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I. INTRODUCTION 

1. Preamble 

An invitation to present a review at a conference affords the 

reviewer the opportunity to survey afresh the subject matter, to collect 

his own thoughts about it, .and hopefully to present a concise and clear 

picture, emphasizing the good and fruitful and omitting the spurious 

and bad. I have this opportunity. Whether the realization matches the 

potential, the reader must judge for himself. Six or more months ago, 

when I accepted the invitation to review high-energy phenomenology, I 

gave the task only passing thought, .As the time grew close, the 

enormi ty of the enterprise slowly dawned on me. Then the preliminary 

program arrived to show that I was "clean-up man" on the team of reviewers 

with an assignment vague enough and all-encompassing enough to exclude, 

by general agreement, only Professor Steinberger's review of weak 

interactions. I therefore apologize for the overlap between my text 

and those of Professors Lohrmann 'and Lipkin (in my oral presentation, I 

shall mercifully keep the duplication to a minimum). Of course, the 

lack of clear boundaries between electromagnetic interactions of hadrons 

and purely hadronic processes on the ~me hand, and between the low 

energy domain of resonances and the high energy domain of peripheral 

processes on the other, is one of the more exciting aspects of our field 

today. Indeed, lack of clear boundaries is misleading in its under­

statement. Intimate connection and interplay is closer to the truth. 

Of tl1i s you have alread;y' heard today., and I will say more. 
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Before beginning my review proper I want to let you see what 

we, as experimenters and theorists, are doing to earn our keep. 

Tables I and II show the thrust of our activities, as evidenced by 

publication in two letter journals, Physical Review Letters and Physics 

Letters. The time period covered is roughly 1968 and the first half 

of 1969 (actually three volumes of each journal). The ten categories 

in experiment and eleven in theory are somewhat arbitrary. I leave detailed 

study and interpretation to the reader. Only three comments: (i) There 
. . 

is some evidence from a peaking in the second half of 1968 that those 

who publish in Physical Revie1,v Letters are somewhat meeting-conscious 

(the Vienna meeting in this instance), while those who publish in Physics 

Letters are steadier in their output. (ii) Theorists who publish in 

Physical Review Letters have hoed the row of current algebras and the 

like much harder than their Physics Letter counterparts. (iii) Current 

and field algebras seem on the decline, while Veneziano models are 

rising with meteoric speed. 

The overall picture is displayed in Fig. 1 where the areas of 

the circles for expe:r:iment and theory are in proportion to the numbers 

of papers (304 and 360) in each field. In experiment the finding and. 

studying of resonances accounts for 2810 of all the publications. When 

production mechanisms is added in, the total resonance or resonance-

related effort amounts to 40%. The great bulk of this research is 

done with bubble chambers. Counter experiments on elastic or quasi-

elastic scattering account for roughly 16%, while photon (3,nd electron-, 

initiated processes provide 24%, and experiments on weak interactions 

contribute 20~ of the pUblications. How does this compare to the money 

spent? I do not know. 
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The theorists' activities appear to be slightly more uniformlydistri-

buted (is this just a reflection of a better choice of categories?), with no 

one subdivision over 13% of the total. It is noteworthy, however, that 
I~ 

vl;trious aspects of S-matrix theory, with its ideas of analyticity 

crossing, and unitarity, account for 3510 of the theoretical publications. 

Does the volume of publication indicate progress in our understanding? 

I am too close to it to judge. 

2. Framework 

Let us assume that high energy phenomenology has to do mainly 

with collisions of hadrons at incident momenta above, say 2 GeV/c. 

Then the framework of gross empirical facts and main theoretical concepts 

consists of the following: 

(i) There exist SU(3) singlets and octets of mesons and 

singlets, octets and decimets of baryons of a variety of different 

spins and parities. 

(ii) The quantum numbers of the observed meson and baryon 

multiplets can be generated by the mnemonic of the quark model, with 

(qq) for the mesons and (qqq) for the baryons. [This particular 

empirical fact will need modification as soon as any "exotic" resonance 

is firmly established. ] 
. . 

(iii) Two-;body and qua.si-twa-body processes are peripheral, 

'oJ 
showing peaking at forward directions (small t) and/or backward 

directions (small u). 
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(iv) Integrated cross sections, or differential cross sections 

at fixed momentum transfer, show approximate power law behavior in the 

ehergy. In particular, total cross sections seem to become constant 

asymp,totically, and obey Pomeranchuk's theorem. 

(v) Virtually ali occurrences or nonoccurrences of periph-

erality in a giveri process (iii) 6an be understood in terms of the 

q:changes of the internal quantum numbers of the known SU(3) mul tiplets 

I 
of mesons and baryons (i). 

(vi) A modest amount of analyticity in the kinematic invar-

iants, plus crossing symmetry j relates the phase of an amplitude at 

high energies to its power-law behavior, (i -iT) • This connection is more 

general than, but the saine as, that given by Regge pol\" theory. 

(vii) The knownmesonic and baryonic states, (i), can plausibly 

be placed on Regge trajectories and the trajectories are approximately 

linear in the square of the masses. This gives great impetus to'the 

use of Regge exchanges to unify items (iv), (v), and (vi) into an 

aesthetically pleasing whole. 

In the subsequent sections we explore some of·the recent develop-

ments in various models and ideas in order to show the diversity of the 

attempts to cope with ever increasing amounts of data wt10se quality also 

improves, as well as to expose some of the limitations, difficulties; 

and unanswered questions .. The existence of proceedings from the Berkeley, 

Heidelberg, and Vienna Conferences, along with some recent books (for 

i 

I 



· . * 
example, Collins and Squires, 1968; Kokkedee, 1969), allows me to omit 

specific references to much of the earlier work, and to assume on your 

part a knowledge of the state of the art circa 1967. 

Van Hove's report at Berkeley (Van Hove, 1966b), with an Appendix 

by Wetherell, surveys both .theory and experiment. Subsequent develop-

ments Oh the experimental side are reviewed at Heidelbergby.Di LelIa 

(1967), at the CERN Topical Conference by Colley (1968), Derrick (1968), 

and van Rossum (1968), among others, and by Bellettini (1968) at Vienna. 

The theoretical side of high energy collisions is surveyed by Be,rtQcchi 

(1967) at Heidelberg, by Barger. (1968), Biairas (1968), and Salin- (1968) 

at the CERN Topical Conference, and by Chan (1968) at Vienna. 

* References are cited in "standard" British fashion, with papers and 

books listed at the end in a bibliography arranged alphabetically by 

first author. One abnormality occurs: Proceedings of Conferences 

'., are cited fully in a special list at the beginning of the bibliography. 

This permits an abbreviated entry by author,· as, for example, 

Bellettini, G. (1968). Vienna, p. 32~ 
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II. SAMPLING OF RECENT DATA 

Although almost all of the data published since the Vienna 

Conference were presented there and extensively reported by Bellettini 

(1968) and others, it is worthwhile, I think, to remind ourselves of 

the quality and range of data presently available. Accordingly there 

follows a sampling of data,with only brief comments. Some of these 

data and others are elaborated on in the subsequent sections dealing 

with the various models. The data are only representative; they are 

not necessarily the best and certainly not the worse available. 

1. n-p Elastic Scattering 

. The data of the Cornell-BNL collaboration (Orear et a1., 1968) 

on n-p elastic scattering at 9.7 and 13.6 GeV/c are shown in Fig. 2, 

together with earlier results of experiments at Brookhaven. The note-

worthy features are (i) the well-known diffraction peak for It I < 0.6 

(Gev/c)2, (ii) a secondaryconvex shoulder leading to a pronounced local' 

minimum at t::: -3 (Gev/c)2, (iii) a relatively flat (eAt, A "-' 0.5) 

region from t =-4 to -10, where there may be unresolved structure, 

and the cross section is of the order of 10-5 - 10-7 times its value 

at t = 0, and (iv) a steep, but small, backward peak ( 
Bu e , B "-' 4). 

Comparison with data at lower energies shows that the convex shoulder 

is the remnant of a broad secondary maximum that followed a dip at 

t "V - 0.6. There is thus a pronounced energy dependence in the shape 

of the cross section, at least in the energy range up to 10 GeV/c. 
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Above that, one may be seeing the beginnings of a stabilization of 

do/dt towards an energy-independent shape, as expected from some 

models (see Section IV, 2 ,below). 

2. Nucleon-nucleon elastic scattering 

Even more spectacular are the proton-proton scattering data 

taken at CERN by Allaby et a1. (1968a) and shown, along with results at 

lower energies, in Fig. 3. These results have received wide-

spread attention. Mention need be made only of the apparent tendency 

at fixed t for the cross section to approach an asymptotic energy-

independent value, with the cross sections approaching the limit more 

slowly the larger the It I value. The break at It I rv 1 (Gev/c)2 is 

the outstanding feature of the data at the highest energy. 

Correspohding data for antiproton-proton elastic scattering are 

shown in Fig. 4 (from Orear et a1., 1968). ,There are three observations 

here. (i) TLe diffraction peak at verY,small It I is larger and 

narrower than for proton-proton scattering. (ii) There is structure, 

perhaps a dip and definitely a shoulder, at t rv 
2 

-0 • 6 (Ge V / c ) . This 

is considerably closer in than the structure seen in the p-p data. 

(iii) There seems to be a sudden increase in slope again beyond 

2 -3 (Gev/c) • 

3. Inelastic Proton-proton Collisions 

A number of experiments have been dohe on inelastic proton-

proton interactions using a missing-mass spectrometer (Ankenbrandtet 

a1., 1968, Allaby et a1., 1968b). Figure 5 shows the results of 
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Allaby et al. (1968 b) on the differential cross seCtiOn for 
*+ pp ---7 pN 

at 19.2 GeV/c, where the * N IS are defined by the indicated areas the 

1520 MeV and 1688 MeV regions. Beyond It I = 1 (Gev/c)2 the slopes of 

all the inelastic cross sections are similar to the elastic slope, while 

for It I < 1, the inelastic cross sections seem flatter than the steep 

diffractive elastic peak. At lower energies the inelastic cross 

sections for N*(1520) and N*(1688) production tend to be flatter at 

all momentum transfers than the elastic, the effect being greatest at 

the lowest energy (Ankenbrandt et a1. 1968). It should be recalled in 

contrast that the mass region around 1400 MeV has long been known to be 

produced very peripherally. It may be that the small It I behavior 

can be understood in terms of the details of the inelastic transition 

(spin and parity of the resonance, quark model wave function, etc.)' 

and that the large It I behavior at high energies stems from some 

common cause for all processes (see Section IV, 2 below). 

4. Polarization in n-N and K-N Scattering 

Polarized targets continue to be used to provide additional 

information on the amplitudes that enter into high energy elastic 

scattering. Limitations on intensity have generally restricted the 

high energy polarization data to the region It I < 1 (Gev/c)2, but some 

accurate data at larger momentum transfers are now available. 'One 

such set ()f measurements made at Argonne (Esterling etal., 1968) on 

+ 
J{-P scattering at 5.15 GeV/c is shown in Fig. 6. The range of momentum 

transfers is 0.2 < It I < 2.0 (Gev/c)2. The interesting features are 

I , 

,. 
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(i) the approximate reflection symmetry, 

quadratic eA~remum near zero at t ~ -0.6 

relatively large polarization for It I > 1 

P(rr+p)::::: -P(rr-p),(ii) the 

2 
(GeV/c) , and (iii) the 

(Gev/c)2. Other data at 

higher energies show that there is little change in the polarization for 

It I < 0.6 (Gev/c)2' up to 14 GeV/c (see Fig'. 37 of Bellettini, 1968), 

but that for larger It I values the polarization probably decreases in 

magnitude with energy. The rough relation, P(rr+p)::::: -P(rr-p), indicates 

that the polarization is caused mainly by iriterference between C = +1 

and C = -1 exchange amplitudes with different phases. Since the 

obvious Regge exchanges are P, pI, and p, the near-vanishing of the 

polarization at 
. 2 

t :::::-0.6 (GeV/c) correlates nicely with 

the known dominance of the t-channel spin-flip amplitude B 
p 

process, o rr p -7Tf n. The double zero at 2 
t ::::: -0.6 (GeV/c) 

a 
p 

o 

in the 

and the 

and 

possible behavior of the polarization at larger It I values, even 

beyond It I = 2 (Gev/c)2, are discussed in Section III, 2(b), below. 

Polarization measurements on K+p elastic scattering at 1.22 

and 2.48 GeV/c by Andersson et a1. (1969) throw light on the possible 

existence of S = +1 baryonic states at ~1900 MeV and also on aspects 

of exchange degeneracy and duality. These data are shown in Fig. 7. 

The positive polarization at 1.22 GeV/c agrees well with a calculation 

by Lea, Martin, and Oades (1968) without any resonant states (dashed 

curve) and disagrees with the prediction involving an I = 1, ~ _.1+ o - 2 

resonance at 2020 MeV (solid curve). The higher energy results show 

a relatively featureless positive polarization that remains remarkably 
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large at forward angles. The two curves are from a calculation involving 
I 

a purely imaginary diffractive amplitude (p exchange) and exchange-

degenerate spin-flip contributions from p and A2 exchange.(Blackmon 

and Goldstein, 1969). The solid (dashed) curve has negative (positive) 

relative sign between the p and A2 amplitudes. The data indicate 

somewhat better agreement with the negative relative sign, consistent 

with the duality picture which couples the absence of s-channel reson-

ances in the K+p channel and the flatness in energy of the total 

cross section to the cancellat ion of the imaginary parts of the 

contributions from exchange-degenerate partners. (See Section V,3 

below for more on duality and exchange degeneracy.) 

5. Resonance Production 

.Since bump hunting and related activities occupy a large 

fraction of the effort in experimental high energy physics (see Fig. 1), 

selection of a representative experiment is difficult and arbitrary. 

I have chosen the work of Crennell et ale (1968) on the properties of 

the g (1650) meson. Their results on the two-pion mass distributions 

in - - + rT P ~ rT rT n, - - 0 d rT P -7rT rT p, an at 6 GeV/c are shown 

in Fig. 8. The upper histograms show the mass distributions, while the 

lower panels show the mass dependence of the coefficients A
L

, L = 2;1+,6, 

of the Legendre pol;ynomial expansion of the rT-n: "scattering" angular 

distribution in the two-pion rest frame. Note first one of the charac-

teristics of bubble chamber experiments nowadays, large numbers of 



'\ 

-11-

The Q = 2 n-]1' system is featureless with a smooth mass plot 

and A2 coefficient. The Q = 0 configurations show strong po and 

fO signals, as well as a small but clear bump at 1.6 GeV (the g meson). 

TheQ = 0 Legendre polynomial coefficients behave in just the manner 

(1 - 2+) po fOe expected for the known spins and of the and In 

A2 there ·is evidence for resonant behavior at 1.6 GeV, but nothing is. 

seen in A4 or A6 for Q = O. In view of the background under the 

small peak at 1.6 GeV, the absence of signals in A4 and A6 is not 

surprising. 

The Q, = -1 configurations reveal a strongp and a reasonable 

g peak. [In passing we note that there is no sign of a peak in the 

fO mass region. This means that there is no .1 = 1 rr-n state (r ,) 

degenerate with the f O , at least not with appreciable elastic width.] 

Again the behaviors of the AL below 1 GeV are consistent with a .0 

spin of 1-. In the region of the g, all three coefficients seem to 

show resonant structure, although A6 cannot be taken too seriously. 

The quantitative behavior is in agreement with ? = 3- (or greater, 

e.g. 5-, 7-) for the g-meson. 

6. Tests of Q,Uark Model Predictions on Decay Correlations 

One of the most peculiar phenomena in high energy physics is the 

continuing success of the "realistic" quark model. The use of quarks 

·as a mnemonic has widespread acceptance, but the idea of dynamic or even 

kinematic considerations with "real" quarks leaves some segments of our 

community cold. Nonetheless, intrepid theorists push the model further 
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and, further. One area of prediction is that of Joint decay correlations 

in double resonance production (Bi~as and Zalewski,. 1968). These .1' 

predictions have been tested in several experiments (Alderholz et al., 

1968 b; Bockmann et al., 1968; De Baere et al., 1969; Frfedmann and 

Ross, 1969). Figure 9 shows a portion of theresuits of Friedrllann and 

Ross (1969) on K-p ~ 'K*.6 at 2.6 GeV/c (3300 events). The predictions 
, 

of the quark model are divided into classes (A, B, C) depending on how 

many assumptions are made about the individual quark-quark scattering 

amplitudes. The comparisons shown in Fig. 9 are for the fiv~ class A 

predictions concerning the correlations in the average values of various 

combinations of powers of the direction cosines of the decay directions 

of the two resonances •.. The agreement between model and experiment is 

very impressive for these predictions which depend only on the assumption 

of additivity of the quark-quark amplitudes. Class B predictions usually 

work out well, but the success of the more detailed Class C results is 

spotty. 

The enemies of the quark model may eventually be able to find 

alternative explanations for these correlations, but in the meantime one 

must ponder the meaning of such detailed successes. 

·7 Backward K+p d K S t t . . an p ca .. erlng 

One of the empirical facts cited in Section 1,2, .is that 

forward or backward peaks occur if, and .only if, the quantum numbers 

allow the exchange of a member of an SU(3) singlet, octet or decimet. 

+ K P and K p backward scatterings afford illustrations of this fact 

and recent data make it quantitative. + For K p the u-channel exchange 
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require B == 1, Y == Q == 0, I == 0,1. Thus 
"0 *0 

A, L 'Yl exchanges are 

possible; there should be a modest. amount. of backward scattering. For 

K-p the corresponding quantum numbers are those of the K+p channel, 

B == 1, Y == Q == 2, I == 1. . A state with such quantum numbers lies out-

side the known SU(3) multiplets. No good evidence for such states 

exist (see Section (4) above, and Tripp, 1968, SeCtion 3). Hence the 

K-p backward scattering should be negligible at high energies, as should 

backward peaks in 
_ =:0 

K P -'7 K n, 

Lundby and co-workers ·at Brookhaven (Carroll et a1., 1968) and 

CERN (Baker et a1., 1968; Baker et a1., 1969; Banaigs et. a1., 1969) have 

+ studied K-p backward scattering at a number of incident momenta from 

~ 1.4 GeV/c to 6.9 Gev/c. Some of their results are shown in Fig. 10. 

The solid points are the cross sections (dcr/du)u==O for K+p, while the 

open circles (none above 2.5 Ge,V/c) are for K p. The straight lines 

. d' t 1 b h ' -4 f K+P and s-IO for K p. ln lca·e power- aw e aVlor, as s or 

The dashed curves give the behavior of the backward cross sections for 

Two comments here: (a) The 
_4 

s dependence for + K p, corres-

ponding to an effective CX(O):::::. -1, seems very reasonable for the 

exchange of a strange baryon o *0 
(A, L , Yl ). (b) The very rapid fall-off 

for K p, if it can be shown to hold at higher energies, implying as 

it does CXeff ':S -4, has direct bearing on the import.ance of Regge cuts. 

This point was made by Chew at the Vienna Conference (p. 364) and is 

discussed in Section IV,3 below. 
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report (Bertocchi, 1967). A year later, at Vienna, various ramifica­

tions of these questions were being pursued (see Chan, 1968), but at the 

same time certain difficulties with pure pole models were· emerging. 

These troubles all follow from the hypothesis of factorization of Regge 

pole residues, a concept firmly rooted in the idea of a pole and in 

unitarity. If the residue of a Regge pole of definite quantum numbers, 

iincluding parity, in the 'amplitude for a transition from state a to 

state b (the label a specifies the particles and their helicities, 

in state a) is A then factorization of residues requir. es the I-'ba' 

res idues of the pole for' a ~ b, a ~ a, b ~ b be rela ted according 

to 

2 
~ba = ~bb ~aa • 

A well-known difficulty occurs with the residues of the 

w-trajectory: The conventional analysis of high energy pp and pp 

elastic scattering involves the Regge'pole combinations, (p + P' ± w), 

where the trajectory symbol stands for the corresponding amplitude. 

Since the differential cross section for pp is larger at t = 0, and 

falls more rapidly away from t = 0, than the pp cross section, there 

is a "cross-over" point which is attributed to the vanishing of the 

residues ~(w) of the w-trajectory there. Factorization then implies 

that the residues ~ (w)(t) = ° at ba . 
, 2 

t ~ -0.15 (GeV/c) for all 

processes. Inelastic reactions like n:N ~pN (with an w-contribution 

that is difficult to extract) and (with what is believed to 

be a large w-contribution) show no sign of a dip that could be 

'\1 
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associated with this zero in ~(w). Secondary trajectories (w') can 

be invoked to avoid contradiction with factorization, but more likely 

are Regge cuts in the J-plane. 

Another famous example that hears on conspiracies is discussed 

by LeBellac (1967). The use of a parity-doublet conspiracy for the 

pion (M = 1 pion) in interpreting the forward peaking in pn ~ np 

and + 
y.p~:n:n leads, via factorization, to the prediction of a zero 

at t = ° in the pion's contribution to the amplitude for production 

of o 
p with zero helicity in the process, + 0,,++ 

:n:P~pu Data at 

8 GeV/c (Alderholz et al., 1968a) show that (a) the great bulk of the 

pO's are produced with zero helicity near t = 0, and (b) the cross 

section shows a very strong forward peaking, rather than a dip. Again, 

the failure of factorization can be avoided by the use of additional 

unnatural ;parity trajectories, e.g., Al , to give a forward peaking, 

(Arbah and Brower, 1968) but this leads to further complications with 

factorization in other processes (unpublished analysis by G. C. FoX). 

The excellent fits obtained with the absorption model to the shape of 

the cross section at It I < 0.2 (Gev/c)2 and to the density matrix 

elements for this reaction argue for Regge cuts, as well as poles, as 

the most plausible explanation (see Section Iv,4). 

If still more documentation on the limitations of pure pole 

models is needed, I cite the somewhat more theoretical question of an 

M = 1 pion and PCAC. The M = 1 assignment for the pion, deduced 

from experiment assuming a minimum of poles, was used by Mandelstam 

(19l~2a) toderive Adler's self-consistency condition, PCAC, and soft.-
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piori results. This successful intrusion of S-matrix theory into the 

domain of current algebras was, however, short-lived. Mandelstam him­

self (unpublished). and Sawyer (1968) showed that factorization required 

a decoupling of the M = 1 pion, not only for soft-pion processes, but 

for all processes. (see also Arbab and Jackson, 1968). At present there 

is no evidence.which requires an M = 1 assignment for the pion (see 

Section V ,2). 

2. Recent Developments in Models with Pole Only 

In spite of the limitations and difficulties discussed above, 

phenomenologists (there must be a better name for theorists interested 

in experiment;) continue to correlate data with models involving the 

exchange of a small number of Regge trajectories. There are several 

reasons for this: 

(i) The gross features and even some details do seem to be 

described by trajectories (pI, W, p, A2 , n; N, 6) identified with more 

or less well-known sequences of particles, plus the Pomeranchuk trajec­

tory (p). 

(ii) Secondary trajectories (pI, w', n') can be used to 

produce effects akin to more complicatedJ-plane behavior. 

(iii) Pole models with exchanges of SU(3) multiplets can be 

used to test SU(3) and higher symmetries. Of course, failures of 

such tests are difficult to interpret if other J-plane singularities 

are important, similarly for successes. A good example of a relatiyely 

straightforward, but systematic and tho,rough,·analysis of a large sample 

;"!. 
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of high energy data is that of Dass, Michael, and Phillips (1969). 

+ They concentrate on K-p ·scattering, but use high-energy data from 

all sources and FESR to constrain the possibilities .. 

We now discuss briefly some specific recent applications of 

Regge pole models. 

(a) Dips, front and back 

The classic dips seen in 

t '"v ";0.6 (Gev/c)2 need no discussion. The standard explanation 

involves the vanishing of a t-channel spin-flip amplitude at the point 

where cx (t) = o. An even more dramatic dip occurs in the backward 
fJ 

scattering, rr+p -7prr+, as can be seen in Fig. 11 where the data of 

Baker et al., (1968) on + + rr p -7prr at 5.2 and 6.9 GeV/c and 

at 6.9 GeV/c are displayed. The curves are the result of 

a Regge pole fit using the ""'-trajectory for rr-P and the "'" 

(determined by isospin rotation from the rr-p fit) and the 

N-trajectory for rr+p. The dip at u::::.· -0.15 (Gev/c)2 is explained 

* as a result of the vanishing of at that point. Other Regge 

pole fits to these and other data have been made by Barger and Clin~ 

(1968) and Paschos (1968). One aspect worthy of comment is the empirical 

evidence from the spectrum of baryonic states that the trajectories 

* Called a wrong-signature, nonsense point - see Chan (1968), Section 

2, for explanation of these terms and a summary of the behavior of 

Regge residues at such values of cx. 
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1 

seem to be approximately even in W = (U)2, even though a priori there is 

no reason to expect states of opposite parity (remember MacDowell 

symmetry) to be degenerate. Most of the evidence for a = a(u), rather 
.1, 

than a = a[(u)2], comes from fitting sequences of states with W > 0, 

but there is the approximate degeneracy of the states 

L+ 5-
of spin-parity 2 and 2 at ~1685 MeV. Extension of the approximately 

linear 6-trajectory towards negative u leads to-the expectation of a 

dip (indeed, a zero) in the cross section for rr-p ~pn at 

u ~ -1.9 (Gev/c)2, where a
6 

+ ~ == 0. * Although the data of Fig. 10 do 

not extend far enough to cover this region of u, other data (see Fig. 14 

of Bellettini, 1968), show no evidence of significant structure all the 

way out to lui = 2.4 (Gevjc)2. This discrepancy can, of course, be 

remedied by modifying the 6 trajectory at negative u values, either 

by having it asymptotically level off to some negative constant larger 

than -~ (Barger and Cline, 1968), by assuming the form 

a = a + b(U)~ + cu
2 

so that for negative u, I~ a" ~ ° even in 
6. '-' 

Re(a6 + ~) = o (Paschos, 1968), or by other, easily conceived modifications. 

Another example of structure in the backward direction and its 

interpretation in terms of Regge exchanges is the process, n-p _)KoA. 

The u-channel quantum numbers are B = Y = 0, Q = 1, I ,= 1, 

corres~onding to ~-like trajectories, L+ ... ) 
2 ' , 

* See footnote on p.19. 
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2:y(~-' .~~ . ... ) ,2:f;( ~~ ~~ ... ), and 2:6(~~ ~+, ... ). Preliminary data of 

Michelini et a1. (1969) o~ the backward differential cross section and 

polarization of the outgoing A, are shown'in Fig. 12, together with 

the theoretical curves of Barger, Cline and Matos (1969). The cross 

section data, and, more dramatically, the polarization, show evidence of 

structure at u::::. -0.7 (GeV/c)2. The Regge pole model, using exchange-

degenerate 2:a and 2: y trajectories, gives more than adequate descrip~ 

tion of the cross section and the large and momentum-trans fer-dependent 

polarization. The change in sign of the polarization at u::::. -0.7 (Gev/c)2 

is associated in the model with a wrong-signature, n,onsense zero at 

Note that the residues are obviously not exchange-degenerate, even a2: 
y 

though the trajectories are. 

(b) Cyclic residues to give structure at large It I 

The true believer in Regge poles leaves no application untried, 

no challenge unaccepted. If there is structure in a cross section at 

2 
t ~ -3 (GeV!c) , as in the Jl p cross section shown in Fig. 2, he will 

fit it. Never mind that the model is normally applied to small I t I 

values, say 
2 

I t I < 1 (GeV / c) . As Magellan rounded the Horn and opened 

unch~rted seas, so Barger and Phillips (1969), two of the most dedicated 

* apostles of the gospel according to Saint Tullio, have thrust into the 

large It I region. The vehicle for generating dips at large It I is a 

cyclic residue. There is, . on the one hand, evidence fori,Z'eros in 
" 

* I am unable to locate this saint's name on the red~n!tly revised list 

frOll1 the Vatican. 
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amplitudes at wrong-signature points (e.g. , a n: p ~ n: n, 0; (-0.6) = 0; 
p 

+ + 1) n: p ~Pn:, ~(-0.15) = -2' With a relatively flatPomeranchuk pole, 

the structure in the average of the + n: p 

sections at t ~ -0.5 and 2 
-2.8 (GeVjc) 

and n: p differential cross 

can be explained by an 

oscillating residue for the pI trajectory, with zeros at ~I = 0, -2 

(Booth, 1968; Beretvas and Booth, 1969). These are right-signature points 

for the pI trajectory. Barger and Phillips use only nonflip t-channel 

amplitudes for the P and pI, both flip and nonflip for the p. They 

postulate linear trajectories and assume that the residues for the P' 

and p behave for negative t as 

~(t) = ~(t) sin ~ o;(t) .' 

where the ~(t) is a "smooth function" and the amplitudes are written 

as 

with m = 1 for p, m = 2 for P, pI, and. n == 0 for the nonflip 

ampli tude (A I ), n = 1 for the flip amplitude (B) . For the P 

trajectory, their slope is so small that 0 < ~ < 1 for It I < 4 (Gevjc)2 

and the question of vanishings at ~ = -1, -3,'" never arises. The 

curves shown in Fig. 13 illustrate the application of this model to 

n:±p elastic scattering and polarization for 0 < It I < 4 (Gevjc)2. 

The behavior of the cross section with incident momentum is well repro­
I 
I 

duced, as are the polarization data of Fig. 6. It should be remarked 

that the cboice of almost the same trajectory for P' and 0, together 

, .. , 
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with the cyclic residue assumption for both, causes the double zero in 

2 
the polarization at t::. -0.6 (GeV/c) ; and the traversals back and forth 

2 
across zero in the region, t::. -(2.5 - 2.7) (GeV/c) . Polarization 

data beyond It I := 2 (Gev/c)2 are devilish difficult to obtain, but 

given the challenge of such interesting predictions, who can refuse to 

try? Better polarized targets, please~ 

(c) SU(3) tests and exchange~ degeneracy 

Over the years a number of tests of SU(3) in Regge exchanges 

have been made., most' often on total cross sections. One recent analysis 

of a set of elastic arid inelastic reactions has been made by Mathews 

(1969). He examined all the data on the six reactions, 

0 (p) + 0
6

++ np --7:r(n :r( p --7:r( 

0 (A2) + 0
6

++ 
:r( P --71)n 11 p --71) 

K P --7 'ifn (p + A2 ) K+P --7 KO 6++ 

The left-hand column contains the "elastic" processes, the right-hand 

the "inelastic" processes with the final nucleon replaced by a 6 (1236). 

At high energies the two reactions on each line are believed to proceed 

in a common manner via the exchange of the Regge trajectories indicated 

'in parentheses between them. Several interesting conclusions emerge 

from an intercomparison of these processes: 

(i) The trajectory inferred from the "elastic" reaction 

compares reasonably with that from the less accurate "inelastic" process 
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for the p, but not very well for the A2 . In particular, while the 

values of a(o) are in accord, the "inelastic" dat.a imply a much 

steeper slope for the A2 trajectory at negative t, steeper even than 

for the p. 

(ii) Exchange degeneracy between the p andthe A2 trajec­

tories is approximate at best. The a(o) values may differ by as much 

as 0.2. 

(iii) The differential cross sections for the corresponding 

"elastic" and "inelastic" reactions have remarkably sim:i.lar shapes. 

(iv) The shapes of the cross sections for the three pairs are 

very different. The first (no in the final state ) has a relatively 

sharp forward peak and a dip at Itl:: 0.6' (Gev/c)2; the second (1)0) is 

rather broad and bell-shaped; the' third (Ko ) process is intermediate 

in shape. 

(v) The assumptions of exchange degeneracy and exact SU(3), 

vertices allow the prediction of the cross sect{o~s for 

!, da '( 0) + 
2 dt n 

L da ( 0) 
2 dt 1) 

and 

As can be seen in Fig. 14, this test works quite well for the "elastic',' 

reaction, and moderately for the "inelastic" process, when judged 

relative to the very different t-dependences of the component cross 

sections. 

(Vi) Evidence in support of exchange degeneracy in its strong 

form (for residues as well as trajectories) comes from the decay 
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correlations of the 6++ in all three reactions. Admittedly with 
• 

sizeable errors in some instances, all the decay correlations are the 

same, independent of energy, and in rough agreement with the Stodolsky-

Sakurai model. 

The anticipated use of neutral K-ineson beams at SLAC for the 

study of collision processe has led Gilman (1969) to examine the 

connection between the various quasi-two-body processes initiated by 

K and K. The inference. from Mathews's work of significant amounts 

f . d A h . K :-:OK and K+p ~ KO 
A ++ th t o p an 2 exc ange In p ~ n ~ u means a . 

exchange degeneracy and crossing can be tested by comparison of cross 

sections and decay correlations for - ::0 0 
K P ~.K 6 and o + 0 

K P ~ K 6, for 

example. 

Further remarks on exchange degeneracy are deferred until the 

idea of duality is described. in Section V~ 

(d) Higher symmetries 

In the category of higher symmetries I lump both internal 

symmetries and their union with external degrees of freedom like spin, 

and also the Lorentz symmetry of scattering amplitudes at vanishing 

4-momentum. About the latter I will say virtually nothing. Both Chan 

(1968) and Frazer (1968) touched on Lorentz poles at Vienna, remarking 

that the powerful group theoretical considerations of Toller, Domokos, 

. and others could be duplicated by more pedestrian means, using analyti~ 

city and factorization for UU, EU, and EE scattering processes. 

The question of assignment of the Lorentz pole quantum number M to 
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physical particles is only slightly clearer, and in a negative way, now . 
I I 

than a year ago. As mentioned already in Section 1I1,1, and also in 

Section V,2 below, there are serious difficulties with an M = 1 

assignment for the pion' and. no compelling evidence from experiment 

favoring it. Explanations alternative to the parity-doublet conspiracy 

can be found for the forward peaking in np ~pn· and + rP ~rr n. The 

present status is thus that there is no experimental evidence from 

collision processes requiring anything except M = 0 for all mesonic 

trajectories. 

On the higher internal symmetry front I comment on only one 
" 

paper, concerned with the six' "elastic" and "inelastic" reactions 

discussed in the last section (Delbourgo and Salam, 1969). These 

processes, which involve both octets and decimets of baryons, are 

unified by means of the symmetry scheme, [U(6)®U(6)] X 0(3). This' 

symmetry, with its U(6)W vertices, is basically the quark model with 

orbital excitations. The assumption of exchange degeneracy for the p 

and A2 trajectories and residues allows the description of all six 

processes with s and an overall scale as the only parameters. o 

well this model works is shown in Fig. 15, where data on the three 

How 

"elastic" reactions are compared with the model in the top row and for 

the "inelastic" processes at the bottom. The comparison is not perfect 

in all respects, but the authors suggest that their model is a good 

starting point from which to make improvements (symmetry breaking, 

absorptive Regge cut corrections, etc.). 

!", 
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A rather extreme extension of this model has been made by 

Delbourgo (1969) who points out that pion residues singular at t = 0 

obviate the need for conspiracies, Regge cuts, etc. to explain fprward 

peaks. He finds a bas.is for such behavior in the composite nature of 

the pion implied by the quark model, and not surprisingly, is able to 

fit various data. The violation of traditional ideas on analyticity 

will make this model difficult for many to swallow. 
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IV. MULTIPLE SCATTERING, OPTICAL MODELS, ANDREGGE CUTS 
I 

We have seen in Section II that elastic scattering data (see 

Figs. 2, 3, 4) can be interpreted as approaching a regime at high 

energies where da/dt becomes independent of s and only a function 

of t. This behavior is reminiscent of the classical scattering of 

waves by opaque obstacles. Furthermore, the structure seen in the 

cross sections (dips, changes in slope in different It I regions, etc.) 

has sim~larities to the scattering of fast nucleons by nuclei, where 

multiple scattering effects are known to be important (Glauber, 1967; 

Bassel and Wilkin, 1967; and many others). These considerations led 

Yang and collaborators to explore the use of the concepts of the optical 

model and multiple scattering in an attempt to understand do/dt in 

terms· of the extended structure of particles, as evidenced by their 

electromagnetic form factors. 

In a parallel development, the successes of the absorptive model 

for pion exchange processes and inadequacies in the Regge pole model 

(described to some extent in Section III, 1) led a number of theorists 

to consider multiple t-channel exchanges, the most concrete schema 

being the Regge eikonal model of Arnold (1967). 

The formalism of impact parameters and two-dimensional Fourier 

transforms can be used to discuss all models of high energy scattering 

at moderate angles. It is not surprising, then, that the model of 

Chou and Yang (1967, 1968a, 1968b) and of Arnold (1967) bear a formal 

resemblance to Glauber's theory of the multiple scattering of nucleons 

by nuclei (Glauber, 1959, 1967), even though the physical bases and 

~ . 

j,. 
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interpretations are quite different. We first present a sketch of the 

impact parameter formalism, the eikonal approximation, the nuclear 

optical model, etc., and try to show the differences among the various 

models. Then we ,turn to specific applications. We will use the term 

"multiple scattering" rather loosely, including circumstances where we 

are merely referring to successive terms in the expansion of exp(2i5) 

'in powers of (2i5), as well as real multiple scattering processes, as 

occur in nuclei. The reader should be aware that this usage is imprecise. 

1. Impact Parameter Formalism for Multiple Scattering 

and Optical Models 

For simplicity we consider small angle elastic scattering and 

ignore spin. At high energies where many partial waves enter signifi'-

cantly, the discrete partial wave sum can be replaced by an integration 

oVer impact parameter ~.::: (,£ + ~ )~) in a well-known manner. It is 

convenient to deal with the amplitude, 

a(~', ~) 
-i 

f(k' ~) k ~, ~ , (IV.I) 

where f(~',~) is the center of mass scattering amplitude and k is 

the magnitude of the momentum in the center of mass. In terms of a, 

the differential scattering cross section is 

do 
dt (IV;·2) 

and for diffractive scattering at high energies, a is predominantly 

real and positive at t = O. 
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The scattering amplitude a can be represented by tbe two , 

* dimensional Fourier transform, 

a(~', ~) e (IV·3) 

.wbere 

s(~) 
2i6(b) e ~ 

is tbe "partial wave" S-matrix and q = k k' is tbe momentum transfer 

(t - (2,)2) .. In tbis approximation, a a(2,). 

* Tbe more familiar expansion 

a , 

comes from assuming S(~) is independent of azimutbalangle ¢ and 

performing tbe angular integration in d2b b db d¢. Tbe represen;" 
1 

tation involving J o (b-(t)2) is valid at small and moderate angles 

(9 ~ 1). A rougb criterion is It! < (s/4), or 

!t!(Gev/c)2 < 0.5 PLab(Gev/c) for a nucleon target. At larger angles 

a Bessel representation using J (b k sin 9) o 
is possible, but tben 

tbe connection between impact parameter and partial waves is lost. 
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(a) Scattering of a structureless particle by a potential 

If a structureless particle of velocity! is scattered by a 

potential V(~), the assumption of small-angle deflections (almost 

linear path) and high energies leads to the following expression for the 

eikonal (25()2)) 

(Iv.4) 

where k is a unit vector parallel to !: (2r (~+!:,)), defining 

the z-axis. 

(b) Scattering. of ~ structureless particle by N fixed scatterers 

For N fixed scattering centers, located at 
.", 

!'J' = kz. + s , , 
.~ J ~J 

where s, is the transverse coordinate vector, the wave function of the 
~J 

incident particle accumulates phase from each one of the scatterers 

according to (IV. 4). Thus 

N n 2i5. (b- s,) 
S (!2) = e J ~ ~J (IV·S) 

j=l 

This expression for Se!?) can be written in a more suggestive and 

useful form by considering the individual scatterings.· The amplitude 

for the scattering of the incident particle by the ,;i"th center of force 

is 

( 
2i5,(~)) 

1 - e J (Iv.6) 
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We define the two-dimensional inverse Fourier t,ransform of a
j 

(SI) 

[called the profile function by Glauber J by 

a .(b) 
J ~ 

1 J d2
q 2rr e 

-iq'b 
'" ~ 

Then the S-matrix for the ith scattering is 

216. (b) 
J '" e 1 - a. (b) 

J '" 

and the complete S-matrix for the N fixed scatterers is 

S (}?) . - a. (.b - s. ~.) 
J '" "'JJJ 

(IV.S) 

The expansion of this product of . N factors leads to Glauber's multiple 

scattering expansion, with the lowest order terms yielding the impulse 

approximation and the highest containing N successive scatters, as 

befits a model with forward collimation. 

(c) Scattering of a structureless particle by.a composite system, 

optical model 

For scattering by a composite system the internal motion of 

the scatterers must be taken into account. The assumption of a short. 

collision time, implied by the other assumptions of the model, allows 

mere averaging by taking an expectation value of S(~) for the ground 

state of the target. If independent particle motion is a reasonable. 

approximation, we obtain 
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= ~Jd3r. p.(r.) [1- a.(b - s.)] I I J J ~J J ~ ~J 
j~ . . 

where p.(r) is the probability density for the ~th particle. 
J ~ 

With the further approximations that all the scatterers are the 

same (or that we average the different contributions) and that the 

spatial extension of a. (b) 
J ~ 

is small compared to the distances over 

which p. (r) changes appreciably, we obtain 
J ~ 

, (rv.9) 

where 8:"(0) is the average forward (9:, = 0) amplitude for an individual 

scattering and the two..,dimensional density, 

, (rv.10) 

is a measure of the int-eracting matter encountered by the incident 

particle passing through the system at impact parameter ~. In (IV.10), 

p = Np. is the total density of interacting matter. For a large 
J 

nucleus the approximation of N ~ co, but p independent of N, is 

legitimate. Then (IV.9) becomes the standard optical model result, 

(IV~ll ) 

This type of formula plays an important role in the interpretation of·-

the data on coherent photoproduction of o p mesons in nuclei and the 



extraction of interesting quantities like o(pN) . and 
2 

Y /4n 
p 

(see 

Lohrmann (1969); Drell and Trefil, 1966; and as one specific example, 

McClellan et al., 1969). Another interesting application is to the 

coherent production of Al mesons fro~ nuclei (Goldhaber et al., 1969)· 

The inferred magni tude of the total cross section O(Al N) is such as 

to argue against the Deck mechanism wherein the Al is merely a nand 

a p produced in close proximity, but with little interaction. 

(d) Scattering of one composite systemby another 

If the incident particle itself isa composite system the 

formulas, of the preceeding sections have simple Inodifications. The 

S-matrix (IV.B) has the generalization, 

a .. ,(b + s., - s.)] 
JJ ~ ~J ~J 

(IV.12) 

where a .. ,(b) is the inverse Fourier transform of the amplitude for 
JJ ,~ 

scattering of constituent j in one composite by constituent, j' in' 

the other. If we are considering the elastic scattering of He3 on 

He
4 

or a realistic quark model, we proceed by taking expectation 

values of (IV.12) with respect to the nuclear ground states (see.Czyz 

and Maximon, 1969, for specific examples). 

If we view hadrons as extended objects, made up of finely 

divided interacting "stuff", we proceed differently. Imagine that the 

numbers, Nand M, of constituents in each hadron become very large. 

II ·11 

", 
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Correspondingly, the strength of the constit~ent-constituent scattering 

~ ( )-1 becomes very small, with a
jj 

I proportional to N X M .. Then the 

s(?) =.' e2it>C~) first nontrivial term in the expansion of_ =- can be 

equated to the sum of single-scattering terms on the right-hand side of 

* (IV.12). With assumptions paralleling those made in going from (IV.S) 

to (IV.ll), we obtain 

== , (IV.l}) 

where KAB is a complex interaction parameter for the propagation of 

composite A through composite B, and D . and 
A 

are the two-

dimensional densities of interacting matter defined by (IV.IO). If one 

.of the densities is taken to be very highly localized, we recover the 

optical model result (IV.ll) for a structureless particle propagating 

through a medium. 

* This corresponds to neglecting the scattering of one infinitesimal 

constituent in one composite by more than one constituent in the 

other composite . Examination of (IV.12) shows that for N, M -400, 

a
jj

• oc (NM) -1, this procedure is legitimate . The kth term in the 

multiple scattering series, (IV.lS), below, is then the sum over 

all possibilities of the simultaneous scattering of k pairs of 

un correlated constitutents, one member of a pair from each composite. 

., 
,1' 



(e) Multiple scattering series and its inverse 

It is instructive wi thin the continuum approximation (as 

represented by. (IV.13), or in the original (IV.3)) to eXpand S(~) in 

powers of 6(~) so that the "multiple scatteriqg" series (infinite now) 
I' 

can be exhibited. With the definition, 

1 
- 2n: .. d2b. ~~ ()J J 

iq·b 
e [2i6 ~. , (IV.14) 

one finds 

, 

(IV.1S) 

where 

, (IV.16) 

is a convolution in momentum space. The corresponding eXpansion for 

6(Sl,) in terms of the scattering amplitude is 

(IV.17) 

We note that 6(~) is analogous to the Born approximation for 

potential scattering, or to the impulse approximation in the scattering 

of nucleons by nuclei. For potential scattering with a real phase shift 

6(~), the successive terms in (IV.l'5) have phases such that the odd 

terms are imaginary and alternate in sign, while the even terms are 



,. 
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real and also alternate in sign. For the more realistic limit of real 

6(~), successive terms are real and alternate in sign, giving the 

possiblity of interference minima, as seen in the data. If 6(5!) is 
2 

approximated by a Gaussian, 6(q) cc e -A.S! , it is easy to show that the 
~ 2 

nth term in (IV.15) is proportional to e-M In. Successive terms in 

the "multiple scattering" series thus tend to give flatter and flatter 

contributions that dominate at larger and larger angles. 

Detailed studies of the convergence of the multiple scattering 

series and other aspects of the Glauber approach have been made recently 

by Czyz and Maximon (1969) and by Kofoed-Hansen (1969). I refer you to 

these papers for information on how reliable it is to terminate the 

series (IV.15) after only a few terms. 

2. Chou-Yang Model, Hybrid Model, and 

Multiple Pomeranchon Exchanges 

~ Chou-Yang model 

The model of Chou and Yang (1967, 1968a, 1968b), and the earlier 

models of Wu and Yang (1965) and Byers and yang (1966), are based on the 
• 

idea of hadrons as extended objects whose ability to interact is given by 

a well-defined density D(}2)., For definiteness, the electromagnet.ic form 

factors are used as the indicator of how the ability to interact is 

distributed in space. Thus, the hadronic density DC!::) to be employed 

fn (IV.13) is given by 

1 
2:rr (IV.18) 
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and the first term in the "multiple scattering," series (IV .15) is 

2 2 
(constant) X [Fem(q )J (rv.19) 

. . * 
as can be verified from (rV.13) and (rv.14). For particles with spin· 

there is some ambiguity as.to what electromagnetic form factor to use. 

Chou and Yang choose the Dirac form factor, 

scattering. 

A number of calculations have been mad~ with the Chou-Yang 

model. The originators themselves made two empirical fits to the high 

energy p-p scattering data for It I < 1 (Gev/c)2 and then used the· 

expans ion (rV.l 7) to deduce the momentum transfer dependence of the 

electromagnetic form factor of the proton. They showed that the higher 

terms in (rV.17) were importantonly'for It I :> 1 (GeV/c)2, and that the 

inferred electromagnetic form factor of the proton was in general 

agreement with experiment for It I values as large as 2 
.20 ( Ge V / c ) . 

* It s~ould be noted here that the approximate relation, 

I 
A 2 B 2 12 (const) F (q) F (q) em em , 

holding at small It I values, was arrived at from the quark model: 

by V~n Hove (1966a), and earlier by Wu and Yang (1965) for large I t I 
values. 
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Of more immediate interest to us are the calculations of Durand and 

Lipes (1968), comparing the asymptotic Chou-Yang differential cross 

section for p-p scattering with data of 11 to 30 GeV/c incident 

momenta and 
. . 2 

0< It I <16 (GeV/c) . These are shown in Fig. 16. The 

solid curves are those of the model, while the dashed curves give the 

trends of the experimentai data, shown in more detail in Fig. 3. The 

curves are calculated with a "dipole" form factor, 

2 2 2 -2 2 2 
F (q) cc (iJ. + q ) ,with iJ. = 1 (CleV/c) . Curve a has a real em 

constant, Kpp' in (rV.13), chosen to give the correct asymptotic total 

cross section for p-p interactions (~36 mb). Curveb has a complex 

constant K ,with the ratio of real to imaginary part chosen to yield pp 

the experimental value ~f ex = Re f(OO)/Im f(OO) at 26 GeV/c. The 

presence of the complex interaction parameter washes out the deep 

diffraction dips and gives structure at It I ~ 1.3 (Gev/c)2 remarkably 

like that seen at 20 GeV/c in Fig. 3. It is worth noting that within 

the framework of this model the deep diffraction minima are expected to 

become more and more visible as the incident energy increases, but if 

ex vanishes slowly (eg., cen s)-l) the approach to "infinite energies" 

may be rather slow. 

While discussing the connection between the electromagnetic 

form factors and hadron-hadron scattering, mention should be made of 

the specific model of Abarbanel, Drell, and Gilman (1968, 1969). These 

authors return to the idea of Wu and Yang (1965) that the large angle 

scattering of hadrons is related directly to the electromagnetic form 

,;": . 
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factors. They propose a model with an empirical diffractive contribution 

at small t, presumed to be generated by normal hadronic dynamics, plus 

·an elementary local current-current interaction whose manifestation at 

large It I is via the vector and axial vector form factors measured .in 

electromagnetic and weak processes. Care is taken to incorPorate the 

requirements of unitarity, at least approximately. One result of this 

is the observation that the deep minima of curve a in Fig. 16· may be 

a consequence of the neglect of direct channel unitai'ity in the Chou-

Yang model. 

Inelastic proces~es, corresponding to excitation of the collision 

partners without change in internal symmetry quantum numbers (G, 1,2, 

13' Y, B), are discussed by Chou and Yang (1968b). Selection rules for 

these diffractive excitation processes are inferred by imagining that 

the densities .p(~) in D(!2) , (IV.IO), are not c-numbers, as assumed 

so far, but rather are quantum mechanical operators. These operators 

can cause excitation of the incident particles, but not transfer of 

internal attributes like charge or hypercharge .. The selection rules are 
I 

those obtained by assuming that the diffractive mechanisms can transfer 

only orbital angular momentum and its associated parity. 

(b ) Hybrid model 

The basic idea of the Regge eikonal model of Arnold (1967) is 

that the eikonal phase shift, (Iv.4) or its generalizations, is given 

by the sum of the Fourier transforms of the relevant t-channel Regge 

pole exchan~e amplitudes which provide the "potential". This means that 

.. 

..... 



." 
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the first term, .6.(~), in (IV.15) is given by the sum of the Regge pole 

amplit.udes themselves. Successive terms in the multiple scat.tering 

series then provide corrections presumably important at larger angles, 

as already described. 

Chiuand Finkelstein (1968a,b) proposed a hybrid model, 

containing the Chou-Yang model at infinite energy, but having corrections 

at. finit.e energies from· Regge poles whose a. (0) < l. 
~ 

In Regge pole 

language, the hybrid model fits into Arnold's framework with a set of 

"normal" Regge poles (p', p, w, A2, etc.); plus a fixed pole at J = 1 

instead of the Pomeranchon. The "Born term" for the multiple scattering 

series is thus 

.6.( s, t) 

j 

(3.(t) e 
J 

, (IV.20) 

where .6.diff (t) is the diffractive Chou-Yang amplitude and the sum is 

* over the remaining Regge poles. 

The presence of the Regge contributions in (IV.20), with their 

s dependences and their t-dependent phases, means that at finite 

energies the multiple scattering series (IV.15) will yield cross sections 

quite different in detail from the asymptotic behavior exemplified by 

curve a in Fig. 16. Calculated cross sections for p-p scattering, 

* Note t.hat (3.(t) 
J 

is real for odd-signatured amplitudes and purely 

imaginary for even-signatured amplitudes. 

" 
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where the P' and w trajectories dominate, are shown at several 

energies in Fig. 17. At 25 GeV/c there is no sign of a dip at 

t = -5.8 (Gev/c)2 and only a shoulder, rather'than a deep minimum, 

at t.:::: -1.3 (Gevjc)2,in agreement with the data shown in Fig. 3. By 

200 GeVjc incident momentum the calculated curves show clearly discern-

able minima at 
,. 2 

t .:::: -1. 3 and -5.8 (GeV /c) , as well as some shrinkage 

towards the asymptotic shape. Another feature is the explanation of 

the "cross-over" effect (see Section III, 1) for p-p and p-p 

scattering without requiring the residue of the w Regge pole to 

vanish at t.:::: - (0.i5-0.20)(Gev/c)2 . 

. Essentially the same hybrid model was used by Arnold and 

Blackmon (1968) to discuss rrN scattering and polarization. They 

used a dipole for the electromagnetic form factor entering (IV.19) and 

included the P' and p Regge poles. The spins of the nucleons were 

handled in the irrrpact parameter formalism in the way described by 

Arnold (1967). Generally good agreement with all available data on 

differential cross sections and polarization is found for incident 

momenta above roughly 5 GeV/c and It I < 0.5 (Gevjc)2. The cross over 

effect at small It I is obtained provided all thep-exchange amplitudes 

vanish at ex 
p 

o (p chooses nonsense). 

(c) MultiplePomeranchon exchanges 

The Pomeranchuk or vacuum trajectory has occupied a special 

position in the heirarchy of Regge poles because (i) it is the highest 

lying trajectory, (ii) its slope seems abnormally small 
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(a~ :: 0-0.3 (GeV) -2), and (iii) there are serious doubts that it is a 

simple Regge pole. Some of the doubts concern the apparent slope and 

the lack of particles to associate with this trajectory; other stem 

from a belief that diffractive scattering is a complicated shadowing 

effect, far more involved than the exchange of a single Regge pole. The 

Chou-Yang and hybrid models make a clear distinction between diffraction 

and the exchange of other quantum numbers-they contain a degenerate 

Pomeranchuk trajectory of zero slope. The other extreme is to assume 

that the Pomeranchon is a normal Regge pole with an ordinary slope, but 

that multiple scattering corrections are important. The observed flat 

trajectory is then a consequence of approximating the multiple scattering 

serie? (rV.15) by a single Regge pole amplitude. Frautschi and Margolis 

(1968a,b) consider this approach, simplifying their model to include 

only the Pomeranchuk trajectory in (rV.20), and of course omitting 

6diff(t). They obtain an elastic cross section which, at anyone 

energy, resembles those of the Chou-Yang or hybrid models. But because 

of the finite slope -2 [ap(O) :: 0.8 (GeV/c) ] the whole diffraction 

structure exhibits shrinkage. Present data are probably consistent with 

either behavior. Presumably, 70 GeV/c data from Serpukhov w'ill begin 

to determine whether there is appreciable s dependence to do/dt 

above 30 GeV/c. 

Two perhaps bothersome points should be mentioned here concern-

ingthe picture of multiple P exchanges. With ap(o) = 1 and 

ap(O) >0 the "Born term", 6(t), in (rV.15) is real and positive at 
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t = 0, but has a small positive imaginary for moderate physical Itl~ 
I' 

The double scattering term, with its convolution over physical t values, 

will subtract off a term that has its phase in the first quadrant. This 

. means that at t = 0, the first correction t06( 0) diminishes it in 

magnitude and gives it a negative imaginary part. The total cross 

section will thus approach its asymptotic value, 4rc 6(0), from below, 

and a = Re f(OO)/Im f(OO) . will be positive. NeitHer of these predic­

tions agree with data at ~20-30 GeV/c.perhaps the incorporation of 

lower Regge poles, as in the hybrid model, will remove these difficul­

ties; If so, the predicted behavior of O't(s) and a(s) should set in 

at higher energies (another reason for still more powerful accelerators:~). 

While on the subject of multiple Regge exchanges, mention should 

be made of the Reggeon graph techniques of Gribov (l967b). . The methods 

encompass the multiple scattering models discussed above and generate 

alternating signs for the successive terms in the multiple Reggeon 

exchange series, just as in (IV.15),. as well as the behavior of crt(s) 

and a(s) just described. Another application of multiple P exchange 

is that of Ansel'm and Dyatlov (1967) who show that at large It I there 

are oscillations produced in dcr/dt . 

. 3. Cuts in the J -plane 

The fact that Regge poles are not the only singularities in 

the complex angular momentum plane has been known for a long. time. I 

:@t;er you to Chapter V and VII of Collins and Squires (1968) for some 

of the details and references to the literature. Mandelstam (1963) 



showed that there was every reason to expect that, in addition to Regge 

poles, there would be Regge cuts in the J-plane. Such a cut will give 

a contribution to a transition amplitude of the general form, 

A(s, t) disc A(J, t) , (IV.21) 

where disc A(J, t) is proportional to the discontinuity of the partial 

wave amplitude across the cut and cxc(t) is the end point of the cut. 

If the discontinuity behaves as n 
[cxc(t) - J] at the end point it is 

easy to show that the large s behavior of the amplitude is 

lim A(s, t) cc 
s~ 00 

[ 
. 1 n+l 

£n (:0) - ~n J 
, (IV.22) 

where the phase in the denominator comes from keeping track of the 

phase of the signature factor. 

The most popular way to generate Regge·cuts is to allow multiple 

Regge pole exchanges. The location of the end point cx (t) c depends on 

the details of the trajectories of the poles exchanged. For the simple 

case of two linear trajectories, cxl(t) = cxl(o) + cxi(O)t, 

cx2 (t) = cx2 (O) + cx2(O)t, the expression for cxc(t) is 

cx (t) 
c 

" ,/,-

(IV.23) 
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We note that the slope of the cut is smaller than either slope (if 

ex! > 0). The intercept at ·t = 0 is generally below the lower of the 
l 

two intercepts, but for one of the trajectories having ex(O) = 1, the 

intercept of the cut and the other pole coincide . 
.. 

At first glance it would seem easy to establish empirically the 

presence of a Regge cut. All one needs to do is examine the high energy 

behavior and identify the presence of the logarithm in (IV.22). In 

order to disabuse you of that idea I <iisplay in Fig. 18 the absolute 

square of one power of the logarithm from (IV. 22) . Over presently 

accessible energies the standard methods of extracting a Reggetrajectory 
. . . ,. . 

from a cross section would be unable to·see the logarithmic dependence 

and would infer instead an effective ex value roughly ~= -0.25 

below whatever ex s· was present. The actual situation will undoubtedly 

be more involved'. On the theoretical side, the logarithmic dependence 

shown in (rV.22) may not set in until quite high energies. And in any 

given process there may be a combination of effects, with a pole perhaps 

dominating at small It I and. the cut or cuts only contributing (by 

virtue of their smaller slopes) at moderate or large It I. Then the 
_1.. 

equivalence of the logarithm to an additional factor of s 2 in the 

amplitude will only mask the flatter slope of the cut and simulate a 

II 

" 
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* continuation of the trajectory of the pole. Multiple Reggepole 

exchanges give higher powers of logarithms in (IV.22), but also flatter 

slopes to the end point of the cut. 

If the logarithmic manifestations of the cuts are not idEmtifi-

able in the energy dependence, how can one expect to verify their 

presence? One place to look is in a process where the exchange of a 

single Reggepole of normal quantum numbers is forbidden (Phillips, 

1967a). A good example of such a reaction is backward K p scattering, 

discussed in Section II, 7. The u-channel exchange must have B = 1, 

Y = Q, = 2, I = 1. This is provided by the exchange of a proton or 6 and a 

* 

The effective a(o) for Y = ±l meson exchanges is 

An apparent counter-example to my pessimism about extracting evidence 

for the existence of Regge cuts is given by Huang and Pinsky (1968). 

Their Fig. 1 displays an effective a(t) for p-p elastic scattering 

that is Qualitatively s"imilar to model calculations made by Rivers 

(1968) and can be taken as showing shrinkage according to single P 

exchange for It I < 5 (Gev/c)2, double P exchange for 

5 < It I < 12 (Gev/c)2, etc. While this is suggestive, it does not 

correspond quantitatively to the multiple scattering calculations 

(section 2(b), (c)), for which the successive P exchanges begin 

at much smaller values of I t I. 
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~*(O) = -0.25 ± 0.25, while the corresponding intercept for the 6 is 

a
6

(0) ::: +0.15. The end point of the 6-K * or 6-K cut should therefore 

have an intercept, a (0) ~ -1.1 ± 0.3, leading to a power law behavior 
c -. 

of s-4.7 in the cross section if allowance is made for the logarithm in 

(tV.22). This can be contrasted with the empirical s-lO dependence 

seen in Fig. 10 for incident momenta from 1.8 to 3.5 GeV/c. If the 

* cross section continues its precipitous fall with increasings, the 

only conclusion open to us is that, for this reaction at least, 

multiple Regge pole exchanges and their associated cuts in the J-plane 

are unimportant. 

While the unambiguous verification of the presence of cuts in 

the J-plane is difficult, their importance is indicated in a nUmber of· 

ways. In Section III, 1, we described some of the problems with models 

employing only poles - the need for conspiracies, the breakdown of 
I 

factorization of pole residues, etc. Regge cuts were suggested, first 

on a purely empirical basis, as an alternative. The literature here is 

extensive. We cite only two. representative examples: 

(i) Polarization in o· 
ll-P -7 II n (de Lany et al., 1967; Chiu 

and Finkelstein, 1967): The. p pole amplitude interferes with a . cut 

amplitude of different phase to produce polarization. 

(ii) Forward peaking in np -7 pn and pp -7 nn (Kaidalov and 

Karnakov, 1968): The II and p pole amplitudes vanish at t = 0; 

interference with the cut amplitude, assumed to come from the exchange 

of II and P trajectories, gives a sharp forward peak just like the 

fits using two conspiring poles (Phillips, 1967b). 

* Michael (1969) estimates ""'5 GeV/c as the momentum at which the double 

exchange contribution should begin to dominate. 
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The evidence for important contributions from Regge cuts in 

theJ-plane, while circumstantial, is quite convincing to me. Theory 

expects and needs them; experiment is more comfortable with them. 

There is, however, the suggestion of a peculiar absence ofa cut contrl.-

bution in K-p backward scattering. Is it possible that the only 

important Regge cut amplitudes come from Pomeranchon exchange in 

addition to an ordinary Regge pole? 

4. Absorptive Model Recipe for Generating Regge Cuts 

One of the difficulties with Regge cuts is the lack of know-

ledge of the discontinuity function in (IV.21). At present there is 

no really satisfactory way to estimate the cut discontinuities, although 

some progress is being made via the·multiperipheral bootstrap. The 

standard approach is to use the ideas of the absorption model (Jackson, 

1965), or equivalently the Regge eikonal model with a sum of Regge poles 

as the Born approximation. The generalization of (IV.3) for inelastic 

processes in which the transition interaction is treated in lowest 

order, but full account is taken of the elastic scattering in the 

entrance and exit channels (the analog of the DWBA of nuclear physics) 

is 

io. (b) 
a .. (s, t) 
lJ == J 

i~. ~ io. (b) 
1 . d 2b e 1 ~ f:: (b) 
2n: 

e u .. lJ ~ 
J ~ 

e (IV.24) 

where % (b) and 50 (b) are the elastic scattering phase shifts 
1 ~ J ~ 

(complex at high energies) for the channels i and j, and 6 .. (b) lJ ~ is 



the inverse transform (IV.?) of the lowest order transition amplitude 

(to be approximated by a few Regge poles). Use of the equation above 

. * (IV.S) for the elastic phase shifts leads to. the approximate expression 

a .. 
1J 

, (IV.25) 

with the convolutions defined by (IV.16). This result can also be 

obtained from the "multiple scattering" series (IV.15)by assuming that 

.6.(Q) is a matrix with a large diagonal part and small off-diagonal 

elemerits. Equations (IV.24) or (IV.2S) are tqe basic formulas of the 

absorption model and have been used with considerable success for 

processes dominated by pion exchange. They also serve as the starting 

point for the generation of Regge cut amplitudes. 'Clearly the absorp-

tion model, the multiple scattering models described in Section 2, and 

models with Regge poles and cuts are all closely related, differing in 

their input for the elastic and inelastic amplitudes. Equation (IV.25) 

is essentially the first two terms in the "multiple scattering" series 

(IV.lS); this is expected to be a good approximation in the small It I 

region. 

Amati, Stahghellini, and Fubini (1962) showed that the 

convolution implied in (IV.2S) generated an amplitude possessing cuts in 

the J-plane. Indeed, consider (IV.16) in the spirit of (IV.25) where 

* If O. 
1 

OJ' . (IV. 25) follows exactly from (IV. 24 ). 
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one of the amplitudes is elastic scattering, and approximate F(~) by 

an exponential in 
2 

q = -t, 

F 

Here A anc C may be energy dependent (if F 

for example, A = 2CXp(O) [£n(s/so) - in/2J and 

(IV.26) 

represents P exchange, 
CXp(O)-l 

C oc s ). With 

2 G = G(s, q) it is straightforward to show that (IV.16) can be written 

as 

F®G 
AC 
2 

A 
~ (t+t') 1 

dt' e I [A(tt' )2J G(s, t') 
o 

. cx(t') 
If G(s, t') is a Regge amplitude with a factor (s/s) ,a change o 

of variable will cast (IV.27) into the form (IV.21) with a definite 

expression for disc A(J, t). Spins can be incorporated as in the 

impact parameter version of the absorption model by replacing I (z) 
o 

by I (z), where 
n 

transition. 

n = 1\ - fll is the net s-channel helicity flip in the 

Equations (IV.25) and (IV.27), or closely related expressions, 

form the basis for numerous calculations of peripheral processes with 

"absorbed" Regge poles (Cohen-Tannoudji, Morel, and Navelet, 1967; 

Schrempp, 1968; White, 1968; Michael, 1968; Rivers and Saunders, 1968; 

Henyey et al., 1968; Henyey, Kajantie, and Kane, 1968; Jackson and 

Q.uigg, 19i~9; Kajantie and Ruuskanen, 1969). A number of these papers 

address themselves to the polarization seen in nN charge exchange to 



which we referred above (see also Arnold and Blackmon, 1968), as well 

as the shape of the differential cross section. These are two viewpoints 

here. One is that the basic Regge pole amplitude" 6 .. in (IV.25) 
lJ 

should bea traditional amplitude with appropriate factors to cause it to 

vanish at "nonsense" Jvalues (J < IJ I). The presence ofione such 
z 

factor, ex (t), in the 
p 

B 
(-) amplitude is, of course, the customary 

explanation of the dip in the rrN charge exchange cross section at 

t :::. -0.6 (Gev/c)2. If G(s, t') in the convolution (IV.27) changes 

sign in the region of integration, there will be cancellation in the 

integral and the resulting cut amplitude will tend to be small. Thus 

the absorptive correction will cause only modest changes from the pure 

pole term. Dips will still be mainly a consequence of the structure of 

the pole amplitude itself. An alternative view, espoused by Henyey et 

al. (1968), is that in the presence of absorptive corrections all prior 

notions about sense-nonsense factors should be discarded. This idea 

draws support from the work of Jones and Teplitz (1967) and Mandelstam 

and Wang (1967) wpo showed that the standard arguments for the presence 

of sense-nonsense factors fail because the residues become singular at 

wrong-signature nonsense points when the third double spectral function 

* is present. In any event, if G(s, t') has no ex factors and so does 

* We will see below, in Section V, 3, that exchange degeneracy may 

bring back the factors of ex in spite of this argument. There is 

also some question as to the necessity of singular residues (i.e., 

multiplicative poles) (Oehme, 1968). 
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not change sign, the cut integral (rV.27) will be much larger. Then the 

mechanism for a dip in the cross section is the destructive interference 

between the pole and cut amplitudes, as shown schematically in Fig. 19. 

This kind of behavior is closely connected to the effects seen in Figs. 

16 and 17 for the Chou-Yang ana hybrid models. 

The choice between structureless pole amplitudes, plus sizeable 

absorptive corrections, leading to structure in cross sections, and pole 

amplitudes with the standard ex factors, plus more modest absorptive 

corrections ,;will not be clear for some time, . if ~ver. r personally 

favor the more conservative idea that the pole amplitudes possess the 

sense-nonsense factors, partly from prejudice and partly because of the 

successes of exchange degeneracy in correlating the presence or absence 

of direct channel resonances with the Regge poles in the crossed 

channels (see Section V, 3) . 

One important point should be made about t= O. There are a 

+ + 0 ++) number of processes (pn -7 np, y:p -7 Jt n, Jt p -7 P 6 that appear to be 

dominated by the exchange of a single Regge pole (in the examples 

listed, the pion). In some of these processes,the amplitude of the 

single Regge pole must vanish at t = 0 for kinematic reasons (see 

Bertocchi,1967). The differential cross section is then expected to 

vanish in the forward direction. The observations show, on the 

contrary, sharp forward peaks. Such peaks find a natural explanation 

in terms of absorptive corrections. The cut amplitude (rV.27), being a 

convolution over t', is smoothly varying and nonzero at t = o. The 
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pole amplitude increases away from t =0, causing destructive interference 

and a sharply falling cross section. This mechanism explains all the sharp 

forward peaks and avoids the difficulties of conspiracies (Section III, 1). 

5. ASF Unitarity Corrections versus Absorptive Corrections 

The generation of Regge cuts in the ASF multiperipheral model occurs 

through the application of unitarity in the s-channel. If the many particle 

intermediate states are assumed to give rise to the Regge pole, it is 

per'haps plausible to consider only the quasi-two-body channels as inter-

mediate states in the unitarity equation where the individual amplitudes 

are given by Regge pole exchanges.·· If this is done, then in the usual high-

energy, small angle approximation the unitarity equation reads 

Rea .. 
1J 

where there are real parts instead of imaginary parts because of our 

(IV.28) 

definition (IV.l). In the approximation that a .. = a .. we have unitarity 
II JJ .. 

and absorptive corrections giving the following different expressions for 

the modification of the real part of the amplitude, 

Re(a~. rgi 6 .. ) 
. 11 1J 

(two-body unitarity) 

Re a .. - Re 6 .. 
1J 1J 

-Re(a .. ® 6 .. ) 
11 1J 

(absorption) 

(IV.29) 

Finkelstein and Jacob (1968) observed that, to the extent that the elastic 

amplitude a .. 
11 

is real, these two corrections are equal in magnitude, but 

opposite in sign. Various comparisons with experiment--the sign of the 

polarization in rrNcharge exchange,the'forward peakings in np -> pn and 

+ )'p -> Tf n, the general success of the absorption model for pion exchange-

favor the second sign in (IV.29) (Finkelstein and Jacob, 1968; Rivers and 

Saunders, 19(8). 
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The fact that the two-body unitarity correction of ASF gives the 

wrong sign empirically is no cause for alarm. It has been appreciated for 

some time that the use of two-body unitarity at high energies means that the 

cut in the J-plane implied by :the ASF correction is on an unphysical sheet 

of the energy variable. Mandelstam (1963) showed, in fact, that on the 

physical sheet the ASF cut is cancelled by contributions from ma.ny-particle 

intermediate states in the unitarity equation (see Collins and Squires, 1968, 

p. 128 ff and p. 183 ff). There are more complicated diagrams, suggested by 

Mandelstam, that do give rise. to Regge cuts. These diagrams involve four 

or more particles in the intermediate state and resemble multiple scatterings 

of the constituents of composite systems via Regge exchanges. The sign of 

the correction term from· these diagrams is the same as the absorption model 

sign in (IV.29), and in agreement with Gribov (1967b). It is interesting 

to note that a multiperipheral bootstrap using unitarity may generate 

self-consistent Regge singularities with the absorptive sign for the cut, 

provided the production amplitudes have absorptive con:ections to begin 

with (Caneschi, 1969)e 

Another method of applying the constraints demanded by unitarity 

is used by Jacob and Pokorski (1969) to study elastic scattering. The 

first order corrections are similar to those.of the absorption model or 

the Glauber multiple scattering series, but higher order terms are 

different. This analysis shows that the .absorption recipe, (IV.2S), or 

the double scattering term in (IV.1S), are useful first order unitarity 

correcticms, but cannot be e:h.'})ected to form the basis of a rigorous 

treatment of unitarity. 
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V. FINITE ENERGY SUM RULES AND DUALITY 
• I, 

The subject of finite energy sum rules (FESR) or generalized 

superconvergence relations is a large one with several aspects. 

Fortunately it has been covered by both Chan (1968) and Frazer (1968) at 

Vienna and by Horn (1969) and Dietz (1969) at 'Schladming;, The early 
: ,', . 

,developments of the concept of duality were discussed at Vienna by 

Harari (1968) and the more recent aspects at Schladming by Jacob (1969). 

Lipkin (1969) has, of course, described the use of FESR, exchange 

degeneracy, and duality in his discussion of resonances. The existence 

of these reviews allows me to concentrate on those aspects that bear 

directly 9n models for high energy processes, omitting much interesting 

material on bootstraps and resonances. 

1. Equations and Basic Results 

The use of fixed momentum transfer disper~ion relations and 

asymptotic behavior in order to correlate low and high energy properties 

dates back to Igi(1962). Two historical observations can be made here. 

The first is that Igi was concerned with using his sum rule as a test 

of whether Reggecuts existed in the J-plane. The second, more personal, 

observation concerns a conversation with Professor Chew in 

Urbana in late 1961 or early 1962 in which he described Igi's work, then 

" 
just beginning, whereby Igiwas subtracting out the Pomeranchon contri~ 

bution from the forward dispersion relation for 

is divergent without subtractions and the hope was that, once the P 
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contribution was removed, the then convergent integral would yield the 

threshold scattering length. I said, "Geoff, if that works, I'll'really 

begin believing· in Regge poles." Professor Chew went home and nothing 

was heard for six months. Then Igi's letter appeared; the trick had 

not worked; Igi had discovered the P' trajectory instead: Much has 

happened in the intervening seven years. I now believe in Regge poles, 

and also Regge cuts. The interesting question of whether FESR can 

distinguish poles from cuts is touched on in Section 2 below~ 

(a) Standard formulas for FESR and CMSR 

For two particle processes it is convenient to use the variables, 

v = (s - u)/4m and t, where m is the mass of the target. The ampli­

tudes A(±)(v, t), even and odd under (s -u) crossing (v ~ -v), are 

assumed to satisfy fixed t dispersion relations in v: 

dv' Im A(±)(v' t) [I ± ~l-v] ,(V.I) , v' - v v' + 

where the v' integral has discrete (pole) contributions for 

o <v' < vth and continuum contributions for v > vth . Equation (V.I) 

is eguivalentto Cauchy's theorem applied to a function that is analytic 

in the cut v plane, apart from isolated poles on the real axis. There 

are several ways of getting from (V.I) to a FESR. One is to observe 

that an amplitude with power law behavior in v and definite crossing 

properties-satisfies the dispersion relation, (V.I). Now suppose that 



for Iv I > vl 
.A C±) ( v, t) . can be written as an expansion in Regge 

poles (or power law terms): 

* where 

j 

CX. (t) 
13.(t) v J 

J 

, (V,2) 

1• t 11 -,co '2 CXj 

Then the difference, 6(v, t) = A(v, t) - R(v, t),satisfies (V,l) and 

vanishes for Ivl > vl ' Furthermore, the integrand on the right-hand 

side of (V~l) vanishes for v' > vl ' By considering v > vl and 

expanding the denominators in ·(v'/v), this dispersion relation for 

6(v, t) yields the set of integer-moment, finite-energy sum rules 

(FESR) : 

where n 0, 2, 4, ... for A (-) and n = 1; 3, 5, ... 

* Note that and R(-) have different Regge poles contributing·; 

When spins are present, CX
j 

may be replaced by (CX
j 

- m), where m 

is a positive integer depending on the t-channel helicities 

i , 



" 
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Since the right-hand side of (v.4) involves only powers of v, the 

integ~al can be done explicitly and one finds 

fl L 
... Cl

j 
(t )+n+l 

dv 
n 1m A(±)(v, t) 

f3 j (t) vl 
v = 

Cl. (t) + n + 1 o .. j J 

Another way to obtain (V.5), or its equivalent, is to assume that 

A(±)(v, t) is given by an asymptotic form, Aas~±)(v, t) for 

(V·5) 

I vi :> vl . Then Cauchy' stheorem for vnA (±) can be applied around 

the contour shown in Fig. 20. This yields 

·fVl 
n (+) 

. dv V 1mA - (v, t) 

o 
= 1

T( 

1 ... 
- 2" Re 0 

X A (±) ( 19 t) 
asym vl e , (v.6) 

If A (v, t) is given by the Regge pole expansion (V.3), we recover asym . 

the right-hand side of (V.5), but (v.6) has the virtue that more compii.., 

cated asymptotic forms, including Regge cuts, can be evaluated int-erms 

of an integral over a semicircle of radius vl in the complex v-plane 

. (Michael, 1968). Nothing need be explicitly assumed about the behavior 

of A(±) at small v. 
asym 

Continuous moment sum rules are generated by considering 

dispersion relations for v A (+) or A (-)~ . multiplied by a factor, 

( 2 2)Y/2 h' h .. . ··1 d 't' f 1 vth - v , W lC lS even In v,rea an POSl lve or rea 
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I v I < vth ' and has the phase exp( -inY/2) just above the cut for 

v > v
th

. The finite energy sum· rule for A(-)(v, t) is then 

( 22)Y!2[ (YJ(\ 
dv v . - vth EO S 2"J 

= L 
j 

a.+Y+l 

.... t3J~. (_t_) _V;;..l_J __ [COS (a j + Y) fr] 
. 1 a.J( . 

a. + Y + cos L 
J 2 

Here we. have assumed that the high energy behavior of given by a sum of: 

Regge poles. For the sum rule has the same form, but with 

a. ~ a. + 1 (and Regge poles of opposite signature contributing, of 
J J 

course). When Y is equal to an even integer we recover the integer-

moment FESR, (V.5). If Y is an odd integer, the left-hand side involves 

. * the real part of A - this is a IIGilbert" sum rule.· 

(b) Classic results 

Ec:uations (V.5) or (V.7) relate the low energy properties of a 

scattering amplitude, expressed as an integral up to v = vl ' to the 

high energy properties in terms of Regge poles (or perhaps something more 

complicated). Since the low energy region is often dominated by direct 

* Named after Walter Gilbert~ a well-known molecular biologist. 



,. 

-61-

channel resonances, while the high energy behavior is given by a few 

exchanges in the crossed channel, FESR give fruitful constraints on the 

possible parameters used· to describe high energy processes. The classic 

work of Logunov, Soloviev, and Tavkhelidze (1967), Igi and Matsuda 

(1967a, b), and Dolen, Horn, and Schmid (1967, 1968) does not need to 

be described again here. It is sufficient to display in Fig. 21 the 

famous and elegant figure of Igi and Matsuda, showing the integrands 

on the two sides of (v.4) for the non-spin-flip, crossing-odd amplitude 

in reN scattering at t = 0. The resonant, low-energy contribution can 

be expressed in terms of the difference of total cross sections for re.}> 

and re+P, while the high-energy side is given by the exchange of a p 

Regge pole. Figure 21 shows that high energy Regge parameters can be 

determined (in favorable instances like this one), or ·at least constrained, 

by low energy experimental data. It further illustrates an important 

aspect of our present thinking about asymptotic (Regge) behavior, the 

idea of semi-local averages. The Regge amplitude, extended all the way 

down to v = 0, far below the energy where we think of asymptotic 

behavior as setting in, provides a good average description of the 

resonance region. The implication here, as we will discuss in Section 3, 

is that t-channel and s-channel descriptions are complementary in soine 

average sense. This is the essence of duality. 

The original applications to rcN scattering demonstrated how 

FESR provide a beautiful insight into the interplay of low energy and 

high energy behaviors. The main results are 
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(i) The p trajectory is consistent (although not deter-

mined well) with the form deduced by fitting high-energy data. 

(ii) The sum rule for v B( -) (v,· t) as a function of t 

demonstrates convincingly that the residue ~ (B)(t) has a linear zero 
p 

at , i ~ -0.5 (Gev/c)2, as required by the Regge pole fits to 

at high energies. 

(iii) The sum rule for t 

implies a zero in the residue 

A' (-)(v, t) as a function of 

~ (A)(t) at small physical t 
p 

values, . 

consistent with the interpretation of the cross-over phenomenon in np 

and + 
n P elastic scattering as being the result of a zero in the 

residue of A' at t ~ -0.2 (Gev/c)2. 

(iv) The magnitudes of the residues deduced from FESR are in 

reasonably good agreement with the range of values used in various.· 

parameterizations at high energies, with a large residue for vB(-) 

compared to that for A I ( -) • 

(c) Further results 

With the realization that FESR provided powerful constraints on 

high energy Regge parameters, theorists struck out in all directions 

hoping to determine trajectories and residues for all important Regge 

poles. + Low energy data on n~, 
+ K-n, and pion photoproduction were 

used with integer-moment FESR and CMSR to learn about the P, pI, W· , 

A2 , Ncx' Ny' and !'::. Regge poles in addition to the p. We can only 

list a representative sample: 
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+ 
Properties of the A2 deduced from KJN elastic 

(Matsuda and Igi, 1967) - * The residue of the A2 in 

nonflip amplitude A' (+) shows a parabolic behavior in t with 

It I 
2 

zeros in the interval, 0.2 < < 0·5 (Gev/c) , while the A2 

the 

two 

. residue 

in B(+) has one "ghost killing" zero at a
A 

0 and mayor may not 
2 

'2 
have an additional zero near t = -0.5 (GeV/c) , depending on the choice 

of pole term contributions to the low~energy integral. 

(ii) Properties of the A2 deduced from pion photoproduction 

(Chu and Roy, 1968; Vasavada and Raman, 1968) - The residue of the 

in the combination (A
l

(-) - 2m A4(-)) is found by the first authors 

to have a quadratic zero at t.::: -0.5 (Gev/c)2, implying an additional 

factor of a(t) beyond the single power needed for "ghost-killing." 

The. second authors disagree, finding two distinct zeros in the interval, 

o . 2 < I t I < o. 6 ( Ge V / c ) 
2 

• 

(iii) Properties of the P' deduced from rrN elastic 

scattering (Barger and Phillips, 1968) - The ratio vB(+)/A I (+) is 

found to be positive and of the order of unity, at least for moderate 

It I values, and ,the P' residue. in A I (+) seems to vanish as 

near a p ' = O. 

(iv) Properties of w, pI, and A2 
+ from KJN elastic 

scattering (Dass and Michael, 1968a, b) - Integer-moment FESR yield 

* When we refer to residues we mean the S's defined in (V.3), unless 

otherwise stated. 
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(vB/A') ~ 1-3(ill), ~ 1 (p'), ~10 (A2), disagreeing with some published 

Regge pole fits, but yielding the correct sign for K p polarization. 

The detailed t-dependences of the various sum rules indicate 

f3 
(A) 

P' 
2 

""' ex, , f3 ,(B) ""' ex,2; 
P f3 

(B) ~ ex,. 
A ' 2 

f3 (A) 
ill 

has a zero at 

at t ~ -0.15 (Gev/c)2, and so does f3 (B), but f3 (B) does not seem to ill . ill 

vanish at ex, =0 (or else the ill trajectory is very flat). 
ill 

(v) Properties of the P' from rrN and KN elastic 

scattering (Gilman, Harari, and Zarmi, 1968)-With an ansatz concerning 

the P contribution to the FESR (see Section 3 below) , these authors 

deduce the t-dependence of the P' residues of A'(+) and B(+) in 

rrN and KN scattering. Their results are shown in Fig. 22. Note that 

their residues for the amplitude differ from those defined in 

by a factor of a(t). For the A' (+) amplitude it is not clear 

whether the residue is proportional to a2 or to a times another 

factor which vanishes at t.::: -0.25 (Gev/c}2. For the· B(+) amplitude the 

rrN data, at least, make a clear statement that, in our notation, 

r:< (B) 
>-'P' ""' a, not 2 a. 

(vi) Properties of Na, Ny' and 6 trajectories from fixed-u 

FESR (Chiu and DerSarkissian, 1968) - The s-channel contributions of 

rrN resonances, plus a t-channel contribution from the p, imply 

residues for the Nex, and 6 trajectories consistent with the presence 

of a dip in + backward scattering at high energies and no dip in rr p 

- (See Fig. 11) . trajectory in + - D The coupling of the Ny. rr p .. 

scattering is found to be small. 



The reader who has paid attention to the details summarized in 

items (i) - (vi) will have noted certain disagreements among the 

different analyses. For example, the conclusion of Barger and Phillips 

(1968) that the P' * trajectory chooses the "no-compensation" mechanism 

at a = 0 is contradicted by the results of Gilman, Harari, and Zarmi 

(1968). Similarly, the behavior of the residues Of the A2 near 

a = 0 is unclear. These disagreements and uncertainties should not be 

allowed to obscure the fact that much is learned from FESR. The signs. 

and magnitudes of (vB/A'), for example, are of great interest. The 

conclusion that (vB/A') ~ +10 for the A2 supports the concept of 

exchange degeneracy of the A2 and the p, (see item (b), (i v) above). 

2. What do FESRActually Prove?: A Case Study of 

Pion Photoproduction 

One of the most striking applications of finite energy sum rules 

was the apparent elucidation of the mechanism for the sharp forward 

peaking in charged pion photoproduction. The data are summarized by 

Richter (1968) at Vienna and by Lohrmann (1969) here at Lund. Since the 

exchange of a Regge pion alone leads to a zero in the cross section at 

t = 0, Ball, Frazer, and Jacob (1968) and Henyey (1968) introduced a 

conspiring trajectory, corresponding to a parity-doublet partner of the 

pion, in order to fit the data. Such a conspiracy was well received in 

* See Table 3 of Bertocchi (1967) for an explanation of these terms. 
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some quarters because of the implication of a Lorentz pole assignment 

of M = 1 for the pion. We have already discussed some of the diffi-

culties with this assignment in Section III, 1. But at the time these 

difficulties were unforseen. Strong independent support for this pion 

conspiracy came from the application of FESR (Biettl et-al:, 1968; Roy 

and Chu, 1968) and then CMSR (DiVecchia et a1., 1968a, b; Raman and 

Vasavada, 1968) to determine the residues and trajectories of the pion 

and its conspirator from the low-energy data. With the assumption that 

the small t region is dominated at high energies by the pion (for 

unnatural parity exchanges) and the conspirator (for natural parity 

exchanges), the sum rules can be used to deduce CXrr(t), I3rr (t), 

13 (0) f 0 and that CX (t), 13 (t). c c The results showed that 
rr 

I3 rr (O)/l3 c (O) had the value required by the conspiracy relation. All this 

was a happy conjunction of concepts from different parts of high energy. 

theory. 

As the difficulties discussed in Section III, 1 became known, 

the FESR and CMSR results began to be quoted as the only convincing 

proof of the M = 1 assignment for the pion. Indeed, everywhere in 

peripheral processes where pion exchange appears to dominate, the 

absorptive model gives a good fit to cross sections and density matrix 

elements at small Itl. This implies that an evasive (ordinary) pion, 

with accompanying rr-P generated cuts, is a more reasonable and plausible 

model than a pion conspiracy. 

Then what about the FESR results on the conspiracy? It is 

perhaps obvious to the reader that FESR cannot really distinguish among 



I 

different models. Equations (v.4) and (v.6) contain the analyticity of 

fixed-t dispersion relations and the assumption of asymptotic behavior, 

but they become (V.5) or (V.7) only when it is assumed that the asymptotic 

behavior is given by a sum of Regge poles. For charged pion photo­

production an explicit demonstration has been given of the lack of 

discriminatory power of FESR or CMSR (Jackson and Quigg, 1969). It has 

been known to some for a iong time (see Harari, 1967, p. 359) that at 

t =0, at least, the Born term so dominates the forward dispersion 

relation that little can be learned about the mechanism responsible for 

the high energy cross section. Nevertheless, it is a useful exercise 

to construct explicitly a model which simultaneously fits the high-

energy data at small It I and also satisfies the finite energy sum 

rules, but does not involve a parity-doublet pion conspiracy. The 

model involves evasive pion and A2 poles, modified by absorptive 

corrections according to Eq. (IV.27). The forward peak results from 

destructive interference between a Regge cut amplitude and the pion 

pole contribution which is proportional to t for small t. Once the 

high-energy fit has been accomplished, the right-hand sides of the FESR 

or CMSR can be compared with the integrals over the low-energy region. 

The comparison is shown in Fig. 23, where the solid curves are the low"­

energy integrals (for n = 0 in (V.5) or y = 0 in (V.7)) and the 

dashed curves are from the model with poles plus absorptive cuts. For 

It I < 0.1 (Gev/c)2 the agreement is satisfactory. In particular, at 

t = 0 the proper conspiracy relationship occurs, but this time because 

of "conspirir:g" cuts, not poles. 
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" " " 

The dots and open circles in Fig. 23are indicative of an interesting 
I " 

result of the construction of the model. One can show that, for a large 
I 

class of models of pion photoproduction involving poles and cuts, the 

right-hand side of (17.4) or (v.6) with n";' 0 
. " . 

is approximately equal" 

to (-nv
l

/2)Re A(vl , t) where A(vl , t) is ,the appropriate" high­

energy amplitude, evaluated at v = vI., The agreement of the dots with 

the dashed curves in Fig. 23 demonstrates this for the particular model 

in question. The empirical' observation that' (da/dt) is closely 

-2 proportional to s implies'that all the amplitudes are essentially 

real at high energies (Phragm~n"'Lindeloff theorem). Consequently the 

high'-energy cross section is given almost entirely by the squares of 

the real parts of the amplitudes, and, because of the connection just 

discussed, these are given by the low-energy sum rule integrals. This 
I 

allows the construction of a "pseudomodel" in which the cross sections 

for both unpolarized and linearly polarized photons can be expressed 

directly in terms of the sum rule integrals over the low-energy region, 

without the necessity of any explicit model for the high energy behavior. 

The good agreement of this "pseudomodel" with existing data for 

It I <0.4 (Gev/c)2 is a very satisfactory example of the power of 

analyticity. At the same time it demonstrates clearly the limitations 

of FESR. Basically it reduces to this: One must know or assume what 

the model is at high energies. Then FESR can help determine parameters 

inside the framework of that model, but they are unlikely to be able to 

discriminate between different models. 
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3. Duality and its Evolution 

(a) , Simple duality and Schmid circles 

It has already been observed, in connection with Fig. 21, that 

a Regge amplitude, when extrapolated into the low energy region, 

, provides an average description of the true amplitude. This implies 

that, at least in some average sense, tne s,-channel resonances are the 

t-channel Regge exchanges, and vice versa. This is duality in its 

simplest and vaguest form. Support for the idea comes from the detailed 

behavior in t of the p Regge residues and the properties of the 

dominant s-channel resonances in nN charge exchange (Dolen, Horn, 

, and Schmid, 1968). The contributions of the major resonances have z,eros 

at t:::: -0.2 (Gev/c)2 in A'(-) and at t:::: -0.5 (Gev/c)2 in B(-). 

These zeros at low and medium energies can be viewed as the cause of 

the "cross-over" zero in the p residue' of A 
,(-) 

and the "sense-

nonsense" zero in the p residue of B 
(-) at high energies. 

Further impetus to the idea of duality was given by Schmid's 

calculation of the s-channel partial wave projections of the (-) 
B 

amplitude given by p-exchange (Schmid, 1968). These calculations gave 

resonance-like circles on the Argand diagram, wi'th the energies at the' 

tops of the circles, correlating remarkably well with the positions of 

known rrN' resonances. SomehOlv the smooth Regge amplitude contains the 

s-channel resonances: Much has been published on the interpretation of 

the Schmid circles. Harari (1968b) discusses most of the work in his 

Vienna report. ' Schmid himself gives a rebuttal to his critics (Schmid, 

1969b). I mention only two further papers (Chiu and Kotanski, 1969; 



-70-

Sert9rio and Wang, 1969) that illustrate the limitations of the idea. 

The circles on the Argand diagrams are caused mainly by the changing 

phase e-i:n:cx(t) in the signature factor, but their detailed properties 

(positions of the "resonances", etc.) depend crucially on what is 

assumed about the t-dependence of the residues, relative signs of 

different Regge terms, etc. The general conclusion is that Schniidwas 

lucky and that the best that can be hoped for at present is semi­

quantitative agreement, both for the location of resonances and for the 

behavior of the full amplitude at low energies. 

The idea of duality runs counter to the assumptions of the 

interference model (Barger and Cline, 1967) in which the amplitude is 

built up from direct channel resonances, plus t- or u-channel Regge 

pole contributions. A controversy can be traced in the literature on· 

whether or not the interference model involves serious "double counting" 

(Durand, 1968; Dolen, Horn, Schmid,.1968; Chiu and Stirling, 1968; 

Barger and Durand, 1968; Donnachie and Kirsopp, 1969). It is not profit­

able for us to go into the details here. Most, if not all, of the 

controversy stems from the latitude available in dividing an amplitude 

into "resonances" and "background." This is particularly relevant for 

the special treatment of Pomeranchon exchange, discussed in paragraph 

(c) below. 

(b) Exchange degeneracy and the presence or absence of resonances 

It is well known in potential scattering that the presence of 

Majorana exchange, forces causes the force to be different in even t 

and odd t states, giving rise to two distinct families of bound states 
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or resonances. Conversely, the absence of exchange forces implies that 

states with even and odd £ values can be treated together. In the 

language of Regge poles this means that trajectories will be exchange 

degenerate, with even and odd signature poles (e.g., A2 and p) really 

being one Regge pole, In particle physics the m~chanism is essentially 

the same. Consider a two-particle-to-two':"particle process·like 

K-p ~K-p. This reaction can be viewed alternatively in other channels. 

The three possibilities are called s-channel, t-channel, and u-channel, 

and for our example are 

s 

t + - -. K K ~ pp 

u 

For physical values of the energy in each channel, the other channels 

can be viewed as providing the ordinary and exchange forces via 

resonant intermediate states. It is assumed that if there are no 

resonances in a given channel the corresponding force is weak. The 

absence of resonances in theu-channel above means that the forces 

governing the scattering in the t-channel are predominantly ordinary 

forces. Any resonances formed in the KK or NN system will therefore 

be exchange degenerate. Of course, our argument is incomplete because 
'. 

the B = 0 syst-em involves many coupled channels, but consideration of 

nucleon-nucleon scattering leads to the same conclusion since there are 

no resonances in the NN system. The above argument for exchange 

d('gel1t:racy of mesonic Regge traj ectories was first given by Arnold 



(1965). It leads, when coupled with the idea of duality, to a remark-

ably coherent qualitative understanding of the implications of the 

presence or absence .of resonances for high energy amplitudes. 

In Fig. 24 are shown the total cross .sections for K-p and 

K+p interactions as .a function of v. The presence of numerous 

resonances in the s-channel and the remarkable absence of structure in 

the u-channel are clearly visible. How does exchange degeneracy bear .. 

on this behavior? At high energies the elastic amplitude forK-p is 

customarily described in terms of five Regge poles, 

where the trajectory symbol stands for the complex amplitude of that 

Regge pole. For the crossed reaction, + K P elastic scattering, the 
I . 

odd-si~atured amplitudes change sign, 

A(K+P) = P + pI - W + A2 - P 

The concept of exchange degeneracy groups the P' (not the p) with 

the ill and the A2 with the p. Duality implies that an imaginary 

part, as evidenced by resonances at low and medium energies, go~s along 

with an imaginary part at high energies .. Hence in K-p and K-n the 

imaginary parts of the P' and ill (and also those of A2 and p) 

must add, while in K+p they cancel. The K+p amplitude at high. 
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* energies is thus expected to be predominantly real, apart from the 

Pomeranchoncontribution. The amplitudes for the charge exchange process, 

-+ 0 
K n ~ K p, will be mainly real. For K p processes, on the other hand, 

one expects at high energies complex amplitudes with t-dependent phases. 

Similar arguments on rOt and 'np scattering, and the absence 

of resonances in the n+n+ or n+p+ channel, lead to exchange degen-

eracy between the p' and p and the (1) and A
2

. We therefore have 

approximate exchange degeneracy among all four trajectories, p' " (1), 

A
2

, p. The dashed curve on the right side of Fig. 24 is a rough repre-
1 

s,entation, 17 + 16( v-~f2mb, of the average K~p cross section and 

is consistent with the idea of a common intercept of a(O) ] 

.::::: "2 for all 

four trajectories. Better evidence comes from K-p ~ rn at high 

energies - exchange degeneracy and a(o) 1 = "2 imply that 

is given by the. optical thebremvalue, a result in agreement with 

experiment from 5 to 16 GeV/c (see Fig. 12-A13 of Van Hove, 1966b). For 

K+p elastic scattering at t o we expect a largely imaginary contri-

bution from the Pomeranchon and areal coritribution from the other 

trajectories. This is consistent with the data from 4to 16 GeV/c, 

summarized by Chien et a1. (1969), where'the observed dcr/dt(OO) is 

25-30% larger than the optical theorem value. 

* The imaginary part is z"ero because of the absence of resonances, but 

the real part is not zero because in a dispersion relation sense the 

K+P amplitude (on the left in Fig. 24) receives contributions from 

the distant K-p resonances (on the right in Fig. 24). 



The assumption of exchange degeneracy for the mesons correlates 

well with the presence or absence of resonances in the direct channel, 

and via factorization arguments predicts the decoupling of f' (1515) 

from pions and of ¢ from rrp, in agreement with experiment (and SU(3) 

magic mixing angles) (Chiu and Finkelstein, 1968c). It should also be 

noted that the absence ot; resonances in K+P implies exchange degeneracy, 

* not only of the mesons, but also of the Y baryons in the u-channel. 

Such degeneracy has potential for the determination of d/f ratios, 

. partial widths, etc., but the complexity of the * Y spectrum makes 

conclusions difficult (Schmid, 1969a; Capps, 1969). But all this is 

Lipkin's territory. 

Of more relevance to models for high-energy processes is the 

discussion of exchange degeneracy and dips in cross sections at wrong~ 

signature, nonsense points by Finkelstein (1969). We remarked in 

Section IV, 4(c) that the traditional explanation of the dip in the 

cross section for rr p ~ rron at t ~ -0.5 (Gev/c)2 is put in jeopardy 

by the presence of fixed poles at wrong-signature, nonsense values of 

J and the consequent singular residues (Jones and Teplitz, 1967; 

Mandelstam and Wang, 1967). Finkelstein points out that, independently 
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of the$e considerations, * exchange degeneracy assures the presence of 

the dips. Briefly the argument is as follows. Consider + + n n elastic 

scattering with exchange-degenerate P' and p trajectories in the 

t-channel. The absence of direct channel resonances means that the 

'amplitude of P' + p is real. At a nonsense point such as a::: -2, 

the pI amplitude is real because a::: -2 is a right-signature point, 

but the p amplitude is purely imaginary. Since the sum is real, the 

p contribution must vanish at a::: -2. Now consider + - 0 0 
n n ~ n n where. 

only the· p enters. The p coupling is the same as before, apart from 

isospin factors, and consequently lea~s to a vanishing· of the amplitude 

for charge exchange at a::: -2. The ~ame kind of arguments; along with 

factorization, establish that the p contributions to. both A'(-) and 

a ::: O. The empirical fact that the 
p 

cross section does not vanish at 2 
t :::: -0.5 (GeV!c), but only shows a 

dip, argues for other contributions, e.g., Regge cuts, as does the 

existence of polarization. Nevertheless, the successes of duality and 

exchange degeneracy lead me to conclude that, no matter how important 

* . The inaependence of Finkelstein's argument is not completely clear. 

Matsuda (1969), in his discussion of FESR and bootstraps, claims to 

show: that. exchange degeneracy implies the absence of the third double 

spectral function (which led to the fixed poles at wrong-signature 

nonsense points), and vice versa. In any event, approximate exchange 

degeneracy seems to permit restoration of the simple-minded dip 

mechanism. 
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cuts are in the detailed interpretation of experiment, the basic Regge 

pole amplitudes possess, at least approximately, the sense-nonsense and 

other factors traditionally expected of them. I thus believe that the 

dip in n-p ~non is probably caused by the presence of a factor of 

a (t) 
p 

in the B 
(-) amplitude, not by the cancellation between a pole 

contribution and a cut contribution, as advocated by Henyeyet al. 

(1968), and shown schematically in Fig. 19. 

(c) The special role of the Pomeranchon Regge pole 

At the beginning of Section IV, 2(c), we commented on the 

pecularities of the Pomeranchon trajectory in high energy scattering. 

In finite energy sum rules it also occupies a special position. It was 

first observed by Freund (1968), in discussing the FESR bootstrap for 

nn scattering, that the narrow resonance approximation works for the 

It = 1 amplitude, but fails for the It = 0 amplitude, because of the 

presence of the P in addition to the P'(fO). He suggested associating 

the P contribution with the background, and identifying the s-channel 

resonant contributions to the sum rule for the It = 0 amplitude with 

the P' trajectory. Soon after, Harari (1968a) made ithe conjecture 

that for all processes the normal Regge trajectories (p', p, w, A
2

) 

are associated in the sense of FESR and duality with the direct channel 

resonances alone, and that the Pomeranchon is associated with only the 

background. The two sides of Fig., 24 graphically illustrate this idea. 

It appears stdkingly obvious that the Pomeranchon contribution is 

present for both K+P and K-p, but that K-p has resonant 
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contTibutions superimposed. The almost exact constancy with energy of 

the total cr6ss sections for + K p, 
+ K n, pp, and np follow directly from 

Harari's hypothesis, as does the approach from above towards constancy 

at s ~oo of the total cross sections for K p and other channels 

possessing resonances at low energy. Exchange degeneracy also emerges, 

as is obvious from our previous arguments in Se6tion (b). 

Gilman, Harari, and Zarmi (1968), and more recently Harari and 

Zarmi (1969), have analyzed the P and pI Regge poles in nN and 

KN elastic scattering. The FESR for the background do not serve to 

determine the P trajectory accurately. But if ex (0) = 1 is assumed, 
p 

the calculated residue ~ (0) agrees quite well with the values from p 

high-energy fits. The results of Gilman, Harari, and Zarmi for the P' 

residues are shown in Fig. 22 and have already been discussed. 

Just as with duality and the interference model, questions have 

been raised ab01.,l.t the division of the low energy amplitude into resonances 

and background and whether the s-channel background does generate the 

Pomeranchon pole in the t-channel (Dance and Shaw, 1968; Donnachie and 

Kirsopp, 1969). The argument revolves around how one parameterizes the 

resonanc~s, especially how large one allows the high-energy tails of th~ 

resonances to be. Evidence in support of the Harari idea comes from 

the phase shift analyses of :n:N scattering. By means of the isospin 

crossing matrix we can construct linear combinations ofs-channel 

partial wave amplitudes that correspond to I = 0 and I = 1 in the 

t-channel. These combinations are 
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o ! (f 1/2 + 2f 3/2 ) 
f.e±: 3.E± .E± 

f 1 
.E± 

!(f ,1/2 M'f 3/2) 
3

1 

.. .E± .E ± ' 

I 

(V.8) 

The 1-1 t - amplitude should be accounted for entirely by s-channel 

resonances in every partial wave. The It = 0 amplitude, on the other 

hand, should have a smooth, largely imaginary, background in addition 

to the s-channel resonances. This means that It = 1 partial waves 

'shouid execute approximate circles centered more or less around the 

origin in the Argand diagram, while the I = 0 partial waves should t, 

show the "circles" displaced by a largely imaginary term which changes 

slowly from partial wave to partial wave. Figure 25 shows the Argand 

diagrams for the first seven partial waves from the phase shift 

analysis of Donnachie, Kirsopp, and Lovelace (1968), combined according 

to (V.8) into It = 0 and It = 1 (Harari and Zarmi, 1969). These 

diagrams show very clearly the presence of something other than reson-

ances in the It = 0 combinations. 

4. Duality Diagram~ 

The ramifications of duality and the absence of "exotic" 

resonances can be codified neatly by means of duality diagrams (Harari, 

1969; Rosner, 1969). One assumes that all known particles and resonances 

which appear as internal as well as well as external lines have internal 

quantum numbers (Q., I, 13' Y, B) given by the simple ('uark model in 

which mesons are 
I 
I 

and baryons are (qcq) . In drawing a duality 
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diagram for a given process, each external particle is represented by 

a line for each component quark, witt q lines running in the direction 

of the particle and q lines running oppositely. During the interaction 

the quark content rearranges itself among the particles. In the diagram, 

the quark lines, each retaining its identity, trace out this rearrange­

ment and combine in groups to form the outgoing particles. If the 

diagram can be drawn so toat no lines cross, the diagram is said to be 

planar and exhibits duality in the two channels shown. If the diagram 

contains lines that cross ,it is mnplanar and will possess intermediate 

states that are "exotic." Planar duality diagrams lead to high energy 

amplitudes with imaginary parts, whilenonplanar diagrams imply purely 

real amplitudes at high energies.* 

Many, if not all, of the predictions based on duality diagrams 

can be obtained by use of exchange degeneracy, SU(.3) , factorization, 

etc. It is a matter of taste which hypotheses one regal"ds as more 

fundamental. Because the diagrams make no reference to characteristics 

* The first use of what amounts to duality diagrams seems to have been 

made by Imachi et al. (1968) within the context of a semi-realistic 

Sakatcn (quark) model .. Arguing directly from the behavior Qf the 

high-energy data, as in Section 3(b) above, Imachi et al. conclude 

that what we have called planar duality diagrams (called H-type by 

them) lead to imaginary parts at high energies, while nonplanar 

diagrams (X-type ) give, purely real amplitudes. 
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such as spin, it is not clear how one goes beyond the implications of 

the optical theorem at to. Rosner 1(1969) explicitly states that 

his derivation of the diagrams from SU(3) couplings applies only to 

the A'(v, t) amplitude of (0-, !+) scattering, and reouires purely 

f-coupling of the vector mesons and d-coupling of the tensor mesons to 

the pseudoscalar mesons in order to get connectedness of the quark 

lines. Harari (1969), on the other hand, says that he does not know 

how to include spin effects quantitatively. Nevertheless, he makes 

predictions about polarizations, implying that the diagrams should 
I 

apply to all helicity amplitudes for a given process. 

Two examples will illtlstrate the use and limitations of duality 

diagrams in their present form. For each example we also give arguments 

based on exchange·deget:leracy and factorization in order to compare 

assumptions ,and predictions. The first reaction is backward - 0 
1l P ~ K A, 

for which the experimental cross section and polarization are shown in 

Fig. 12 along with a Regge fit. The schematic Regge exchange diagram 

and the duality diagram are given in the top half of Fig. 26. The 

lower case letters (p, 0, t...) denote the three quarks; The duality 

diagram is a planar one for s-u duality. The implication is thus 

that the s-channel resonances give an imaginary part to the u~channel 

Regge exchange amplitude at high energies. This is consistent with the 

existence of appreciable polarization of the A, as seen in Fig. 12, but 

does not require it. From the point of view of exchange degeneracy and 

factorization, we do not expect the rtA ~ 2:i vertex to satisfy any 

particular e~change degeneracy requirement because :rrA ~nA has 
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. resonances in all three channels. There is thus no expectation of a 

common overall phase for the A and B amplitudes in rr-p --7 KO A, and 

every expectation of polarization at high energies. The exchange 

degeneracy of the >:::. 
l 

trajectories, assumed by Barger, Cline, and 

Matos (1969), is viewed here as an accident. In any event, their 

residue functions are far from exchange degenerate. 

The second example is the polarization of the A in· K-n --7 :rT - L\ 

at forward angles. The relevant diagrams are shown in the bottom half 

of Fig. 26. * . * The Hegge exchanges are the K (890) and K (1420). The 

duali ty diagram is a nonplanar one and implies that the amplitude for 

* is purely real at high energies. If we adopt Harari's 

viewpoint that both A' and B are real, then we expect no polariza-

tion at high energies .. Unfortunately, experiments at 3 and 4.5 GeV/c 

show a large positive polarization of the A over a wide range of 

I t I (Barloutaud. et a1., 1969 ~ Yen et a1., 1969). .There are at least two 

ways out - only the A' amplitude is related to duality diagrams; 3 

and 4.5 GeV/c are not high enough energies (unlikely:). 

Now we look at this reaction with exchange degeneracy and 

factorization arguments. The extreme left-hand vertex in Fig. 27(b) 

* This process is just one of many in which the transfer of a A. 

quark from an initial meson to a final baryon inevitably leads to 

the crossing of quark lines, e.g., See 

Table IV of Imachi et a1.(1968) and Harari (1969). 
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presumably satisfies the requirements of exchange degeneracy because 

there are no I = 3/2 resonances in Krr scattering. For the other 

.- * vertex (pfl. ~Ki ), the standard argument of Arnold (1965) on antibaryon-

baryon scattering and no B = 2 resonances leads to the expectation of 
I 

exchange degeneracy for this vertex, too. Then we are left with the 

same result as Harari. But it is possible that arguments on exchange 

degeneracy involving antibaryon-baryon scattering are suspect. The 

duality diagrams for such processes always involve more' quarks in the 

intermediate states than (qq) or (qqq), even if lines do not cross. 

(See Lipkin (1969) for a discussion of these points.) If one considers 

only duality for meson-meson and meson-baryon scatterings, it is 

* impossible to deduce anything about the K (890) lIN couplings relative 

* to the, ,K (1420) lIN couplings without further assumptions, e. g. d/f 

ratios for the vector and tensor mesons. We do have the evidence from 

FESR of,the approximate exchange degeneracy of the (p, A
2

) and (w, pI) 

'* * residues (Section l(c)(iv) above) to argue for (K (890), K (1420)) 

exchange degeneracy by SU(3) analogy. The data quoted above 

seem to say that this is not true. 

5. Duality, The Deck Effect, and Multiperipheralism 

The production of a low mass enhancement in the rrp system in 

the reaction rrN ~rrpN by means of a double peripheral mechanism, 

known as the Deck effect, has made difficult the analysis of the Al 

and Ar;, mesons and has occasionally cast doubt on the very existence of 
<-

the Al . Chew and Pignotti (1968a), who coined the name "duality", 
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observed that this concept makes empty a discussion of whether 

there is an Ai or just an enhancement by some peripheral mechanism. 

Resonances generate and are g~r:ierated by peripheral exchanges. The 

Regge (or elementary) pion exchange amplitude is the appropriate high-

energy description of the rep system. When extended down to threshold 

it provides an average description of that mass region. If the smooth 

average is large at low mass, duality requires the existen~e of 

resonances. 

There is an interesting point here in connection with duality 

and pion exchange (private communication from E. L. Berger, G. F. Chew, 

and G. Ranft)~ The Schmid circles that correspond to resonances are 

-irrcx( t) 
generat~d mainly by the changing phase e in the signature. 

For pion exchange, however, the immediate proximity of the pion pole to 

the physical region means that the partial wave projections come from 

the very small t region and the phase does not change appreciably. 

The amplitude is mainly real where it matters. This could imply that 

the Ai and similar objects (e.g., L meson) generated by pion 

exchange and having zere orbital angular mome!'ltumare less fi:l.lly de;y:~lG]3ed 

as resonances than objects like the p or the fa. They could 

conceivably be "virtual bound states", that is, poles on the real 

energy axis of the unphysical sheet, below threshold. 

Chew and Pignotti make another point of interest to theorists 

who wish to calculate the gross properties of multiparticle .processes, 

or who are interested in the·effects via unitarity of multiparticle 

channels on elastic scattering. Qneof the concerns in the use of Regge 
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iexchanges in multiperipheral models is 'their lack of validity for small 

sub-energies where there are known resonances. Duality assures that 

the Regge exchange represents the low energy behavior, at least in an 

average sense, and makes it unnecessary even to inquire into' the details 

of the, usually messy low ~ass regions. Duality does even better than 

,that. If the peripheral Deck diagram for the ~p system can give an 

!average description of the AI' A2', .•• region, then in the same way 

a peripheral link between the two pions in the p can give an average 

description of that resonance and its recurrences. Thus, if only average 
'. 

effects are relevant,a complicated n-particle final state involving 

numerous heavy. resonances can be replaced by a multiperipheral Regge 

exchange diagram involving only the lightest particles in the final' 

state, as indicated in Fig., 27 for a relatively simple example. This 

al16ws an enormous simplification in calculation of multipartlcle 

effects. 
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VI. VENEZIANO MODELS 

The single most striking development in high energy theory in 

the past year is the creation of Veneziano models. With hints gleaned 

from his participa,tion in extensive work on a FESR bootstrap of lTTl ~ 11CD 

(Ademollo et a1., 1968), Veneziano (1968) 'wrote down a relatively simple 

closed form (Euler's beta function ~) for the invariant amplitude for 

TlTl ~ JTW. The remarkable properties of this amplitude include possession 

of resonances at low energy in every channel, Regge behavior at high 

energies, duality, and crossing symmetry. Despite some limitations to 

be mentioned below, Veneziano's amplitude answered so many prayers that 

there has been veritable explosion of papers on the subject, with 

generalizations and modifications in every conceivable direction. 

Clearly a proper review cannot be made of such a ,rapidly developing 

subject. T can only discuss some of the basic ideas and comment on some 

of the directions being explored. Here again I am fortunate in being 

able to refer the reader to Jacob's paper at Schladming (Jacob, 1969), 

and also to the thorough unpublished notes of Yellin (1968, 1969a) and 

Si vers and Yellin (1969a) . 

1. Pion-pion Scattering 

While the reaction nn ~ nw, considered by Veneziano ,has the 

considerable advantage of being purely I = 1 and identical in all 

three channels, it suffers from being difficult to study experimentally 

and of having the slight complication of spin (of the CD). Of more 

immediate interest is pion-pion scattering where some of the predictions 
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Veneziano model can be compared with experiment. The nn ~nn problem 

has been discussed by Shapiro and Yellin (1968), Lovelace (1968), Shapiro 

(1969), Kawarabayashi, Kitakado, and Yubuki(1969), Yellin. (1969b), and 

Sivers and Yellin (1969b). 

(a) Resonances and Regge behavior 

When Bose statistics, isospin conservation, and crossing 

symmetry are taken into account, the s-channel isospin amplitudes can 

be writteB-·----------

A s 
o 

A s 
.1 .' 

~ [F(S, t) + F(s, ~)]. 

F(s, t) - F(s, u) 

s 
A2 F(t, u) 

1 '. . 
'2 F(t, u) 

(VI.l) 

where F(t, u) is symmetric in t and u. The presence of only even 

jJ, values in Ao and A
2

, and only odd jJ, values in AI' is evident 

from the symmetry or antisymmetry in t and u. If there are to be 

no I 2 resonances, F(t, u) must not possess poles for positive s, 

but it ~an and will possess poles in t andu, corresponding to 

I = 0 and I = 1 resonances in the t- and u-channels.* 

If exchange degeneracy is assumed, all the resonances lie on one 
! 

trajectory which is the same for all channels. One further assumes that. 

the trajectory is linear and entirely real (at least at low energies). 

The resonances are thus approximated by poles on the real axis. This is 

* In all of this the Pomeranchon is ignored, in conformity with the Freund-

Harari hypothesis described in Section V,3(c), above. 

-. 
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called the zero-width approximation, and is at odds with the requirements 

of unitarity. The Veneziano ansatz for F(s, t) is 

F(s, t) = 
r(m- a(s)) ren - aCt)) 

rem + n + p - a(s') - aCt)) 
+ (m ~n) 

. where B is a constant,m, n, (m ~ n) and p are integers 

chosen so that the amplitude does not possess double poles, and 

, 

(VI.2) 

a(s) = a + bs is the real linear trajectory.· The ratio of gamma 

functions in (VI.2) can be written as a polynomial (in the numerator or 

I 
denominator) times a beta function, apd is a trivial generalization of 

Veneziano's use of the beta function ii tself. Inspection of (VI. 2) shows 

that when a(s) = N (N a positive integer). F(s, t) has ~ simple pole 

in s with a residue that is a real polynomial in aCt) of degreeN 

at most, provided -n..:( p ~ O. Since aCt) is linear in t and t is 

linear in cos G , this real polynomial corresponds to resonant partial s 

'waves in the s-channel .with L ~ N. The resonant content of (VI. 2) is 

therefore as shown in Fig. 28. The trajectory a(s) is the leading Regge 

trajectory with equally-spaced (in ~) resonances having L = N. 

Accompanying each of these resonances are N other simultaneously 

resonant partial Tilaves with 0 ~ L < N. Ttese secondary resonances are 

loosely called daughters J even though they occ'ur in an equal mass problem 

where daughters of the Freedman-Wang variety decouple. 

In the n-n problem the requirement of no resonance at . 

a(s) = 0 and a p-wave resonance at a(s) = 1 restricts the integers 
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in (VI. 2) to n = -p = 1. For simplicity we will also put m = l. It 

should be remembered, however, that sums of terms like (VI.2) can be 

used, giving great flexibility (and arbitrariness) in the properties of 

* the daughter trajectories. For out purposes then, we consider as 

typical the amplitude, appropriate for rr+rr-elastic scattering, 

F(s, t) r (l - a ( s») r (l - a ( t)) 
r(l --a(s) - aCt»). 

The symmetry .in s' and t means that there is a spectrum of resonances 

of the form indicated in Fig. 28 in both the s- and the t-channels, 

but no resonances in the u-channel. The asymptotic behavior of (VI.3) 

can be inferred from 

lim 
Ixl~ 00 

rex +a) 
rex + b) (Iarg xl < rr - e) 

For large s and fixed t' this implies the asymptotic form, 

F(s, t) ., 
s ~ 00 

t fixed 

* 

(VI.4) 

(VI. 5) 

See, for example, Mandelstam (l968b) for a model with trajectories 
! 

spaced by two units in angular momentu~. 
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* :provided we stay away from the real axis in s. Equation (VI.5) has 
I 

been written in standard Regge high-energy form in order to display more 

clearly several features. The first is the power-law behavior, aCt) 
s ." 

The second is the specification of the scale parameter s in 
0 

(s/so)a(t) a's the reciprocal of the slope of the trajectory. The third 

·feature is the presence in F(s} t) of the phase -ina(t) e ., as 

i expected from duality arguments. A final aspect is the factor of a(t) 

in the numerator. This is the "ghost.,.killing" factor that eliminates 

a particle of spin-parity 0+ from the leading trajectoi-y~ If aCt} 

is the p trajectory, this scalar particle would occur at negative t. 

To see that the Veneziano construction contains the appropriate 

signature factors, consider the I = 1 t-channel a.mplitude, 

F(t, s) - F(t, u) , (VI.6) 

At.large s and fixed t this should go over.into the standard p-

exchange Regge amplitude. The asymptotic form of the first term in 

(VI.6) is given by (VI.5). For the second term we merely note that, with 

linear trajectories, a(s) + aCt) +a(u) = D, where D = 3a + 4b!J.2 

is a constant. For large s and fixed t, a(u) ~ - a(s). The 

* There are equally spaced poles on the real s-axis out to infinity. 

This is a flaw of the zero-width approximation. With finite widths 

these poles would move off on the unphysical sheet and result in 

smooth behavior above the physical cut at large enough s. 
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asymptotic form of (vr.6) is therefore 

t 
.~ o:(t) ~ [1 _ e -i.,,(t) ] 

[0: ( s ) ]0: ( t ) (VI. 7) Al r(o:(t) + 1) sin no:(t) 
S--7 00 

t fixed 

This ampli hide is the standard p-exchange amplitude wi th negative 

signature, but with an additional factor o:(t) that is present because 

of exchange degeneracy. The r = 0 amplitude in the t-channel has the 

same form as (VI. 7), but with the opposite signature and a nume:dcal 

coefficient (-3/2). 

(b) Detailed properties 

We now turn to some of the subtleties of the Veneziano model. 

The first of these is the question of the elastic widths of the reson-

ances . . For 0:( s) = N the residue of the pole is a polynomial of Nth 

degree • I 

o:(t) and therefore in 8 This polynomial can be In cos s 

eh~anded in Legendre polynomials of order L< N. The coefficients of 

each PL(cos 8s ) is related to the elastic width of the resonances with 

angular momentum L at o:(s) = N. Consequently the relative values of 

the partial widths for decay into two pions can be determined for all 

the resonances, even though the total width of each state has been taken 

* to be zero. The results of one such calculation are shown in Fig. 28, 

* This is exa.ctl~ what one does in calculating to lowest order the 

decay of an unstable particle, e. g. K --7 TOT. 

., 
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where a reasonable trajectqry was chosen (to give the very low energy 

rr-:n: phase shifts) and the widths are scaled to an elastic width of 

112 MeV for the p-meson (Shapiro, 1969). 

Several things should be noted in this array. The most gla.ring 

is a n-egati ve width for the N = 2, L o state. When one thinks 

about it, it is obvious that there .is no a priori reason why the poly-

nomial in cos Qt . should yield a positive coefficient for every 

Legendre polynomial. I have not seen a completely rigorous proof yet, 

but it can be shown that if a(o) > 0.496 (for physical pion and p-

meson masses) the L = 0 widths are all positive (Shapiro, 1969). For 
1 

large Nand L < [N £n NJ? the elastic widths go as 

C i3 Na - l 
I 2 

:n: r(a)£n N exp(-L IN £n N) , (VI, 8) 

where 3 
C1 =2" ' 1, 0 for I = 0, 1, 2. For 

1 

L ~ rN £n NJ2, the 

behavior of the width is complicated, but it caq be shown to fall 

exponentially towards the value for the leading trajectory, which can 

be exhibited in closed form (Yellin, 1968) and is asymptotically, 

b~ r(N, N) (VI. 9) 

For large fixed N, we see that the widths decrease monotonically from 

L = 0 to L = N. Thus the positivity of the s-wave widths assures the 
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'* positivity of all the partial widths." Figure 28 shows the beginnings of 

the decrease in widths as N ~ <Xl for fixed L and also along the leading • 

trajectory. In passing, we note that the expressions (VI.8) and (VI.9) 
1 

imply that the r.m.s. value of L increases with energy as (s .En S)2, 

as is appropriate for a Regge diffraction amplitude. 

Another significant aspect of the tabulated values in Fig. 28 is 

the very large width for the I = 0 s-wave resonance at the position of 

the p. This s-wave rr-rr phase shift is known to resonate close to the 

mass of the p-meson, but its width is a subject of some controversy (see 

Section VIII,l below). One serious difficulty of the simple Veneziano 

formula (VI, 3) is the prediction of an I = 1 p-wave resonance (p' ) at 

the position of the fO (1260) with an elastic width roughly equal to 

that of the p-meson. Examination of the center column of Fig. 8, which 

shows the rr-rro mass distribution and Legendre coefficients for the 

ldata of Crennell et al. (1968), shows no evidence for a p~wave resonance 
~ 

between the p" and the g peaks. Estimates of production indicate that 

if the p' is largely elastic it "VJould. have been visible in the data 

sho,m in Fig. 8 if its width were greater than roughly 15 MeV (Shapiro, 

1969). The only escape seems to be that its total 'width i.s so large that 

it is not seen as a discernable bump in Fig. 8. This does not seem very 

plausible. 

* It has been remarked by Yellin (1969b) that, except for (VI. 3), each 

term of the form (VI.2) individually contains an infinite number of 

resonances with negative elastic widths. 
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The high energy behavior has been exhibited in (VI.5) and (VI.?)., 

In order to show clearly the interplay of the resonances and the Regge 

behavior, that is, duality, we display in Fig. 29 the Dalitz-Mandelstam 

diagram for F(t,u). There are poles in t and poles in u. There 

are also lines of zeros at negative s, arranged so that there are no 

double poles simultaneously in t and u. The asymptotic behaviors,' in 
i 

the six directions are indicated. Since there are resonances in the 

t and u channels, the amplitude for large t and fixed u, or large 

u and fixed t, has an imaginary part to its Regge behavior. For 

large s and fixed t or u, on the other hand, the Regge amplitude is 

real because the s-channel has no resonances. For large u or t, and 

fixed s, the amplitude vanishes faster than any pOvler because there 

are no Regge poles to be exchanged in the s-channel. 

(c) Soft pion results 

Although it is somewhat far from models of high energy processes, 

brief mention should be made of the relation of the Veneziano model of 

n:-n: scattering to the low-energy or soft-pion results of current 

algebra. A remarkable feature of the simple form, (VI. 3), is that 

F(O,O) = ° for a = ~ and F(4~2,0) = ° for a = ~(l - 4~~). 

This means that both A s 
o 

s and A2 have zeros near threshold 

2 (s = 4~ , t = u = 0), provided 1 
a :::: '2' This is just the self-consistency 

condition of Adler (1965). Lovelace (1968) extrapo:J..a tes (VI. 3 ) off the 

mass shell in order to conform exactly to Adler's requirements, and then 

determines the ratio of the I = ° to I = 2 scattering lengths in 
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. , I , 

agreement with the results of current algebra. 
, 

Since the ratio depends 

very sensitively on the value of a and the literal off-mass-shell 

extrapolation can be questioned in view of the approximate nature <?f 

(VI.3) as a representation of reality, it may be best to be content with 

the self-consistency condition alone. A current algebra result that is 

relativ~ly insensitive to a is the combination of scattering lengths, 

L = (2ao - 5a2)/6. Weinberg's result is L = O.lO/1J. (Weinberg, 1;66), 

while (VI.3) gives L = O.ll/IJ. (Shapiro and Yellin, 1968; Shapiro, 

1969). Yellin (1969b) discusses these results and a number of other 

aspects of;the connection between the Veneziano model and the algebra 

of charges ,and finite energy sum rules. 

Lovelace (1968) and subsequently Kawarabayashi,.Kitakado, and 

Yabuki (1969) and Ademollo, Veneziano, :md Weinberg (1969) applied the 

self-consistency condition: to deduce mass formulas and ~oupling constant 

ratios in general agreement with experiment. In particular, by consid-

ering the process; n + A --? B + C, Ademollo, Veneziano, and Weinberg 

showed that Regge trajectories of opposite parity sequences than can be 

connected by pion emission (e.g., p and n, ~ and N) should have 

the same slope and differ in intercept by an Odd half integer. There 
i 

are several examples that seem to work. 

2. Generalizations to n Particles 

A number of workers have generalized' the Veneziano model to more 

than four external particles. The essential idea for the gene~alization 
\ 

to n particles is contained in the 5-point amplitude, found by 

.. 
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Bardakci and Ruegg (1968) and Virasoro (1969). To indicate the idea 

we first consider the Veneziano model for the 4-point function in terms 

of the integral representation of the beta function: 

B(x, y) r(x) r(y) 
r(x + y) 

rl 

= )0 (VI. 10 ) 

In Veneziano's original example, x = 1 - o:(s), Y = 1 - o:(t), but the 

essential point is that x and yare related to -0:. The beta 

function has simple poles in x and y at zero and the negative 

integers, and no double poles. In terms of the integral representation 

these poles develop at the ends of the range of integration. They can 

be exhibited explicitly by integration by parts. 

For the 5-particle amplitude there are five independent kine-

matic invariants. These can be chosen as the squares of the sum of 

adjacent pairs of the 4-momenta shown on the left in Fig. 30. The 

requirements of the generalization are that (i) it possess resonances 

(simple poles) in all possible channels and have crossing symmetry, 

(ii) it possess simultaneous poles only in those invariants for which a 

suitable Feynman diagram can be drawn, e.g. the right-hand side of 

Fig. 30 shows a diagram which can have simultaneous poles in 

s45' (iii) the residues of poles be finite polynomials in the other 

invariants (so that there will be a leading trajectory and possibly 

and 

daughters), (iv) it possess Regge behavior when one or two subenergies 

become large and the momentum transfers remain fixed. 
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The recipe for the amplitude is a multiple integral with as 

many variables as there are allowed simultaneous poles (two for the 

5-particle amplitude) and the integrand consisting of a product of 

factors each of which varies from zero to one on the range of integration, 

each raised to the power [-1 - cx(s.)], there being as many fa~tors as 
l 

there are independent subenergies. The 5-particle amplitude is 

(VI-ll) 

'where u2 == (1 - ul u3) u3 = (1 - u2u4)' u
5 

= (1 - u4Ul)' and 

x. = -1 - cx(s .. '1)' The verification of all the duality properties of 
l l,l. 

a Veneziano-style amplitude is left to the reader in consultation with 

the original literature. 

For the general n-particle amplitude methods of construction have 

been given by Chan (1969), Chan and Tsan (1969), Hopkinson and Plahte 

(1969), Goebel and Sakita (1969), and Koba and Nielsen (1969). The 

method of Hopkinson and Plahte is noteworthy because it is an iterative 

construction and may be useful for approximate forms when n is large. 

While the n-particle amplitude is elegant in its manner of 

exhibiting duality, it is sufficiently complicated that little in the 

way of application has been made for anything but n = 4 (to be discussed 

bel'ow). For the 5-particle amplitude, BiaXas and Pokorski (1969) have 

studied the high energy behavior of the amplitude in detail, while 

Bardakci Rnd Ruegg (1969) have examined processes like KK -7 nJ1J1 and 
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KK -7KKrr. Bardakci and Ruegg show that the 4- and 5-particle Veneziano 

amplitudes give consistent results, including the standard mixing angles 

for wand 0, f and f', a universal relation for 2+ and 1 meson 

decays, and pure F coupling for the decay 

3. Attempts at Unitarization 

The most immediate difficulty in applying the Veneziano formula 

and its generalizations to the real world is the pres.ence of poles on 

the real energy axis. The zero-width approximation can be employed in 

limited regions, for example near threshold in the rr-rr problem where 

the I = 0, 1, 2 phase shifts can be reproduced approximately (Shapiro, 

1969; Kawarab.ayashi, Kitakada, andYabuki, (1969). If the energy range 

spans one or more resonances, however, there is obvious trouble. One 

recipe is to give the trajectory function o;(s) an imaginary part 

(Lovelace, 1968). This generates resonances with finite total widths, 

as desired, but causes the amplitude to possess resonances simultaneously 

in all partial waves (ancestors, as well as daughters;), something not 

desired. Such a procedure is quite ad hoc. It gives equal total wldtJ::ls 

to all partial waves that resonate at the same mass. An alternative 

approach to unitarity is to treat the partial wave prejecti0ns ef the 

Veneziano amplitude as the K-matrix. This suggestion,also due to 

Lovelace, is in direct analogy with nuclear reaction theory. Unitarity 

is satisfied in one channel, but at the expense of crossing symmetry 

(see also Arbab, 1969, for a related proposal for unita.rization). 
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Another attack at the problem of a unitary theory based on 
i 

Veneziano-like amplitudes has been made by Kikkawa, Sakita, and 

Virasoro (1969). These authors attempt to develop a diagrammatic 

approach in which the basic Veneziano amplitude is equivalent to the 

lowest order term in the normal Feynman calculus. Details are inappro-

priate at this point. There may, in fact, be very serious shortcomings to 

this perturbative approach (Bardacki, Halpern, and Shapiro, 1969). 

Still another treatment of unitarization is that of Atkinson 

et al. (1969), details of which are to be presented here at Lund. This 

is a !!nuts and bolts!! approach in which the lowest pole or lowest few 

poles are replaced by a finite cut on the energy axis, the discontinuity 

across the cut satisfying unitarity. The resulting nonlinear equation 

is solved by the N/D method. While not entirely ad hoc, this method 

is likely to lead so far from the original Veneziano amplitude as to 

make the starting point forgotten (or forgetable). 

The most elegant approach to unitarization of the 4';particle 

Veneziano amplitude is that of Martin (1969). He smears the Veneziano 

amplitude (VI.3) as follows: 

F"(s, t) Ll dx ¢(x) r(l - a - bXs) rtl - a - bxt) 
r(l - 2a - b s + t)x) , (VI.12) 

m 

where ¢(x) is a positive function that vanishes at the end points of 

integration. Note that the crossing symmetry is preserved. Martin 

shows that for a suitable class of functions ¢(x) the poles on the real 
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axis is sort move off onto the second sheet, as required. At 

Sigh energies, the integral in (VI.12) correspond to Eq. (IV.21) with 

a part:i.cular discontinuity function across the cut in the J-plane. The 

unitarized amplitude thus shows power-law behavior modified by logarith­

mic corrections, as discussed in Section IV, 3, rather than pure pole 

behavior. 

Clearly the last word has not been said on the creation of a 

unitary replacement for the Veneziano amplitude, but perhaps the first 

has. I am personally attracted to Martin's idea, not the least because 

it leads to cuts in the J-plane. 

J+. Applications 

The applications of the Veneziano model are legion and growing. 

We give only a sampling. The applications topseudoscalar mesonelastlc 

scattering have been described above. Some other applications are 

(i) 

(ii) 

(iii) 

(iv) 

pn ~ 111111 (Lovelace, 1968); 

pp ~111111 (Jengo and Remiddi, 1969). 

11N ~11N (Igi, 1968); 

KN ~ KN, KN ~.KN (Igi and Storrow, 1969); 

11N ~ 1111N (Wagner, 1969; Roberts and Wagner, 1969); 

11N ~w11N (Bender and Rothe, 1969). 

The annihilation process pn ~ 111111 can be viewed as the decay 

of an isovector pseudoscalar particle of mass 2~into three pions and 

hence describable in terms of the Veneziano amplitudes for 1111 
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scattering, suitably extrapolated in the mass of one of the pions. 

Since the Veneziano form, (VI.2) or (VI.3), depends explicitly only on 

the linear trajectories, it ~s natural to assume that the extrapolation 

is done by altering the connections, 2 
s + t + U = 4~ , to 

s + t + u=~, where ~ is the sum of the actual masses involved. 

The coefficient ~ of each term can depend on the external masses, of 

course, but for a single term this represents only a scale change. In 

analyzing - + - -pn ~ n n n , Lovelace initially considered a two-term formula, 

: . 

A -~ 
r(l - a(s)) r(l - a(t)) 

r(l - a(s) - a(t)) 
+ y r(l - a(s)) r(l - a(t)) 

r (12 - a ( s) - a ( t ) ) 

(VI. 13 ) 
I 

but ended up setting i3 = 0 in his comparison with experiment. The 

coefficient of i3 is our standard n-n amplitude (VI.3). The 

coefficient of y is a "satellite" term in which the leading trajectory 

(p, f, ... ) is suppressed. Lovelace felt compelled to eliminate the 

coupling to the p and f in this annihilation :r>r~cess 1gecause of the 

apparent absence of an appreciable p signal il'l. the data 

(Anninos et al., 1969). 

Figures 31 and 32 show comparisons of some representative 

aspects of the data with Lovelace's model and with an alternative fit 

(private communication from E. L. Berger). Both calculations use 

Lovelace's ansatz for the trajectory fu~ction 

[a(sj) 0.483 + 0.885 s +'i 0.28(sj - 4~2Y~J. Lovelace has i3 0 
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. * in (VI.13), while Berger puts B = -1, Y = 1.95. Figure 31 is the 

mass distribution for the Q = 0 combination of TOt:;' it shows peaking 

at the p and fO masses, although in Lovelace's model the peaks are 

caused by ~he daughters (€ and p', €'). Figure 32 shows the decay 

angular distribution for the n+n- . system in the fO mass region. 

There are several points to be made in the comparison of the two models 

with the datEL Firstly it is not surprising that Berger obtains some-

what better fits to the various distributions - he has more parameters. 

Secondly the experimental data of Fig. 32 show a sharp for-ward peak that 

needs an L = 2 contribution, present in Berger's model, but absent 

in Lovelace's. A third point is that neither model does very well in 

fitting the decay,angular distribution in the mass region of the p. 

Finally, without entering into questions of taste, one carf··say that 

th~se figures indicate a certain degree of arbitrariness in the use of 

sums of terms of the general form (Vr.2) in fitting data. Considerably 

more work needs to be done before we learn how much of the detailed 

partial wave content of the Veneziano amplitude is really necessary in 

fitting rr-rr distributions in inelastic processes. It is prebably 

significant, however, that the lines of zeros shown in Fig. 29 and the 

general increase in the amplitude away from the center of the diagram 

seem to be reflected in the experimental data. 

The work of Igi and others on rrN and KN elastic scattering 

is an ambitious attempt to compare the Veneziano model with the great 

* Changes in the coefficient of the imaginary part of a by 3010 in 

either dire.ction ca~ be compensated by changes iIi the ratio (3/ Y 

without deitroying the fit. 
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abundance of data available. Many trajectories are necessary and con-

sequently numerous beta functions must occur. There are problems of 

parity doubling here, as in other applications with spin (e.g. Abers 

and Teplitz, 1969). 

The identification of the partial waves in the Veneziano ampli-

tude with the K-matrix elements is the approach used by Wagner and 

Roberts and Wagner in their -treatment of rrN ~ rrrrN. The peripheral 

production process involves the scattering TCll ~rrrr with one of the 

pions virtual. The off-mass-shell extrapolation is done as suggested 

by Lovelace, with the momentum transfer to the nucleon, 
2 

I:;. , appearing 

only in the expression for t (of the rrrr scattering) : 

A direct consequence of this assumption is that the off-mass-shell 

corrections of the rr-rr partial wave amplitudes, while more or less 

standard for P, f. 0, are different from unity for the s-waves and not tl'lJ' 

same for 1=0 and 1=2. Wagner's paper contains numerous compari-

sons with experiment for both and There 

is general agreement with experiment (after adjustment of an arbitrary 

form factor in 1:;.2 and one other parame.ter in the J11~i,tarizatiGn proce-

dure). Evidence is presented for the necessi tyof the spE;,c~Jic. off-

mass-shell corrections for the s-waves at low rr-rr masses. 

,~ 

G 
' .. 
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VII. SOME ASPECTS OF MULTlPERIPHERALISM 

Multiperipheralism has two major aspects - one is as a model 

for the analysis of many-particle(n > 2) final states in high energy 

collisions and the other is as a model for the 2 -7 n amplitude used 

in the unita~ity equation to generate self-consistent Regge singulari­

ties for high-energy elastic amplitudes. Both ideas date back to 1962 

or 1963, but they have :received renewed attention as significant 

amounts of data on many-particle final states began to accumulate. 

Present versions of the model involve a chain of Regge pole exchanges, 

as indicated on the right-hand side of Fig. 27. The experimental and 

theoretical aspects of many-particle final states and the multi-Regge­

exchange model were treated in detail by Chan, Czyzewski, Turkot, and 

Ratti at the 1968 Cern Conference. In addition, at Vienna Czyzewski 

(1968) p"-~esented a very complete review, while Chan (1968) summarized 

the salient features deduqed f:rom comparison of the model with experi­

ment. Acco:cdingly, I comment only briefly on some of the applications 

published mainly in the last year. On the subject of multiperipher­

alism and the generation of self-consistent Regge singularities, my 

remarks are also brief, partly because Frazer (1968) covered some 

aspects at Vienna, partly because the technical details are difficult, 

and partly because results are just beginning to emerge. 

1. Three-body and Q,uasi-three-body Final States 

The simplest multi-Regge process is 2 -73, .. indicated in Fig. 33. 

Numerous comparisons between theory and experiment have· been made for 
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this qonfiguration. Examples of the more recent ones are listed below. 

Before going into specifics, however, a few qualitative observations 

are in ol'der. The Regge exchanges, a and· b, in Fig. 33 are in 

general different trajectories. Let us suppose that the slopes of the 

trajectories are not wildly different, but that a:a(O) < ~(O). It .is 

not difficult to show that the form of the multi -Regge amplitude and! 
i 

the kinematics are such as to cause the mass distribution of particles 

3 and 4 to peak near threshold, and the corresponding distribution for 

particles 4 and 5 to be considerably broader and perhaps peak at 

higher masses. This is a general effect - it is, of course, the basis 

of the original calculation of the Deck effect where a n, b =P, 

3 = P, 4 = 11:, and 2 = 5. Ranft (1969) has investigated a number of 

examples in detail, using the duality arguments of Chew and Pignotti 

(1968) to justify the use of the asympto~ic Regge form down to thres­

hold (~ee Section V, 5). Her specific·examples verify the qualitative 

picture stated above. 

If particles 2 and 5 are the same and so are a and 4, the 

possibility arises of using either on-mass-shell elastic scattering 

data or some sui table off-mass-shell extrapolation, instead of the. 

Regge ·exchange(s) b. This has been done in a number of the calqula-

tions and fits nicely into thp. framework of the multi-Regge model via 

duality. 

Table III contains a representative sample of three-body and 

quasi-three-body final states which have been analyzed in terms of the 

double-Regge.,.exchange model. The configurations and exchanges of 

.. 
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Fig. 33 are tabulated. In some reactions (e. g., + + K P -? K wp) several 

diagrams are used; the one listed is then merely an example. The main 

features to emerge from these comparisons are that use of a Regge ampli-

tude for the pion enhances the peaking at low masses for the two 

particles on either side of the pion link, and gives rise to appreciable 

modulations in the Treiman-Yang angular distributions. Both features 

are in general accord with e:h'1)eriment and are not given by elementary 

pion exchange. The reader is referred to the references for the 

numerous mass plots and angular correlations for each reaction. 

2. Four Bodies and More in the Final state 

The work of Chan and his collaborators at CERN on comparison 

of the multi-Regge-exchange model with various experiments has resulted 

in a long series of papers. I mention only the applications to 

ITN -? N ( n - l)IT and KN -? A (n - 1) IT by Chan, Loskiewicz, and 

Allison (196B), to + + - -" 
pp -? IT IT IT n: by Ranft (1968), and the incorpora-

tion of low energy resonances into the model by Plahte and Roberts 

(1969). A comparison of data on 3,4, 5, and 6-body final st~,tes from 

+ 
K p interactions at 5 GeV/c with the multi-Regge model has been made by 

Bassompierre et al. (1969). When resonances are included the model 

agrees reasonably well with experiment. 

Two examples of experiments on four-body final states should 

be cited. The first is the work of Rushbrooke and Williams (1969) on 

+ -
pp -? ppcrt at 16 GeV Ic. These authors interpret tbeir data in terms 

of a multi-Regge diagram with the protons as the outer legs and the 
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pions as the inner legs. The Regge link between the pions is taken as 

a pion, while the outer links are replaced by the elastic scattering ." 

amplitude for The various mass plots and momentum-transfer 

dependences are not sensitive to whether the exchanged pion is elemen-

tary or a Regge pole, but the sizeable variation in intensity as a 

function of Treiman-Yang angle favors the Regge pole description, in 

agreement with the results on the three-body final state. 

The other four-body final state occurs in the reaction, 

n:-P -7 Jt-rr+,,-p, studied by Lipes, Zweig, and Robertson (1969) at 

25 GeV/c. The data are searched for evidence of the double-Regge-

exchange diagram of Fig. 33 with 1 = 3 - 2 = 5 = p, and particle = rr , 
4 decaying into + - The data favor ex (0) 1 

~(O) .:: 1, J( rr 2" , a 

consistent with known trajectories (p, pI ; p) , and definitely rule 

out double P exchange as a dominant mechanism. The presence or 

absence of multiple P exchange pears on unitarity and the multi-

peripheral bootstra.p, as will be mentioned below. 

Before leaving n-particle final states I draw attention to the 

work of Van Have (1969) on a new type of phase space plot for longi-

tudinal momentum in multiparticle processes. These new constructions 

aid in handling the complicated kinematics of a many particle state and 

exhibiting various aspects of multi-Regge behavior. 

,. Particle Spectra in Inelastic Proton-proton Collisions 

Our final example of the use of multi-Regge models is the 

\wrk (,1' Caneschi and Pignotti (19C;9) on the energy and angular 

djst.ributions of the pions and protons produced in multi-particle pp 
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collisions. This application. is complementary to the calculations for 

a specific number of particles in the final state since it is concerned 

with the inelastic spectra of one particle, summed over all final 

states kinematically available. Caneschi and Pignotti include both 

meson and baryon links in their multi-Regge chain and findem:pirically 

that the baryon exchanges account for roughly half the cross section. 

The relevant diagrams and kinemati~ quantities are shown in 

Fig. 34. Diagram (a), at upper left, represents the meson exchange 

contribution to the proton spectra. The laboratory cross section for 

this diagram is 

oc 
at 

e (VL1) 

where (E, p) and (E', p') are the incident and outgoing energy. and 

momentum of the proton in the laboratory, t is the momentum transfer 

squared to the proton and Sf == m2 
+ t + 2m(E - E') is the mass squared 

of the unobserved particles. The factor ex:p(at) describes the 

behavior of the Regge residue; the next factor is the Regge propagator 

of the exchange meson; the last factor describes the Pomeranchon 

behavior of the meson-proton total cross section at energy Sf 

'(resulting from an approximate summing of all the different final 

states accessible at energy Sf). Equation (VI.l) can fit the small-

angle, small-energy-loss region of the proton spectra, but falls of 

much too rapidly at large momentum transfers. 
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Large momentum transfers to the proton can be generated by a 

diagram of the type shown in Fig. 34 (b). The resulting formula for the 

cross section has the appearance of the product of two expressions like 

(VI.l), one for the right-hand and one for the left-hand side of 

diagram (b). The left-hand part is just the same as before, while the 

right-hand part has the meson trajectory cxM(t) replaced by the baryon 

trajectory cxB(t) and the Pomeranchon CXp(O) replaced by CXA(O), 

a trajectory intercept appropriate for the energy dependence of the 
( 

total annihilation cross section of a baryon and antibaryon. To obtain 

the proton spectra a numerical integration over the "masses" squared, 

s.e, and s' 
r 

must be performed. 

In the interests of simplicity the authors neglect inter-

ference terms in the cross section and determine empirically the rela-

tive amounts of the two diagrams (a) and (b) 'necessary to fit the 30 

GeV/c data of Anderson et a1. (1967). Their choices of the various 

trajectories are ~(O) ~ 1, CXA(O) = 0.5" ~(t)=0.55 + 0.85 t, 

cxB(t) = -0·38 + 0.2 t. The resulting fits to the proton momentum 

spectra at various angles are shown in the upper left-hand corner of 

Fig. 35. The corresponding spectra for ± 
n at 30 GeV/c, calculated 

from the lower two diagrams in Fig. 34, are shown at bottom left in, 

Fig. 35. At upper right are some of the same data and calculations, 

this time displayed as a function of longitudinal momentum for fixed 

values of perpendicular momentum. The general agreement is quite, 

satisfactory over several orders of magnitude. The very flat 

.' 
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longitudina.l momentum distribution for the protons at fixed Pl.. is a 

. result, in the model, of a rising contribution from the meson-exchange 

part and a decreasing contribution for the baryon-exchange term. Since 

a certain number of parameters have been fed in, it is useful to test 

the model at other incident energies. The lower right-hand 1l10t in 

Fig. 35 shows calculations of proton spectra at lower and higher energies. 

The comliarison at 18 GeV Ic is reasonable. Predictions are then shown 

for fixed angle (10 mrad) at 70 and 200 GeV/c. 

The success of this particular model hinges on the inclusion 

of baryon exchanges in the sense shown in Fig. 34. This.seems surprising 

at fL'st, but Canes chi and Pignotti argue that, because multiplicities 

increase with increasing energy, sub-energies stay roughly constant on 

the average and hence allow lower-lying trajectories to compete 'i{ith 

the leading ones. This leads to a plausible picture of high-energy 

collisions with forward and backward "fireballs" consisting of a 

nucleon and an energy-independent number of mesons emitted by the baryon 

links in the multi-Regge chain, and a cloud of pions originating from 

the meson links and gro1tJing in number logarithmically. 

4. Self-consistent Regge Singularities and the Pomeranchon 

The idea that s-channel unitarity can be used to determine in 

a 'self-consistent way the parameters of·a t-channel Regge exchange is 

very attractive and has been worked on by many people. Since the 

original multiperipheral calculations of Arnati, Stanghellini, and 

Fu'l'ini (19,')) there has been tbe question of cuts in the J-plane 

.,'".' 



-110-

accomp,anying the poles. Initially unwanted and proved spurious, the 

ASF cuts, or at least their counterparts in multi-Regge theory, are 

with us again and are now respectable. They seem necessary, in fact, 

as we have a1rea.dy discussed in Chapter IV. Present attempts.at the 

problem divide into t\.,ro groups, those that try to make the input Regge 

poles emerge in a self-consistent or bootstrap way and those that aim 

to generate the Pomeranchon singularity from the exchange of mesons. 

Inside each group there is a diversity of techniques. On the technical 

side we note the generalization of the ASF integral equation to a form 

sui table for the more complicated de~'en.dence on the kinematics that 
. I 

accompanies the multi-Regge exchanges (Chew, Goldberger, and Low, 1969 ). 

In the first category are the works of. Halliday and Saunders 

(Halliday, 1969; Halliday and Saunders, 1969b) and of Chew and 

Pignotti (1968b) and Chew and Frazer (1969). The first named a,uthors 

base their calculations on high-energy approximation to the unitarity 

equation in terms of Sudakov variables (Halliday and Saunders, 1969a; 

Sudakov, 1956). Chew and collaborators give approximate solutions to 

the generalized ASF integral equation at t =.0. Chew'and Pignotti, 

using the duality ideas described in Section V,5, show that the total 

cross section arising from a multi-Regge chain with average trajectory 

intercept a: has an energy dependence, 

where 2 
g 

oc 
- 2 2(a:-l)+g s , 

is a coupling strength characteristic of the internal 

vertices (averaged over momentum transfers) and related to the average 

·. 
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2 multiplicity by . (n) "'" g .en s. If ex is associated with multiple 

Pomeranchon exchange (exp(O):: 1), the constancy of high-energy total 

cross sections can only be understood if 2 
g is very small. Data on 

multiplicities indicate l ~ 1 and therefore imply ex ~ 1/2. If this 

model has even approximate validity, the conclusion is that multiple 

Pomeranchon exchange is not significant. 

The incorrect energy dependence accompanying multiple Pomer-

anc{]on exchange has been known for some time (see, for example, Verdiev, 

Popova, and Ter-Martirosyan, 1964). Kajantie (1968) and Finkelstein 

and Kajantie (1968) have re-examined the energy dependenCe of the n-

particle production cross sections for both Regge and elementary 

particle exchanges. For fixed poles (ex: = 0) and for ex occurring 
l max 

m times in the chain, the energy dependence of the n-particle cross 

section is 

a 
n 

oc 
2(ex ·-1) . max 

s 

For the analogous situation with Regge exchanges (ex! 10), 
l 

a 
n 

oc 
( ) m-l 

[.en tn s J 
.en s 

2(0: -1) max 
s 

The energy dependence of a 
n (let alone is seen to be unreasonable 

if the Pomeranchon is a fixed pole at ex - 1 P - and it occurs in the 

chain a~ all. If the slope of the Pomerartchon trajectory is finite, 

Gn decreases even if ~(O) = 1, and independently of the value of m. 
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But this decrease is so slow with energy that there will certainly be 

difficulties with the total cross section. All these arguments favor 

a limited number of P exchanges, e.g. one. Many physicists favor this 

conclusion because of an intuitive feeling that the physics attributed 

to the Pomeranchon pole is a complicated shadowing phenomenon that 

should, almost by definition, occur only once in any collision process. 

The properties of the output pole and its associated cut in 

the J-plane are considered by Chew and Frazer (1969). They find a 

self-consistent solution for the Pomeranchon pole atcx(O) 1 - a 

'tJhere a:::: 0.01, with the end point of the cut at cxc(O) = 1 - 2a. 

The importance of the cut relative to the pole can be expressed in 

terms of the integral of the discontinuity along the cut relative to 

the residue of the pole. The ratio of cut to pole is roughly the ratio, 

a 1 t' la, 1 t' , which is 20% or less. A similar conclusion about e as lC lne as ,lC 

the relative importance of cuts and poles in elastic scattering has been 

reached by Freund and O'Donovan (1968). The model of Chew and Frazer, 

with the input a pure pole, generates a pole accompanied by a cut in 

the J-plane with the sign appropriate for a unitarity correction, 

rather than an absorptive correction. As already mentioned in Section 

IV,5, Caneschi (1969) has shown that, if poles, modified by absorptive 

corrections, are used as input in the production amplitudes, the sign 

·of the cut contribution in the elastic amplitude is that given by the 

absorptive model. This leads to the hope that a self-consistent set 

of J-plane singularities can be generated with features in accord with 

the suggestions from experiment. 

., 
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Examples of the second category, genera~ion of the Pomeranchon 

singularity by multiple meson exchange, are the original work of Amati, 

Stanghellini, and Fubini (1962), very recent attempts, still in progress, 

by Chelv,Rogers, ald Snider with essentially the ASF model, and the work 

of F:reund (1969). This last is noteworthy for its use of duality in 

sense opposite from that described in Section V,5. Freund uses duality 

arguments to replace n-particle intermediate states in the unitarity 

equation by quasi-two-body channels involving towers of resonances~ (He 

goes from right to left in Fig. 27, whereas Chew and Pignotti go from 

left to right.) 

A final remark concerning the t-dependence of thediffractive 
I 

elastic scattering can be made. Attempts to generate the forward 

diffraction peak, At e '. with A ",,8(GeV/c)-2, via theunitarity equation 

have succeeded only when the multiparticle amplitude possesses rapidly 

varying phases (Michejda, 1968). In particular, a multi-Regge-exchange 

model with a phase given by the product of phase factors, 

exp ( -in:Ct. (t. ) /2), one for each link in' the chain, yielded reasonable 
11. 

agreement with experiment. The same model without the phases yields 

A,::1.5 (Gev/c)-2 (Michejda, Turnau, and Bialas, 1968). An interesting 

by-product of this work is the result that contributions to the imagin-

ary part of the elastic amplitude from larger and larger multiplicities 

show steeper and steeper t-dependences. This suggests that higher 

multiplicity states are produced more. peripherally than low multiplici-

ties, an idea that runs counter to intuitive belief that central 
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collisions are "hard" and peripheral collisions "soft." With what 

turns out to be considerable foresight, Michejda emphasizes that these 

results are not conclusive. A contribution to this conference by 

Ajduk and Stroynowski shows that the neglect of spin in the previous 

work is a serious deficiency. Spin effects can give roughly the 

observed value of A, without the necessity of Regge phase factors, 

and they may well make the behavior in t for different multiplicities 

agree with our intuitive ideas. 



'fo 

-11'5-

VIII. MISCELLANEOUS ASPECTS OF PRODUCTION PROCESSES 

1. Pion-pion phase shifts 

The extraction of the physical pion-pion scattering phases 

from experimental data on the production process 11N ~ 11J(N has a long 

11istory, dating from the days of the Goebel-Chew-Low extrapolation 

idea and the discovery of the p-ineson. In relatively recent years there 

has been a gradual refinement of the method of analysis and the accumu-

lation of very large numbers of events. About two years ago the 

beginnings of a reasonably consistent picture emerged with the analyses 

of Baton, Laurens, and Reignier (1967) for the I = 1 and I = 2 phase 

shifts, and of Gutay et a1. (1967), Walker et a1. (1967), and Malamud 

and Schlein (1967) for the I = 0 and I = 1 phases. 

The treatment of the peripheral production data can be under-
. ; 

stood from Fig. 36. At small momentum transfers the one-pion-exchange 

diagram can be assumed to dominate. Then the arrrpli tude for JfN"':"" nJlN 

can be factored into a NN11 vertex and a 1111 ~ nrt arrrpli tude, connected 

by a pion propagator. The various methods of analysis (Schlein, 1967; 

Baton, Laurens, and Reignier, 1967; Marateck et a1., 1968; Gutay, 1969) 

differ in their treatment of the Jl-11 amplitude and the NNn: vertex, 

b1;1t all depend on the idea of factorization of the production amplitude, 

at least implicitly. Below 1 GeV it is safe to assume that only s-

and p-waves are significant. 

For the I = 1 and I = 2 phase shifts the analysis is 

fairly straightforward. The p-resonance is predominantly elastic and 

known to be }' =1-. Its uni tad ty limit of 2 
1211~. is therefore a 
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check on the normalization or extrapolation procedures. Figure 37 shovls 

the results of Baton and Laurens (1968) for 
.20;,. 

Sln u in the 1=1 

p-wave and the s-wave phase shift for I = 2. These phases were obtained 

by extrapolation to the pion pole, in the classic manner of Chew and 

Low. The p-wa.ve phase is fitted by a nonrelativistic Breit-Wigner 

resonance with r = 110 t 9 MeV and M = 755 ± 5 MeV .. This is. consis­
o 

tent with other determinations, of the parameters of the p-meson. 

For the I = 0 s-wave deduced from the n+n- system there are 

ambiguities in practice, although not in principle, as first pointed out 

by Gutay et al. (1967). The angular distribution of the pions can be . 

,vritten, assuming only s- and p-waves, as 

dW 
dl2 

2 2 2 2 222 
A(m " 6 ) + B(m ,6) cos 9 + C(m ,6) cos ,9 

nn nn nn 

i-Jhere 8 is the "scattering" angle of. one of the pions, measured rela-

tive to the incident pion's direction in the rest frame of the two pions 

in the final state. The coefficients A, B, C depend em the invariant 

mass of the two pions (m
nn

) and the momentum transfer to the nucleon 

(62 ), as well as the incident momentum and the Treiman-Yangangle. For 

small momentum transfers, the distribution in the azimuthal Treiman-Yang 

angle is isotropic, consistent with the pion exchange shown in Fig. 36. 

Extrapolation of the observed values of A, B, C to the point 2 2 
6 = -11 

should given an unambiguous determination of' both sand p-wave phases. 

BecaUSe of relatively rapidly varying corrections to A, it is not 

possible to make a useful extrapolation of this coefficient which, at 

the pion pole, involves only the s-wave phase shifts. An indirect 

method is necessary. The ratio B/C at the pion pole yields the I 0 

.. 
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s-wave phase shift, provided the I = 2 s-wave phase (which enters B 

along 1:Ji th the I Os-wave) and the I = 1 p-wave (present in Band 

c) are known. By extrapolation of Band C separately, or better, as 

a ratio B/C, the I = 0 s-wave phase can thus be determined as a 

function of m 
Jln 

Unfortunately, there is a two-fold ambiguity, ° 0 o 

01 - 000 + n/2, as shown at top left in Fig. 38. Since 

° 0 is near 90° at the position of the p there are four solutions, 
o 

referred to as "up-up," "down-up," "up-down," and "down-down," depending 

on which branch below 750 MeV is connected with which branch above The 

"down-up" solution corresponds to an s-wave resonance at roughly the p 

mass and a width of ~140 MeV, while the "up-down" solution represents a 

very broad s-wave enhancement, with a phase between 60° and 90° over the 

range, 500 MeV < m < 1000 MeV. 
JlJl 

On the basis of a fitting of production amplitudes, Malamud and 

Schlein (1967) favored the "up-up" solution, while Marateck et a1. ,(1968) 

preferred the "down-up" solution, shown separately at top right in Fig. 

38. A further analysis has been made of basically the same compilati()n 

of data as used by Marateck et a1., with the claim that a unique solution 

is determined (Scharenguivel et al., 1969). This analysis uses an 

extrapolation of the "frontto back" ratio, B/(2A + 2C/3), to 6 2 
= _ jJ2, 

combined with a fit to .the production amplitudes based on the factoriza-

tion implied by Fig. 36. With nine parameters, a maximum likelihood 

fit strongly favors the "down-up" solution, corresponding to. a relatively 

narr:n, S-Have resonance and agreeing closely with Marateck et al. 
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There are other experiments, ho"wever , that challenge the 

correctness of the "down-up" solution. Evidently the process, 

1(+1(- -)1(01(0, with its amplitude (f
o 

- f 2 )/2, is an'obvious reaction to 

study in order to elucidate the s-waves without the domi.nation of the 

resonant p-wave. Published experiments have given conflicting results -

with spark chambers, favored a narrow resonance, while Braun, Cline, and 

Scherer (1968), with 1(+d -)1(o1(0p(p) at 2.15 GeV/c in a bubble chamber 

with tantalum plates, favored the "down" solution above 800 MeV. Both 

experiments suffer from limited statistics. A Karlsruhe-Cern contribu-

tion:to this conference (Deinet et a1., 1969) seems to point unambigu-

ously(!) to the "up-down" solution, in exact opposition to the conclu-: 

sion of Scharenguivel et al. (1969). The experiment is on re-P -)reoreon 

at 1. 77 GeV / c with a neutron time-of-flight spectrometer and thick 

plate spark chambers to detect the gammas from the reo decays.. The 

number of events with 31J.2 < !::P < 151J.
2 is sufficient for a Chew-Low 

extrapolation for the total cross sec,tion for re + re- -) reoreo . The results 

are shown in the bottom half of Fig. 38,. along ,<lith the I = 0 s-wave 

unitarity limit and the expectations of the various solutions shown at 

~pper left in the same figure. There are, of course, possi.bilities for 

error in this experiment. The gamma rays are not fitted to the two ° re IS, 

and hence no Dalitz plot is available. Questions about reflections and 

interferences from a process like rc p ~ 1(°6° cannot be answered. Taken 

at face value, these data are in agreement with the predictions of the 

Veneziano model which has a broad s-wave resonance at the position of the 

p (see Fig. 28). 

... 
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The question of the I = 0 s-wave phase shift is evidently still 

open, although the balance is shifting in favor of the "up-down" solution, 

or at least a phase shift that changes very little from 700 to 900 MeV. 

The contrary deduction from the experiments on n-p -) n+Jl-n may be 

caused by too heavy a dependence on a particular,model for the production 

amplitudes. 

2. K-n Phase Shifts 

The same kinds of analysis that have been done on the pion 

production processes can be done with incident K mesons. Various 

aspects of the analysis of the three and four-body final states 

(KN -) KnN and KN -)KnJlN) have been given by Schlein (1968). The model 

used is that of one-pion-exchange with each vertex multiplied by a 

Durr-Pilkuhn form factor (Durr and Pilkuhn, 1965). For a process like 

K+p -) K+n-n+p the events with small momentum transfers to the n+p 

system are described by a differential cross section that has a product 

of the K+n- and n+p off-mass-shell scattering cross sections times 

suitable phase space factors and form factors, divided by the square of 

a pion propagator. A fit is made to the mass and t-dependences of the 

data by adjusting the radius parameters in the D~rr-Pilkuhn form factors, 

as well as the Kn and nN scattering amplitudes. For the 7·3 GeV/c 

data of Trippe et a1. (1968) on K+P -) K+n-6.++ and ~n°6.++, the results 

of such a fit are shown in Fig. 39. The lower curves display the 

t-dependences of the differential cross section for various mass cuts 

on the Kn system. From the left they are for the K*(890) re~ion, the 
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* * K (1420) region, below the K (890), between the two resonances, and 

* above the K (1420). The upper half of the figure shows the + -K JT 

Ko 0 
JT cross sections at small momentum transfers. * The· K (890) and 

and 

* K (1420) peaks are clearly visible. Since the spins, positions, widths, 

* * and elasticities of the K (890) and K (1420) are known reasonably 

reliably, the cross section cart be processed to subtract out the· p-

and d-wave resonant contributions and leave a remainder. The insert in 

the upper right-hand corner of Fig. 39 shows this remainder now expressed 

as an elastic scattering cross section. It is suggestive that the data 

points approach the unitarity limit for an 1 
I = 2" s-wave near 1 GeV. 

Trippe et al. state that these results imply the existence of an 1 
I = 2" 

scalar resonance at 1.1 GeV. It is desirable to have confirmation of 

this resonance in other, preferably very different, experiments. The 

hazards of subtracting large contributions, parameterized in a particular 

way, to obtain a small remainder are obvious, even when, as in this 

instance, there are good normalization points on either side in the form 

of well-known resonances. I have presented these data, not so much as 

convincing evidence for a new resonance, but as an example of the type 

of analysis possible in pion-exchange processes where known resonances 

provide benchmarks for calibration of one's model. 

3. On the Connection Between Production Mechanism 

and Decay of Resonances at High Energies 

Five years ago Gottfried and I published a paper with the above 

title, pointing out that the density matrix for the spin population of 

an unstable resonance carried an imprint of the mechanism of production 

" 
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(Gottfried and Jackson, 1964). Special examples had been known, of 

course, before that time. Since then many developmentEi have occurred. 

Van Rossum(1968) gave a comprehensive review at the CERN Conference. 

I therefore restrict myself to a few comments. Mention should be made 

of the work in the Soviet Union, contemporary with our original work 

(Berkov, Nikitin, and Terent 'ev; 1964) and subsequently (Kaidalov and 

Karnakov, 1966; Gribov, 1967a). Gribov suggested looking for the contri-

butions from the Pomeranchonpole and the P-P cut in the decay corre-

* lations of KN ~K N. Unfortunately, even the highest energy data on 

this reaction show little if Any evidence for the presence of 

Pomeranchon exchange. 

In photoproduction of pions there is a famous theorem due to 

Stichel (1964) which states that the cross section for photons lineatly 

polarized in (perpendicular to) the production plane corresponds to 

the exchange of unnatural (natural) parity in the t-channel. The 

general problem of circular and linear polarizati~n of the photons in 

quasi-two-body photoproduction of mesonic and baryonic states of 

arbi trary spins and pari ties has been considered recently by The'tls 

(1968) who discusses what can be learned about the t-channel exchanges 

from the polarization dependence of the cross section. Interesting 

theorems in a similar vein are presented by Ader, et al. (1968) who 

discuss in detail how to isolate the cross section corresponding to 

natural or unnatural parity exchanges by taking certain linear combina-

tions of decay density matrix elements times the differential e1?OSS 

section. 
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I wish to issue a warning about the use of the theorems of 

stichel, Thews, and Ader et al. They are only correct to leading order 

in powers of s. At present 'laboratory energies there can be sizeable 

,corrections. An example is revealing. For vector meson production, 

e.g. + *+ th 'b· t· K p -7 K p, e com lna lons 

measure the amounts of natural and unnatural parity exchanges, respec-

tively, according to Ader et al. If only natural parity exchange occurs, 

then Pl,-l = Pl,l is predicted. An elementary perturbation theory 

calculation using only vector meson exchange shows that this equality is 

only true as s -7 00 (see Eq. (16) and Fig. 2 of Jackson and Pilkuhn, 

1964) . At 3 GeV/c, the ratio P /p at small momentum 'transfers 
1 -1 11 , 

ranges from 0.7 to 1.0, depending on the details of the couplings of 

the exchanged vector meson. In terms of Regge exchanges the reliability 

of these theorems will be especially poor when the "other" parity corre-

sponds to Regge poles whose traj ectories lie higher (typically by half, , 

a unit) than those appropriate to the parity being measured. In these 

-1+.6:X circumstances the error will be of order s In all of this it 

appears that the only theorem that holds without approximation is the 

original one on the vanishing of Poo for vector meson producti?n when 

only natural parity is exchanged, plus some trivial extensions 

(Jackson, 1964). 
, 

other developments on the use of decay correlatiqns include 

quadratic relations among density matrix elements to test for single 

Regge pole exchanges (Ringland and Thews, 1968) or for certain classes 

of Exchanges (Kaidalov, 1967). It should be noted that here again are 

relations valid only to leading order in s. 

:. 

',. 
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Calculations of cross sections and density matrix elements for 

'the reaction rrN ~ pN, especially.in the small t region, have been 

made by Dass and Froggatt (1968) using a Regge pole ,model. At small t 

the process is dominated by pion exchange and the density matrix elements 

and cross section have different behaviors at t ~O, depending on 
I 

whether one has an evasive pion or a pion conspiracy (or a conspiring 

cut). The limiting form of the different behaviors as s ~ 00 are as follOl.,rs: 

dO" 
Poo dt 

Evasive pion 

t 

t 

t 

Pion conspiracy 

t 

constant 

t 

For an evasive pion, the cross section dips toward t = 0 in the forward 

direction and remains large. For a conspiring pion, the. cross 

section stays finite at t = 0, while p goes to zero there. 
00 

These 

very different behaviors can, in principle, be used to elucidate the 

types of t-channel exchanges. The si tuationdo.es, not .look too promising', 
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at the moment, however. The 'calculations of Dass and Frogga.tt 

show that the differences occur at extremely small t values 

2 Cltl < fl ). On the experimental side, data on 
o 

rrp--7pn 

a finite cross section and a large value of Poo at t 

indicates 

O. Perhaps 

this is just a reflection of corrections of order 
-1 

s to the theory on 

the one hand, and of finite bin size in the experiment on the other. 

CONCLUDING REMARKS 

·As a final comment on the state of our art and its development 

over the past 50 or 60 years I offer Figs. 40 a~d 41. Figure 40 is 

evidence for progress in theory. The top equation, taken from a paper 

in Phil. Mag. of 1910, is perhaps the first scattering cross section 

formula in particle physics; it is certainly the most famous. Since 

1910 theory has progressed - the second cross section formula, typical 

of many in Phys Rev, in 1968, shows that equations have become longer,' 

more numerous, . and, I fear, less famous.· The experimental side, too, _ 

has changed drastically 'over the years.. Progress of sorts is indicated 

by the acknowledgments shown in Fig; 41~ In 1919 good physics was done 

with simple apparatus and an able assistant to,help with the tedious' 

work of observing a zinc sulphide screen, but the completion of almost 

any experiment in high energy physics fifty years later requires a galaxy 

of Professors, Ph.D. physicists, engineers, and technicians to assist, 

support and encourage an international team of researchers assembled 

from thE far corners of the earth, as is att~sted by daggers, ~sterisks, 

and other syiilbols on almost every name. 

What will the next SO years bring? 
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Table III 

Examples of Doub1e-Regge Exchanges 

(See Fig. 33 for the notation) 

PLab Particles Regge exchanges Reference 

(GeV Ic) I 1 ·2 3 4 5 a b 
, \ 

8,11 :;r P P rf p rr P I 
Berger (1968a) 

28·5 
+ 

P Berger (1968b) P P n rr P rr 

6.6 - 8++ et a1. (1968) p p p rr elastic rr Berger 

I + 

data 

K+ (1969) 9 IK p w P w P A1E:'xander et a1. 
I 

I 12.6 i - *0 - (1969) IK 
p K rr p rr P Andrews· et al. 

l K-
- - .6.++ 

P K rr P rr Andrews et al. (1969) i 

I 28·5 
I - .6.++ P Berger (1969) IP p p rr JT 

i 
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FIGURE CAPI'IONS 

Fig. 1. Experimental and theoretical effort in hlgh energy physics as 

evidenced by frequency of publication in letter journals 

(Physics Letters, Vols. 26B, 27B, 28Bj Physical Review Letters, 

Vols. 20, 21, 22). 

Fig. 2. Differential cross section for elastic ~ p scattering at 9.7 

and 13.6 GeV/c (from Orear et al., 1968). 

Fig. 3. Differential cross section for p-p elastic scattering at 

19.2 GeV/c, along with results at other incident momenta 

(from Allaby et al., 1968a). 

Fig. 4. Differential cross section for p-p elastic scattering at 

5.9, 8.9, and 9.7 GeV/c (from Orear et al., 1968). 

Fig. 5. Differential cross sections for inelastic p-p scattering at 

19.2 GeV/c compared with the elastic cross section of Fig. 3. 

The insert shows how the different inelastic contributions 

are defined (from Allaby et al., 1968b). 

Fig. 6. Polarization in ~+p and ~p elastic scattering at 5.15 GeV/c 

. (from Esterling et al., 1968). 

Fig. 7. Polarization in K+p elastic scattering at 1.22 and 2.48 GeV/c 

Fig. 8. 

(from Anderson et al., 1969). 

Pion-pion mass distributions and Legendre polynomial coeffi-

cients for ~N ~ ~~N at 6 GeV/c. The left column is for 

~-p ~ ~+~-n(Q 
1m 

~-p ~ ~-~Op(Q 
~~ 

+ + + ( 
~p~rc~nQ 

rc~ 

O)j the center column is for 

-1) j the right column is for 

2) • (From C rennell et al., 1968). 
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Fig. 9. Comparison of experimental results on combined decay correla-

tions in the process, K-p ~ K*6 at 2.6 GeV/c, with quark model 

predictions of class A. In e~ch histogram the correlation 

predicted by the quark model is stated in terms of the direc-

tion cosines of the decay particles of the two resonances. 

The solid and open points refer to the left and right-hand 

sides of each equation. The abscissa in each diagram is the 

cosine of.the production angle in the C.M. system (from 

Friedman and Ross, 1969). 

Fig. 10. Energy dependence of the backward differential cross section 

do/dU at. U = 0 for K+p (solid points) and K-p (open circles) 

elastic scattering. The dashed curves are the corresponding 

results for nip scattering (from Baker et al., 1968). 

Fig. 11. Backward differential cross section for n+p elastic scattering 

at 5.2 and 6.9 GeV/c and n-p at 6.9 GeV/c (from Eaker et a1., 

],,968) . 

Fig. 12. Backward differential cross section "and polarization for 

Fig. 13. 

n-p ~ KOA at incident momenta from 2 to 12 GeV/c. (Data from. 

Michelini et al., 1969; figures ·from Barger, Cline, and Ivlatos, 

1969). 
± 

Regge pole fits to n p elastic scattering and polarization in 

the small and moderate It I region (0 < It I < 4(GeV/c)2) using 

cyclic residue functions (from Barger and Phillips, 1969). 



o. 

Fig. 14. Tests of exchange degeneracy and SU(3) with the "elastic" 

- 0- 0 ~-o reactions} ~ p ~ ~ n} ~ p ~ ~ n} and K p ~ K n} and the 

. .. + 0 ++ + 0 ++ + 0 ++ inelastlc processes} ~ p ~ ~ L:::. } ~p ~ ~ L:::. } and K p~ K L:::.} 

at incident momenta from 3 to 5 GeV/c. The separate cross 

sections are shown at the left; the SU(3) components from ~o 

and ~ 0 final states appear in the center; the. sum of cross 

-0 0 
sections from the center are compared vQth the K and K data 

at the right (from Mathews) 1969). 

Fig. 15. Data at various momenta on the "elastic ll and inelastic reac"'" 

tions of Fig.' 14 are compared with a two-parameter Regge model 

based on [u(6)~u(6)] X 0(3) (from Delbourgo and Salam, 1969.) 

Figo 16. Differential cross section for p-p scattering predicted by the 

Chou-Yang model with a dipole electromagnetic form factor. 

Curve a is based on a purely imaginary scattering amplitude 

(L:::.(~) real), while curve b includes a small real part. The 

trend of the data shown in Fig. 3 is displayed for comparison 

(from Durand and Lipes) 1968). 

Fig. 17. Differential cross sectton for pp scattering predicted by. the 

hybrid model at various incident momenta (from Chiu and 

Finkelstein) 1968b). 

Fig. 18. Energy dependence of a Regge cut factor (see ECl. (IV -22) ) . 

2a-2 
The cross section for a pure pole goes as (J 0: S ) while for 

t . 1 R t l·t d s2ac-2/f (s) .. ·The a yplca egge cu amp 1 u e goes as (J 0: 

dashed line is a power-law approximation corresponding to 

ffi = -0.25. 
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Fig. 19. - Cross sections for a Regge pole exchange plus a Reggecut 

generated by absorptive corrections (schematic). The pole 

and cut amplitudes interfere to produce a dip, as seen in 

~N charge exchange (from Henyey et al., 1968). 

Fig. 20. Complex v plane, showing poles, unitarity cuts and the 

contour used to obtain finite energy sum rules. 

Fig. 21. The integrands for the two sides of the finite energy sum rule 

(v. 4) for the crossing-odd forward scattering amplitude .in 

~N scattering, A(-) + VB(-), with n = 0 (from IgianlMatsuda, 

1967a). " 

Fig. 22. Residues of the P' Regge pole in the A'(+) and B(+) amplitudes 

as functions of t for ~N and KN scattering, as inferred from 

FESR (from Gilman, Harari and Zarmi, 1968). 

Fig. 23. FESR integrals vs. ~ = -t for the t-channel pion photoproduc­

tion1amPlitudesF/ -) (CP2) and F 3 (-) (CP3)' The solid curves 

are the low energy (left-hand) sides of (V.7), while the 

dashed curves are the high energy sides calculated from a 

model with an evasiye pion plus absorptive c0rrections. The 

circles refer to a "pseudomode1" (see te~t) (frem c!ackson and· 

Quigg, 1969). 

Fig. 24. Total cross sections for K+p and. K-:p interactions vs. v) ·thE{ 

K-meson energy in the laboratory. The dashed curve on the 

right is a rough Regge pole·· representati0n of the average 
i 

cross sectiQn, at':::: 17 + 16( v- ~) -2 mb. 

1 ... ' 0." 

. .... : .y.:, 
..... : 

' ... 
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Fig. 25. Argand diagrams for linear combinations of s-channel I =1/2 

and I = 3/2 partial wave amplitudes for nN scattering) corre­

spondingto 1= 0 and 1= 1 in the t-channel (see EQ.(V.8») . 

The first seven partial waves are shown. (From Harari and 

Zarmi) 1969). 

Fig. 26. Regge exchange diagram and duality diagram for (a) n p ~ K°!\. 

(backward)) and (b) K-n ~ n-A (forward). The upper duality 

diagram is a planar one) while the lower one is nonplanar. 

Fig. 27. Chew-Pignotti duality. The diffractive production of massive 

mesonic and baryonic states can be described in the average 

sense of duality by the multiperipheral diagram at the right) 

in which only the lightest mesons and baryons appear. 

Fig. 28. Trajectories and particle content of the Veneziano amplitude 

(VI.3) for n-n scattering. With the leading trajectory 

given by a (t) 
p 

0.48 + 0.90t) the elastic partial widths 

(in MeV) are the numbers beside each dot) normalized to 

r = 112 MeV (after a table of Shapiro) 1969). 
p 

Fig. 29. Dalitz-Mandelstam diagram for F(t)u») (VI.3). The lines of 

poles in t and u are shown) as are the lines of zeros from 

the denominator. The asymptotic behavior in all six directions 

is indicated (from Shapiro) 1969). 

Fig. 30. Five-particle diagrams for the generalization of the Veneziano 

formula (from Bardakci and Ruegg) 1968). 

Fig. 31. Comparison of the Veneziano model (VL.13) with the :r/n- mass 

distribution for pn ~ n+:rr-:rr-. The dash-dot curve is after 
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Lovelace (1968), with t3 = O. The solid curve is the nt of 

Berger (private communication). 

Fig. 32. Decay angular distribution of the ~+ in the mass region of 

the fOfor pn ~ ~+~-~-, as shown by the shaded region on the 

Dalitz plot. The curves have the same meaning as in Fig. 31. 

Fig. 33. Double-Regge-exchange diagram for a three-body final state •. 

a and b denote the Regge trajectories. 

Fig. 34. Multiperipheral diagrams considered by Canes chi and Pignotti 

(1969): (a) meson exchange for the proton spectra, (b) baryon 

exchange for the proton spectra, (c) and (d), corresponding 

diagrams for the pion spectra (from Caneschi and Pignotti, 1969). 

Fig. 35. Comparison of Caneschi-Pignotti model with the data of Anderson 

et ale (1967) on proton and pion spectra from inelastic p-p 

collisions at 30 GeV/c. Upper left: proton momentum spectra 

at various angles. Lower left: corresponding pion spectra 

(~+ and ~-). . Upper right: proton and pion longitudinal 

momentum spectra at fixed perpendicular momentum. Lower right: 

comparison of the model with proton data at 18.8 GeV/c, and 

predictions for 70 and 200 GeV/c. (From Caneschi and Pignotti, 

Fig. 36. Peripheral one-pion-exchange diagram for ~N4 rc~N'showingthe· , . 

decomposition into ~-~ scattering and ~NN vertex. (From 

Gutay, 1969). 

Fig. 37. I 1 and I = 2 pion-pion phase shifts. (a) 
2 . 

sin (5 for the 

I 1 p-wave, (b) phase fqr I = 2 s-wave (from Baton and 

Laurens, 1968). 



Fig. 38. Evidence concerning the I = 0 s-wave pion-pion phase shift. 

Fig. 39. 

Top left: 0 0 
vs m from s-wave-p-wave interference, showing 

o nn 

the two-fold ambiguities above and below the p. Top right: 

The "down-up" solution preferred by Marateck et a1. (1969) 

and Scharenguivel et a1. (1969). Bottom: Cross section for 

n +J1- -; nOJ[o obtained by Chew-Low extrapolation, with curves 

based on the various solutions shown at top left and the s-wave 

unitarity limit. (Top figures from Marateck et a1., 19(-:,8; 

bottom figure from Deinet et al., 1969.) 

+ . ++ / Spectra for the reaction, K p -; Kr,L:, at 7.3 GeV c. The upper 

histogram shows the cross section do-jdm for the + -K 11 and 

KOno systems. The insert displays the elastic Kn scattering· 

cross section after removal of the resonant p-wave (K*( 890)) 

and d-wave (K*(1420)) by a subtraction. The lower histro-

grams show the t-dependence of the production cross section 

for various cuts on the Kn mass spectrum (from Trippe et al., 

1968) . 

Fig. 40. Progress in Theory, 1910 -;1968. Cross section formulas, 

then and now. 

Fig. 41. Progess in Experiment, 1919 -;1968. Acknowledgments, then 

and now. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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