ·a band of electrons, and dete·rmines 

for example, whether or not the electrons can even become ferromagnetic. 

At the present time, it is not known whether a single band of electrons 

can produce ferromagnetism, when correlation is taken into account. 

Although from a theoretical standpoint, it has not been proved whether 

or not a simple band system can become ferromagnetic, we will adopt a 

phenomenological approach, and assume it can. 

For the present, let us neglect the effects of finite temperature, 

i.e., we restrict our discussion to absolute zero. 

Then the normal paramagnetic state is one with half the electrons 

in the spin-up state, the other half in the spin-down state. For 

simplicity, we consider our crystal to be made up of N at ems, each contri-

buting one electron to our band. Thus there are N electrons, which we 

assume are describable by Fermi-Dirac statistics. We further assume the 

effective mass approximation, so the density of states is proportional to 

l/2 . l/2 E (l.e., N(E) =constant x E ). 

In this picture, .. the unmagnetized state of the system simply looks 

like figure 4a. The magnetized state looks like figure 4b, where the 

electrons fill all the allowable states of one sub-band, which has 

been depressed strongly in energy by the exchange interaction, the re-

maining electrons occupying states in the other sub-band. Then there is 

a net unbalance in the number of spins in the two spin directions, lead-

ing to a net magnetic moment. Due to the complete sa'turation one one 

sub-band, this case is termed strongly ferromagnetic. (To conform to the 
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(a) Non-magnetic 

(b) Fully magnetic 

N/2 - n/2 N/2 + n/2 

(c) Weakly magnetic 

Fig. 4 
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3-d transition series, and to our alloys, we will assume that the d-bands 

are more than half full, so the carriers in this band are holes. Thus 

the magnetic properties come about from the fact that there are more holes, 

or vacancies, in one spin sub-band than the other. The treatment for the 

case when the dTband is less than half full, and the carriers are electrons, 

proceeds in a similar fashion.) Thus nickel, with a saturation magneti-

zation corresponding to 0.6 Bohr magnetons per atan, arises from the fact 

that the d-band contains .54 holes per atom.with a g-factor of 2.2 

(yielding 1.1 Bohr magnetons per hole)'. 

Another case may occur if the exchange interaction is too weak 

to depress one sub~?and far enough to cause it to fill completely. This 

case is depicted in figure 4c. In this case, there is only partial trans-

fer of carriers from one sub-band to the other, so that only a small frac-

tion of the eligible magnetic carriers contribute to the net magnetization. 

That is, the net manent arises from the difference in the number of carriers 

in the two spin directions. For obvious reasons, this case is called the 

weakly ferromagnetic case, and as the exchange interaction strength is 

decreased; the magnetization decreases to zero. We will discuss this 

case in more detail later. 

To see how this depression of one of the spin sub-bands comes about, 

we consider the effects of the exchange interaction in more detail. 

We first develop the molecular field approximation for a band system, 

which turns out to be of great use. 

If the electrons are describable by Bloch plane waves ,the exchange 

interaction between any two electrons, one is the state describable by 

25* wave vector k, the other in a state k', is given by 

*This result follows immediately from the overlap integral between two plane 
wave states. The result is the Fourier transform of the ef.fective electron­
electron interaction. 
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2 47Te 
3 .1.3 J(k, k') == 

l 
v 

1
--:.l. =rj2 ' 
k- k'L 

V == volume of the crystal 

for the case of a bare Coulomb interaction, and by 

3.1.4 
~....:. 

J (k, k') 
l 
v 

47Te2 
~~2=----.-~=--

lk-k't +k-s 

for the more realistic case of a screened Coulomb interaction. The screen-
__. __. 

ing parameter K, which prevents divergence as lk- k''l ~o results from 
s 

electron-electron effects (correlation), which tend to screen out the long 

range Coulomb effects by redistributing the electrons throughout the lattice. 

This screening parameter is treated by Kitte125 and an order of magnitude 

estimate is given by 

3.1.5 K 2 
s 

where Ef is the Fermi energy. 

N = number of electrons per unit 
volume 

In the effect mass approximation Ef is given by 

1'i.2(37T2N)2/3 
3~1.6 Ef = * 

2m 

Then the screening length becomes on the order of magnitude of an inter-

atomic distance, which we call d • 
0 

In this case, K is large compared to most values of lit- "k:'r I 
s 

occuring for pairs of electrons in a real metal, so we neglect the first 

term in the denominator of expression 3.1.4 in comparison to the screen-

ing term. Using the estimate 

3 .l. 7 

and the fact that V 

3.l.fl 

K ~ 1/d 
s 0 

N(d )3, we fini 
0 

J av 
l 
N 

2 
47Te 

d 
0 

~ J 
· interatomic/N 

.. 

,. 
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Although this can be considered little more than a dimensional argumerrt, 

it does display an important feature of the exchange; namely, that the 

exchange between two itinerant electrons is roughly 1/N times an exchange 

interaction parameter describbg two electrons at neighboring atomic sites. 

The 1/N factor arises from the fact that each electron is spread over all 

N atomic sites, with probability amplitude 1/N at each site. However, 

on the average, each site has the contributions from all N electrons in 

the band, so there is still one electron associated with each site. 

We then write the exchange interaction between two electrons, one in 

the state k the other in state k' as 

3 .1.9 E h(k,it') exc 

~ ~ 

is the spin of the electron is state k and ~~ is the spin of 
--.l 

the electron in state k', and where:we have supressed the k-dependence of 

the exchange interaction, for the time being, the justification being tbat 

the screening greatly reduces the k-dependence. 

We then consider the change in energy of an individual electron in 

~ 

some state, k, stemming from the exchange interaction with all the other 

electrons, as we go from the unmagnetized state to a magnetized state. 

In the unmagnetized state, there are N/2 electrons parallel to any given 

electron, and N/2 electrons antiparallel (geglecting 1, the electron in 

question, in comparison toN, the total number of electrons). Then the 

energy of this electron is 

3 .1.10 
...... 

Et . l(K) ::: o-ca 
J -.1 i J -.l -.I 

S • • L:: - s..~ c 
N :K q .. -' \ll-;:.' N k • q' 

S-t IJIIJ ""-' q k 

::: E-l 
k 
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Where we have summed equation 3.1.9 over all spin pairs, constructed from 
---4 Sk with the spins of all the other electrons in the lattice, and where the 

sum is broken into two sums, one involving the electrons in the crystal 

whose spins are parallel to the electron being considered, the other sum 

involving electrons whose spins are anti-parallel. Here, E~ is the 

kinetic energy of the electron in the state lt, and the dot product between 

the spins is +l/4 for parallel spins, and -l/4 for anti-parallel spins. 

Thus in the non-magnetic state, the gain in exchange energy for any parti-

cular electron from other electrons in the lattice parallel to it is just 

off-set by the loss from the equal number of electrons anti-parallel. 

Now, let us consider the magnetized state, with (N/2 + n/2) electrons 

with spin up and (N/2 - n/2) electrons with spin down. Then the energy 

of our sample electron, if it has spin up, generalizing equation 3 .1.10 

is given by 

3 .l.ll Etotal (kt) = E - ~<(~:£ + !:!.) d~) -
k N 2 2 '+ 

J. n 
= Ek - J+ N 

and if it has spin down, its energy is given by 

3 .1.12 Etotal (k~) 
J n 

E + I.-
k '+ N 

:[_ (!'! - !:!.) (- i:-) 
N 2 2 '+ 

However, we recall that the mgnetization of our sample is, in this case, 

given by 

3-1.13 M = 

where IJ. is the magnetic moment carrier and V is the volume of the sample. 

Therefore 

3H.J.)a n = MV 
j.1. 

Thus, electrons in states with their moment parallel to the overall mag-

I', 
i 



-33-

netization of the sample h~ve their energy lowered an amount proportional 

to the IIRgnitude of the magnetization, while those electrons antiparallel 

to this direction have their energy raised by this amount. Since an 

externally applied magnetic field directed along the magnetizatim direc-

tion will bave the same effect crt the electron energies; we say that we 

may replace the exchange intera~tion by a (fictitious) magnetic field, 

proportional to both the exchange interaction strength, and the magnitude 

of the magnetization. The coefficient of magnetization (whose dimensions. 

are the same as that of field, i.e. Oersteds) is usually much greater 

than unity. This approximation is knavn as the molecular field approxi ... --

nation. 

We can now see haw the magnetized state, as shown in figMre 4b, c 

comes about. The unmagnetized state undergoes transfer of electrons 

among the spin states in a self-consistent way, so that the up -states are 

preferentially occupied, causing each of the k-up states to lower its 

"total energy, and each of the k-down states to raise its energy. (Thus 

the k-up band shifts downward fran its non-magnetic position while the 

spin down band moves up.) This allows electrons to spill over from the 

down sub-band into the up sub-band and distribute themselves as shown 

in the figures 4b or 4c. 

One of the consequences of this molecular field, when it is not 

strong enough to bring about ferromagnetism, is an enhancement of the 

paramagnetic susceptibility, over its value were the exchange not present. 

More accurately, the molecular field decreases the inverse susceptibility 

by a constant term (independent of temperature if the molecular field co~ 

efficient is independent of temperature. Actually, for reasons which we 

shall discuss, the strength of the exchange interaction can became slightly 

temperature dependent, so that the molecular field constant does also). 
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The proof of this statement is trivial, and is demonstrated by Stoner2~ 

the proof being independent of the model chosen to describe the origin 

of the susceptibility in the first place. Then this theorem simply states 

3.1.14 1/X (T) = 1/X (T) - a 
0 

--..1 ~ 

where X is defined by M = X H 

X is the value in the absence of exchange 
0 

and a is defined by 
---l -4 
H aM 
mol.fld. 

-4 
and M is the magnetization. 

Having demonstrated the effects of the exchange interaction on the 

energy of the system, we now turn to a discussion of the magnetic suscep-

tibility of our bands. We consider the magnetization of such a system 

in the presence of an external field, at T = 0. 

We consider the free energy, F, of our system. Following our pre-

vious discussion, the magnetized state differs fran the unrnagnetized 

state by having distribution (N/2+n/2t, N/2 - n/2+) instead of (N/2t, N/2+). 

We rewrite the exchange energy in a slightly different form for this 

discussion. 

3 .1.15 

so that the exchange energy is shifted by a constant, and is equal to 

zero if the two spins are anti-parallel, and -J /2N when the two spins are 

parallel. To calculate the change in internal energy due to exchange, on 

going from the mmagnetized state to the magnetized one, we calculate the 

change in the total number of parallel spin pairs. This is done easily, 

as follows; 

.,..; 

,. 
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Unmagnetized State 

Number of t pairs == (N/2) (N/2 1) ~ If /4} 
rl-;2 

l)~rl-;4 
total 

Number of j, pairs == (N/2) (N/2 

Magnetized State 

(N/2 + n/2)(N/2 + n/2 
r1- nN 2 

Number of t pairs == l) ~ 4 + 2 + %-
(N/2 - n/2)(N/2 - n/2 - 1) 

w2 nN + n2 
Number of J, pairs ~ 4- 4 2 

3.1.16 

I 

2 
Change in number of parallel spin pairs == n /2 

total == 

If+ n
2 

2 2 

Then since each parallel spin pair reduces the internal energy by J/2N 

we obtain 

3.1.17 

We next consider the kinetic energy. In order to effect this transfer, 

we must raise electrons to higher k-states. The average increase in 

K.E., of these electrons (i.e., the ones which are transferred), per electron 

is 

3.1.18 1 number of electrons raised 1 n/2 
2 single sub-band density of states = 2 "'"l/-r.2::-'-·~N~(~E"T") 

where N(E) is the density of states (for the entire crystal, evaluated 

·in the non-magnetic state). 

The number of electrons transferred is n/2. Thus the increase in K.E. 

of the system is 

3.1.19 

.l .. 
Ji'inulJ y, there is a term, -1/2 H· M in the free energy describing the 

irrh~ractiL)l1 of the system with the external field. Recalling also that 
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3.1.20 M = nj.l (l-L = magnetic moment per electron) 

we can write the free energy as a function of n, twice the number of elec-

trans which are transferred. 

3.1.21 

We require that this be a minimum, leading to the relation 

3.1.22 0 

solving we find 

3.1.23 l-LH 
f.L H N(Ef) 

n :;;: = 1 J J 
N(Ef) - N" 1 - - N(E ) N f 

2 

X:: M nj.l l-L N(Ef) 

if = 1f 1 - JN(Ef)/N 
3.1.24 

defining N(Ef)/N = n(Ef) = density of states/atom 

3.1.25 X = 

where j.l
2

N(Ef) is the value of the susceptibility when J 0 and 

S = Stoner enhancement factor = --
1
---

1-J • n(Ef) 

This result holds in general, provided the molecular field approxi-

mat ion is valid (i.e., the exchange interaction is independent of the 

electron states involved, etc.) 

For a free electron gas, we have 



,, 
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3.1. 26 N(Ef) 
3N 

= 2Ef 

n(Ef) 3 3.1.27 
2Ef 

3.1.28 X _ 3Nil •· 1 2 { } 
- ~Tf 1 - ~ JjEf 

where Ef = ~Tf defines the degeneracy temperature, and ~ is the Boltz­

mann constant. We see that as J approaches 0 (vanishingly small exchange 

interaction), the susceptibility approaches the usual Pauli paramagnetic 

susceptibility expression, which can be found in ISSP. 27 We also note 

2 
that this expression diverges as J -7 3 Ef. The loss in kinetic energy 

is more than offset by the gain in exchange energy as we transfer 

electrons, and it becomes energetically favorable for the system to 

acquire a net magnetic moment, even in the absence of an externally 

applied magnetic field (i.e., the system becomes ferromagnetic). 
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B. Stoner Theory 

It often becanes necessary to discuss the temperature variation of 

M or X as a function of T or H quantitatively. One approach to this 

problem which has proven quite useful, was presented in a series of papers 

. 28 29 30 
by Stoner 1n the 1930's. ' ' He calculated the relative occupations 

of the 2 spin sub-bands, considering the effects of an externally applied 

magnetic field, and finite temperatures, under the following assumptirns: 

1. The electrons form a single band. 

2. They obey Fermi-Dirac statistics. 

3. The exchange can be treated by the molecular field approximation, 

ioe., we treat the electrons as being subjected to a fictitious 

field proportional to the magnetization, in addition to any 

externally applied fields. 

4. We make the effective mass approximation. Then the density of 

state functions for each sub-band is proportional to the square 

root of the kinetic energy: 

1/2 
constant • Ek 

Then the variable parameters in this model are: 

1. The degeneracy energy or temperature E == k. • T · (also written 
0 -0 0 

Ef == kb • Tf) associated with the Fermi statistics. For more 

general band shapes, which have been c msidered subsequently, 

one then considers the density of states and its first and second 

derivatives, evaluated at the Fermi level: N(Ef), N' (Ef), and 

N' '(Ef): 

2. The number of c~rriers in the magnetic (d-) band. This may be 

non-integral. e.g., far nickel it is taken to be .54 holes per 

atomo 
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3. The molecular field constant, or exchange interact ion strength, 

The molecular field is given by 

where ~ is the fractional magnetization, (the number of unbalanced 

magnetic carriers, divided by the total nlimber of carriers in the magnetic 

band) and 1-1 il:.s the magnetic moment per carrier. 8' has dimensions of 

temperature and in the limit of very narrow bands, 8' ~ T , the transition 
c 

or Curie temperature. It is apparent that there are several weaknesses 

in this model. Some of them are: 

1. Neglect of many body effects (correlation). For example, it 

bas been shown that many body effects lead to spin-wave like excitations 

at low temperature, a point we will return to later. 

2. Neglect of the effects of fluctuations. E.g., near T , short 
c 

range order will make the molecular field approx.irration a tad one. 

3. Effects of having real band shapes rather than the simple 

effective mass approximation. This affects the results of the theory 

qu.antitativezy. 

4. Dependence of Fermi degeneracy temperature (hence the, statistics) 

ard the exchange interaction on lattice spacing, which depends an temperature. 

5. Presence of other bands. For example, finite temperatures excite 

interband transitions, changing the number of carriers in the magnetic 

band, and further serve_to modify the exchange interaction strength. 

In spite of these shortcomings, the Stoner theory has met with a 

great deal of success, and improvements have been added in the years 

following its first appearance, so that it now represents a fairly good 
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basis for describing sane of the properties of an itinerant electron gas. 

Stoner introduced a convenient notation, which we will follow. The 

basic equations which describe the system, from Fermi statistics are 

co 

··~ n(l ±~) = J 
+ 

f (e,~-) N (e) de 
0 

3.2.3a - [exp [ (e-~)/ kbT) + 1]-l 

where 

n number of magnetic carriers (per atom) 

N = number of atoms/yolume 

I..J. = mAgnetic moment per electron 

= g/2 • I..J.b (g is the spectroscopic splitting factor, ~ 2, and·~ is 

the Bohr magneton) 

~B' = molecular field constant (~ = Boltzmann constarit) 

N(e)= density of states per atom 

e chemical potential for the sys tern (Fermi energy) 
0 

~ = relative fractional magnetization 

= M(H,T)/Nni..J. 

= (number of unbalanced magnetic carriers)/(Total number of magnetic 

carriers) 

~ relative fractional magnetization at T = 0 

M(o,o)/Nni..J. 

T = Ferromagnetic transition (Curie) Temperature 
c 

Thus there are two equations, (corresponding to the plus and minus 

signs) and two unknowns, (e and 0. For solution of these equations, 
0 

as we have stated previously, a parabolic band shape was assumed (N (E) 

proportional to E1
/

2 ). 

Implicit in the solution is the Fermi-Dirac ~1ction 
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3.2.4 = 3/2 

Applied to Ferromagnetism 

For ~8'/E0 ~ 2/3 the solution of these equations lead to spontaneous 

magnetization for sufficiently low temperatures. 

What is 

range 2/3 ~ 

remarkable, in this model, 

kb8' /E < 2 -l/3 ~ • 793701, 
0-

I 

though, is that for k8 '/ E in the 
0 

one finds 0 < ~ < 1. 
0-

In other 

words, for a certain range of the interaction strength the band is only 

partially saturated. This corresponds to the limit of weak ferromagnetism. 

Then for kb8'/E > 2-l/3 we have s = 1; i.e., the exchange is strong 
0 0 

enough to completely saturate the magnetization at low temperature. 

Stoner lists the solution of the equations in inverse tabular form. 

For example, he lists kbT/~0 as a function of s
0 

and HT) in the range 

2/3 :s_ kb8'/E
0 

'S-_2-l/3 (along with kb8' as a function of s
0

) for equal 

spacings of ~ and s(T) for the same range 
0 

of kb8'/e
0 

for equally spaced 

values of kb8' /E
0 

and g(T). This inverse solution was necessary in order 

to solve the equations numerically using the previously tabulated values 

of Fermi-Dirac function. 

When these numerical relations :are inverted, one obtains the depen-

dence of M (actually s) on T for T < T , for various values of the relative 
c 

exchange interaction parameter, ~8'/E0 • One also obtains ~·~as a function 

of ~8'/E0 • 

It is instructive to consider briefly, hew this partial Irn.gnetization-

in the ferromagnetic state comes a bout. Let us consider the change in 

internal energy of ~he system (at T = 0) as we proceed continuously fran 

the unmagnetized state, to a magnetized one, by transferring electrons. 

See figure 5. 

There are, as we have indicated, two contributions to this energy. 
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(We are considering the ferromagnetic case, so there is no externally applied 

field~ ) One is the decrease in ehe rgy due to ex. change, brought a bout by 

increasing the total number of parallel spin pairs. This must offset the 

second contribution which is the increase in kinetic energy due to the 

fact that we are raising electrons fran states (slightly) below the Fermi 

level of one spin band, and are placing them in the higher un-occupied 

states (slightly) above the Fermi level in the otber spin band. 

In the effective mass approximation, the (new) Fermi level of each 

of th b b ds · t · 1 t .(N+-)
2

/ 3 where N+ N f t th ese su - an ln propor lana o and - re ers o e 

nrtmber of electrons in the spin up or spin down (sub) bands, respectively. 

Thus 

E ± oc [N/2 ± n/2 ]2/3 
f 

Now the average energy per electron in each of these sub-bands is well 

+ 
known to be 2/3 Ef-. The total number of electrons in each of these bands 

is [N/2 ± n/2]. The total energy of each of these sub-bands is obtained 

by multiplying the average energy of one electron in the sub-band by the 

number of electrons in that sub-band. We find 

3.2.6. 

The total K.E. of the system is the sum of the K.E. of the two sub-bands 

comprising the system, and is given by 

E 
. total K.E~ 

oc [N/2 + n/2] 5/ 3 + (N/2 - n/2)5/3] 

or, expressing it in terms of the relative magnetization, 

3.2.8. 
E 
total K.E. 

oc E 
0 

[ {l + 

where E is the original Fermi energy. 
0 

··~ -· n/N, 0 

The exchange energy, which is proportional to the total number of 

parallel spin ra irs, can be expressed similarly as 
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E exch 
2 2 

ex: -k 8 r [ ( 1 + ~ ) + ( 1 - ~ ) J 
b 0 0 

and the total energy is tbe sum of these two· contributions. Adding these 

two contributions and expanding the results in a Taylor series in ~ , one 
0 

finds 

3.2 .10 
2 4 6 

~ + 2/81 E ~ + 0' ~ + •.. 
0 f 0 0 

For ~8' = 2/3Ef' the first term in the expansion is zero. To second 

order in ~ it cost no energy to increase the magnetization of the system 
0 

from zero. For ~8' just slightly greater than 2/3 Ef' it costs a 

negative amount of energy for the magnetization to begin to increase, 

and electrons begin to switch sub-bands, i.e., tbe gam in exchange 

energy slightly more than offsets the needed K.E. to raise the electrons 

to the higher k-states. However, as ~ (or equivalently, n) gets larger, 
0 

the density of states in the region fran which the electrons are being 

supplied gets smaller. Thus 

becomes progressively larger 

the K.E. 

(the ~ 4 
0 

required to raise these electrons 

and higher terms in our ex:pansi on), 

until a point is reached where further increase in ~ no longer reduces 
0 

the total energy of the system; that is, ~ 0 continues to increase until 

E(~ ) reaches a minimum. 
0 

For the parabolic band shape assumed, Stoner showed that the 

position of the minimum in energy with respect to variations is related 

to ~8'/Ef by the closed relation 

3.2 .ll. k 8' jE = l/2~ [(l+! ) 2/3 - (l - ~ )
2
/3] 

b f 0 0 0 

A Taylor expansion of the right hand side of this equation leadS to the 

approximate relation between ~ 0 and kb8'/Ef: 

3.2.12. ~ 2 + q ~ 4 + ••. 
0 0 
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On mmsuring the saturation magnetization of Ni and Cu-Ni alloys 

as a function of temperature in the ferromagnetic,·region, and attempting 
' I 

to fit this data. to the values predicted by Stoner's calculations, it was 

discovered that the Stoner model, did not describe the shape of these 

31 
curves very well. 

Hunt
32 

attempted to explain this by including higher order terms 

in the exchange interaction: 

3.2 .13. Eexch (s) I 2 1 4 
-1 2 k e' s - r. A ke ' s + b q . 

The presence of the higher order terms is given the understandable 

DUstification: In the molecular field appraocimation, we assumed implicitely 

that the exchange interaction between all pairs of electrons in the magnetic 

band was the same, independent of the k- states af the two electrons 

involved. Physically, this is not the case. ,There is some k-dependence 

in the exchange interaction. For a screened Coulomb interaction, for 

example, we showed 

3.2.14. "' ~ J (k,k') 
2 

4Tre 
v 

where K is the screening parameter. 
s 

1 

ik - k' 12 
+ K 

2 
s 

Thus, as we transfer ~lectrons, arid thus increase s, we change 

the distribution among the various k-states, and therefore, change the 

average exchange interaction. By symmetry, this effect must be the same 

for plus ~nd minus s, i.e., it must be an even power series of s• A 

Taylor expansion of the exchange energy then leads to the form proposed 

by Hunt. 

Hunt· then found that the formula relating the value of s which 
0 

minimizes the total energy, as one varies ~ 8' /E
0

, is modified from 

equation 3.2.11 and now takes the form 
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3.2.15 

~ mak~ng the appropriate modifications to the values of M(T) found 

by Stoner, he found he could obtain excellent agreement between the thea-

retical and experimental values by assuming A = .10 for pure Ni, decreasing 

continuously woth increasing Cu content to A = 0 for 2o% copper. 

Taylor expansion of Hunt's relation (equation 3.2.15) lmds to the 

approximate relation between ~ 0 and ~B'/E0 • 

6 I 2 ' ( 4 ' 2 ) 2 ', ' ""' 4 
3.2.1 • ~e' Eo = 3 + 8I- 3 ~0 + u ~0 + • • • 

This relation is plotted in figure 6 for AT 0 (Stoner limit), and for 

A= .lO. Also plotted on the same figure is the relative Curie temperature 

kbTc/E
0 

as a ~urrction of ~B'/E0 in the Stoner limit. 

For A >A. 't. 
1 

= 2/27 ::: .074 the coefficient of ~ 2 
in expression crl lea o 

3.2.16 becomes ~egative. The two values of ~ for values of kbB'/E 
0 0 

slightly less than 2/3 corresponding to stationary values of E(~ ) 
0 

correspond to first a maximum then a minimum in the energy as a function 

of ~ • This can be seen from a Taylor expansion of the energy 
0 

3.2.17 
E (~ ) 

' 0 

E 
0 

k._ e' -0 2 ::: (- . +-
E 3 b 

·) ~ 2 + ( 4/81 - A k B '/E ) ~ 4 + ••• 
0 b 0 0 

This case leads to metamagnetism, whereby the application of a suffi-

ciently strong magnetic field, and the subsequent removal, will leave 

the material in a magnetized state. Such a proposal was made in an article 

by Wohlfarth and Rhodes.33 

Another remarkable feature of this mroel, which should be apparent 

fr.cm our discussion, is that in the limit of weak ferrOIJRgnetism, since 

neither sub-band is saturated, and since application of an external field 

will cause the parallel sub-band to becorre lower in energy and the anti-

parallel sub-band to become higher in energy, additional electrons will 

' ' 
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switch sub-bands, further increasing the magnetization. This leads to a 

finite value of the susceptibility in the ferromagnetic state, even at T=O. 

Indeed, this high field differential susceptibility has already been 

noted in Ni-Rh 
6 

as well as in other weakly ferromagnetic substances. 

For example, it has been measured in the weakly ferromagnetic intermetallic 

compound ZrZn2 •
34 The fact that this high field susceptibility may be due 

to a canted ferromagnetic spin arrangement, (which would then be modified 

by application of a strong external field, leading to increase net magn-

etization) was ruled out by neutron diffraction measurements on this sub­

stance.35 In fact, these measurements indicate that the magnetization of 

this substance is distributed throughout the lattice, with apprecia ole 

density between lattice sites (as opposed to being localized at the actual 

lattice sites themselves) lending further credence to the suggestion tbat 

36 
ZrZn

2 
is an itinerant ferromagnet. It has been suggested that the 

ferromagnetism of this substance is due to ferromagnetic imp'l!!rities 

(probably iron) introduced during preparation, (or contained in the 

raw zirconium used to prepare the specimen) but more recent studies 37 

in which the impurities were controlled at very low levels, indicate that 

this material is indeed intrinsically a weak ferromagnet. 

In ZrZn2, the high field susceptibility remains essentially constant 

up to the highest field attainable, which in the case of the measurenents 

of Foner et a1.
36 

was 150 koe. This high field differential susceptibility 

bas been treated quantitatively b,y Wohlfarth.3B,39 

It should be apparent to the reader tmt the effects we have been 

discussing depend critically on the band structure of the IJRgnetic electrons. 

Until now, we have considered only a parabolic band,.· where the density of 

states varied as E
1

/
2

• We expanded the energy of repopulation of the elec-
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trons among the two sp.in sub-bands in a Taylor series, around the unper-

turbed Fermi surf'ace. Obviously, the coeff'icients of the various powers 

of ~ depend explicitely on the density of states function in the neighbor­
a 

hood of the Fermi surface, so our results will be modified accordingly. 

For example, the critical value of ~8' /E
0 

leading to ferromagnetism can 

be modified f'ram its value of' 2/3. The quantitative relationship between 

kbB'/E
0 

and ~ 0 will also be modified by including the actual band shapes 

as well as will other relationships (dependence of' Curie temperature on 

kbB' and E
0
). We shall return to this point later~ However, it.:.is fiHt 

that the qualitative features of this model remain intact, i.e., the de-

creasing relative magnetization and Curie temperature as the exchange 

interaction parameter ~etjE0 is reduced. 

Thus, we should be able to explain the decreasing rr:agnetiza tion of 

our alloys with increasing Rh concentration, which, from the data in the 

region of' dilute Rh con tent, indicates that the addition of Rh actually 

increases the number of magnetic carriers. 

Stoner Theory - Paramagnetism 

Continuing with our discussion of the Stoner theory, Stoner also 

calculated the magnetization as a f'unction of' applied f'ield in the para­

magnetic temperature range (and he~ce the paramagnetic susceptibility). 

. 41 
Wohlf'arth interpolated Stoner's results, and graphed what he 

calls the normalized inverse susceptibility, (~ 0/~) (JJ.bH/kbTc) as a f'unction 

af T/Tc for various values of ~o' (or equivalently, ~B'/E0, since the two 

are related by Stoner's relationship, equation 3.2.15). One can show this 

normalized inverse susceptibility is simply 

3.2.18. 
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where M ie the saturation magnetization and X is the usual susceptibility, 
0 

MjH. This equation then defines the susceptibility in terms af Stoner's 

calculated quantities. He showed that this susceptibility obeys roughly 

a Curie-Weiss susceptibility law, but with the Curie constant becoming 

a slowly varying function of temperature. 

One uses equation 3.2.18 to determine the susceptibility from the 

theoretical values determined by Stoner's calculation. One then writes 

this susceptibility in the Curie-Weiss form 

3.2.19 X 
c 

T-T c 
where C = N !leff/3 ~ and lleff is the effective Curie magneton number. 

One then finds the Stoner expression can be written in the form 

3.2.20 
T - T c 3 n sat 

2 
qc 

where n t is the number of Bohr magnetons per atcm, determinerl from sat­sa 

uration magnetization, and q is the magnetic moment per atom in units 
c 

of llb as determined from the Curie susceptibility constant. Then the 

slopes of Wohlfarths curves (i.e. equation 3.2.20) are just equal to the 

. I 2 quant1 ty 3n t q • .. sa c . This quantity, as we have mentioned, is s cmewha t 

temperature dependent. We plot 3n t/q 
2 

versus sa c 
~ 0 for two different 

temperatures, 1.5 T and 2 T in figure 7. We remind the reader, however, 
c c 

that these quantitative results are valid only in the Stoner approximation 

and will be modified by the inclusion of the correct band shapes. 

We notice that in the limit of weak ferromagnetism, (~ < 1) the 
0 

ratio n t/q 
2 

gets small, or q /n t gets large. Thus, in this limit, sa c c sa 

tbe number of carriers per atom, determined by the susceptibility, will 

be much larger than that determined by the saturation magnetization. 

This was discussed by Rhodes and Wohlfarth, 4o and applied to a number of 

·~ 
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weakly ferromagnetic materials. He found two classes of substances, one 

with q nearly equal to n t' which he ascribed as being due to the fact c sa 

that these materials were dilute local moment ferromagnets, and a second 

type, where the ratio of q to n t when plotted against T , the transition 
c sa c 

temperature of the substance, increased smoothly with decreasing T • This 
c 

is expected in a band magnet? (see figure 6) • If' E is taken to be 
,0 

relatively constant fran substance to substance, and if we attribute the 

weakness of the ferromagnetism to the relative weakness of tre exchange, 

we see that as~ gets small, then kT /E will get small, or equivalently, 
0 -0 c 0 

~Tc will get small. Thus, these authors contend that the qc/nsat versus 

T curves (where T varies from substance to substance) are in a sense, 
c c 

equivalent to q /n t versus ~ curves. The observed form of his curves c sa o 

conform qualitatively to the behavior predicted by this theory. 

41 
In order to test the Stoner theory, Wohlfarth attempted to explain 

the rragnetostatic data obtained by previous workers for the Cu-Ni system. 

These alloys also exhibit contimously, almost linearly, decrea: ing satura-

tion magnetization with increasing copper concentration. However, fran a 

rigid band picture, this behavior is expected, primarily because each 

copper atom added to the alloy, containing one more electron than a nickel 

atom, adds one electron to the 3-d and 4-s bands. Since, from electronic 

specific heat measurements it is known that the density of states in the 

d-band at the fermi level is about ten times that of the 4-s band, of the 

electrons introduced by the copper, one-tenth go into the 4-s bands where 

the occupy equally spin up and spin down states, and nine-tenths go into 

the 3-d band, or equivalently, .9 holes are removed from this band. Then 

the number of holes in the d-band, with atanic concentration, c, of copper 

is 

I 

• ! 
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3.2.21 

and the magnetic moment per atom, with g = 2.2 is, in units of Bohr magnetms, 

3.2.22 nsat = l.l (.54- .9c) ~ .6 -c, as observed. 

Nevertheless, Wohlfarth argued that this effect is enhanced somewhat 

by the fact that the exchange interaction decreases with increasing copper 

concentration, causing the relative magnetization ~ 0 to also decrease. 

Then the overall magnetization is simply the product of the number of hole-

carriers in the d-band, multiplied by the relative magnetization factor, 

determined by the exchange parameter, ~8' /E
0

, which also varies with 

concentration. 

Wohlfarth determined .~ as a function of concentration from two 
0 

independent methods within the framework of the Stoner model. 

First, using the rigid band approximation, and the fact that E varies 
0 

as (N)
2

/ 3 he inferred E (c). He used the experimental values ofT to 
0 c 

determine T /E . Then, using Stoner's figure 6, he determined ~ (c) 
c 0 0 

~o (Tc/Eo) c • 

The second method involved the ratio of magnetic carriers as deter-

mined by paramagnetic susceptibility, and by saturation magnetization. 

From Stoner's relations between ~ and this ratio, he obtained an indepen:­
o 

dent determination of ~ (c). He obtained excellent agreement between 
0 

these two methods. However, since the decrease in saturation magnetiza-

tion, M t' is due primarily to the fillirg of d-band vacancies, the sa 

effects of kb8'/E
0 

on the overall magnetization are masked. On the other 

land, in the Ni-Rh system, where the addition of Rh increase the number 

of Ilk"'.gnetic carriers, the decrease in M t is due entirely to decreas :i.ng 
sa. 

~o' so this system is even more desirable for such studies •. 
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In addition to the work of Hunt, which we described, there have been 

additional refinements in the Stoner theory. Some of them are as follows. 

Effect of overlapping bands. We suppose, as in the case of nickel 

the d-band with its high density of states, is overlapped by the s-band 

with a low density of states. We have just seen that such an overlapping 

band affects the number of electrons which go into the d-band upon alloying. 

There is yet another effect of overlapping bands. At high temperatures, 

the electrons are not only excited from one sub-band to the other, giving 

rise to redistribution among the two spin directions as described by 

equationj.2.3. but some· el·ectrons·are also excited from the d-band to the 

s-band. This serves to further influence the temperature dependence of 

b b 42 . - 43 the magnetization. These effects have een discussed y Band, L1d1ard 

and Wohlfarth. 
41 

fund shape effects. Open bands, closed bands, bands of different 

shapes, both overlapping and non-overlapping were discussed by Elcock, 

Rhodes, and Teviotdale.
44 

They found that various susceptibility vs. 

temperature relations were possible, including some showing maximum 

in the susceptibility as a function of increasing temperature. They 

applied their results with some success to Pd and Pd:Ag. 

Very weak magnetism limit. The theory of itinerant ferromagnets, 

in the limit of very weak ferromagnetism, has been worked out by a number 

45 "" 46 . 47 of authors: D.M. Edwards and E. P. Wohlfarth, J!; •• P. Wohlfarth, J. Mathon. 

In this limit, solution of the magnetization equations my be carried 

out in terms of the value of the density of states function and its 

derivatives, evaluated at the Fermi level. Thus, the knowledge of the 

entire band structure becomes unnecessary. 

.. 

•·· I. 
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The first of these papers concerns itself primarily with the magnetic 

isotherms of such a system. However, tbe results of this theory are modified 

by the prE~ence of spin waves at low temperature. We will return to this 

point in a later sectim. 

The second paper also derives quantitative results for a very weak 

Stoner ferromagnet. Both papers apply these results quite successfully 

to the observed data for the weakly (itinerant):o. ferromagnetic inter-

metallic compound, ZrZn2 • They fit the observed isotherms for this material 

very well to those predicted by the theory, except at the very lowest tem-

peratures, where spin wave contributions are expected to cause such devia-

tions •. 

The third paper discusses sane of the electrical and magnetic pro-

perties for a weakly ferromagnetic system of alloys, in the vicinity of 

the critical concentration. The author assumes that tbe density of states 

is a smoothly varying function of energy near the Fermi surface. He also 

assumes that the exchange and Fermi energy are smoothly varing functions 

of concentration. He assumes these parameters may be expressed as a 

Taylor expa:ris ion about the critical concent rat ion: 

3.2.23 

3.2.24 

~e'(c) 

E (c) 
0 

k e ' + A D.c + :B. (D.c )
2 

b critical + .•.. 

E lc •t• 1 + R .6.c + S(.6.c)
2 +. o crJ. 1ca 

where .6.c is the dev:la tion of composition from its critical value. 

We will use the results of these authors when we discuss our magneto-

static measurements in the next section. 

Spin waves It has been demonstrated by a number of autbors that 

spin wave excitations can exist in a band ferromagnet; influencillS the 

magneto-static properties. We will also discuss this at length in' a later 

section. 
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C. Hurwitz-Van Vleck Description 

For ccmpleteness sake, we should also describe briefly a slightly 

different approach to ferromagnetism, the so-called Hurwitz-Van Vleck, 

or minimum polarity model. 

This model was described by Hurwitz, 
48 

Van Vleck, 49 and later 

reviewed by Van Vleck. 50 

We may think of this approach as a generalization of the localized 

moment {Heisenberg) description, to include the effects of the overlap 

of the neighboring d-wave function orbitals. This spatial overlap allows 

electrons to hop fran one atomic site to another. 

(This can be seen from a perturbational approach. One can calculate 

the transition probability, using the Golden Rule, of an electron making 

a transition from one localized atomic state to a neighboring one. This 

is related to the matrix element }:{AB connecting these states, which, 

by definition is related to the overlap integral: 

¢ (r') ~ (r') ¢ (r') d#t 
atom A interaction atom B 

where the ¢ (r) is the wave function localized at atomic site, i. 
atom i 

This is non-zero if there exist sane region of space where both atumic 

wave functions are non-zero simultaneously. This is just the conditian 

of nearest neighbor overlap.) 

The overlap also broadens the atomic d-states into bands of finite 

(but narrow) width. This picture is simply the tight binding approximation 

and is treated, for example, in Principles of the Theory of Solids •
51 

The result of this electron hopping is that the distribution of 

d-electrons throughout the lattice is changed from its value in the 

extreme localized (i.e., no overlap) case. 

•. ! 
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In the case of pure nickel, for example, we inay think of the 

individual atomic sites as being in different states of ionization, or 

polarity; i.e., some atoms are in the d
10 

configuration, some in the d9, 

d
8, etc. · The fractional distribution of such states is subject to the· 

auxilliary condition that the polarity averaged aver the entire sample 

must correspond to the observed mgnetic moment. For pure nickel, the 

average polarity is symbolically written d9 •
46, to cor;espond to the 

observed value of .54 holes per atom. (Note: at the time these papers 

were published, the g.value for Ni was not known, and was assumed to be 2. 

Since it is now known to be 2 .2, there are actually .54 holes per atoms, 

whereas Van Vlecks' description was based on .6. This correction makes 

no essential difference in the discussion.) Implicitly assumed in this 

model is that there is sane mechanism to cause these moments to aligh 

J:arallel to each other at .low temperature. 

With this model, we are in a posit ion to treat the effects of corre-

lation. We do so by acknowledging the fact that it takes more energy to 

doubly ionize a site (d
8) than to singly ionize.- it (d9). It is just 

the Coulomb (electron-electron) interaction which makes the energy of 

these higher polarity states of large. Therefore, by requiring the 

humber of sites in states of high polarity to be_ small, we can describe 
I 

the effects of correlation. We may then choose, as Van Vleck originally 

did, to rule out completely the states of high polarity. We thensay that 

the system is in a state of minimum polarity. For nickel we would have 

46 t f th . •t . .3d10 d th . . 54 t f th per cen o e SJ. es J.n an e remaJ.nUJg per cen o e 

sites in the 3d9 configuration, yielding the average value of 3d9 •
46 

as 

required. 
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On the other hand, we may choose not to rule out the high polarity 

states completely, but give them small but finite probabilities. 

We do this oecause the minimum polarity approxiiD9.tion over-estimates 
. .. · : 

the effects of correlation. In real metals, there is screening of the 

Coulomb interaction by other d-electrons, and by the s-electrons. 

Thus the energy of a d
8 

state is not as much higher than a d9 state in a 

2 
metal as it is in a free atom. C. Herring5 has suggested that ih e highly 

mobile 4-s electrons largely screen out the effects of the fluctuations 

in the polarity, making such fluctuations energetically more favorable 

than they would otherwise be. 

By restricting ourselves to minimum polarity states only, we are 

in effect, restricting the electronic wave functions too severely, forcing 

them to be more localized in space than necessary, thereby increasing 

their kinetic energy. By allow'ing some small fraction of site to become 

. . 8 
10n1zed to d , or higher, we reduce the kinetic energy more than we 

increase the potential energy, and thereby reduce the total energy of 

the system. 

We can also understand the presence of some high polarity states 

from the following argument: The various atonic d-states overlap with 

neighboring sites and with each other, so a pa:tticular atomic state is 

actually described by a linear combination of ID9.ny atomLc wave functions 

(which form a canplete orthonormal 'S~t).\. 

One can then calculate the probability of a particular polarity 

state at some given site by calculating the probability of vacancies in 

the appropriate number of atomic localized states at that site from the 

coefficients of the unperturbed atomic eigen-functions appearing in the 

linear combinations which describe the true wave functions. 
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The relative fraction of these h:i.gher polarity states were 

esttmated by Van Vleck.50 

The presence of these higher polarity states is attractive from 

a theoretical standpoint. It allows an additional contribution to 

the exchange, namely the Hund 1 s rule type coupling, which tends to align 

electronic spins located on the same atomic site. In fact, it' is felt 

by many authors that such a contribution to the exchange may be necessary 

in order to cause a band of electrons to become ferromagnetic. 

Another consequence of this Hund 1 s rule coupling, is that spin 

states (at least a few of them) are allowed to have spin quantum number 

S = 1 (or even higher), due to the coupling of individual S = 1/2 electrons 

at the same site. In the Stoner model (and in the minimum polarity mcxiel 

for pure nickel), all of the magnetic carriers have S = 1/2. The 

presence 'of these h:i.gher spin quantum number states lead to certain con­

sequences. For example, it affects the angular dependence of the magneto-

cryst-a.llineanisotropy (to be discussed in a later section). 

This: (narrow) band model has sane of the' features of other band 

models, e.g., large contribution to the specific heat from magnetic 

electrons, magnetization corresponding to non-integral Bohr magneton 

numbers, and spin waves. However, numberical results fran this model 

are almost :impossible to obtain. In order to make quantitative calcu- ' 

lations in this model, one needs to know the ionization energies involved 

in the states of different polarity. Although these energies are known 

.from spectrcgraphic data for free ions, they are not kmwn in the case 

of metals, where screening effects occur. 

In arw event we may state that while the Stoner approach neglects 

the effect of correlation (except in considering the screening in the long 
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range Coulomb interaction), this model overestimates these effects. The 

real description probably lies. somewhere between the two limiting extranes 

of this model, and the Stoner model. 
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r1. MAG NET OSTATIC MEASUREMENTS lN NI -RH 

A. Saturation Moment and Param~etic Susceptibility 

As we mentioned in the introduction, the saturation moment and 

the Curie temperature have already been measured for 

in this system. Crangle and Parsons 7 measured these 

Ni-Rh system (as well as for! some related alloys). 
I 

a number of' alloys 

quantities for the 

They attempted to 

analyze the magnetization data in the dilute region using the rigid band 
I 

picture (and also a localized moments picture, with a magnetic moment 

associated with each atom, d~f'f'er:in g for the two species in the alloy). 

However, they did not have much success. In the Ni-Rh system, the 

addition of Rh was observed to contribute the.magnetic moment equivalent 

to two holes per atom of'. Rh added, instead of one, as is expected by its 

ata:nic configuration. They k.lso found similar discrepencies in the other 

systems ' they studied. For the Ni-Rh system, no explanation was offered 

for the continuous deer~ l.n saturation moment which occured for :increase 

in the Rh concentration over about five per cent. 
-

We will attempt to provide an explanation of this using the Stoner 

model as a basis. 

For our studies, the rragnetization was measured as described in 

section II. The physical dimensions of the samples were accurately mea-

sured as was the weight. With these measurements, we accurately deter­
i 

mined the average density of our samples. We determined the density of 

our alloys expected in the ideal case, using the lattice parameter 

versus concentration data determined by Luo and Duwez, 5 who detennined 

these curves by X-ray diffraction measurements. We were then able to 

calculate the porosity of' our samples, resulting from the preparation. 

With this information, we could express our observed values of magneti-

zation in terms of Bohr magnetons per atomic unit. 
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In figure 8 we plot the magnetic moment per a tan, extrapoJa ted to 

~0 as a fUnction of alloy concentration. Included on this plot is the 

previous data of Crangle and Parsons. We note the agreement between 

these two sets of data. 

Figure 9 shows the measured values of the Curie te~erature for these 

alloys, again including the data of Crangle and Parsons. We determined 

T by extrapolating the high te~erature inverse susceptibility versus 
c 

te~erature plot to the value of T giving 1/X == 0. In the high temperature 

region, this plot was quite linear, and the extrapolated value was seen 

to be independent of the external magnetizing field. Again, agreement with 

Crangle and Parsons measurements was quite good. 

We also display the saturation moment per atom as a function of the 

Curie temperature in figure 10. 

In order to determine the relative magnetization, ~ , it is 
0 

necessary to make some assumptions about the effects of alloying upon 

the number of d-carriers in the system. 

We assert that each atom of Rh added to the alloy system has the 

effect of contributing some number of holes, Nh 1 .. "'.d d' c to the o es auc e · 
1. ( common d-band, which we assume is between 1 and 1 2 . , Since the d-band 

is expected to have a much higher density of states than the overlapping 

4-s band, most of the holes added should, in fact, go into the d-band, 

with perhaps, one tenth of them gqing into the s-band.) We will see that 

the results we obtain are not critically dependent on the value we 

assign to Nh 1 dd d" o es a e . 

The justification for our assUlhption is described by Pauling. 53 He 

plotted the magnetic moment per atom for alloy of the 3-d transition 

ferromagnetic elements with other elements in the 3-d series, as a fUnction 
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Fig. 10 



-66-

of the average atomic number of the alloy, which is the weighted average 

of the atomic numbers of the two constituents. He found that in many 

cases, the rtet magnetic moment behaved just as if the addition of the 

solute contributed or ranoved carriers fran the magnetic band, the 

number contributed or removed depending on the difference between the 

number of electrons in the solvent and solute. For example, we have seen 

the addition of Cu, with one more electron per atom tmn Ni, when added 

to nickel decreases the saturation moment by one Bohr magneton per copper 

atom added, since the electron contributed by the copper fills one vacancy 

in the spin down sub-band, removing one magnetic carrier. Similarly, 

Pauling found the addition of zinc to nickel, with two more electrons per 

atom, decreased the saturation moment twice as quickly as did copper. 

Cobalt, on the other hand, with one less electron per atom than nickel, 

increased the magnetic moment 'by about one Bohr magneton per added atom. 

When palladium, with atomic configuration 4d10 
is added to nickel 

8 2 . 
(3d 4s = 10 outer electrons), over a large range of concentrat1on the 

magnetic moment remains constant. 
54 

Thus the· addition of each Rh atom 

with one less electron than Pd, is expected to contribute about one hole. 7 

However, we have noted that in the dilute region, the magnetization data 

has indicated that this number is about two holes per atan added. We 

attribute this to s-d mixing, which we will discuss later. 

In the more concentrated Rh concentration region, we assume this 

number decreases somewhat, becoming closer to the expected value of 1. 

We then interpret our data using two separate sets of assumptions 

4.1.1 case 1. Nholes added = 
1 

4.1.2 case 2. N = 1.5 holes added 

. ' 
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We then calculate the effective number of magnetic carriers for these 

two cases. 

4.1.3 case 1. N = .6 + c 
holes total 

4.1.4. case 2. N = .6 + 1.5c 
holes total 

where c is the concentration of Rh. We have implicitly included the fact 

that g = 2.2 over the range of interest, which is consistent with our i 

magnetic resonance experiments. 

The ratio between the number of magnetic carriers per atom inferred 

above, and the measured value of tbe low temperature sa tum tion magnetiza-

tion, can then be used to calculate the re·lative magnetization, ~ . 
0 

We plot ~ as a function of the rhodium concentration for our two 
0 

sets of assumptions, in figures 11 and 12. We see that in both cases 

these relations are quite linear from the critical concentration to a 

concentration quite high in nickel. We will discuss this from the point 

of view of the Stoner theory in the next sub-section. 

We also shew ·~ 0 vs. Tc for the case Nholes added = l. (The second 

case, Nholes added = 1.5, leads to qualitatively the same results, and 

is therefore not shewn.) See figure 13. 

Figure 14 shows the variation of the Curie constant describing the 

paramagnetic su~ceptibility of our alloys. This is expressed in terms 

of the effective Curie: magneton number, qc defined by the equations 

4.1.5 X(T) c 
= T-T 

2 c 
N < 2 > 2 

4.1.6 c 
N(qc f.l) qc 1-L 

3~ 3~ 

where N is the number of atoms per unit volume, 1-1 the magnetic moment 

1 
per carri~r (= 2 • g 1-Lb), g is the spectrosc-opic splitting factor, 1-Lb 
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is the Bohr magneton, and the .spin, S, of the electron is l/2. In deter­

mining q from < q ~' we must acknowledge the quantum mechanical nature 
c c 

of the electron spin. 

Let us consider the following argument: We consider the magnetic 

moment of each carrier, in units of Bohr magnetons. Then the effective 

magneton number is defined from the equation 

4.1. 7 g • s 

However, in deriving the Curie-Weiss susceptibility law, it is the square 

of the magnetic moment which enters the problem. Quantum mechanically, 

this is given by 

4.1.8 
2 2 

• S(S+l) qc :: g 

expanding, we find 

4.1.9 g2 82 + g2S 2 
0 - q 

c 

solving for S taking the positive root, 
2 _, ... g~4-+--, _2_2_ 

-g + ., 4g q.' 
c 4.1.10 s 

and recalling equation 4.1.7, we find 

4.1.11 qc 

for g = 2, this reduces to 

4.1.12 
:: (q 2 + l) l/2 - l 

c 

a form often used in the literature. 2 l/2 We have plotted < q > :' ,' and 
c 

q as a function of c in figure 14. c We see that as q remains fairly 
c 

constant over the entire range (while n t goes to 0 at c •t• 
1

), with 
sa cr~ ~ca 

the exception of a slight dip near ccritical· 

We will now attempt to relate our data to the predictions of the 

Stoner theory. 

-! 
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B. Comparison with Theory - Solution of Stoner E~tions 

It is' apparent from equation 3.2 .3 that the magnetic properties in 

general depend critically on the. density of states function describing 

the band of magnetic electrons. However, in the limit of weak ferromag-

nestism, the l::ands shift only a small amount with respect to each other, 

hence, only those electrons near the Fermi level are involved. In this 

limit, one may express the solution of the Stoner equation in terms of 

the density of states function and its derivatives, evaluated at the (non-

magnetic) Fermi level. 

this limit by Edwards and Wohlfarth, 
45 .. Equation 3.2.3 was solved in 

46 
Wohlfarth, and Thompson, Wohlfarth and Bryan. 55 They find that the 

fractional magnetization, ~' is described by the equation. 

2 3 5 
[l + a (T/T ) ] + ·-y ~ + Q~ 

c 

where T is the transition temperature, 
c 

4.2.1 

and 

4.2.2 

and where 

4.2.3 '\) = m 

1 n 2 2 / ) B ( N(E ) } ( t>l - l 3 t>2 
f 

d~(E) I N(E) 
d Em 

E=E 
f 

N(Ef) 5 density of states at non-magnetic Fermi level per 
atom per spin direction 

n -number of magnetic carriers per atom(= .54 for pure Ni). 

Solving equation 4.2 .0 in. the limit of H = 0 and T = 0, and again defining 

~ 0 = ~~T=O we find a relation between k8' and ~ 0 • 
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4.2~4. g_ N(E ) k_ 8' 
n f -o = 1 + ~ 2 'Y 0 

Using equations 4.2.0 and 4.2.4 we find the relation between Tc/Tf and 

~ 0 (where Tf:::; Ef/kb): 

2 
a = 'Y ~ 

0 

where T is defined in terms of a in equation 4.2.1. 
c 

These authors also show that one can write the expression describing 

the magnetic isotherms in the form 

4.2 .6 r .1:1J.&tlJ 3 l M (o,o) J - M (H,T~ 
M (o,o 

·' 
2 X H 

0 

MTo,o) 

where M (H,T) = magnetization at field H'and temp~rature T, and where 

4.2.7 X 
0 

where N is the number of atomic sites per unit volume and 1-l is the -magnetic 

moment per electron, = 
1 
2 g·~· 

In order to make use of these equations, we must find an expression 

for the terms involving the u • For a parabolic band, we recall: m 

4.2 .8 N(E) = 

In this case, the terms involving the u can be evaluted as follows: m 

4.2-9 -· 1 -1 
ul = -2" Ef 

4.2.10 1 
Ef 

-2 
u2 = 4 

Therefore 

4.2.11 
2 

- u2] 
1 -2 

[ul 2 Ef 

and 

4.2.12 [u1 
2 

- 1/:3 u2 J 
1 -2 

= 3 Ef 
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We then generalize 4.2.8, 4.2.11 and 4.2.12 to non-parabolic bands, by 

defining the functions g
0

, g
1

, g2 : 

4.2 .13 N(Ef) 
3n 

go (Ef) - 4 Ef 

2 l -2 
4.2.14 (ul - 'l) ) gl (Ef) 

. ;_ .... 
Ef 2 ·.':""""' 2 

4~2.15 ·cul 
2 

l/3 u
2

) g2(Ef) 
1 -2 - . ' Ef 3 

In the limit of parabolic bands, these functions all approach the value l. 

In terms of these function~ the parameters a and ~ can be evaluated. 

We find, using 

4.2.16 

and 

4.2::17 

Then equation 

4.2 .18 

equation 4.2.1, 4.2.2, 4.2.13, 14, and 15, 

4.2.4 

~e' 

Ef 

2 T 2 

a ~2 T~- gl(Ef) 

f 

becomes 

go(Ef) 

.2 
'Y = 27 

= 2/3 + 4/81 
g2 (Ef) __ 2 ___ 

go (Ef) 

s 2 
,0 

This is a generalization of equation 3.2.12. g
0
(Ef) > l implies a large 

density of states at the Fermi surface. We see that a large density of 

states can lead to ferromagnetism with relatively weaker exchange inter-

actions than in the case of law density of states. This is just a re-

statement of equations 3.1.25 and 3.1.28; i.e., that the Stoner condition 

for ferromagnetism is J•N(Ef) > 1. Equation :4.2. 5 can tben be written 

4.2.19 Tc/Tf 
2,[2 g2 (Ef) 

so = 37r 2 
go (Ef) gl (Ef) 

4.2.19a Tc/Tf .30~ 2 
g2 (Ef) 

so -
(Ef) gl (Ef) go 

.. , 
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We may eliminate ~ 0 from equations 4.2.18 and 4.2.19, to relate Tc/Tf 

dtrectly to kb8'/Ef. We then find 

4.2.20 

We may similarly evaluate the susceptibility para.Ifieter X • 
0 

From equations 4.2.7 and 4.2.17 we find 

4.2.21 X 
0 

81/8 r n N ~2 J 
. kTf 

or using equation 4.2.19 

4.2.22 
X ::::: .09 

0 [~ 

1/~ 2 
0 

] 
T 2 

f --;-,, 2 
T 

c 

We also solve the magnetic isotherm equation (equation 4.2.6) for several 

limiting cases. 

Low ~emperature, valid to high fields 

In the limit of T = 0, defining E ~ 
6 M (H, T=O) 

we find, usihg equation 4.2.6 

therefore, 

[1 + ~ - [1 + E) ~ 
2 X H 

0 

M (o,o) 

= 2 6 M ~H, T)O) ..... . 
2 

X o H 2€ - MO,O ..... 'Mf<);o) 

M (o,o) 

Therefore, the low temperature (high field) differential'susceptibility 

is given by 

4.2.23 

provided 

Low field susceEtibility 

xdifn X 
0 

X H = 6 M << M(O,O) 
0 

By defining X =hM/6H and using equation 4.2.6, one finds 46 
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4.2 .24 )Q(T) =X [1 - (T/T ) 2]-l T < T 
0 c c 

4.2.25 X(T) = 2X [(T/T )
2 

- 0 c 

Be defining the paramagnetic Curie magneton number fran equation 

3.2.19, ff. and using equatirns 4.2.22, and 4.2.25, 

2 .T go (Ef) _ 
4.2.26 (q ) ~ 5.46 

c 
n_ ,_f 

T+T c ~l"~ 

If we evaluate this at T = 2 T , we find c 

4.2.2'1 
(q 2 ) = 

c 

Tf 
1.82 n -T 

c 

or using equation 4.2.19 to eliminate Tf/Tc 

4.2.28 

we find 

1/~ 
0 

In order to put this into a form often used in the literature, 

we use n = n ~ to write 4.2.28 in the following way 
sat o 

4.2.29 
= 

or 

4.2.30 
3n~at 
-2- = .495 

(qc ) 

~gl (Ef) g2 (Ef) ___ 2 _____ _ 

go- (Ef) 

1/~ 2 
0 

~ 2 
0 

This equation is the analytic form of the graph of figure 7, valid for 

small ~ • 
0 

In order to canpare our data with the predictions of the Stoner 

theory we calculate the dependence of these magnetic parameters on the 

concentration, in the vicinity of the critical concentration. We begin 

our discussion by stating that there is nothing special about ~er and Ef 
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near the critical concentration, other than the fact that they happen to 

form the ratio 2/3. In the foregoing solutions, it was assumed that the 

density of states function N(E) was a smooth function of E. If we adopt 

a rigid band model, we see that the addition of Rh to the alloy changes the 

number of carriers in the d-band, thereby shifting the Fermi level accord-

ing to the equation 

4.2 .31 n(c) = N(E') dE' 

where n is the number of d-carriers at alloy concentration c, and 

N(E') is the rigid band density of states function. Thus Ef will vary 

smoothly with the concentrati an c. Even if the band does change shape, 

and if we allow the s-band to cbange its position with respect to the d-

band, we still expect Ef to be a continuous function of concent~tion. 

We should expect it to be expressible as a Taylor series in the concen-

tration, expanded about some arbitrary (but non-singular) value of c, 

which we conveniently pick as the critical concentration. We should 

then be able to express the Fermi energy in the form 

4.2.32 = Ef (c .t) + crl 

where !:::. c is the deviation of the Rh concentration fran its critical 

value. 

Similar discussions pertain to the dependence of the exchange para-

meter with concentration. Then 

4.2.33 ~8' (c) = k_ 8' + -o critical 
2 

0 !:::.. c + 0 (!:::. c) + ••• 
l 2 

We then take the ratio of these two quantities. 

~8' ~8' •t+ 0 !::, c +o2(!:::.c)2 + 
4.2 .34 

crl l 

Ef 
= 

E crit + €1!::, c + €2(!:::. c)2 + 
c •t +!::, c 

f 
c = crl 
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We can rewrite this as 

~8' kb8' ·t 
4.2 .35 cr1 

Ef 
~ 

E crit 
i 1 + ( o jk 8 t E /E cri t) 6. + • • ·-~ 
( 1 b cri t - 1 f · c J 

c f 

which can be put in the form 

k 8' ~8' 
4.2 .36 

.,..... crit -- ,..... 
Ef 

Ef 
crit 

c 

( I , / crit) There is no a priori reason to expect ~l = o1 kb$ crit - E1 Ef 

to be zero. Thus we expect ~8' /Ef (c) to vary as the first 12.~~ of 

deviations in the concentration from its critical value. 

With this assumption, we can calculate how we expect the magnetic 

parameters to vary with concentration. 

We define 

4.2 .38 

using equation 4.2.18, TJ , the critical value for ferromagnetism is 
0 

4.2.39 

then 

1 

(E crit) 
go f 

4.2.40 TJ c~ c)= TJ + TJl. 6.- + ••• 

where 

We first discuss the high field susceptibility near the critical 

cone ent ration. Combining 

4.2 .41 :Kdifn = 

equati ans 4.2 .21 and 

2 
_£_~L 

k Tf 
1 

which is valid in the ferromagnetic region. 

4.2118, we find 

In the paramagnetic region, generalizing our discussion of the mole-

cular field theory (c.f; eqn. 3.1.25) 
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4.2 .42 X = X . X s 
paulJ. 

2 
n N ll 1 

= 
~ Tf k et 

b N(Ef) -2/3 

which we re-write as 

1 

g (E 7 • k.. 8' /E - 2/3 
0 f -0 f 

We may then write the low temperature susceptibility, yalid for both 

ferromagnetic and paramagnetic regions as 

4.2.44 X = 
1 

By using equations 4.2.38, 39, and 4o, we find: 

4.2.45 X( c) 
2 

_E_~!::._-
~:Tf 

"We therefore expect the low temperature susceptibility to diverge as 

1/(~. c) as we approach the critical concentration, in agreement with the 

6 
dependence reported by Bucher, et al. From equation 4.2~19, we expect 

Tc/Tf to vary linearly with ~ 0 • Since Tf should vary only by a small 

amount as we vary the concentration a small amount from the critical 

value, we expect Tc to vary linearly with ~o' as observed. (See figure 13). 

To discuss the variation of ~ with cancentra tion, we co!nbine 
0 

equations 4.2.38, 39 and with 4.2~18. We then find that 

4.2.46 ~ (c) 9/2 
go (Ef) c 111) 112 c~ c )112 = -----

0 
vg2 (Ef) 

( ) 1/2 and ~ 0 c is expected to vary as (~ c) • Again, by using equation 

4.2.18, one can show 

4.2.47 1/2 1/2 (71 ) • (~ c) • T 
1 f 
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1/2 and the Curie temperature is also expected to vary as (6 c) • We note 

that o~r experimental values disagree with this prediction,· displaying 

a remarkably linen relationship in both cases (See .figtires 9,11, and 12). 

In our discussion, we are assuming the density of states function is 

smooth enough, so that small changes in the concentration, which shift 

the Fermi level, do not cause the functions g1 (Ef) to vary too, ;drastically 

fran their value at the critical concentration. This assumption should 

be valid if there is no singularity at th~ critical concentration. 

We also find disagreement between theory and experiment when we 

ptot the Curie magneton number versus concentration. 

2 
Fran equation 4.2.28, we expect (q ) to diverge 

c 

equation 4.2.46 we expect this quantity to diverge as 

usir:g 

However, we see in figure 14, .that there is no such tendency; but 

qc remains fairly constant, with a small dip near the critical concentration. 

Discussion of results 

We see that our data disagrees with the predictions of the Stoner 

theory. We offer some possible explanations. 

1. The behavior predicted by the Stoner theory may be valid only 

over a very narrow region of concentration. This region may be too 

narrow to be observed in our measurements. However, this does not seem 

very likely unless the density of states near the Fermi level correspond-

ing to the critical concentration, or the variation of the band shape 

with concentration in this region, varies very rapidly. 

2. Our assumptions leading to equations 4.2.32, ff. may not be valid. 

The density of state function at the va Jue corresponding to E/rit may 

be singular. 'l'llen Ef >vould. no lm~er be expressible as 
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E crit + 
f 

E • b.c+ 
1 

( 1/2 but for example, m;i.ght also include a term in the sum going like E1; 2 6. c). 

Such a singularity (for example, of the Van Hove form) could also lead to 

a strong concentration dependence of the normalized derivative functions 

g1(Ef(c)) and g2(Ef(c)), causing them to vary as (6. c)
1
/
2 

instead of the 

expected form 

const.
0 

+ const. 1 • 1:-:. c + •.• 

However, band calculations in pure nickel 56' 57 do not predict such violent 

discontinuities in the density of states function (or its derivatives), 

although they do show a broad peak near the top of the band, containir:g 

about .8 - 1 electrons per spin direction separated from the rest of the 

band by a smooth (and not very shallow) minimum. In fact, this minimum 

may be responsible for (kbB'/Ef) · g
0

(Ef) reaching its critical value where 

it does, but unless the density of states varies quite sharply here, the 

Stoner predictions should still apply. That this minimum is not very 

shallow is supported by the electronic specific heat data of Bucher et 

a1.
6 

in the vicinity of the critical concentration. 

3. The s-d interaction may modify our results sanewhat. It is 

well known that the s and d bands overlap. Thus, there is ad-mixing of 

s ani d states, resulting in the formation of a d-like band with high 

density of states, and an s-like band with low density of states. As 

we vary the alloy concentration, we may vary this interaction causing a 

shift in the position and shape of these two bands, so that equation 

4.1.4 is not strictly valid. As we increase the Rh concentration:;· many 

of the holes introduced might go into the s-band. Then the number of 

magnetic carriers might vary in some COIJlllicated way as a function of c, 

so the value of ~ (c) we ;nferred are ;nc t d th (A )1/2 s 0 ~ ~ orrec , an e ~ c depen-

• I 
I 
I 

I 
! 

··- i 



dence is masked. Althcugh such an effect may explain the initial rapid 

increase in nsat(c)lc~' only under very special circumsta~ces could we 

expect this tendency to mask the c~ c) 1/
2 

dependency which is expected, 

and cause it to appear linear. 

Again, this seems highly unlikely. 
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C. Low Temperature Variation of Magnetization 
Elementary Excitations in Band Ferroma_g_nets 

According to the Stoner model, which we have been discussing t bus 

far, the effects of finite ten:perature on the magnetization of the system 

can be treated by solving equation 3.2.3 as a function of teiJI)erature. 

One assumes the- distribution of single particle (hole) st~tes are de§cribed 

by applying Germi statistics to the energy states available (which are 

described_ by the density of states function for the band). The effects 

af incrmsing T are to decrease the magnetization, M, because tbe higher 

temperatures tend to excite particles fran their lowest energy states to 

higher energy states, bringing about a redistribution of the electrons 

among the two spin sub-bands. These excitations are usually termed single 

particle or Stoner excitations. Under most conditions, more spins are 

excited fran the majority spin sub-band to the minority spin sub-band 

than vice versa, thus causd:ng M to decrease with increasing T. 

Depending upon the strength of the exchange interaction, i.e., 

whether or not the magnetization is complete, the temperature dependenCe 

of this contribution to the low ten:perature saturation magnetization 

follows one of two forms. 

In the case of strong ferromagnet, (see figure l5a) there exists an 

energy gap, ~, between the top of the full band and the Fermi level of 

the partially filled sub-band. This leads to an exponential approach to 

saturation at low ten:peratures, of the form 55 

co 

where n is the number of carriers, I(T) = J N(E) exp ( -E/kbT) dE, arrl 
0 

!:. M is the deviation of magnetization from the value at T=O due to sp . 

.. 
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these single particle excitations. In tbe limit of weak ferromagnets, 

there is no such gap (see figure 15b). Then from equation 4.2.6, with 

~0 and T < T c 

which can be expanded for T << T c 

~ M (T) 

-~cor 
However, it is known that there is still another type of excitations 

in a band of interacting electrons, which also can change the magnetization. 

There are collective excitations, brougbtabout by rmny-bod.y correlation 

effects, and can be thought of as spin waves. 

Herring and Kitte158 demonstrated the possibility of such excitations 

in a continuous ferrcmagnetic mediw;n, from the assunzption tmt there is 

a contribution to the energy of the system varying as95 

4.3 .4 E 

They justified the form of this term, which arises fran the exchange 

interaction among the electrons. Since this interact ion tends to align 

the electrons parallel to each other, and local deviations from this 

~ ..J 
state, are described by tbe magnitude of IV • Mj, according to these authors, 

this lead to an energy contribution of the form shown. 

This tendency for the magnetism to remain uniform in direction through-

out the sample is termed exchange stiffness, and the coefficient of the 
-..1 ....... 

I V • M I term in the energy, A, is termed the exchange stiffness constant. 

It is this term, for example (in conjunction with the magnetocrystalline 

anisotropy), which determines the thickness and energy density of the tran-

sition region between magnetic domains, the so-called Bloch walls. 

.. ' 



These authors then showed that the energy of these collective exci-

tations vary as 

2 2 
( 2 A n Is) q ~ Dq 

where Q is the atomic vclume, 
. ~ . 

S is the spin of tbe earner, q the wave 

vector of excitation and q is equal to lcll. This result is valid, at 

Jeast, for small q. 

They then pointed out that this dispersion relation leads to the 
I I ' 

familiar Bloch T3 2 
law in the low temperature saturation magnetization. 

They also suggested that these two types of excitations which we 

have mentioned, especially at low temperatures, can be treated as acting 

independently. Thus, the contributions to the specific heat and to the 

deviation of the saturation ms.gnetization at low temperatures can expressed 

as the sum of these two contributions. Then for weak ferromagnets, the 
I 

low temperature magnetization is expected to vary as 

,' M__(T} 
. ·MTOJ· ... 

where the coefficient of the T312 
term is related to the exchange stiffness. 

Herring59 did a many body calculation of the exchange stiffness 

I 

coefficient.using a perturbational approach and the random phase approxi-

mation, to calculate the energy of sinusoidal disturbances in the syst an 

-...l 

described by wave vector q. He also found that the energy of these dis-

t b . d 2 ur ances var1e as q • 

This work was extended by a number of authors. Particular attention 

was paid in explaining the neutron diffraction phenomena in the 3-d tran-

sition ferromagnets. 

Elliott and Marsha11
60 

had explained the previously measured neutron 

diffraction data quite successfully, using a lac alj zed mom=nts approach. 
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Included in their discussion were inelastically scattered Laue spots 

(corresponding to collisions of neutrons with magnons Y at law temperature, 

critical scattering below and above T , and paramagnetic scattering. c 
61 62 . 

Kubo et al and Izuyama et al. dlscussed these effects from the 

standpoint of the band picture of magnetism. They shewed the neutron 

scattering cross section is related to the dynamic susceptibility function 

X (Ci, m), describing the system (which is essentially the response function 

of the system to a perturbation at frequency m and wave vector q), using 

the fluctuation-dissipation theorem. 63 They proceeded to do a many-body 

calculation of the dynamic susceptibility within the random phase approxi-

mation, making certain simplifying assumptions about the electron (quasi-

ps.rticle) energies, and their interactions. They found that in addition 

to the expected single particle excitations lead:ing to poles (which accord­

ing to Elliott
64 

lead to rather weak poles in the neutron scattering cross 

section, i.e., weak Bragg spots), there are also poles for values of 

C<l, m(Ct)), corresponding to collective excitations, where the dispersion 

relation for these excitations followed a form m cg) ~ D q
2

_. 

other authors also calculated the exchange stiffness coefficient 

using varying apprcaches, most based upon the RPA, and include Thompson, 
65 

66 . 67 68 
Edwards, Mattls, Edwards. 

In the second of these papers the author demonstrated the sepa rabi-

lit,y of the two types of excitations. In the fourth of these papers, 

Edwards shows that the presence of single particle excitations sets an 

upper limit on the allowedwave vectors (and hence on the number of 

allowable independent modes) of the collective excitations. This limit 

occurs at the intersection of the dispersion relations of the two types 

of e.xcitations. Above this threshold, the collective excitations are 



.. 
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critically damped by the single particle excitations. 

Edwards and Wohlfarth45 stated that a good estimate of this rmximum 

wave vector for the spin waves is given by 

(8 _;3 nN/Af) ~ 0 ~ax = 

where N is the number of atoms per unit volume, n is the number of magnetic 

carriers per atom and Af is the surface area of paramagnetic Fermi surface. 

This critical wave vector is just the average value of the difference of 

the radii of the spin up and spin down Fermi surfaces. When collective 

excitations have a wave vector larger than this value they can then excite 

single particles fran one sub-band to the other. 

The change in magnetization at finite temperatures due to the spin 

~ve contribution is determined by calculating the number of such excitaT 

tions as a function of temperature, and noting that each spin wave reduces 

the net magnetization by one Bohr magneton. Then the expressi en for the 

reduction in magnetization is, according to Edwards and Wohlfarth 
45 

4.3 .8 
!::. M (T) 

sw 

where the integral is carried out over the allowed values of q. 

These authors evaluated this integral, using the dispersicn relaticn 

4.3 ·9 

and obtain 

!::. M '(T) = 
SW 

1-Lb 
-2-

TI 
T/T c 

o k T 
lllaX b C 

D 

in the limit D q~/ ~T << 1, which holds for very weak ferromagnets at 

reasonable low temperatures. 

Expressions f\1r D h~:~.ve been worked out by Izuyama and Kubo, 69 

Doniach and Wohlfarth, 7° and Edwards. 7l In the limit of weak ferro-
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magnetism, they showed that this parameter can be expressed as 

4.3 .11 

where n is the number of carriers per atom, R the nearest neighbor distance, 

and N(Ef) the density of states per atan. For a pa~abolic band, this 

generalizes to 

4.3 .12 
2 

n 
D~--

36 

(where we can generalize this expression to other band shapes by using 

equations 4.2~13, 14, 15) 

Using this expression forD, the expression for ~ax (4.3.7), and 

our expression relating s
0 

to kber /Ef (section 4.2), we find after, a 

little algebra 

M (o) 
/numerical factor depending) 
\ on band structure (

slowly varying) _T_* 
functicn of T 
composition c 

4.3 .13 
D. M (T) 

sw 

valid in the limit l >> T/T >> s .2 
c 0 

2 
In the extreme low temperature limit, T/T << s , the temperature c 0 

is so low that the exponential· factor in the ~integral automatically rules 

out spin waves with wave vector approaching ~' arid the intergral can 

be carried out over all of q-space. In this case, the maximum in the 

allowable value of q does not affect the final result, and we obtain 

* Numerical factor depending on band structure depends on factors like 

AfR
2 

and dime~sionless ratios between s
0 

and ~B'/Ef depending on the 

gi (Ef), as well as numerical constants on the order of unity. These are 

modified by changes in alloy composition through AfR2 , n, Ef/kber, and 

gi (Ef) • 

• ! 



,,. 

4.3 .14 
1:::. M (T) . sw 

M.....;;(;;.-0...-) --
~(numerical\ 

factor J 
.(slowly varying) 1 

function of -~--. 
composition o 

These two forms join continuously in the region T/T :::::: ~ 2
• : 

C 0 I 

Thus, at ver:y low temperatures, the spin wave contribution varying 

as T3/ 2 
should dominate the single particle contribution varying as 

(T/Tc)
2

, while at higher temperatures, where the single partic~e excita­

tions damp~ large wave vector spin waves, the single particle contribution, 

still varying as T
2 

should now daninate the spin wave term .J.hich is linear 

in T in this region. 

Of course, the exact value of the coefficient of the spin wave term 

I 
depends explicitly on the band structure, and thus varies fran one system 

to another, so the temperature where the single particle contribution 

becomes dominant depends on the band structure. 

For example~ the magnetic !isotherms for the weak itinerant ferro-
' 

magnet ZrZn2 were measured experimentally by Ogawa and SakamotoY2 and 
I 

were analyzed by Edwards and Wohlfarth. 45 They found that at all but the 

very lowest temperatures, the saturation moment was described very well 

by the expression? 

4.2.15 

i.e., single particle excitation form. 

In figure l6a-f, we present our low temperature magnetization data 

for several 

[ 
and 

of our samples plotted both as 

M(H,T)]
2 

. 2 
M: vs. (T/Tc) 

M (H ,T) 
0 

M 
0 

'VS. 

to display Stoner exci'ta tions 

to display spin waves 
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with H the externally applied field, and M is some normalizing value of 
0 0 

M chosen for convenience, near M(O,o). 

Discussion 

Although there is some experimental scatter in our data points, the 

_2 2 2 
~ vs. T (Stoner) plots seem to be quite linear up to a vaJue of (T/T ) :::::: .4, c 

(or" (T/T ) ~ .6)~ Then. these plots be:cotne concave upward,· due t.o . c 

the effects of the externally applied (saturating) magnetic field, which 

increases the magnetization to a value larger than that which would occur 

in its absence. However, this field is necessary to ensure macroscopic 

saturation of the magnetization, which is brought about by rotating the 

magnetic domains along some preferred (i.e., the external field) direction. 

Not only does this linearity of this plot agree with tbe predictions 

of the Stoner theory, but the slope of these plots is also close to the 

value predicted by the theory. Fran equati an 4.3 .2 we see that a plot of 

M(T)
2 

vs T
2 

should be linear, and should intersect the if axis at T
2 

T 
2

• 
c 

2 
OUr curves intersect at (T/T ) between .8 and .9, corresponding 

c 

to (T/T ) between .9 and .95, in good agreement with theory. 
c 

We also see on the Ni.
70 

Rh_
30 

plot, that the curve is concave 

3/2 . upward at very low temperatures, but on the T plot, th1s region is 

quite linear. 

It should again be pointed out at this point that similar plots 

4 46 ' 
of the mgnetization of ZrZn

2 
5, · also showed excellent agreement with 

the Stoner theory, except at the very lowest temperatures, where the spin 

wave contribution, varying at T3/ 2 
is expected to dominate the single 

2 
particle contribution, varying at T • 
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D. Magnetic Isotherms - Magnetocrystalline Anisotropy 

Measurements of the magnetization as a function of the externally 

applied field, H , for various values of temperature were rrade, as explained 
0 . 

in section II. 

For a strong, or localized moment ferromagnet, the description of these 

curves are fairly well understood. A comprehensive survey can be found 

in Ferromagnetism.73 For weak ferromagnets, the description will be 

altered somewhat. 

In the very low applied field region, the permeability (and hence 

the susceptibility) is very large. For samples with definable demagneti-
1 

zing factors, which are not unusuallY small (ruling out long needle-
! . 

shaped samples and toroids), the magnetic field inside the sample (i.e, 

the internal field) will be the sum of the externally applied field and 

the demagnetizing field 

4.4.1 H = -NM demag 

where N is the demagnetizing factor in directipn of field. Due to the 

high susceptibility in this region, the magnetization will assume a value 

which will maintain the internal field at a very small value. This can 

be seen by the following derivation: 

4.4.2 H. t 1n H - NM 
0 

also, from the definition of the susceptibility, X, we have 

4.4.3 

therefore 

uolvi.ng 

M = X H. t 1n 

Jvi := X(H - NM) 
0 

M (ljx + N) = H 
0 
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but 1/X is very small and assumed to be negligible in comparison to N, 

therefore 

4.4.6 

and 

4.4.7 

M ~ -~· H 
N o 

H. t = H - N M ~ 0 l.n 0 

(actually, to first order in 1/X 

4.4.7a H << H ) 
0 0 

Equation 4.4.6 provides us with a very useful relationship. It states that 

the initial slope of the M vs. H curves are determined solely by the de­
o 

magnetizing factor. The values we calculated from our measured slopes 

corresponded quite well to the values expected from our sample diiJEnsions. 

The demangetizing factor for right circular cylinders as a function of 

length to diameter ratio is graphed in Bozorth.
16 

The value obtained by 

our slope method was about 2.4 Oersted per gauss magnetization, varying 

somewhat from sample to sample, due to porosity and slight differences 

in the sample dimensions. Knowledge of these demagnetizing factors was 

quite useful, for we could then determine the internal field at all the 

values of H , given H and M(H ) • This knowledge was necessary to 
0 0 0 

determine the anisotropy of our samples. 

The variation of the observed susceptibility with applied field is 

described by the domain theory of mgnetism (see Magnetism, 73 also 

Introduction to Solid State P~sics. 4) The domain theory also applies 

to band ferromagnets. 

According to this theory, the large initial (i.e., low field) suscepti-

bili ty is due to domain wall displacement, which changes the relative 

volumes of magnetic domains magnetized parallel and anti-parallel to the 

direction of the applied field. 



-101-

For slightly larger values of the field, the susceptibility, X= M/H, 

is determined by domain rotation. The magnetization (which is relatively 

constant in rragnitude) within each dorrain is rotated into the directi an 

of the applied magnetic field. In the case of a weak ferromagnet, the 

, magnitude of M within a domain also increases (but usually quite slowly) 

with the applied field. This term does not dominate until virtually all 

of the domains are lined up along the field direction (which usually does 

not occur until H reaches several kilo-oersteds. For fields larger than 
0 

this, the magnetization is observed to increase linearly. Frcm this slope, 

we can calculate the rate of increase of the intrinsic, or domain, mag-

netization. We can extrapolate this s1ope backwards, ii:Ito the region of 

domain rotation, to estimate the intrinsic magnetization in this region also).,,: 

Then, for intermediate values of H
0

, the approach to saturation 

of the macroscopic magnetization is determined by domain rotations. For 

polycrystalline samples such as we have, in the absence of exterml fields, 

the magnetization direction within individual domains is determined by 

rragnetocrystalline anisotropy (for a discuss ion of this, see Bozarth, 

op. cit). This anisotropy causes the energy density within a danain to 

depend on the angle between the magnetization direction and the various 

crystallographic directions. For a cubic system, the anisotropy energy 

(as we shall see) has the form 

4.4.8 E . an1s 

where the a
1 

are the direction cosines of M alor:g the three crystallo­

graphic axes; while the interaction with the externally applied field has 

the form 

4.4.9 M- H cos ¢ 
0 
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where ¢ is the angle between H and M. The overall magnetization within 
0 

a domain assumes the value minimizing the sum of these two contributions. 

Thus, the effect of large external fields is to rotate the magnetization 

within a domain away from the crystallographic directions of easy 

magnetization, and into the direction of applied field. 

Bozorth writes an approximate expression, due to Becker and Boring, 
74 

which describes the approach to saturation of a sample composed of a randomly 

distributed collection of polycrystals. The result, to lowest omer in 

1/H is 

4.4.10 .J:U!iL-M -
00 

1 -
105 

8 K 
2 

1 
- (terms involving K2 , l/H3, ••• ) 

where H is now the field acting on the dana:ins (i.e., the internal field), 

M
00 

is the assymptotic value of the observed magnetization, equal to the 

intrinsic (domain) magnetization, and K
1 

is the anisotropy constant 

defined in equation 4.4.8, which in general, varies quite rapidly with 

temperature. 

As we have stated, for weak ferromagnets the domain magnetization 

is itself a function of the external field. However, it can be written 

in the form 

4.4.11 M (H) M + X • H 
o difn 

so in equation 4 .. 4410 we· simply replace M by the value appropriate to the 
00 . 

applied field. For all of our samples where K
1 

could be determined, 

this was a small effect. 

Our observed isotherms were then c0rrected for the demagnetizing 

factor and the differential susceptibility, and fit to a function of the 

form of equation 4.4.10, thereby determining K1• 

In this way we were able to detennine the anisotropy constant as 

a function of alloy composition, at various temperatures. These results 

are shown in figure 17. 
I 

)olio',, 
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The error bars shown on this figure indicate only the distribution 

in K1 found by calculating it for various values of H along the curves 

of the apprc:ach to saturation. 

Also shown on this graph is the anisotropy for Ni, which is listed 

in Bozarth, and which was determined by more accurate (single crystal) 

measurements. We see that this value comes fairly close to our value. 

The observed deviation probably stems from the follovring: We have 

implicitly ignored the contribution from the K2 term, and our measurement 

probably represents a kind of weighted average of these two constants. 

Secondly, as Bozarth points out, the approach to saturation is critically 

dependent on strains and heat treatment, and this could also affect our 

results quantitatively. 

However, these errors should probably vary in the same way for all 

of our samples, and the relative shape of this curve is probably fairly 

accurate. 

We see the anisotropy decreases with increasing temperature as ex-

pected. We also show the results of the measurements at the lowest 

temperature we attained in our experiment (4.2°K) as a function of com­

position in figure 18. In figure 19, we show the law temperature aniso­

tropy versus the square of the observed saturation magnetization (expressed 

in Bohr magnetons per atom of alloy) for our samples. This graph appears 

to be linear in the region near the critical concentration, and extending 

up to at least 80 per cent nickel. 

Discussion 

In order to discuss the anisotropy measurements, we will first outline 

briefly the theory of anisotropy in cubic crystals. 

As our model of a magnetic material, we suppose we have a cubic 

array of magnetic dipoles forming a lattice. We further suppose for the time 
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being, that at absolute zero they are all parallel to the macroscopic mag-

netization direction, and hence, to each other. Such a description should 

apply equally well to localized moment magnets and band magnets. In the 

case of the band magnets, suppose the d-wave functions are h'fl the tight 

binding type. Then the electronic charge density (and hence, the spin 

density) should peak at the atomic sites. Even if the wave functions are 

not of the tight binding type, they at least retain the symmetry of the 

ionic lattice. In any event, we should be able to associate an identical 

dipole moment to each atomic site, although this moment may be spread out 

through the atomic cell in the lattice. In the band case, however, the 

dipole moment per atom is n· {g' ~b §)· ~ 0 where n is the· nillnber of 

carriers per atom. This corresponds to n/2 (l + ;
0

) ~ t and n/2 (l - ;
0

) ~ ~ 

at each lattice site. 

Thus, even though the individual electrons, each with spin 1/2, 

are in rapid motion, the moment per atomic site is the time average of 

the contributions of a'll the electrcns, yielding 

4.4.12 

or 

= 

n ~ 
0 

where ( ) denotes the quantum mechanical expectation value. 

It is an experimental fact that the total energy of a magnet depends 

on the relative orientation between the magnetization and the crystallo-

graphic axes. For cubic systems, the lowest order expression is 

of the form 

4.4.13 E . anlS 

where a. is the direction cosine of M along the ith crystallographic axis •. 
l 
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One might expect even a lower order term varying as 

4.4.14 

but for a cubic system 

4.4.15 

so this term reduces to a trivial constant. 

We then ask, what interactions can contribute such a term to the 

overall energy of our system, i.e., what interaction will change the 

energy of a lattice of parallel dipoles as they are all rotated through 

the same angle, thereby remaining parallel to each other, but changing 

their orientation with respect to the crystal axes, and hence to the 

vectors directed between them. 

The strongest interaction between our dipoles is the exchange inter-

action, the interaction responsbile for keeping the dipoles parallel to 
~ _,. ; 

each other in the first place. This interaction is of the form J s1 ·s2 , 

and depends only on the relative orientation '.'between two dipoles, so 

cannot contribute to the anisotropy. 

Next, we consider the magnetic dipole-dipole interaction. The 

interaction between two 

4~4.16 

~ 

where 1-11 

directed 

For 

4.4.17 

Ed. d" lp- lp 

~ 

and 1-12 are the 

between them. 

i'hee electrons, 

dipoles is given by the well known expression75 

11ilt2 (ttl. t!) (1t2. ~) 
-3 

r3 r5 
_.. 

two dipole morr:ents and r is the radius vector 

'"""' the dipole moment is related to the spin S by 

and the interaction takes the form 



4.4.18 

where 

4.4.19 

Ed. d" lp- lp = 

c 

and r is the nearest neighbor distance. 
0 

--.1 

. s 
2 

--.a -? (s1 • r) 
--- 2 

r 

This energy is anisotropic, depending not only an the relative orienta-
...,. __, 

tion between two given spins, (s
1 

• s2 ), ,but also on their orientation 

with respect to the radius vector directed between them, through the 
~ ~ ~ ~ 

(s1 • r) (s2 • r) part of the interaction. 

However, in a cubic system when these interactions are summed over 

all pairs of dipoles, this term also reduces to a trivial constant. That 

is to say, a system of parallel magnetic dipoles on a cubic lattice dis-

plays ne anisotropy. 

As Van Vleck76 pointed out, in order to achieve anisotropy from a 

system of parallel magnetic dipoles, one must ascribe a quadrupole moment 

to these sites. Then,.' from the quadrupole-quadrupole interaction, one 

obtains a term in the interaction energy varying as 76 

4.4.20 E. t ~ ln 

which does yield anisotropy in a cubic system. 

However, it is well known that )CO for S less than 1. Quantum 

mechanically, S = 1/2 spins have no quadrupole moment. For S=l or greater, 

however, we can get a contribution to the K1 term in the anisotropy. 

However, for pure nickel, as well as our alloys, it would be hard 

to justify the presence of such a contribution. In a tjght binding 

model, following the discussion of the Hurwitz Van Vleck approach to 

correlation, most of the tight binding states can be described by a d
10 

or d9 configuration, i.e., 0 or l holes at any atomic site. It is~.1only 
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8 7 in a rare number of cases that an atomic site will be in a d , d , etc. 

state, because of the relatively high polarity energy of such states; 

i.e. correlation keeps more than one hole from a site at a time. For 

multiple holes at an atomic site, we would:,have carriers with S==l or 

higher, due to Hund's rule coupling, which couples S==l/2 holes together 

into a state of the highest multiplicity allowed by the exclusion prin-

ciple. This could lead then, to quadrupolar coupling, but the fraction 

of such sites is expected to be small, hence the contribution to the aniso-

tropy weak. 

It has been pointed out, however, that tbe dipolar interaction is 

able to yield anisotropy, but only in second order. The dipolar interaction 

does not commute with the exchange interaction, but acts a a perturbation. 

A system of parallel dipoles can lower its energy slightly if the dipoles 

tilt slightly with respect to each other. These tilted dipoles then pre-

cess around their original (i.e., the macroscopic magnetization) directed 

with a conical half angle, whose order of magnitude is CjJ. This leads 

to an effective contribution to the Hamiltonian of the fo:rm 

4.4.21 

in the limit C << J. 

Thus one obtains an anisotropy from the dipolar interaction when 

this interaction is carried out to second order. This interaction leads 

to a value of K1 ~ c2jJ, where K1 is defined in equation 4.4.13. This 

can be demonstrated by calculating the expectation value of Ji rt for a 
pe 

given site, assuming all of the S are aligned along some direction with 

direction cosines ex., i = 1, 2, 3, along the tnree crystal axes. He 
l 

. ....... 
sum this interaction over all the allowed dipole pairs, by direction r 
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from our central site to all the other sites in the lattice. Owing to 

l/r
6 

dependence of the interaction, the sum converges rapidly, and can 

be approximated by a sum over the nearest neighbor sites only. The 
....... ~ 2 __... ..:..' 2 
(s

1 
· r) (s2 • r) part of the interaction, when summed over these neighbor-

_ing cubic sites, yield the angular dependence found in equation 4.4.13, 

while the coefficient of this expression becomes c2 /J. Included in deri­

ving this angular dependence is expansion of the identity (a1
2 + a2 

2 + a
3
2 

)
2= 

2 
1 _· which transforms the quartic dependence of the direction cosines in 

equation 4.4.21 to the biquadratic dependence of equation 4.4.13. 

The results one obtains in this way are about a factor of 50 too smaLl, 

when compared with the experimental values of K
1 

in 3-d ferromagnets, for 

1 N. 76 examp e, pure 1. 

In order to explain the observed anisotropy, one needs an interaction 

of the diplar or quadrupolar type, but much stronger than that arising 

fran the purely magnetic interaction. Such an interaction was shown to 

76 exist by Van Vleck. It results from spin-orbit coupling. 

The orbital magnetic states are quenched by the crystal potential. 

From atomic physics, one there exists a spin-orbit interaction99 

~Y._(r) ]L S =: A L •S 
dr • · • 4.4.22 }:! . b•t spln-or l 

between the electron spin and the orbital motion of the electrm in the 

atomic potential. Here, L is the orbital angular momentum operator, A 

is the expectation value of the bracketed quantity for the states involved 

and V(r) is the (spherically symmetric) atanic potential. This interaction 

acts like a perturbation on the orbital states, tending to linquench the 

angular momentum and thereby perturbs the oribtal state. Thus a spin at 

:1.. g:i.ven site perturbs the orbital wave function associated with this site. 

This orbital wave function overlaps neighboring wave -functions, and perturbs 
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them, which in turn, interact with the spins on these sites. It is in 

this way that there exists an effective coupliqg between electron spins, 

similar to the couplings we have been discussing, but with a much stronger 

coupling coefficient, which we call D. Thus the S=l/2 spins can couple 

with a strong dipole-like, or pseudo-dipolar interaction, S=l spins, with 

a pseudo-quadrupolar interaction, etc. 

One might suspect that in the presence of these spin-orbital effects, 

the electron spins could couple directly to the orbital states, which 

convey the cubic symmetry, and thus feel the anisotropic forces directly, 

rather than having to interact with each other through this indirect (and 

fourth order in spin-orbit coupling parameter) process. In other words, we 

might expect presence of a term 

4.4.23 J::! . ~ B { (sex) 4 + ( s~) 4 + ( s 'Y) 4 ~ 
anls ) 

where ex, ~and')' refer to the cubic directions. However, the presence 

of such a term is impossible, quantum mechanically, for S less than 2; 

therefore, such a contribution to the anisotropy is very unlikely. 

Thus, for a system of localized spins, with S=l/2, we obtain an 

anisotropy constant 

4.4.24 

where D is now the pseudo-dipolar coupling constant. However, this result 

is modified by the fact that in the case of band ferromagnets, the average 

moment associated with each site is reduced. However, this reduction in 

the magnetic moment w>' or equivalently, the expectation value of the 

local spin, f:S), does not affect the magnitude of the spin-orbit coupling 

parameter very seriously.77 Then the magnitude of D itself remains un-

changed as we decrease ~ . 
0 

Generalizing equations 4.4.16, lf3 and 21 we have 
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4.4.25 llpert - D
2 /J k~l) · ~) 2 ( {s2) ·~ l2

} 

where (S.) 
l 

= ~ 0 S. and Is.! = l/2. Thus th:is interaction is reduced by 
l l 

a factor of 
4 

~0 ' 
due to the dimini.~hing of the monent by a factor of ~ • . . 0 

The factor of J in the .denominator:is the exchange stiffness petween 

two sites, tending to keep them parallel. It results from the excbange 

interaction, whic~ we still suppose is describable by a molecular field 

approximation. Then 

4.4.26 H ~ k_ et ·~ 
mol field -o o 

k 8' is assumed to be relatively constant as we vary ccmpositian, causing 
b 

~ 
0 

to vary. The energy difference between a moment in the directi an parallel 

and :anti-parallel to M is 

4.4.27 

4.4.28 

4.4.29 

E ex 

--lo. 

~) • H 
eff 

~ g ~ ~o • ~e' ~o 

J ~ 2 
0 0 

where J is the value of J which appearsc,in equation 4.4.24 for ~ = l. 
0 0 

Then the anisotropy constant is determined by calculating the expectation 

value of this interaction as a function of the direction cosines describing 
...... 

how the (S.) are aligned with respect to the crystal axes. Combining 
l 

these results we see that K
1 

should vary as 

4 4 Kl (0) = (D2/J) ~o2 •• 30 

where we have allowed K
1 

to be a function of temperature, K
1 

(T), but 

-
our present discussion is restricted to T=O. Indeed this is just what 

we observed near the critical concentration. 

Hilliams and Bozarth 78 measured the anisotropy for cu .. Ni alloys, 

and 1vhen their values of K
1 

were plotted against the saturation magnetiZation 



of the alloy, they also found a quadratic d~endence. 

Actually, the theoretical justification for this quadratic dependence 

can be made stronger than the crude argument we presented. 

Brooks 79 published a paper dealing with the anisotropy of itinerant 

ferromagnet s. He assumed wave functions of the tight binding form. For 

the atomic functions he uses the cubic triplet r s· 

4.4.31 

¢1 = yzf(r) 

¢2 = zxf(r) 

¢3 xyf(r) 

From these, he constructs three band:s 

4.4.3la 
= 

-l>~ ~-"' 
exp (i 2 • k) ¢ (r - 2) 

n 

~ 

(where 2 denotes the lattice sites, N is the total number of atoms),. 

and assumed the nearest neighbor wave functions overlap. Thus the Hamil-
' 

tonian matrix rrust be re-diagomlized, since this overlap perturbs the 

local states. He then included the spin-orbit interaction, whcse strength 

he describes by a parameter, A. He set up the secular equation for the 

energy eigenvalues, including the contribution from the molecular field. 

He then solved the secular equation, obtaining a general expression for the 

contribution to the anisotropy constant from electrons in various k-states 

(his equation 23). 

For low relative magnetization, his expression can be expanded in 

a power series in ~ (related to his 
0 

parameter o). The resulting expression 

is proportional to A 
4 

are lin ear in 

and is a polynomial 

4 
~o' varying as ~ 0/E1 , and 

in ~ , whose lowest order 
0 

4 
~ 0/E2 , where El and E2 

terms 

are 

the energy differences for the states of the same wave vector but in the 

. .. 
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two bands higher than the low'est band. Also included are terms of higher 

order in ~ , E1 and E2 ~ 
0 . 

To calculate the total contribution to K
1

, these 

terms must be summed aver all the singly occupied k":"states i.e., the states 

contributing to the observed magnetization. For low ~ , this contributes 
0 

another factor of ~o' causing K1 to vary as ~ 0
2 , to lowest order in ~ 0? 

as observed. 

Of course, this result is sensitive to band structure, and contains 

terms of higher order in ~ , a fact which can account for the deviation 
0 

fram this quadratic relationship which is observed at the higher nickel 

cone ent rat ions • 

Thus, our observed anisotropy data seems to follow the predictions 

of the band theory. In developing this t;heory, we did not use the Stoner 

model of ferromagnetism . explicitly, but simply assumed that within a 

band picture, one is able to distribute the magnetization throughout the 

lattice in such a way that each lattice site has an identical small 

moment associated with it. 
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V. :MAGNETIC RESONANCE srUDIES 

For interpretation of our magnetic resonance data, we will follow 

10 
the approach taken by Salamon. He studied the Electron Paramagnetic 

Resonance of pure nickel near the Curie temperature, using a bimodal 

So 
cavity spectrometer. Depending upon the type of unbalance created 

between the two modes of this cavity, the microwave losses of such a 

system can be made proportional to various linearly independent, .linear 

combinations of Xl(ro) and X2(c.o). These are,.-respectively, the in-phase 

or inductive, and out-of-phase, or resistive, parts of the frequency 

dependent magnetic susceptibility of the sample placed in the cavity. 

He was thus able to extract x1 and x2 from his observed line shapes. 

Our unimodal microwave reflection spectrometer also exhibits losses 

proportional to a linear combination of xl and x2.
14

, 81 

If the transverse component of the magnetization (i.e., the conponent 

in the plane normal to the applied static field) relaxes to its thermal 

equiyibrium value (of zero) according to 

5.1.1 

(where T2 is a parameter having dimensions of time) 

10 82 
then one can show : that the resonant behavior of the susceptibility 

can be described by 

(c.o - ro) T 
5.1.2a xl (&) X /2 roo T2 

0 2 :::::: 2 2 0 1 + (ro - ro ) T2 0 

5.1.2b X (ro) X /2 00oT2 
1 

:::::: 2 2 2 0 1 + (ro - ro
0

) T2 
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14 
where X is the static susceptibility, = M /H , ro is the resonant 

0 z 0 0 

frequency stemming fran the gyromagnetic nature of the electrons c mtri-

buting to the magnetization • For our experimental field configuration 

(i.e, H parallel to the face of the sample,) 
0 

and 

?.1.4 

(J.) 

0 

small shift pro­
portional to aniso­
tropy which vanishes 
as T is increased to 
T 

c 

The half-intensity width, or half-width of this resonance line is given 

by 

5.J.5 

Since we sweep the applied field (causing ro to be swept) and hold ro 
o.· 

fixed at the microwave frequency rorf' the half-width, in terms of the field 

is 

Our observed lines were fit on a computer to a general linear 

combination of x1 and X2 defined in equation 5.1.2. In most cases, the 

fit; was very good, and we were thus able to determine T2 and g = )'ll/~. 

We would like to discuss these parameters from the standpoint of 

the microscopic model of our system. 

The behavior in the ferromagnetic region is quite complicated, §Dd 

not thoroughly understood quantitatively. In this region, the transverse 

magnetization relaxation rate is usually thought of as resulting from 

scattering of magnons whose components of wave vector are between 0 and 

1/o (where '6 is the R.F. skin depth) in the z direction (normal to the 

surface of the sample) and 0 in the transverse direct ion. (This is the 

so called uniform precession mode.) These relax~tion processes are discussed, 
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83 
for example, by Sparks, and include interactions of magnons with other 

magnons, phonons, conduction electrons, surface and volume pits and im-

perfections, strains, impurities, and crystallogr-aphic grain boundaries. 

There is also a naturally occuring width in a polycrystalline sample 

due to the sprffid in resonance frequencies resulting fran the various 

crystallite orientations. The width of the spread is of the order 

These processes are quite dependent on sample quality. For very pure 

strain-free single crystals of nickel, ferromagnetic linewidths as 

84 
narrow as 150 Oe. have been observed, whereas our linewidths were at 

least 2000 Oe. We are therefore, unable to dis cuss the ferromagnetic 

linewidth quantitatively from the standpoint of the fundamental properties 

of the system. 

However, the principle relaxation mechanism in the paramagnetic 

region is the spin-spin (dipolar) interaction.
85 

Following Salamon, the macroscopic (transverse) relaxation rate of 

M may be related to the microscopic relaxation rate, l/T2 , for the individual 

spins, and leads to the relation 

5.1.8 l 
T

2
M = 

I M. 
where l T2 lS the relaxation rate of M, and is proportional to the 

observed linewidth, 

5.1.8a 

where H/M = 1/X 

6 H = ±. l 
'Y T M 

2 
is the inverse magnetic susceptibility appropriate for 

the applied field Hand temperature T. Also, 

5.1.9 C = N ~2/3 ~ 
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where ~ is the magnetic moment of the individual spins which are relaxing 

at the rate l/T2 arid N is the number of such spins per unit volume. We 

recognize C as the classical Curie constant for the system. 

This temperature dependence, which causes a narrowing of the line 

as we approach T from above, follows from general thermodynamics argu-e . 

ments about irreversible processes. Salamon presented a simplified 

physical argument which demonstrates this relation. It has also been 

discussed by Kittel and Portis
86 

as a general thermodynamic result (for 

the part of the relaxation rate stemming from the non-secular portion of 

the dipolar interaction at least). This result is also discussed for 

a magnetic system using a more general (quantum mechanical calculation 

of the auto-correlation function of the magnetization) approach by Mori 

and Kawasaki. 
87 Their resUlts takes the form 

_..!__ = T-Tc ·[ 11:· 
TM T :T2" 
2 . 

5.1.10 

but this reduces to equation 5.1.8 when the inverse susceptibility is 

expressed in the Curie-Weiss form. 

We are then left with the problem of calculating the spin relaxation 

rate, l/T2, in the paramagnetic region. The interaction responsible for 

this relaxation, as we have stated, is the (pseudo-) dipolar interaction 

between the individual spins, which is modified, as we shall see, qy the 

exchange interaction. 
. 88 

Bloembergen, Purcell, and Pound considered the effects of the 

dipolar interaction on the relaxation rates between nuclear moments in 

liquids, but the results are easily generalized to the effects of pseud9-

dipolar interactions between electrons in a solid. They also considered 

the effects of the relative motion of these moments which provides a 
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random time variation (i.e., Markoffian modulation) of this interaction, 

which occurs over a :time scale 'L , called the correlation time. They 
' c 

showed that in the static case, the half-width is given by 

5.1.11 

where coD is the precession rate of a magnetic carrier 

interaction with its nearest neighbors. Defining the 

I 

du~ to its dipolar 
I 
I 

dipolar interaction 

from equation 4.4.18 and a§ain introducing the pseudo-dipolar interaction 

strength, D we find 

(c.-f. also Principles of Magnetic Resonance, page 29 for a qualitative 

discussion of this precession rate). In the case of short correlation 

time, l/'Lc >> roD' they showed the half width is reduced by a factor 

coD /'Lc' yielding 

5.1.13 'L 
c 

Van Vleck89 considered the effects of exchange. He calculated 

the second and fourth moments of the dipole perturbed Zeeman levels. 

He found a second moment (expressed:.in frequency) given by 

5.1.14 

and a fourth moment 

5.1.15a 

5.1.15b (l::m 4) 

where 
co = J jlfl e 

CD > 
e 

He showed that this corresponds to a half-width 



5.1.16a 

-= CD 
D 

He thus showed that the exchange served to randomly modulate the dipolar 

interaction at a rate 

5.1.17 (1) ~ 1/r = J/'fl 
e e 

and ascribed some physical significance to this fact. 

In the second paper90 he considered (at:;least one of) the effects 

of the ferromagnetic transition. As the spin system orders (as it will 

for T > T in the presence of an external field) the amount of randomness 
c 

in the dipolar field:s at the various sites decreases. He showed that 

this effectively reduces the second moment, and hence the half-width, 

according to the relation 

= 
2 

(tiD~,> 

where (g ~b s!> equals the average moment of some raridom spin site 

equals 0 in the paramagnetic region 

equals g ~ Is z i:l at T=O 

we can rewrite equation 5.1.18 as 

5.1.19 = (~(o) - ~ (T)} (to> 2> 
00 

This result is in addition to the thermodynamic result we quoted 

·previously in equation 5.1.8. It is simply a consequence of the fact 

that as the magnetic system orders, the amplitude of the random fluctuating 

dipolar fields decrease according to the above fact or. Thus, at T=O, the 

d.ipolar width vanishes , according to our di?cussion so far. This. is 

because all the spins are aligned parallel, so every spin sees an identical 

local magnetic field, so the local Zeeman levels are no longer broadened. 
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However, Keffer9l demonstrated that the line-width at low temperature 

due to zero-point motion of the spins (purely a quantum mechanical effect) 

approaches a- non-zero value. This value vanishe's in the classical limit 

(i.e, asS gets large but the overall magnetization is held constant). 

This effect arises from the non-secular terms in the dipolar Hamiltonian, 

which can only contribute to the relaxation if the Zeeman levels are mixed, 
)'H 

as in the case where J >> _....£ .This mixing is discussed by Anderson and 
n. 

Weiss92 and also leads to the so-called 10/3 effect. 

However, for our samples, M(T) was alrendy down to about half of 

its values at T=O for T=T , so that in the paramagnetic region, the loss 
c 

of disorder in the dipole distribution, as T is approached from above 
c 

is probably a small effect. 

Thus, combining our results, we find 

c 
= 'Y T 5.1.20 

5.1.20a 
2 

= coD 't" 
c 

where -r 
c 

is the appropriate correlation time between random changes in 

the dipole 
2 

distribution, C==N f.L /3~, and f.L is the mgnet ic moment per 

carrier. 

This relation is modified by yet another process as the Curie 

temperature~'is approached from above. The onset of short :range order has 

b h 
10 . t . t od l t. l . een s own to ln erfere Wlth he exchange m u a lon process, s owmg 

the random modulation rate down somewhat as the Curie temperature is 

reached. This becanes significant at a temperature about ten per cent 

above the Curie temperature. This number is a consequence of the number 

of nearest neighbors of each site. Thus, in order to extract the 

microscopic relaxation rate fran the observed linewidth data, we must 
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apply equation 5.1.20 to data corresponding to temperatures higher than 

T by at least ten per cent. 
c 

We now consider the problem of calculating roD and 't' c for our band 

magnet. We recall the impor'tant features of the model we are using. We 

are considering a band of mobile electrons, which are in rapid mot ion. A 

fraction (1 + 0/2 .of these~ electrons have spin up,. and the rerilaining fraction 

(1 -£)/2 have spin down. . At any particular lattice site, an electron 

resides for a time, 't, then hops to a neighboring site, and is·;replaced 

at the or~ginal site by another electron. Since there are more spin 

up electrons than spin down ones, the average magnetic moment at each 

..a. 
site, when averaged over many hopping times is g 1-!b S • s. As the t 611pera-

ture is increased, the fraction of electrons with spin up decreases, so 

the average moment associated with each site decreases. 

The origin of aniso~ropy in a ferromagnet is a static process. 

In section 4.4, we associated the quantum mechanical average value of 

the moment per site with each lattice site. We then calculated the 

quantum mechanical expectation value of the energy of orientation of 

the average moments. 

The relaxation of the spins, hcwever, is a dynamic process. We 

must therefore, treat our system as a collection of rapidly moving 

individual electrons when we attempt to calculate the relaxation rate. 

One can show that the hopping time for such a system is given 

roughly by 

5.1.21 't'h = ~/E = 1/ro.h op o op 

where E
0 

is the band width, or Fermi energy. The electrons also exhibit 

an exchange interaction with each other. The exchange interaction between 

two electrons near the same site is the full molecular field ~ et, which 
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we call J to conform to the literature. These two electrons also experi-

I 
ence the full pseudo-dipolar ctnteraction strength, appropriate to S=l/2 

electrons, D. Thus, the dipolar precession rate, ~:'· of these fast­

moving electrons is still given by equation 5.1.12. 

This dipolar field is interrupted by two random processes, the 

hopping rate 

5.1.22 

and the exchange rate 

(.l) 
hop E /fl. 

0 

(.l) = Jjfl. 
ex 

We mention at this point that for our weakly ferromagnetic system, 

5.1.24 J~ E 
0 

It is intuitively obvious that the modulation rates fram independent pro-

cesses are additive. That is, the net modulation rate is tle sum of tbe 

two individual modulation rates. Then we generalize equation 5.1.16a and 

obtain 

5.1.25 

where 'L ~ fl/E ~ fl./ J. 
0 

2 
co . 2 

~ D - ~ { 1/2) coD -r ru +co ex hop 

This can be written, using our expressions for coD (5.1.12) and~ (5.1.23) ex 

5.1.26 2 
D .. jJ 

In order to extract l/T2 from the observed linewidth data, using 

9 
equation 5.1.20 we must also calculate C = N f.J.- /3 ~. It is obvious 

from our present discussion that since we are dealing with the effects of 

rapidly moving individual electrons, the value oft he mcment, f.J., we must 

use to evaluate C is the magnetic moment of an individual electon, 

5.1.27 IJ. = g ~ s 

s = l/2 

'' 



' . 

thus 

We recall that our expres.sion for the anisotropy constant is given 

by an expression, equation 4.4.30, 

We thus have a relation betwee~ T
2 

(i.e., the linew<idth) and K1 (0) (the 

anisotropy constant at T (o). 

This relation was discussed by Cooper and Keffer
85 

for a localized magnet 

(s = 1). They showed that if the anisotropy does not arise from any 

(pseudo-) quadrupolar interaction terms (see our discussion of the ani­

sotropy), that the linewidth and K
1

(o) should vary as D
2/J. However, 

they also pointed aut that at finite temperatures, due to lattice expan-

sion, that the coefficients D and J may become (slightly) temperature 

dependent. They estimate that-: the ratio D
2 /J may change by as much as 

5J per cent between T=O and T=T • Then our relation, equation 5.1.29 
c 

should be modified: 

5.1.30 

where f(T) probably lies in the range 1/2 < f(T) < 2, for T only slightly 

higher than T • c 
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B. Data and Discussion 

In figures 20a~d, we show raw linewidth vs •. temperature data for 

several of our samples. 

The decrease in linewidth with increasirig temperature for Ni80~0 
is attributed to the decrease in anisotropy occurring as T is approached 

c 

from below. 

In figures 2la-c, we plot the individual spin relaxation rate, l/T2 

vs. temperature, using equation 5.1.8, 8a, 9, and using 5··1.·27 for the 

value of C. 

In figure 22 we plot the composition dependence of 1/T2 for the 

spins in the paramagnetic region by evaluating l/T2 at T = 1.1 Tc or 

greater. Included on this plot is the value for pure Ni found by 

Salamon. 

Also shown in figure 22 is K1 (0)/£
0

2 vs. concentration, multiplied 

by a factor to make these two quantities equal for pure nickel~ According 

to equation 5.1.30, these two curves should follow roughly the same con-

centration dependence. 

It is apparent from this plot that equation 5.1.30 simply does 

not describe our system with the values of l/T2 determined according to 

our discussion. 

In figure 23 we show a plot of K1 (o) vs. concentration as well as 

l/T2 vs. concentration, the K1 .plot again suitably normalized. In this 

case, we find excellent agreement between the two curves. 

The fact that K1(o) and the values of l/T2 observed by using 

equation 4.1. 20 scale together as s decreas·es, strongly suggests several 
0 

I 

i 
I 

' I 
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important modifications in our microscopic model of our ferromagnet. 

First, we must acknoWledge the fact that we are dealing with a band of 

e:Iectrons constructed from localized d-stat es which overlap in space with 

their nearest neighbors. Thus, there are, in reality, two types of ex-

change in our system. The first is the large intra-atomic exchange, 

resulting fran the intra-atomic Coulomb interaction between all the d-

electrons associated with an atomic site. This interaction tends to lead 

to the formation of local moments. This was discussed by Anderson93 

when he attempted to explain the formation of local moments in dilute 

alloys of magnetic elements in non-magnetic hosts. 

The second type of exchange is the inter-atomic type, resulting 

from overlap of neighboring atomic wave functions. It is much weaker 

than the first type, and is responsible for the ferromagnetic alighment 

of the local moments. 

We will discuss· this model further, but first we will t;!Onsider tbe 

consequences of such a model with respect to the relaxation rate. 

Let us assume that the intra-atomic exchange .. results ·in the formation 

of localized magnetic moments, which, .for certain ranges of the parameters 

describing the system, may have small amplitude. That is, 

<s.) -' 
5.2 .1 = ~ s. 

l l 

-4. 

5.2 .la I s.l = 1/2 
l 

wloc)i 
..,.:0. 

5.2.lb = g f.Lb(Si) 

where i denotes a random lattice site. 

We further assume that these moments remain constant in magnitude as the 

temperature is increased to above the Curie temperature, but are allowed 

to beetlne disordered. Then the dipolar interaction of t h~se reduced moments 



between neighboring sites can be written in the form (following equations 

4.4.16, 18, and 25) 

5.2.2 J:!D. = D lp 

v1here f(a:.) is the appropriate function of the direction cosines· a:. between 
l l 

the spin directions and the crystallographic axes. Or, re-ordering the 

terms 

5.2.2a J:!. 
Dlp 

~ 

(S.) 
l 

~ 

• (D • (s2 ) X f(a:i)} 

It is the quantity in the brackets which causes the diploar precession of 
--..\> 

the random ·spin site (s
1
). We see that the precession rate ~( ~) is 

reduced from the value corresponding to ~=l by a factor of ~. That is 

~ • ill 
. D 

Of course, these reduced moments now arise· from very rapid fluctua-

tions of localized atomic wave functions. The magnitude of the moment 
-,l,. 

associated with one of these instantaneous state is g ~b S, but these 

states fluctuate at the very high intra-atomic exchange rate, ill. t 
ln ra 

Jintra/li , and time-average to the smaller, observed state with 
-4 

moment, ~ · g ~b S. 

One might then expect that each magnetic site is infl~enced by the 

large dipolar interaction with its nearest neighbors. The precession rate 

due t0 the instantaneous dipole moment is the full dipolar rate, ~ = Djli. 

However, this moment is modulated at the very high rate, ill. t , which is 
ln ra 

so rapid, that the overall contribution to the relaxation rate, 

l/T2 = (l/h)(D
2 /J. t .. ), is small enough to be dominated by the dipolar 

· · ln ra 

interaction between time .. averaged quantum mechanical expectations of these 

localized states. 
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These reduced moments are modulated by the inter-atomic exchange 

couplings with their nearest neighbors. This modulation rate is given by 

5.2.4. 
Q) = ex 

6E 
ex 

where 6 E is the energy difference between two localized states being ex 

in the parallel configuration, or the anti -parallel one. (This can be 

demonstrated by general uncertainty-principle arguments.) We showed 

during the discussion of the anisotropy, that 

6E 
ex 

Then the relaxation rate between the reduced localized moments due to the 

inter-atomic exchange modulation of the dipolar interaction between these 

reduced moments is now 

5.2.6 

This is essentially the same result we obtained from equation 5.1.26, 

during whose derivation the intra -atomic exchange was neglected. 

However, the formation of these localized states also changes the 

value of the Curie constant C appearing in equation 5.1.20 which we used 

to calculate T2 from 6 H. 

The expression for C is given by 

c = 

In the Stoner model, the electrons acted independently, and their magnetic 
~ ...... 

moment, per magnetic carrier, was ~ = g~S. In the present model, the 

electrons associated with a lattice site are coupled to a state with re-

(T.') d uced moment ,.... ~ g~S. We assume this coupling to be independent 

of T, so these states maintain a constant amplitude as the temperature 

is :i.ncren.s,ed above the Curie temperature. The observed decrease in magneii-
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zation arises from the disordering among the localized states, as in any 

other localized moment magnetic material. It is clear tbat the Curie 

constant for such a system is determined by the reduced moment. Then 

we write, using the fact that ~ (T) = ; : 
0 

5.2.8 c(;) c(; ) 
0 

Then equation 4.1.20 becanes 

5.2.9 c (so) 
l:::.H = 'Y T 

H. 'l ',' \ 

iVf ---; 
5.2.10 c ( s =1) 

H· ~ ,;s ~) t:::.H 
0 

= 'Y T iVf '12 • 0 

It is the quantity in the parenthese which was determined by:~applying 

equation 5.1.20 to the observed linewidth data, using the value of C 

appropriate to the Stoner model (i.e. C (;=1)). 

present model, we have actually determined (:~ 
:2 

Thus, according to the 

The discussion of the anisotropy, which was based on the average 

value of the localized moment was independent of how this reduced average 

localized moment arises, i.e., whether it is due to inter-atomic hopping 

or intra -atomic coupling, Thus, the results of that discussion are valid 

in this model also. Then combining equations 4.4.30 and 5.2.6., we 

see that equation 5.1.30 is still valid. We re-write this equation in 

the form 

5.2.10 ( ~·. • s 
0 

2
) = K

1 
( 0) • f ( T) 

•2 

which now agrees with the experiment (figure 23). Thus, with the assump-

tion of a localized state, and consideration of the effect of this 

assumption on the Curie constant, we obtain excellent agreement betvreen 

the expected variation in the anisotropy and the observed linewidth. 
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The two assumptions central to this result are: 

1. Very strong intra-atomic exchange, which provides localized 

moments which vary with alloy composition. This interaction also provides 

a very rapid modulation of the individual atomic states forming these 

moments, which masks the effects of the dipolar interactim between the 

instantaneous values of the localmoment ... 

2. These local mcments remain essentially constant in amplitude as 

the temperature is increased. This contributes a Curie-Weiss term to the 

paramagnetic susceptibility, but with an amplititude corresponding to the 

small localized moments. Since these :moments remain constant in amplitude, 

ruD remains essentially constant as T is increased. 

Such a microscopic model of a ferromagnet has been discussed by 

a number of authors. 

. 94 h Lederer and Bland1n described one sue model. They present a 

Hartree-Fock description of the magnetic electrons in which both the intra-

atomic exchange and the ordinary exchange stemming from the inter-atomic 

interaction are included. They showed the intra -atomic coupling contributes 

a term to the total energy of the system which makes it favorable to 

create local moments, and the inter-atcmic excha~e makes it favorable 

to align these moments. They discuss three possibilities: 

l. Both of these terms are weak. This case leads to a non-magnetic 

state. 

2. Intra-atomic exchange is just below the value necessary to pro-

duce a local moment, but the extra energy gained by'the coupling between 

such morrents when they exist is enough to cause the unmagnet ized state 

to decrease its energy and produce ordered localized states. They then 

consider the wave vector dependence of this inter-atomic coupling, whose 
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magnitude depends on the wave vector describing the distribution of these 

local moments. (That is 1 ii1 = 0 corresponds to ferromagnetism, 

1 ii1 = TI/(lattice constant) cor_responds to the classical anti-ferromagnetic 

distribution, and other values of q describe various anti-ferromagnetic 

spin density wave states. )95 By raising the temperature in this type of 

substance, one destroys the order and therefore one losesiitsccontribution 

to the energy. Thus, above the transition temperature, the system becomes 

non-magnetic, with no localized moments. They suggest that this describes 

the case of chromium, which is a spin density wave anti-ferromagnet 

below its transition temperature, but has no local moments above this 

temperature.96 

j. The intra-atomic exchange is very strong. This leads to local-

ized moments at all temperatures. These moments order below a critical 

temperature depending on the strength of the inter-atomic exchange. 

Above this temperature, one obtains a disordered array of local moments. 

A similar model was also discussed by Liu.97 This author generalizes 

the Anderson model, which we have mentioned. The Anderson model explains 

the existence of magnetic moments in certain dilute alloys of magnetic 

solutes in non-magnetic hosts. According to this model, the d-electrons 

interact with each other at a particular atomic site via the intra-atomic 

Coulomb interaction, and with the conduction electrons via the s-d ex-

change interaction. The d-states are broadened by admixture with the con­

duction electron states into a band as a result of Jsd' and split (up 

states from down states) by the intra-atomic exchange. Anderson showed 

that for certain ranges of the parameters describing these interactions, 

there is a net difference in the occupation numbers of the spin directions 

associated with each atom. This difference in occupation numbers gives 

rise to the localized moment associated with the atom, and may be non-
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integral, as in the band picture. Then at low temperatures, when the spins 

order (assuming there is an additional interaction present to cause them 

to do so), the magnetic moment per site may be a (small) non-integral 
I 

number of Bohr magnetons. 

Liu demonstrated an interesting feature of this model. He calculated 

the magnetic susceptibility fran this model and showed that in the para-

rragnetic region the number of Bohr magnetons associated with each site, 

as determined by the magnitude of the Curie constant describing the 

observed susceptibility, can be greater than that deduced from saturation 

magnetization measurements. The ratio of these two quantities depends in 

a complicated way on the values of the parameters describing the system. 

Basically, this arises from the fact that the external field causes an 

enhancement of the magnitude of these local moments. This fits in very 

nicely with our observed magnetostatic measurements. 

He then extends the Anderson picture to a collection of dense (rather 

than dilute) Anderson local moments, and includes the effects of the 

overlap of neighboring wave functions. He shows that this overlap leads 

to an exchange interaction between these moments of the Heisenberg type 

between neighboring moments:' 

5.2 .11 ;u 
exch 

He also shows that this model gives rise to spin waves and critical fluctua-

tions. He present additional evidence favoring this model, based on Fermi 

surface measurements which he relates to predictions of this model. The 

reader is referred to this paper _for further details about this model. 

However, our data seems to indicate that this is the type of band 

approach necessary to explain the magnetic behavior of our system. 

'/ . 

·: 
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C. Spectroscopic Splitting Factor 

The g~value for free electrons is about 2.00. In a free atom, the 

g-factor differs from this value, due to the spin-orbit interaction, which .. 

couples the spin moment, with g=2, to orbital moment with g.=l. In a 

ferromagnetic metal, the orbital angular momentum is quenched.
4 

However, 

as we have discussed, the spin orbit interaction is still present. It is 

still able to change the energy splitting between adjacent Zeeman levels 

from the value corresponding to the g.=2 case. This change is treated for 

the localized moments case by Slichter 75 and for the band model by Brooks. 79 

The fractional shift in g in both cases is of the order 6gjg-;::::.Ajb., where 

A is the spin orbit coupling parameter and b. is the splitting between 

the origh1ally degenerate orbital states, which are mixed and split by 

the crystalline field. 

Another mechanism causing g-shift is the s-d exchange interaction. 

It occurs in a manner analagous to the Knight shift in NMR. 98 The frac­

tional g-shift from this mechanism is about J sd/Ef. 

We present our spectrographic splitting factors for our samples 

in table I. We note that there is relatively little change in it over 

the entire range of composition covered in our experiments. This wruld 

indicate that the band structure is relatively constant. 
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Table I. Spectroscopic splitting factor as a function 
of alloy compositio~. 

Nickel •'· 

concentration 
(at.%) g..;factor 

100. 2.22 ± .0) 

90. . 2~4o ± .10 

so. 2.32 ± .05 

70. 2.26 ± .:o8 

66.7 2.30 ± .05 

64. 2.30 ± .10 

6o. 2.4o ± .15 

.,, 

,..-· 
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VI. SUMMARY AND CONCLUSIONS 

We have seen that ill order to explain same of the magnetic propei'ties 

of the nickel-rhodium system, i.e., the continuously decreasing saturation 

moment, relatively large paramangetic susceptibility, and low temperature .> 

high field differential susceptibility, we must abandon the traditional 

or localized moment description in favor of a band approach. 

The simplest such approach has been treated by Stoner, and his 

results have been expanded by many subsequent authors. This approach treats 

the magnetic electrons as a conduction electron gas, but account is taken 

of the exchange arising from the electron-electron interaction, as well 

as the Fermi statistics required to describe these electrons. However, 

we have demonstrated that this approach is an aver simplication in the 

case of Ni::-Rh, although it has met with a great deal of success in describ­

ing the weakly ferromagnetic intermetallic compound, ZrZn2 • In the case 

of our system, the predictions of this theory do not agree with tbe 

experimental observations of the composition dependence of tbe saturation 

rr.agnetization and the paramagnetic susceptibility. Like the Stoner model, 

a more accurate description must assod.a.te a small magnetic moment, whose 

magnitude varies with alloy composition, with each atomic site. This 

assumption is suppo~ted by our anisotropy data, and is consistent with 

the other magneto-static data. B,y examining the electron spin relaxation 

rate as a function of alloy composition,·, and comparing it with the 

observed variation in the magneto-crystalline anisotropy, we can draw 

certain conclusions about the microscopic nature of the magnetic state. 

Our data bas indicated that central to this problem is the intra­

atomic exchange interaction, which is responsible for the formation and 

composition dependence of localized magnetic moments. This interaction, 
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in addition to the inter-atomic exchange inte.raction, which causes 

these localized moments to order into a ferromagnetic state at sufficiently 

low temperature, is responsible for tbe magnetic behavior of the system. 

Our system, then, may be thought of as being distinct from ZrZn2, 

the latter seeming to be well described by the more simple Stoner model'. 

This is understandable, as ZrZn2 is composed of two non-magnetic elements. 

Neutron diffraction studies have demonstrated that the spin density is 

quite large between lattice sites. Thus it may well be that it is simply 

a fo~tuitous accident that tbe density of states at the Fermi level 

and the exchange parameter for this material have the necessary values 

to creater ferromagnetism in the way described by the Stoner model. 

In the case of Ni-Rh, however, the alloys are composed of one 

magnetic element, diluted with a non-magnetic one. In the case of pure 

nickel, the magnetic electrons, while certainly mobile and band-like, 

retain a tight binding form. Th~ are, therefore, to be considered as 

being strongly associated with tbe individual nickel lattice sites. Thus, 

as rhodium is added to pure nickel, one might expect that the magnetic 

moments are still closely related to the lattice sites (whether only the 

nickel sites, or both the nickel and the rhodium sites), and the descrip­

tion of our system should really start with this idea as a basis. This 

is indeed the basis of the Anderson model, and the generalization upon 

which we have based our purposed description of Ni-Rh. 

J 
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FIGLJRE CAPI'IONS 

Microwave cavity and temperature control unit. 

Faraday',s Law magnetization measurement unit. 

Figure 3 has been deleted. 

Schematic representation of the distribution of electrons in 

the spin-up and spin-down states. a. non-magnetic case. 

b. strongly ferromagnetic case. c. weakly ferromagnetic 

case. 

Schematic representation showing the transfer of electrons 

necessary to proceed from the non-magnetic state to a magnetic 

state. 

Relative magnetization and Curie temperature vs. relative 

exchange parameter in the Stoner model. a. Relative magneti-

zation, ~O' versus relative exchange interaction strength, 

~e'/Ef' with fourth order exchange coefficient, A = .10. 

b. Same as (a); except A = 0. 

c. Relative Curie temperature, ~Tc/Ef versus relative 

exchange interaction strength. 

I 
2 . 

3nsat (qc ) versus the relative maggetization, ~O' in the 

Stoner model. Here nsat is the magnetic moment per atom in 

units of Bohr magnetons. as determined by saturation magnetiza-

tion measurements and q is the magnetic moment per atom 
c 

as determined by fitting the paramagnetic susceptibility to 

a Curie-Weiss law. Upper curve is evaluated at T = 2Tc and 

the lower curve is evaluated at T = 1. 5 T :, where T is the c c 

Curie temperature. 



Fig. 8 Saturation magnetization at T "'=' 0 vs. nickel concentration 

for Ni-Rh. Saturation magnetization is expressed in units of 

Bohr magnetons per atomic site. 

Fig. 9 Curie temperature vs. nickel concentration for Ni-Rh. 
: . 

Fig. 10 Saturation moment per atom vs. Curie temperature for Ni-Rh. 

Saturation moment is in units of Bohr magnetons. 

Fig. lL: · Relative magnetization, s0 , vs. nickel concentration. so is 

determined by assuming each Rh atom added to the alloy con-

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

tributes one magnetic carrier to the magnetic band. 

Relative magnetization, s0 , vs. nickel concentration. so is 

determined by assuming each Rh atom added to the alloy con-

tr.ibutes 1. 5 magnetic carriers to the magnetic band. 

Relative magnetization, s0 , vs. Curie temperature for Ni-Rh 

is determined by assuming each atom of Rh added to the alloy 

contt±liutes one hole to the magnetic band. 

Magnetic moment per atom of alloy vs. nickel concentration. 

~ is the number of Bohr magnetons associated with each 

atomic site, as determined by the paramagnetic susceptibility. 

Here, (q 2 ) is the square of the Curie magneton number, which 
c 

is determined from the slope of the inverse susceptibility vs. 

temperature curves. 

Relative positions of spin-up sub-band.c:and spin-down sub-band 

for a band ferromagnet. (a) Strong ferromagneb Shows energy 

gap, 6, between top of majority carrier sub-band and minority 

carrier Fermi level. (b) Weak ferromagnet. -There is no such 

band in this case. 

:!_ 



I Fig. 16a 
·. ~ 

i' 

Fig. 16b 

- Fig~ 16c 

Fig. 16d 

Fig. 16e 

Fig. 16f 

Fig. 17 

Fig. 18 

Fig. 19 

Fig. 20a 

Fig. 20b 

Fig. 20c 

Fig. 20d 

Fig. 2la 

Fig. 2lb 

Fig. 2lc 

Fig. 22. 

Fig. 23 

Square of magnetization vs. square of temperature for 

Ni. 667·-Rh. 333. Here T is the Curie temperature and M is 
c 0 

a convenient normalizing constant, chosen near M(T=O). 

Magnetization vs. (T/T )3/2 
c .· for Ni~667-Rh.333' 

·same af3 Fig. 16a, except alloy composition is Ni .70-Rh.30' 

Same as Fig. 16b, except alloy composition is Ni.70-Rh.30' 

Same as F:Lg. 16a, except alloy composition is Ni.75-Rh.25' 

Same as Fig. 16b, except alloy composition is Ni.75-Rh.25' 

Anisotropy constant vs. nickel concentration for Ni-Rh. 

Numbers on figure denote temperature at which the anisotropy 

was determined. 

Anisotropy constant (at 4.2°K) vs. alloy composition. 

Anisotropy constant (at 4.2°K) vs. square of saturation 

magnetization. 

Magnetic resonance linewidth vs. temperature for Ni.667-Rh.333' 

Magnetic resonance linewidth vs. temper attire for Ni.70-Rh.30' 

Magnetic resonance linewidth vs. temperature for Ni. 75-Rh.25' 

Magnetic resonance linewidth vs. temperature for Ni.so-Rh.2o· 

Relaxation rate vs. temperature for Ni_ 667-Rh_
333

• Determined 

using Eq. 5.1.20. 

Relaxation rate vs. temperature for Ni.
70

-Rh.
30

• 

Relaxation rate vs. temperature for Ni_
75

-Rh_
25

. 

Paramagnetic spin relaxation rate vs. alloy:.~composition. 

Also shown is the function of anisotropy, K1(o)j~0
2 to compare 

with Eq. 5.1.30. 

Paramagnetic spin relaxation rate vs. alloy composition. Also 

shown is the anisotropy constant K1 (~0 ~ as a function of alloy 

composition. 
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resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 
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