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vdislocations;'or jog line, being formed aldng the édge of the shifted
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The glimb mechanism for dissociated dislocations may be sffongly
depehdent_oq éuch conditions as the point dgfeét concentration and the
stackingvfault energy. Expérimentally; the direct way of sFudying such
a climﬁ is to observe, after a convenient hard quench, the groﬁth and
the shrinkage.of those dislocations which are produced in order to
€liminate the exces; vacancies. In many f.c.c. metals of medium.or
low stackiﬁg fault energy, these.dislocations are'found to be éithéf

-

stécking fault tetrahedra of Frank loops, i.e. a prismatic 1/3<flll7 '

imperfect dislocation loop boundiﬁg a faulted region of a (111) plaﬁe. .

'Two different climb processes can be investigated:

(1) during the ageing following the quench, loops grow.by climb in the

preéence of a high supersaturation of vacancies. Climbing should then

take place by locally shifting  the stacking fault, a dipole of imperfect .
region.(l) This mechanism requires a strong thermodynamié driving force
and is expected to operate only for low stacking fault energy'and high

point defect supersaturation. Clarebrough and Morton showed recently( )
clear experimental evidence for this mechanism in quenched silver, and

some copper—-aluminum alloys.

(2) An entirely different process should occur during subsequent annealing

at temperature high enough to observe the shrinkage of these loops.

Climb then occurs under nearly equilibrium vacancy concentration throughout

(3)

the crystal. Ledges, jog lines or imperfect dipoles are unable to
develop, so the preceding climb mechanism must be ruled out; instead climb

probably takes place through jog diffusion.
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The purpose of the following is to study this last climbing prbcess
- in relation to the annealing out of Frank loops in low stacking féult,>

energy metals. In these metals, dissociation of Frank loops makes their -

annealing more difficult. It is easy to show that a Frank dislocation

should dissociate into a Shockley and a stair rod dislocation, the disso-

ciation width beipg, for the infinite straight Frank dislocation:

ub2
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where y is the stacking fault ehergy,'b the smallest lattice.period,

p and v the shear and Poisson modulus. Reasonable valwes of Y(A) yield

appreciable width in metals such as gold, do ¢ 5b (y = 30 efgs/cm?f

or silver, d

o = 15b (y = 18 ergs/cmz). As a result Frank 100psuare;

formed. in polygonal shapes, for example, as fruﬁcated stacking fault
tetfahedra, with thé initial (111) fault boundaries along the three
<110> stair rod directions of that plane and with féulted ribboné 6n»
‘the thréevothéf {111} planes. 1In order to causé>shéh a trunéa£éd tetra-
ﬁedra to climb orvshfink, an energy bafrier has to Ee overcome;: thé
shoit stair rbd segment formed‘at a cofnér has first to be dissoéiﬁted
into two attractive shockleys, resulting finally in the forhation of a
short length of a new 120°-edge on the ioop (fig. 1). This climb nuclé-
apion process is described in Part I, whilé Part II of the paper dealé
with the resulting steady state climb and the corresponding annealing'
kinetics. h

The nucleation step needed to starf climb consists in the evépo—
‘ration of’é few vacancies .from loop corners, resulting in a critical

blunting of corners of the intitial truncated tetrahedron. Following

the usual nucleation theory, the activation energy should be the sum
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of the self diffusion energy and the tép energy.of the barrier to

be overcome. This energy barrier is strongly dependent on the Stack- _

ing fault energy. It is found to be negligible for stacking fault

energy y larger than 4.v10—3 ub, i.e. a dissociation width smaller
than' 7b, while increasing rapidly for lower stacking fault energy.

Values as high as 3 or 4 eV are reached for y = 2.10_3ub. Accordingly

Frank loops in gold should shrink as soon as self diffusion becomes

active; -any 1odp stability at higheritemperature,-as observed errati-
cally, (5)-(7) should be due to impurity pinning. In contrast, for

silver, the activation energy is computed to be 5 or 6 eV, i.e. there

.should be no 6bservable loop shrinkage, even at temperature as high

as 1000°C. |
'Howéver, 1bops have sometimes been observed to shrihk in éilﬁér(G)
at about 600°C.. To explaiﬁ these observations, é modification to the
usual nucléatioﬁ theory has recently beenrpropdsed by the author. It
is éhown that for some cases, including loop shtinkage, the rate cpntfol—
ling activation energy might be given not by the top energy, but by an
eneréy associated with some of the initial steps up the energy barrier.
This can be true if configurations are periodically reached far below the

top of the energy barrier for which the backward process, going down the

hill, is much harder than the forward process, going up the hill. This

modified nucleation theory can explain loop shrinkage in silver and

alloys of low stacking fault energy.

Finally, it is suggested that tetrahedra should collapse to Frank
(9) '

loops much more easily than usually assumed. The energy barrier is
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very éimilar to that forbinitiation of shrinkage of'é triangular
Frank loop. As a result, while élmost Eé;b;rfiér_ié expected in the |
case ofvgold; it increases upvtovabdut 20 eV for silver. However, the
modifieq nﬁcleation theory fredicts possible tetrahedra collapse eveﬁ-
fof.silvér. Similarly impurities can pin the fetrahedra éornérs véfy
strongly, explainingeratic dbserved behavior. The difect observationé
of Yokota:ahd Washburn fully Suppoft this collapse model in gold. In - %'
low étacking fault metals, further experimental observation§ are needéd 2
fof:teéting the modified nucleétion‘theory.

In the following, we explain first our climb model, thép we give
numericalrresulfs, beginning with the energy barrier obtained for loop
shrinkage; tetrahedra'coliapse is~thén discussed a little mbfé ektensively.,
The‘nucieation tﬁeory is finally presented, befofe éompéringsﬁith_ekper-_
imental data. | | | |

Throughout the deriﬁatioﬁs; we use the standard lihear,.isotropic
elastic.theofyj however,:for coré—like‘problems assoqiated with elémentéry
jogé dn dislocation iines it is realized by the author that oniy'afSemi—
quantitative approaéh ean be cléimed. | |

1. Climb Model

Direct electron microscope obsérvations show polygonal Frank ioops
climbing much more comsistently at 120f-corners than at 60° corners (see
ref. (5) for copper and (7) for gold). Yokota and Washburn related
the higher climb efficiency of 120° corners to the dissociation of
Frank lbops (fig. 1). It is seen immé&iately that easiér jog nucléafion
should occurlat those corners where dislocations are necessarily con-
striéted, as opposed to 60° corners where_short étair rod segmeﬁts form

to stabilize the loop. TFollowing Yokota and Washburn, we assume that
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bc11mb by jog nucleation and diffusion can only start at those 60°
corners.whefe néw 120° edges are formed. In Paft I of thevpaper, we
‘are céncerned with the nuéleation of such a new 120° edge on a tri-
angular Frank'loop; Thehclimbing pfocess itself is studied in'Pért_II,
i;e. the activa;ion energy for steady state climb, and the growth of
these newly formed 120° edges. |

To study the nucleation of stable 120° edges; fhe model pictured
Iin fig. 2‘i$ considered. Thomson tetrahedron notations‘are used.
A stair rod segment is splif at.a corner followihg the.reactiop Sy -
By + 6B, resulting in a short new 120° Frank segméﬂt»PQ and two
attracfiVéIShockleys PR, RQ. Since the total loop area is réduced,
this dislobation structure requires the evaporation of a few vacancies
from the cqrﬂer, and is equivalent to the ﬁon4conservative motioh of
the Frank segment PQ. Two'simplifications are.introdUCed. Because
the critical length PQ we found was alﬁays small, of the order of the
normal dissociation width d , we consider PQ as an undissociated
Fraﬁk diélocation; Also, the Shoékieys PR, RQ ére aésumedlto be
stréight segments, so that it is possible to cbmputevthé toEal loop
energy forlany.given triangle_PQR as tﬁe éum of interaction energies
between two straight dislocation segments, the expfession for thch is
well known.(4) | |

" We éarried.out calculations with a CDC 6600 computer. Details of
the_comp@tation are given in the Appendix. The triangle PQR.is‘defined
by fﬁo-parameters, the length PQ and the.angle (RO, RQ). For a fixéd
length PQ, the'point R is first chosen along the.edge OR so as to mini-
mize the.total energy. This minimum energy is then plotted versus the

length PQ to show how the loop energy varies during shrinkage.

i
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wThéléeneral shape of thé cﬁfvénié‘easy to exPiain.. At.largeyvalués

of PQ, fhe loop ehergy deéreaseé.fofbincreasing PQ due to.the reduétion
of total diSlocafioh line length. For small PQ, this reduction in

line e;efgy is balanced by an energy increase due to the dissociation

16f thé stair rod into two attraétivé Shockléys at the loop corner. If
Fhis'stair'rod is.long énbugh,»or thé stacking fault énergy low enough,
the'diSééciation term may preVaii in the total energy, resulting in an
initial inctease in the energy vérsﬁs PQ diagréﬁ,'followed by‘a ﬁniform

decrease, i.e. an energy barrier configuration (fig. 3). Numerical

values of this barrier are discussed below for the shrinkage of Frank loops .

!

followed by the application to tetrahedra collapse.

2. TFrank Loop Shrinkage

Figuré'B-éhowé nﬁﬁéricél résulté obtained for'Ffank loop shrink-
age iﬁ gold as an‘illustrative'e%éﬁple. ‘Thé'energy Bérfier fér nucle-
ating a new i20° edge from é sharp 60° corﬁer béha&eé>differently,
depenaing on the sgacking fault energy: | |

(i) Noxeﬁergy barrier ié fopnd for stacking fault enefgies 1arger 9? ;
equal td.4.10-3 b (do < 75). -Tﬁiévreéult depends only élightiy~.

'én‘loop>Size‘5nd on elastit constants, so it still holds approxif

mately for other f.c.c. metals. In such cases Frank loops should

shrink: continuously provided only that the necessary thermal energy

vié available for self diffusion (curves A and B, fig. 3).

(ii) E&én f6r lower stacking fault energy metals sharp 60° cornérs are
.ﬁévef stable (curve C, fig. 3). We foﬁnd invariably that blunt-
ing'é qorner.by an amount PQ = 2.5b (i.e.-evaporating three.vééén-
cieé’from the corner) stabilizes the loop by'about 1 eV, Although
continuum elastic theory is questiqnable for such short edges, it

;
|
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seems reasonable to expect some rounding of corners ffom.liné

energy considerations; A blunted corner configuration also provides

sites for impurity atoms which might strqngly pin the loop corner.
_(iii) The energy barriérf'increases rapidly with decreasing stacking

fault energy (fig; 4)§.also some size dependenée is found. Larger

loopé have 1ess‘wide1y dissociated edges, so‘have ép&iler barriers.

Critical lengths PQ are of fhe order of the dissociation width,

fig. 5; and correspond to évaporating a few tené éf vacaﬁcies.

‘Finally critical tfiahgies PQR éré foundvto be almost perpén—-

dicular to the 1o§p plane, with a ratio PR/PQ = 1.35, and the

apex R at apprdximately the center of the'originai 60° corher stair :

rod.

3. Tetrahédra'Collapse and Shrinkage

Nucleation of tetrahedra collapse is thought to be the same'procesé

as nucleation of a new edge on a Frank .loep. The shrinkage of>tetrahgdra

(10, 11) '

has been-alternatively described in the literature by wvacancy-

emission thfbugh propagation of jog lines across tetrahedron faces. How-
ever, such jog lines can grow only under a strong super or undersaturation

(1, 11)

of point defects; this last mechanism should not apply under annealing

conditions. Tetrahedra collapse is usually treated as a glide mechanism,
' (9, 12)

which is the reverse of the formation process. In order to compare

the model suggested here with this conservative collapse process, we first
. need to refine the conservative collapse model, then we develop our non-

conservative model.

+This energy barrier is computed as the energy difference between
the maximum and the minimum shown on curve C, fig. 3.
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3.1 Conservative Tetrahedra Collapse

Collapse by the reverse formation process assumes a Symmetrical;
equilateral triangle of Shockley dislocations sweeping down the tetra-

hedron'faces;(g’,lz)

SuccessiVe éonfigurations thus describéd are not
in‘équilibfium,.so do not cofreSpond to a minimum energy path.. There-
fore we have recomputed this model, allowingvthe.Shockley triangle MNO

to rotate arouna one of its sides into a minimum energyiﬁosifidn (fig.6 b).
The energy barrier sépérating the tetréhedron ffom the dissociated Frank
loop is thﬁs found to be gbout 15% to 20% smallér~(fig. 7). In cqntrast
with assigning a constanf.value'to.w, fhé inclination anglé of tﬁg friéhgle
MNO, as is usﬁall§ assumed (¢ = 60° in réf."(9) and (12),).we allowed a
continuous variation of Y during the céliapse, from ¢ = 120° for»an aiﬁost
complete tetrahedroﬁ'(x srl, OB = 0) to ¢ 60° for a.dissociatéd Frank loop
(x << 1; OB‘¥ BM = BN), ¢ being aboﬁt 90°—100° at the critical position.
in between. Another result is.that the stability diagram of Frank lodps
versus tetrahedra shows a notably reduced domain of metastablebFrank loops
(domainj(b) fig. 9). Thefefofe, in measuringA‘the stacking féu1t enefgy

(13 __ from largest tetrahedra or smallest

by the méthod of Loretto et bal.
‘Frank triangie left behind moving dislocations after plastic deformation --
it seems reasonablé+ to take the stability boundary (full curve, fig. 9)
as delimiting the range of Frank loop from the onefoﬁ.tetrahedra. That
last cufye'is obviously independént of model (6.a) or (6.b) sé thg full

curve (fig..9) is the same as the one given by Humble et al.(curve n = 1,

fig. 3. ref. (12).

tThe 1afgest uncertainty in that method is the actual nature

of the defect first formed in the process, i.e. a Frank loop,

or some intermediate between a Frank loop and a tetrahedron.

Therefore, the energy barr}g between the two defects should -
. (12,7183

not be of importance. :

«
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3.2 Non-conservative tétrahedra collapse

When temperature is high enough for self diffusion to oecﬁr there

is a much-eesief Qay for a tetrahedron to cqllapse. Curve B, fig. 10,
.shows an example of altetrahedron which cannot collapse, fig. 7, by conser-
vative ﬁdtion, although it is‘unstable by non—conservative‘mbtion, aesuming
fhe samevsiZe and the same"stacking fault energy in beth c?ses. ' The non-
conservative process on which curQe;B of fig. 10 jg based, occurs as
- does the shfinkage process explaiﬁed for‘Frank loops in paragraph 1 and
_fig. 2(b), where now the triaﬁgle MNO is supposed to be shrunk‘into the
tetrahedron epex B. That is to éay; eome vacancies‘are evépofated until
eAcritieal 120° edge'PQ is reachea, beyond.which the tqtel'energy decreases
eniformly with increasing PQ, the tetrahedron losing little by little its
vacancies. The critical iength is small, ofAfhe order of 2 to‘3 dg (fig; 5),
so it ﬁould not be visible under the electron microscope.

Whether or not a collapse iﬁto a Frank ioop occurs after passing this
energyvhﬁmp.dependsvon the relative sfability of the Frank loop and the
tetfahedron. If small enough (region (c) fig; 9j, a tetrahedron can never
collapse to a Frank 1oqp;rrather the 120° edge PQ goes on growing (éee.
for example fig. 10, curve B) until its attraction with the staif rod (CD,
Ba) prevails, reselting in the Shockley triangle (BCD, Ba) which disappears
immediately by glide. On the contrary, if the Frank loop is'aetua11y a'iower
energy configuration (region (a) fig. 9), the tetrahedron should colleﬁse
when the edge PQ is long enough to allow for glide rearrangement. Thev:
loop produced has the same blunted corner as the parent tetrahedrop, so it
should go enuevaporating its vacancies. (for proof see fig. 5).

~ The energy barrier (cpmputed as the difference between the maximuﬁ

and the minimum energy) shown as curve A, fig. 10 is very‘similar to that
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found for loops. No barrier is found for étacking fault energies-lérgef
or éqﬁéi to 7.10_3 wb (d 545b). Again, even for lower -fault énéfgies;
sharp 60° corners are not étable}’rather; tetréhedron corﬁefsishouid be
 b1unted by the éame amount aé for ioops{ eVaporafihg‘threg Vacénciéé from
| a sharp corner (PQ = 2.5b) always étabilizeé the tetfahedron,by about 1 eV
" (curve A,'fig. lO).s-Fiqaliy the energy baffier is iéw forigéid\prvcopper i
(smallér than 1 eV),-but increases rapidly‘with aécreasing fault‘énergy

(fig. 8), up to 4.5 ub3

='23eV for silver (d6 = 15b). Accordingly, as
1ong:as the méximum energy of the barriér is considered, tetrahedra |
collapse by this ﬁechanism remains difficﬁlt for low fault'energy ﬁefélé,
although being qﬁite efficient for iptermediaté fault eﬁergy metals; '

However, we show in the next section that the rate controlling energy

should not always be considered to be the maximum energy of the bérrier.

4. A Modified Nucleation Theory
This modification to the usual nucleation theory has recently been

(8)

proposed by the author; a brief account is given here, taking as an

example the Frank loop shrinkage.

Let us firsf éonsider ﬁow fBe ﬁéual nﬁcieatioﬁ #heéry(15) descfiﬁes
the building up of a new 120° edge on a Frankbloop. In order to reach
the critical 120° edgé,:which has the méximum energy, vacancies have to

be evapbrated one by one, through a series of bimolecular equilibrium

reactions:

(2)

Q
+
[N
2
e
+
=

where o is an atom of the metal and i is the triangle shaped cluster
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of 1 atoms which already fills in the loop corner. Any i-sized cluster
is thué growing both By a forwar& reaction, a + (i.f i) + i, which is
assumed to be élow éince_it is going up the hill;.and by a Béckward
reaction; i+ 1 +>& + i; whiCh is considered to be fast since it brings
the system tb a lower energy state. Solving the whole set:of such equi-
'libriums for steady state conditions yields a rate of nucleatibn depending
only on the top energy of the barrier through an Arrhenius type law.(lé)
We would point out, howevér, that for certain types of cluster j, the

backward reaction j > j - 1 may practically never occur because the forward

reaction j » j + 1 is so much easier. Consider for example the simple

case where a iength PQ = (n + 0.5) b is left free of jogs (fig. 11), after

evaporating a number j O.Sn(n‘+ 1) vacancies (where n is an integer)_from
a loop corner. To evaporate or condense other vacancies; a joé(must then
be nucleated at the corner P, and propagated by diffusion along PQ. It

is éasyvto see that evaporéting a vacancy (forward reaction j + j + 1)
requires a much easie: jog nucleation (nucleation type (1)) than condensing
a vacancy (backward reaction, j » j - 1; nucleation type (2)). Such a

(3)

jog difference has been invoked to explain, in high stacking fault energy
metals, Why:prismatic lodps grow in a polygonal shape (involving the type
2 of jog nucleation) and shrink in a round shape (typé 1). Even é.rqugh

estimation, using the standard elastic theory and following the procedure

. given in the appendixt yields an energy difference between jog (2) and

tAU should not be very dependent on the dissociated structure
of the Frank loop. Accordingly, AU is computed here for an
-undissociated triangular Frank loop (fig. 11). AU is obtained
numerically, in computing all the self and elastic interaction
terms of loop segments, for PQ = 5.5b and a loop size CD = 300b.
AU decreases slightly with increasing PQ, reaching the two thirds
of -that value when PQ is very large (PQ = 150b). '
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jog (1) of about AU = (ub?/18 1K) (1.5 + VI b/dy) = .25 eV for silver or
goida At an annealing temperature of 400°C»(kT = 0;055 eV), this means
that,_épqe an edge PQ is completed, there is a thermal érobability.about
exp (AU/KT) = 100 times higher for going forward thah for going backward.
That is to say, the edge'Pchaﬁ practically only grow, the reaction léad-
ing tové sﬁorter gdge being so much more difficult té start. In a way,

. this mechanism is similar in operation to some car-jacks: periodiéaiiy a .-
blocking devide.prevénts the 1iftéd car from going down againfv i

The kinéfics of the procéss is easily obtained. Instead of the pfe-
céding series of eqﬁilibfium reaétipns;‘see equ. (2), wé can'SQﬁmarize
the whole prbcess through a set of chain réactions:

1+ 20 > 2
n+ (atl)a > n + 1 - - (3)

n* + (n*+1)o > n* + 1
describing the building of an edge (n + 1)b long from the parent edge;
nb long, until the critical size n* is reached. The rate of the nth
reaction is expressed as v, o= kn[n], where k, is the rate constant aﬁd'
[n] the concentration of n-sized edges. Assuming a thermal equilibrium
between all.the n + 1 intermediate steps leading from an n-edge to an
. (16)
(n + 1) edge, similar to equ. (2), yields:”
kn ® exp —[(AGn + UD)/kT], AG, = G(n + 1) - G(n)
Up being the self diffusion energy, and G(n) the energy of an n-sized
edge PQ, shown for example curve C, fig. 3. Finally, to assure no

accumulation in any reaction products, all reaction rates in (3) must

be equal, ‘under steady state conditions, so:
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CvekgMll = .. = kn[hj“= o= k(0¥
This means that a highér étep AGn, or a lower k. induceé an accumuiatioﬁ
-of nuclei n, or a higher [n] until combeﬁsétioﬁ takes place so that thé
product kn‘[n] ié‘kept constant. The rate of the.whole process should
thus be: | o _.
| fv " [1] exp - [(4Gy + Up) /kT] (4)

where [1] is the initial concentration of léops and Aél % G(2) - (L
thé heightrof-tﬁe first step. - |

'In.é ﬁdre réalistic approximﬁtion; it.is hard to rﬁle out qomplétely
‘ the-poséibility éf reverse reactions on fhe very first steps of éqﬁ. (3),
because the lodp dissociation was‘neglectéd iﬁvevéluéfing AU. Form = 2,
3, or 4 it &ould be necessary tb evaluate how much energy is gained ih.i
recombining the attractive Shockleys into stair rods. As a result, if
yb is the longest edge length for which reverse reaction 6cquré, the.
final reaction rate should be given instead of equ. (4) by:

v " [1] exp - [(6(y + 1) + Up) /kT] (5)

However, the maximum energy configuration is reached atva stége far
beyondAtheée first few steps, at least for the case of 16w stacking
fault energy metals (see fig. 5); therefore the rate contrdlling energy,
G(y + 1) is exPected to be much less than the maximum energy G(n*), Fig.
12(a) and (b) give these energies G(y + 1) for y + 1 = 3, 4, or 5. Assuming
for example y = 4, it seems that the rafe controlling energy fof loop-
shrinkagé or.tetrahedroh collapse, in silvef, should be only Up + 0.8eV
= 2.7eV.

3. Experimental Comparison and Discussion

We discuss first the case of gold, in which Yokota and Washburn(7)

quantitatively investigated the annealing behavior of quench defects by
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transmission eiectron ﬁicroscopy; Then we Consider‘briefiy thé éase.of
silver, a low fault enefgy metal. ;

Bulk specimens of éold were quenchéd by Yokota and Washburn‘from
lOOOéC into an ice water bath, and aged fofVSeveial hours at a teﬁpef—
ature of115b°C. Then thin foils were Eﬁt from épecimens; and heated
oﬁtside the microscope at a‘fixed'annealing temperatufe. Dﬁring.thé
ioopé shrinkagé; the speciﬁéh‘was periodically cooled.and refﬁrned fo
the micrsoédpe to record léop size. Because_fhey observed n§ iﬁfluence
of the distance tovthe foil SUrface; either on the éhrihkage raté or on the
climb nucléation, it seemsvreésénable to neglect image effects due to
surfaces, ana to apply the'precedingvcomputations, strictly Qalid only in -
the bﬁlk. | |

A central parameter is obviously the stécking fault enefgy. 'for
gold, it.has been measuredkby the method of Loretto et. al.(l3) froﬁ’
the largesﬁ tetrahedron or thé smaiiest Frank loop found aftef plasticf
deformation. Frém thé diagram of fig. 9, an& taking as criterion thé
stability bounda?y, a value of vy = 50 ergs/cm2 and d0 = 5 or 6b is
thus obtéined. However, because the criticai size observed is of the
order of ZOOX, i.e. near the limit of resolution, these figures should
be taken with at least an error range of * 30%.

For such é fault energy, Frank 100pé should‘shrink as soon as
self diffusion becomes active. Experimental observationé show that
some loops do shrink without del;y: see fig.2, ref.~7(a), or fig. 4

ref. 7(b) loops mo. 13, 15, just below no. 10, beside no. 3, etc... v

But many other loops do not shrink at all, even during ten hours, or shrink
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somewhat;érraticaily with a delay of some hours. Such e#amples
suégeét a'strong’imphrity-pinning. We ha&e shown that the aétual
corner structﬁre ofué &issociated Frank loop is blunted. Impurity
atomsvshould diffﬁée tbﬁard'corners during the ageiné, and should be
ablevto bin‘a corner,‘prevenfing a new 120;.edge from being nucleated.
The,séﬁe'piﬁning effect probably causés some loops to shrink asymmetrically,
onlyﬁohe,apéx being éctive. Such an impurity.effecc has already been
'suggested‘by Washburn and'Yokpta.(7b) |

The most important observation.on tetrahedra is’that.numerous
tetrahedra ao cbilapse into Frank 1oopé during the aﬁnéaling. Tﬁe set
.of microgfaphs of fig. 2, ref.l7(a), or fig. 4, ref. 7(55, shows that
40% of tetrahedra have cbllapsed during‘ten.hours of annealingvat 300°C.
Surface effécts should not be involved, sinée they;dé not afféct the observed
shrinkage réfe.l Also, local heating under the éleétron beam should bé
discarded since neighboring defects are often not affected. 'Tﬁese éxper—
imeﬁfal obsefvations are not explained by the previous theorieé(a’ 95 12)
which predict a huge.energy hump between the tetréhédron'and the Frank
loop. Our non-conservative model for tetrahedra collapse (83.2) can
account for these observations. For a dissociation width.do between 5
and éb,‘fig. 8 gives an energy barrier u = 0,05 ub3 # 0,25 eV; even for
lafger dissociétion, fig.‘lZ(b), it still yields a rate controlling energy
~of about the same value. The éollapSe frequency for a four apexes tetra-
hedron should then be v = 4vy exp [-(Up + u) /kT], v, being an atomic |
frequency.‘ With ’vD = 1013 sec-l, Uy +u = 2.05 eV T = 300°C one
has v = 10-4 sec_1, givihg a reasonable probability of collapse after

one hour of annealing. The fact that many tetrahedra still remain after
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teq hours of annealing is evidence that an'impufify.pinning very similar
to the 1oop'piﬁning occurs also for tetrahedra. It is observed thét'whéﬁ
a tetrahedron collapées intova Frank loop, this loop élmost alwayslstarts
éhrihkiﬁg immediately, as predicted (see fetrahedra no. 17, 18, and fhe
one beside loop no. 9, ref. (7)). However,vimpﬁfityrpinﬁiﬁg could iﬂﬁrb—
‘duce delays at any stagé undef certaip.conaitibns.v | |

Finally, tetrahedra shrinkage has usualiy been considered to be
ﬁore‘diffidult thanﬁwé suggesf here. For exampié,‘Meéhii-andfkaﬁffmaﬁ_
gave an actiVétion enérgy of 4.7 eV on thé basis of.electrical resisfi?ity
measurements. ‘It is suggested that this value might correspond rather
to an ﬁnpinﬁing from iﬁpurities.

It will be very useful to test the predicfions of thié modél with
experimehtal observations on a low stacking fault energy metal-éuch as
silver. In partiéular the simple occurance in silver at '500°C or 600°C
of thebcollapse of tetrahedra, or the shfinkage of Frénk 100ps.wou1d
confirm the.modified nucleation theory proposed here. AlreadvaOme
isolated ekamples of such loop shrinkage have'been reported in silVef; -

at temperature of 620°C by Smallman et al.(6)
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SUMMARY

A modél is suggéstéd.for the éﬁrinking under anﬁealing cénditions
df triangular Frank ibops; wﬁeﬁ dissociatéd into ﬁrunéated tetrahedra,
and  of stackiﬁg fault tetrahedra. The process starfs with-evapofation
~of a few vacancies from a sharb 60° cornér,‘re;ulting iﬁ nucleating‘on
thevdeféctba short lengthbaf 120° edge; Once é critical blunting of
the éofner is reééhed, the defect goes on:shrinking, decreasihg its
energy and losingblittle by.little its vacancies. It is shoﬁn;that
tetrahedra should collapse while shrinking, .For Egggﬁmetais of inter-
mediate stacking fault energy; like gold or copper, loops or tetrahedra
should start shrinking as soon as self-diffusion is possiblé.. Their
stability, as some;imes reported, should be evidence for an impurity
pinning;effect. Finally a modificatfon of the usual nucléation theory
is presehtéd,.leading to a shrinkage of thése defects. at observable

rates at temperature 0.5 Tm even in the case of low stacking fault

metals such as silver.
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APPENDTIX

(4)

We used the interaction energy formulas, as'giﬁen by Hirth and Lothe
for two straight segments of dislocation."Howévér, the general equatign
théy give in.;he'non cdplanar, non parallel case, equ. 6f26 in ref;‘(A),
is not ready to use in a computer. Furthermore, thé segment coordinates
are related to their -common berpendiCulat. Therefore, we givevbelow the
equivalent explicit expression of this interactioﬁ. The two dislocation
segments are defined through:

Bys 845 Mynty 1 =152
which arevrespectivgly, the Burgers vector, the unit. line vector, the
poéition yector of the segment o;igine bi relative to a fixed origin 0,
and its length Qi’ so that the dislocation segment is Pi P’{‘= 2.5,, 2. > 0.

1 1T ~1 1

Then we introduce. the notationst:

S ='§1.g §2| s N = (§1 X §2)/S, z = (QDZ'— QDl) . N
So the elasti¢ interaction energy is written:

R
W t AL, i 1 ! (a) £, + Ay £5+ A& £, + Ag fs}}

where the numbers A are:

>
11

(b; * S (b, * Sy) - 2(pl.x b,) (8; x S,)

1 1
A2 = (Pl ) §1 x N) (bz ’ §2 x N)
Ay = (b, ") (b, " )
tIt is to be noticed that in our notations, line 2 is taken as = (1)

being a distance z above line 1. 1In the book of Hirth and Lothe,
z is defined on the contrary as the distance line 1 is above line 2.
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_A4i= Byt 5 M (?2»fvg)i(z/s)
A =

57 @ W Ry 5 R /9

and the numbers £ Stand for
£g = B0y vp) + £,0xpy 39) = £;G0 yp) = £ (g )
the functions fi(x,y) being defined in Hirth notations (ref. (4), 6 =

‘. fl(x,y) = I(x,y);.fz(x,y) = I(x,y) - 22 J(x,y) e
f3(x,y) = R - cos 8(x Log t + v Log s)
fa(x,y)vﬁ Log t + cos eLog:s;.fs(x,y) = Log s + cos 6 Log t.

Finally the segment'coofdinatesvare computed as
Xy = Xq ¥ 8y x; = ~P +Q cos 6 ) - P = (0D, - QDI)_‘.§1N
y2 = vy +t iy Y1 T Q. . - Q =.(QD2 - QDl)-' N x §1:/S

2) THE ENERGY FOR BLUNTING A CORNER OF POLYGONAL DISLOCATION DEFECTS

Let us consider a stackiﬁg fault tetrahedron, or a triangular Frank
loop T. By blunting a corner, as in Fig. 2(b), a part Tl of the  defect

is replaced by another part Ti,:the restATz'remaining unchanged (fig. 2(b):

T, is the old stair rod "corner" AQ, AR, AP, while T

1 is the Shockley'tri—

1

angle PQR). The blunting energy is then computed as:
W = S(Tl) + I(TlTZ) - S(Tl)—'I(Tl, T2)
where S(Ti),is the total self énergy of the isolated defect Ti, and I the
interaction energy'between Ti andsz.
Interaction terms are easily computéd as a sum of pair interactioné,

. with expiessions given just above. As for the self energy of é_segmeht of

Burgers vector b and length L, the corresponding expression is taken as:

2L
ws 4 Log ng)
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which is equivalent to take a core radius r = b (cf. ref.‘(é), p. 214).

3) RESULTS 'AND VERIFICATIONS

Formulas and methods of the preceding sections have been verified

by computing the épergies of all intermediate configurations between

- tetrahedron and dissociated Frank loops (fig.6.a), with the same values. of

parameters as in Jossang and Hirth's paper (ref.(9)): edge length 141b,

vy = 2.8 10—3 b, core radius r = b. The result of computation agreed to

 several digits with Jossang and Hirth's results.

The table beloﬁ'gives as an example the dissociation width of trif

angular Frank loops. The length MC/b (fig 2 (b)) is given depending on

. the loop size L = CD, and the normal dissociation width do/b (see eqﬁ. (. -

Elastic constants of silver are used; those of gold give similar'figures,

except for some cases for which values in gold case are given between brackets.

. L |
b 100 300 500 900 | 1500 =
s | saey| 6. 6.1 6.0 5.8 | 5.78
7 | 168(159) |9.5(9.4) |8.9(8.8) 8.5 8.3 | 8.09
o | — |131q20) [118017) | 11.2 10.8 10.40
| 172(169) ” 13.3 | 12.71
13| 22.2 18.5 | 16.8 16.0 | 15.02
15 | | 285 22.3 | 19.8 | 18.7 | 17.33
17 e 2.6 | 22.9 | 21.5 | 19.64
ECRN 1506 | 266 | 2405 ”
a | | 36.9 | 29.0 24,27
25 so6 | 361 || 28.90
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TABLE I

: =
‘ : 3 . : U
11 b ub~. ab - a/b v D
v (10 (A) = 2.
- {dynes/cn%) (eV) (ev) (ergs/cm”) v(eV)
Aul0.4123.10  [2.88 4.63 | 0.136 | 268.5 | 1.8
Agl0.354]3.38 - 12.89 5.13 10.140 269 i 1.9

Values for v and u are pertinent average; anisotropic moduli,
given by Jossang et. al.,(g) ab is defined as ub3/(181r(1—v)).

U, 1is the self diffusion energy.
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 FIGURE CAPTIONS

Figure 1, ﬁisioéatién configurations at sharﬁ 60° éorners A aqd B;
and at 120° cormers Cvand C‘.
Figure 2. (é) THOmspn tetrahedfon notations
- (b) Dissociated stfucture of a Frank loop, with a forming
120° edge. The triangle PQR is unfaulted. |
- {(ec) Orientation of Burgers vector; 1ine; and extra-half
| plane for the Frank loop considered‘as undissoéiatéd;
Figure 3.»_Variati0n4 of total loop energy (dislocation aﬁd‘stécking .
Afault) during nucieation of é new 120° edge on évtriangular
Fraﬁk loop,rin gold (the initial loop energy is taken as
zero energy). # is the shrinkage pérameter; x =1 —‘(PQ/Lf),
“and equais unity for a zero 120°.edge (original 60° corner).
Loop size;_ L¢ =}CD = 300b. Stéckiﬁg'faﬁlt enefgies.in
| ergs/cmzf A;”y*= 45. (db = 6b5; B, f =‘38v(& = 7b); C,
Y = 30 (dé = 9b). Elastic constants are taken from Table 1.
Figure 4. ﬁnérgy ﬁérriér forvnucleatingva new 120° edge on a triangular
Frank loop, for gold and silver. The energy is plotted versus
thevdissociation width do§ Qalues‘of.correSponding stacking
féult énergies are cqmputed from equ. (1) and Table 1, and
are gi§en between brackets. Lloop size: A, Lg = 1500b;-B, '
Lg = 300b; C, Ly = 500b. o R
Figure 5.. Critical length.EQ of the nucleating'120°yedge, as a funé;ién
> . . - _ o _ v o
of dissociation width do' Alsovgiven are;the Valugs °f_Nf
the number of'vacanciesﬂevaporatedvfrbm the loop cdfnéf f6

‘build up the new edge PQ, N = 0.5 (PQ/b)z. Curves A and B



Figure 6.

Figure 7.

Figure 8.

Figure 9.
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‘apply to stacking'fault‘tetrehedra (A, silver} tetrahedron
'size Ly = 300b ‘B, gold, L = 300b). .Cnryes A" and B” apply
to trlangular Frank 100ps (A s silver,vlooo size Lg¢ ;'SOOb;~

‘B‘, gold, Lg = 300b).

Conservative tetrahedron'collapse by glide of a Shockley
triangle, down‘the tetrahedron faces: (a) symmetrical

model; (b) equilibrium model ‘the angle P = (ON OB) is

: determlned so as to mlnimlze the total energy, for a given

1ength MN.

" Variation of_total energy during a conservative tetrahedron

collapse in gold (the tetrahedronlenergy is taken as zero).

x is the collapse parameter, x = 1 - (MN/Lt), and Lt'rhe'"

tetrahedron size, Ly = 70b. Dissociation width dg = 5b

(vy = 6.10_3 ub = 54 ergS/cmZ), Full curve corresponds to

the model of‘fig. 6, (b). Dotted curve is obtained assuning
L

v = 60°, fig. 6, (a).

Energy barrler for tetrahedra collapse, versus the dlssociation

~width do, related to the stacking fault energy by equ. (1)

Full curves are for silver, dotted curves are for gold. Top

curves apply to a conservative collapse, bottom curves, to

‘a nOn_conservetive collapse. The magnitude of selfédiffusion

energy (for gold) to be added to the latter curves is shown

':_for comparison. Tetrahedron size. 311ver A: L 1500b

t
B, L_ = 300b; gold, L, = 300b

Stability diagram of dissociated Frank loops versus tetra<

hedra, depending on the defect edge length, 1, and the -

 dissociation width d,. (The stacking fault energy is given
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: bétweenvbrackets for gold or‘silver). Siabilityﬁboundary
_(fuii curve) and metastability boundéry-(dotted curye)
apply for géld, silver; OoTr copper. '“Stability" and "meta-
sfébility" domains are briefly explained on the schematié
~energyvdiagram, shown for a giveﬁ'stacking fault energy as
a functioﬁ of the nature of defect; for differénf sizes.
Critical defect»sizeé /b as observedSlB) are indicated for
gold; sii&er, copper (laréeét tetraheara or smallest Frank
loops). |
Figure 10. Variation of total tetrahgdfon energyAduring growth of a
| 120° edge 6n a tetréhédron, resulting finally in collapsing
the tetfahedroﬁ..-éold elastic constanfs are used;.curve A
applies to a tetrahedron'sizé, L£‘= 300b, and a dissociation
width do = 9b; curve B épplies té Ly = 7Ob,:‘do = 5b, Enérgy
is pldtted versus the shrinkége parameter x = 1 —.(PQ/Ltj
’correspbndiﬁgp to a 120°.edge length PQ (see fig. 2b). |
Figurelll. The tWo kinas of jogs nucleated at corner P; nucléation type
(1) is for eQaporating a Vaéancy (G - jb+ 1); nucleation
type (2) is for condensing a vacanéy G->3- 1); ASchematic.
Figure 12(a). The.energy needed to build up on a Franklloop,yén exﬁta
‘1209 edge of various lengths nb, versus‘the'dissociation widtﬁ
d, (or the stacking fault energy; see’eqﬁ. (1)). Gold; or.
silver elastic éonstants are used.. Curves A,.n = 3§_B,-n = 4;
C, n = 5. Loop size: Lg = 300b (gold) and tt.='500b (silyéf).
A unit of Ogl_eV is pictdred.fqr.the gold or silver case.
FigﬁféﬁiZ(B). Same as'figure 12(a); for é stécking_fault tet;ahedfon.

Tetrahedron size: L, = 300b. A, n=3; B, n=4; C, n = 5.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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