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ABSTRACT 

± 	4. 	 . A measurement of the ir He scattering has been made at 53, 60, 

68, and 75 :MeV  incident pion lab energy. The resulting differential 

cross sections are presented An attempt has been made to extract 

the pion electromagnetic form factor using the difference in the Tr+ 

and rr cross sections which is sensitive to the coulomb contribution 

to the total scattering amplitude.  

An optical model potential was postulated for the nuclear part 

of the interaction. Various different methods have been used to 

extract the form factor, with a view to minimizing model dependence 

The most detailed model available, using a method of analysis designed 

to reduce this dependence gives R = 2 96±0 43F Possible uncertainties 

in the model and its application are also discussed 



-2- 

INTRODUCTION 

Since nucleons possess pion clouds about themselves which determine, 

• 	among other things, their electromagnetic structure, the structure of 

• 	nucleons depends on the pion cloud and the structure of the plan, which 

possesses its own cloud. Frazer and Fulco' were able to make electron 

scattering data agree with the spectral representation method of treating 

• 	.nuc1en structure by assuimLng a strong enhancement in the pion-pionsystem. 

This enhancement, subsequently discovered as the p resonance has a spin-

parity 1 permitting it to couple directly with a photon.Thus the pion 

can coupleeitromagnetically through exchange of a p. F1.  is then expected 

to be pr.oportionai to - 12  whei.e m is the p mass. This gives rise • 	. 	 . 	l-q/mp 
to a root-mean-square pion radius of 0 63F A direct measurement of the 

• 	pi.on form factor is then needed to test the theory of vector meson. dominance. 

One method of measuring this quantity was proposed by Hofstadter and 

Sternheirn2 . They suggested measuring the differential cross section for 

elastic pion-alpha scattering using both positiveand negative piotis. The 

argument is that the difference in the cross sections of the two reactions 

is sensitive to the coulomb amplitude, since the, strong interaction part of 

the interaction cancels to firstorder. This happens because the alpha is 

an isoscalar, and there is only one strongamplitude to determine.. One 

finds then that 	3.c- 'dcr+ s* co'ul - 	= -4 Re f f 	 . 

where fS is the strong amplitude and fcoul  is the Coulomb amplitude. In 

this experiment, the quantity examined is the difference divided by the 

average. 

The first experiment along this line was performed by Nordberg and 

Kinsey3 , using 24-MeV pions, and a result of R 11. = 1.8±0.8F. was obtained. 



-3- 

However in analyzing their data, they assumed a Coulomb amplitude which 

was just the Born Coulomb amplitude multiplied by the electromagnetic 

form factor of the pion-alpbsystem However, Schiff pointed out 4  that 

an expansion of the matrix element for the interaction showed that distor-

tion terms linear in the nion charge were present and could be significant 

The matrix element for the interaction is written 

Tf1  : = ( 	U) 0) + vtp) 	 .., ..... 

after Goldberger and Watson 5 , with 	the outgoing wave function for 

nuclear interaction alone, x0  a plane wave, 	the incoming wave function 
with nuclear and Coulomb interaction, U the nuclear potential ànd.V the 

Coulomb potential 

The second term, which contains the Coulomb thteraction; can be 

approximated by (, V±)  where 	is the incoming nuclear wave function, 

and Schiff showed this quantity to be proportional to 

(2+i) P91 (cos 0) fV(r) e22, 'R (r) dr 

with 6 the nuclear phase shift and R the nuclear radial wave function 

This latter expression can be set equal to 	 . , 	.. . 

V(r)j (qr)± 2dr + (2 +l)P(cos 0) PV(i) [e21 	R()-j(kr) Jr 2dr 

with q =2 k sin 2, 0/2 by adding and subtracting the j 
	terms and perform- 

ing the sum for the first term in the expression This term is purely 

Coulomb and the second term is the distortion term effectively caused by 

the interference of the nucléar.jnteractjon upon the Cou]ornb' amplitude ' 

Both are divergent at the üppèr limit, but West 6  has  

. 	.. 
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rederived the amplitudes avoiding the divergency, giving a direct 

integral expression for the distortion term (see part D of the analysis). 

On the other hand, Auerbach et.al.• 7  use numerical techniques •(see 

Appendix) to calculate the distortion term Both methods modify the 

results of Nordberg and Kinsey to 	OF (2 standard deviations) 
Tr 

Block8  uses a technique slightly different from Wests's to calculate the 

distortion term and finds R<O.9F(2s.d.),. 

In analyzing his own data at several energies from a helium 

bubble chamber, Block. et al. 9  find RTl.<0.9F.(ls.d.)  or<2.1F.(2s.d.). 

..Auerbach et al. 7 have presented a detailed discussion of. the optical 

model as applied to the problem. To perform the analysis, one must 

postulate a form for the strong part of the interaction. Au&bach's . 	. . 

method is to use a Kisslinger type optical model potential for the 

strong interaction. The Klein-Gordon equation can then be dolved 

numerically, and, in addition to finding the size of the pion., one 	. . . 

measures the optical parameters for the pion-alpha interaction. This 

model has been used in the analysis of the experiment presented here. 

Berman'°  and others have criticized the Interpretation of the 

experiment especially with regard to the existence. of certain model-

dependent distortion effects which are neglected in this analysis. These 

effects arise from the fact that the amplitude for this process contains 

contributions from relativistic effects which have not, to our knowledge, 

been calculated (see part D of analysis). 	 . 	. 

Our analysis gives RTl. = 2.96 ± 0.43F. Two other experimental 

techniques have been used In attempts to measure R. 	 . . 
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The most direct method isthe scattering of pions off, atomic, -. 

electrons The divergence of the form factor from F 1 (q 7) l is then 

a measure of the pion radius. This method is limited by the small 

value of momentum transfer available using present pion beam energies. 

Since,, for a pion-electron system the center of mass is nearly the rest 

frame of the pion, the momentum transfer is 'small' unless'very high 

energies are used In fact, at an incident lab energy of 30 GeV, the 

maximum momentum transfer available (backwards scattering) is only 

about .5 F. In the pion electron scattering experiment, the momentum 

transfer goes roughly as the square root of the incident energy, 300 GeV 

gives about 1 9F 2  If the density is taken to be a Gaussian, a 

square well, or a Saxon-Woods the first order term in the expansion of 

the form factor is q 2r/6. Low q 2  .then implies lack of sensitivity to 

r71  If the pion has, say, the vector dominance model predicition for 

the rms radius (0.6,3F.), the deviation of thepion electromagnetic ' 

formfactor from one would be about .03 for the 30 GeV case and about 

.13 for 300 GeV. Cassel et al. have made the 'measurement 1 ' and were 

able to assign a limit of R<3.OF. The 300 GeV case,•is promising and ' 

should be tried when such pion energies are available. 

Another possible method is pion electroproduction. ' In the 

4 	 reaction e + p - e + n + ii, one assumes a single photon exchange 

between the electron and the strongly interacting system Then, 

one has the photoproduction of a pion by a space-like photon which 

is polarized both transversely and longitudinally. The pion fOrm 

factor arises only from the pion pole diagram which has a maximum 
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effect when the pion-production angle is closest to the pole. This 

is along the direction of the virtUal photon, or equivalently, of the 

3 momentum transfer of the electron. A transverse photon cannot knock 

a pion directly forward because of its helicity, so the contribution 

to the pion-pole amplitude is from longitudinal protons. The experiment 

is performed at different polarizations for the same momentum transfer 

and energy to estimate the longitudinal contribution, and then at 

different momentum transfers to get the effect of the pion size. The 

kinematics are thus arranged to maximize the effect of the pion pole 

at the pion vertex, Zagury12  has developed a relativisitic formalism for 

treating this reaction using dispersion relations in which the differential 

cross sectiOn can be expressed with F 71. as a free parameter. There 

is some uncertainty about the model-independence of the theory, but 

two experiments have been carried out with the reported error including 

this  uncertainty. Akerlof et al. find R 71. = 0.80 ±0.10 F. 13  and 

Mis tretta et al. find R 11  = 0.86 ± 0.14 F. 14  The momentum transfer in 

these experiments is typically between 1. and 15. 

Experimental Description 

A pion beam of 90 MeV obtained from an internal target of the 

184-inch Berkeley Synchrocyclotron is shown schematically in Fig. 1. 

Negative pions produced in the forward direction at the target were 

accepted by the transport system. Positive pions (produced in the 

backward direction) were obtained in the same beam line by reversing 

the cyclotron main field. Consideration of sensitivi.ty to the pion 

form factor leads to an optimum energy for the measurement of about 

60MeV for the incident pions; 15  here (at the minimum in the nuclear 



7 

Coun ters 

184' 	Cyclotron 

\. •\\___ 
rane 

wheel 
• 

 

30 

Detail of telescope Quo 

S. 

Degrader 

Collimator 
- 

TOE I 
Quad 

H magnet 
Hodoscope A— 	

.. 

TOE 2 7.6m 	oncrete 
Collimator Tar9et N \ 

't 1ZP_ 8O..\ 	150  
40 

GO 	
c;:.,00 

Hodoscope B 
 

" 
/ 

30 

90 

400 	16 Movable telescopes 

:~/ 

Fi,ure ),. 



-- 

cross section) a sufficiently large value of momentum transfer is 

obtained and the interference between the Coulomb and nuclear amplitudes 

is significant. The beam was degraded at an intermediate focus before 

the bending magnet instead of immediately before the target so that the 

target distribution could easily be determined from the hodoscopes, 

and so that the momentum bite would be small The momentum band of 

±3% was essentially the same for all energies. 

Time-of-flight counters (labelled TOF 1 and TOF 2) were used 

to reject electrons or positrons in the beam (about 25% for electrons 

and 5% for positrons) that would otherwise introduce an asymmetry in 

the beam normalization. The time resolution was set to include the 

muons from pion decay, which were approximately 15% of the flux; the 

correction for muons is described below. The direction of the incident 

pion in the horizontal plane and the spatial distribution of pions at 

the target were defined by hodoscope A (11 counters, 1.9 cm wide, 

0.63 cm thick) and B (5 counters, 1.9cm wide, 0.63 cm thick). Two 

further beam-defining counters were used for calibration purposes. A 

lead opening 10 cm long was situated about 30 cm from the target with a 

7.6 x 7.6-cm aperture to reduce the flux of particles incident on the 

walls of the target and the vacuum jacket. The target, itself consisted 

of a 7.6-cm-diameter vertical cylinder of liquid helium. 

Scattered pions were detected in .an array of 16 doped polystyrene 

scintillation counter telescopes each consisting of three counters 

placed respectively 30.5, 86.4 and 101.7 cm from the target, as shown 

in Fig. 1. The nearest to the target is called the C counter, the 
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next is the D, and the final counter is theE. These.telescopes were• 

mounted in such a way that they could be rotated about the target; this 

facility allowed each telescope to be setin the primary beam for 

efficiency measurement. Also each telescope could be used to make 

measurements at several angles.: The most interesting region, from 60 

to 80 deg , was covered by 10 of the telescopes, 5 on either side of the 

beam. The remainder spanned the other angles between 30 and 150 deg. 

The dimensions of the counters were 2.54 c m wide, 1.27 cm thick, and 

either 30.5 or 50.8 cm long, the longer type covering the angular 

interval 60 to 100 deg., where the contributions to the angular reso-' 

lution due to the length of the counters is small. 

Two contaminants among the scattered particles were inelastically 

scattered pions, and protons arising from pion capture The inelastic 

pions were rejected by a range requirement in the telescopes At each 

angle, range 'curves were obtained and sufficient range (consisting of 

slabs of CH2) was inserted to reject the inelastic pions, which have 

. 	least 20 MeV less energy than those elastically scattered. A 

typical range curve is shown in Fig. 2, with the range indicated for 

20 MeV below elastic scattering.  

The trigger for an event was a beam-particle trigger plus a 

scattered-particle trigger. The former was defined by a time-of-flight 

within the appropriate gate as well as by the two hodoscopes, the 

latter required all three telescope counters. 	. 	. 

In order to reduce the number of logical circuits, we mixed signals 

from the counters in three telescopes in each fast-logic bin (F-bin) 
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These telescopes are physically far apart so that a trigger, from the 

F-bin, which consists of at least one each ofa C, D, and E counter, 

will probably not correspond to a physioal particle unless all three of 

the counters which fire are in the same telescope. In practice, about 

90% of the triggers corresponded to real particles, and the rest were 

accidental which were eliminated by the data analysis computer program. 

As soon as a trigger (i.e. the beam telescope plus a trigger from 

•theF-bin) reaches the Master Gate Generator, (see Fig. 3) an thhibit 

signal prevents further information from passing beyond this.point. 

Signals are also sent to the F-bins setting bistable flip-flops of the 

counters which have fired for the event. The discriminators, which 

receive signals directly from the counters of the beam and scattering 

telescopes are also gated off, while the on-line computer obtains the 

information of the event. The flip-flops in the F-bins are read by the 

computer and reset. After the computer has finished, all gates are 

reopened, and the equipment is ready for taking further data. 

Protons are rejected by use of pulse-height information as 

follows. Information on whih of the counters fired for any one event 

• 

	

	in the telescope and hodoscope arrays is stored in the on-line computer, 

and on tape for subsequent analysis on a large off-line computer. 

• 	 . 	The pulse heights of all the C counters are mixed and sent, when 

• 	 there is an event trigger, to an anlaog to digital converter (ADC). 

This pulse height is read by the computer. The separation of, pions and 

protons is essential, since the protons from the capture process, if 

• 	 counted to any significant extent, could introduce a marked asymmetry ,. 
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+ 
between r and Tr crosssections. The probability of captuteof a 

pion in .nuclear matter on two unlike nuc.leons is several times that 

for which gives rise to an observed ration of energetic proton 

4 	 yields from helium of about 18 to .1 for Tr ,  and Tt capturerespective1y. 

To allow for the slight overlap of the pulse-height spectra for each 

telescope, each run was fitted by an expression which was the sum of,  

two Gaussian distributions; the total area under the peaks was.constrain-

ed to.be the total number of counts in that telescope, but the ratios 

of the areas of the peaks, their position, and their widths were 

• 

	

	allowed to be free parameters. Examplesof pulse-height spectra are 

shown in Fig 4 

A measurement of pulse height was made in the beam to assure that 

a Gaussian form is adequate to fit the distribution in the counters. 

The result is shown inFig. 5. 	: 	• 

During the runs, many checks on the consistent behavior of the 

counters, on the electronics, and on the pion beam itself were made 

Most of these checks were monitored by the on-line cbmputer.• The 

important accidental coincidence rates were also monitored. 

Checks on the efficiency of each telescope were made by rotating 

each into the primary beam (07deg direction) and measuring the ratio 

of telescope counts which were registered in the computer triggered by 

a coincidence between three additional counters, to the number of 

coincidences between the three additional counters--these coincidences 

defined a plon as having passed through all three telescope counters. 

The method of running was typically to spend about 1 hour with the 
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target full (about 10 4  events), and then 0.5 hour with the target 

empty, followed by about 5 minutes triggering.the computer only on a 

beam particle; this last type of run provided a random sample for 

measuring the angular and spatial distribution of the beam at the 

• target as well as a monitor on the probability of random counts in the 

telescope counters. The signal-to-background ratio was typically 10:1 

at forward and backward angles and about 2:1 around theminimum  in the 

cross section. 

Several corrections were applied to the data, both to the number 

of scattered pions at a given angle and to the intensity of the incident 

beam. The important ones are summarized in Table I, and all are dis-

cussed below. It should be noted that several of the corrections are 

the same for both the positive and negative cross-section measurents. 

The formula used for the differential cross section is: 

do = N/Dx 10 x (l_Nmu) (l+Rb) 	1 	(l+Rd) (Mlnel) 
• 

dQ 	N x t x2x9xN • 	 71 	p 	 mc. 	 gt 

The quantities used in the above formula are as follows: 

N is the number of pion counted in a given telescope D x 10 is 

the number of scaled counts in the beam telescope N 71  is the fraction 

• 	of pions in the beam.t is the number of target particles per cm3  of 

• 	target 2 x k is the average solid angle subtended by a point in the 

target multiplied by the average target length. Nmc  is the multiple • 

scattering correction calculated by a Monte Carlo program.N is the 
mu 

muon correction from the decay of elastic Pj0t Rabs is the fraction of 	• 
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scattered pions which are absorbed by the counters or by the range. 

T is the loss of beam due to geometry. R is the random and dead 
gt 	 . 	 nd 	 . 	 -• 

times correction. M. 	is. the correction for muons from inelastic mel 

decay.  

We now explain in detail each correctiOn. 

A Monte-Carlo-type program was used to calculate multiple 

scattering and muon decay corrections to the number of counts scaled 

in a telescope. The program took into account scattering by the 

range, the counters and the materials in the target walls. The angle 

of scattering was taken to follow Gaussian distribution. It was found 

that the more accurate Moliere distribution did not affect the results. 

The projected rms angle was taken to be 9rtns = 15/(pv) ViJL rad (l+E) 

(with p and v in MeV units, L the length in cin.afld Lrd  the radiation 

• length) after Baria and Rosenfeld 6 . Barkas and Rosenfeld 	,ad • 

Rosenfeld et al. 7  also give values for L rad 
 and e which were used. 

In the program, pions were generated at randomly selectedpoints in 

the target and aimed at the first counter.in the telescope. The. 	. 

points chosen were weighted by the vertical beam distribution. The 

horizontal distribution was found to have no effect and was not used.. 

They are permitted to decay in flight at the appropriate rate. The 

number of pions reaching the final counter divided by the number which . 

could have reached it had there been no counters or range or decaywas 

the correction factor 	In the same program, we counted the number mc 

of muons which reached the final counter, leading to N mu which was 

the number of muons counted divided by the same normalization factor 
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as the N.  This prog1am was run for each angle used in the experiment 

and for hydrogen and hum separately(hydrogen used no range). For 

each of the two targets, a polynomial fit was made to the correction 

function N 
mc  as a function of angle. This,factor varied fairly 

strongly with angle, whereas N did not. Each point gave errors of
mu 

2-3 per cent and by fitting with a smooth polynomial curve, we reduced 

the statistical fluctuations from point to point. 

The main correction to the incident beam intensity was for the 

muon contamination (N). This was calculated by using a Monte Carlo 

type program simulating the transpo'rt of pions from the cyclotron 

internal target to the helium target and including 7r-p decay in flight. 

The predicted range curves and time-of-flight spectra compared with those 

obtained experimentally and were found to be in good agreement. The 

fraction of muons varied from 20 ± 37 at 51 MeV to 12 ± 27 at 75 MeV 

The solid angle at the target subtended by the telescope is 

-1 calculated by Cçawfords formula (18) using S = tan ab (see Fig. 6). 
cd 

Since AQ varied from point to point in the target, we integrated tQ 

over the target weighting it by the beam distribution. If g(y) is the 

normalized beam distribution in the horizontal plane, such that then 

the average solid angle multiplied by the average length traversed by 

the beam in the target is 

5-3.81cm.

3.81 •cm. 

AQxk f 
3.8lm2_x 	 3.sicm. 

g(y)L(x,y) dydx 

3 8lmx2  
 ,/f 

J_3 81cm 
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AP was calculated using Crawford's formula and found to be 

11(1 27 x') 	 11(1 27+x') 
—tai 	-  

Ix'I< 1 . 27 	(L3-y')/(L3-y') 2  +11 +(l.27-x') 	 (L3-')V(L3-y')+H, +(l.27+x') 

AQ2[tan 	 H(l.27+x') 	
- 	

-1 	 H(x'-c) 
(1,3-y') 'I(L3-y').+ H 2  + (l27+ x') 2 	(L3-y') VL3-y')2+  H2+(x .c ) 2  

Ix'I>1.27, where C=L3 (x'-1.27), H is 1/2 the height of the counter, L3 is distance 
Li 

of H counter from target,Ll is distance of C counter from taget. 

If e is the angle of the telescope with respect to the beam, then 

= xsin e-y cosO 

= xcos O+y sinS 

Thevertical beam distribution was centered about .95 cm above 

the median plane with a half-height of about 6.6 cm. For the short 

counter telescopes and for fOur of the long counters, the E counter was 

higher than the D in the vertical direction. For the other telescopes 

the D was higher. This resulted in a modification of the quantity 

Axi. This correction factor and the product Alx2, are calculated by 

numerical integration for each telescope. The correction factor was 

less than 1% for all cases. The procedure used was to calculate 

Axi for all telescopes at 90 deg and then to apply an 
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angulaf correction (which arises from the non-uniform beam distribution 

in the horizontal plane) for each telescope and each angle. The solid 

angle tactor was about 10% larger at 30 deg than it was at 90 deg 

and was symmetric about 90 deg. 

The final correction to the solid angle was necessitated by the 

fact that in reality the counters were not perfectly aligned. These 

deviations were measured by a transit and led to corrections of the 

order of 3% of the solid angle. 

A correction to the beam normalization due to the geometry had 

to be made. It was possible for a particle to pass through bath 

hodoscopes, the time-of-flight counters and the beam telescope without 

hitting the. target. This correction factor was calculated with a 

Monte-Carlo type programsimilar to that described above, since 

• 	 multiple scattering was included. This correction factOr was about 

11%, and is labelled tt. 
gt 

There were three corrections due to randoms and dead time which 

• 	 must be made. Other random corrections are negligible. 

Dead time losses in the scaling system. 

• 	 Since the prescalers Count at the rate of l00niHz, the dead time 

• 

	

	 is taken to be lOns. The probability of two particles arri'ving within 

this time has been measured by using the doubles rate in hodoscope B, 

• 	 wh.ich has •a 20ns resolution. This rate will thubetwicehe 

: 	dead timeloss. It was found to be about 1% varying slightly with 

energy and signature 

Randoins between array A and the rest of the beam telescope 
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The randoms for both correlated and uncorrelated particles were measur-

ed by delaying the signal from A by the length of one cyclotron r.f. 

pulse and finding the coincidence rate with the signal from the rest of 

the telescope. Then, one has a random ratewhich includes correlated 

and uncorrelated particles. The fraction of uncorrelated particles 

was calculated as follows. The ratio of the beam telescope rate to the 

rate of the beam telescope without the A array was measured. This 

gave the ratio of correlated particles to all particles 

Telescope with A 	= Cotrelated 
Telescope withoutA 	Correlated ±Uncorrelated 

From this, the fraction of uncorrelated particles is just 1- TwithA 
T without A 

Multiplying this by the randoms rate from delaying by an rf pulse, 

we get the real randoms rate. This rate was about 0.5%. 

3) Randoms between the upstream time-of-flight counter and 

the rest of the beam telescope. 

This was measured analogously to (2), The correction was about 35%. 

It was larger than (2) because of the more intense rate and because of 

the long distance between this counter and the rest of the beam telescope. 

The randoms reduce the number of beam particles from the measured 

quantity and the dead time increases thenumber. The errors on these 

corrections are about 30% of their values. These corrections are 

lumped together in Rd 

There are some muons from inelastic pion decay which pass through 

the range and are counted. The same Monte-Carlo type program is used 

to calculate this quantity which is M m.el . It is significant only in 
- 
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the dip in the differentia1 cross section (between 60 and 80 deg ) and 

is about 1 or 2 per cent there. 

Nuclear scattering and absorption were estimated by using the data 

19 	.. 	20 	
i of Stork and Byfield as well as data obtained n the beam in this 

experiment, both sources of information being essentially in agreement; 

the error of 2% in this correction is an estimate from the pUblished data. 

This gave R 
abs 

A correction needs to be made for the effect of two C counters 

firing during one event. This increases the pulse height for this 

event and makes it appear as a proton which is then rejected (see 

discussion on pion-proton discrimination). These corrections were made 

by counting the number of these doubles which occurred. The answer 

varied with energy and signature and was approximately 1% ± .25%. 

Data for each sign of particle were obtained at 51, 60, 68, and 

75 NeV. The correction for the protons arising from ir- capture was 

measured to be 5% at 60 MeV. The corrections at other momenta were made 

by assuming that the ratio of the proton yields from ir+ and ir- capture 

is constant with energy. 

This correction was included in the number N of pion counts in a 

telescope, as was the proton correction. 

As a check on the whole setup, some data were obtained at 60 NeV, 

• . 	with hydrogen used in the target. For these measurements the absorbing 

rangeswere removed from the telescopes. These data are shown in 

Fig. 7, compared with the predictions of the most recentlrp phaë-shift 

21  analysis. 	The agreement is reasonabieconsidering the precision, in 
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this region of the data upon which the phase-shift analysis is based 

(see the data at about 58 MeV of Bodansky, Sachs, and Steinberger with 

which our data is consistent) 

Analysis 

In this section, the data are presented and two methods for. 

extracting the pion radius are described. The first depends on the 

optical model, using it to fit the data while letting the radius be a 

free parameter. The second relies primarily on a phase shift analysis 

to fit the data, utilizing the optical model only to calculate the 

distortion amplitude. Various other, methods of calculating this 

amplitude are also discussed. 	. . 	.. 	 . 
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Table U. 	Data for each of the four energieB in the form of differential croec eectione an a function of 9 
c.tn. 

0c.m. 
dcr+ 

-.dO (deg) fmb/er) ,[nib/a bJar imb/er) 
51MeV 

31.5 
36.7 

1.516 0.140 5.192 0.254 
41.9 

1.611 0.136 3.969 0.166 
47.4 

1.223 
1.131 

0.093 
0.093 

2.978 0.145 
62.5 0.434 0.024 

2.033 
0.560 

0.107 
- 6-7;6 

72.7 . 
0.166 0.023 • 0.371 0.020 

77.8 
0.323 
0.375 

0.020 
0.023 

0.269 0.019 
82.8 0.581 . 	 0.026 

0.314 
0.427 

0.020 
0.023 92.9 

102.8 
0.993 
1.610 

0.050 0.950 0.041 

• 

122.5 3.433 
0.057 
0.144 

1.638 
3.715 

0.053 
132.2 
141.8 

4.095 0.164 4.471 
0.132 
0.148 

151.4 
4.764 
4.918 

0 177 4 791 0.147 
0.194 5.034 0.156 

60MeV . 	 . . 	 . . 	 .. 

31.5 
36.7 

'. 	2.661 0.075 6.712 0.146 

41.9, 
. 	 2.634 

2.327 
0.071 5.033 0.106 

47.1 1.663 
0.052 
0.046 

3.854 
. 	 2.835. 

0.076 
0.062 62.6 	. 

67.7 
0.534 0.010 0.747 0.013 

72.8 	- 

0.366 
0.325 

0.009 0.436 0.009 

77.9 0.375 
0.008 
0.008 

0.306 
0.336 

0.008 

83.0 0.618 	. 0.012 0.521 
0.009 

. 	 0.011 . 93.0 
102.9 

1.128 0.021 1.077 	. 0.021 
. 

122.6 
1.928 	, 

3.936 
0.031 1.916 0.031 

132.3 
. 

. 	 .4.592 	. 

0.079 	. 

0.104 
4.232 
4.875 

0.083 

141.9 . 	 5.422 	. 0.150 
. 

. 	 5.544 
0.109 
0.153 151.5 5.721 0.196 • 	 5.924 0.203 

68MeV 

. 	 . 
31.6 
36.8 

4.031 0.190 7.299 0.273 

42.0 
3.642 
3.247 : 

0.176 	. 5.312 0.361 

47.2 2.651 
0.135 
0.126 

4.494 	. 	 . 

3.082 
. 

0.164 
.0.223 62.7 

67.8 
.0.722 

, 

0.025., . 	 0.925 	. 0.034 
. 

• 	 72.9 
. 	 0.437 	. 0.020 . 	0.512. . 	 0.026 

78.0 
0.382 0.018 	. 

.0.366 	• 0.022 

83.1 
0.447 
0.692 

0.049 0.388 0.025 
93.1 1.350 

0.025 
0 047 

0.556 
1 180 

. 	 0.030 
0.051 103.0 2.094 0.063 . 	 .. 	2.018 	• 0.069 . 422.7. 4.014 	.' 0.149 4.392 	•.. 0.142 	•.• 132.4 4.961 0.176 • 	 5.098 0.163 142.0 . 5.853 	. 0.243 5.543 0.316 	. 151.5 	. .5.843 	'. 0.267 

. 

5.591 0.333 

iMeV 

31.6 
• 36.9 

5.940 0 205 9.394 0.236 
. 

42.4 
5.252 

. 	 4.268 
0.167 7.080 0.215 

47.3 62.8. 3.006 	•. 
0.141 
0.104 

•. 5.858 
3.979 

0.132 
0.127 

67.9.. 
0.960 0.025 	. 1.119 0.023 

73.0 
. 	 0.623 

0.458 
0.019 
0.017 

0.667 • 0.017 

5  

78.1. 0.529 0.019 
0.488 
0.498 

0.044 
0.015 83.2 

93.2. 0.776 0.023 0.710 0.018 

103.1 
1.413 
2.203 

•0042 	. 

0.057 
1.325 
2.361 

0.035 

122.8 4.508 0.143 
. 

4.578 
. 	 0.050 

0.103 132.4 5.264 0.452 	• . 	 5.379 0.116 442.0, 
151.6 	. 

6.054 	. 

6.144 
0.175 

. 

5646 . 	 0.169 	
• 0.200 6.046 	. 	 ' 0.203 
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Figure 8 shows 	 da 	, 	da+ , and I d(äv) 
dQ 	 d2 

	

C.M. 	 cin. 	 C.M. 

The data in the form of differential cross sections versus 0. 	are 
C.M. 

presented in Table II. 

The difference in the cross-sections divided by the average (D/A) is 

shown in Fig. 9. 

This variable is sensitive to R 1  because it is independent of 

those correction factors which are the same for ir and iTt,  and because 

the nuclear amplitude cancels to first order. In fact, if onewrites 

the amplitude as f = f1' + fD  + F f where •fD  is the distortion 

amplitude, fN is the pure nuclear amplitude, F the combined form factor 

of the pion and the alpha, and fPt  the point Born Coulomb amplitude 

then 

D/A = 4(Re 
fN fD + F Ref N fPt)/( I fNI2+ l fDI2+  IFfPt t 2 ) 

Since fN  is much larger than the other two parts of the amplitude, we 

are sensitive to F and fD  The sensitivity to R.Tr  is shown for 60 MeV 

A phase-shift analysis has been made up to the D wave Higher 

0
. 

	

	partial waves were found not to be significant The phase shifts are 

shown in Table III. The total inelastic cross section data of 

Block et al 8
. are used to constrain the imaginy phase shifts 

A. The Optical Potential Method 

In this method a particular potential is postulated for the 

strong interaction. Following the method of Auerbach etal., 7  a 

23  Kisslinger model is used for the form of the potential. 
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A derivation of the optical model is given by Watson 24  and repeated 

by Auerbach et al. 7  In scattering a pion off a nucleus of A nucleons, 

we can write the Hamiltonian as 

A 
H = (HN + h) +E:v.E Ho.+ V1 

i=]- 

where HN  is the nuclear Hamiltonian, h the pion kinetic energy operator 

and V the pion-nucleon potential. The scattering amplitude satisfies the 

Lippman-Schwinger equation 

	

T =(v + V 	i 	
(1 E-H0+ic 

where E is the usual eigen value of H0 . The solution of (1) is 

A 	 A, 

	

T =Z t + E t' 	t. 	1 	t! 	I. 	t' ±... 
1 1 
	

E-H+ ic 	ijk 1 E-H + ic 	E-H + 	k 

where t! is the bound pion-nucleon scattering amplitude and E excludes 

successive scatters by the same nucleon 

The elastic scattering amplitude is 

T =E t' + EW 	1 	t') + 	 (2) E 	IEJE E-H+ ic 
0 

where the E subscript denotes a scatter with the nuclear energy unchanged. 

TE then, is the elastic scattering amplitude. Now, in analogy with (1), 

we write 
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T =V +V 	1 	T 	 (3), E 	 ° 	 E + ic  

where V is the optical potential. Now the problem is changef from a 

multi-body problem to one with one particle of Hamiltonian ht. A few 

approximations are made First, excited nuclear states are ignored This 

allows usto set 

t' 	1 1 
E-H+i 	E-H +ic 	 .1E.11+i€ 	E E-H+iE 

0 	 E 	 0 	 0 

(for the alpha, the first excited state is about 20 MeV away--we have 

already neglected them all in assuming 1=0) Now we assume 

which is valid if A is large or if the two body forces are weak. 

Then, equations (2) and (3) imply that V = 

Now, the impulse approximation is used, which involves replacing the 

bound amplitudes by free ones. This is permissible for energies 

substantially larg2r than the nuclear binding energies. Then, 

neglecting nuclear recoil, we can write in nomentum space 

= E411 t)P( P.-) 

where and ' are the pion momenta and p(4)  is the Fourier transform 

• 	of the nuclear density normalized to unity. 

The simplest model assumes 

• 	
<;'It I;> 	Ip>P(p-p) 	 (4) 
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which means that p (p-p') is peaked about the incident momentum. 

Inverting this into co-ordinate space, we get 

V(r) = (27T) A41t1)pN() 

where <pIt> is the average over Tr-n and iT-p scattering, and PN(r) 

is the nuclear density. This assumption is known as the local 

potential model, containing only an S-wave term. This neglects the fact 

that low energy pion-nucleon scattering has a strong P-wave dependence, 

notably the diffraction dip somewhat below 90 deg., and this model has 

not been successful in fitting data. 

Kisslinger's improvement on the local potential was, in fact, to 

introduce, a P-wave part explicitly into the matrix element for the 

-,- 	+ 	 2 scattering amplitude . <ptp> = a + a1p . cosO = a + b 1  p' 

The p 2  term is used since usually t\ip 2  for low energy scattering. 

The co-ordinate space representation is then 

V() = (27r)3A(apN(1) + alP . PN(r)p) 

or, in operator notation, 

-9- 	 3 	+  
V(r)iJ = (2ir) A(aOpN(r) 	+ a1  V (PN(V) Vtj)) 

The Kisslinger model is experimentally valid only well below the 3-3 

resonance since it takes no account of resonant behavior at 190 NeV. 

Clearly, this model also violates unitarity for large energies. On the, 

other hand, we also use the impulse approximation in this discussion 

which requires energies much larger than 20 MeV. In our regionof 
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60 MeV, we hope to satisfy both requirements.. 

The modified Klein-Gordon equation is used with U = 2E V inserted 
Tro 

at the scalar component of a four-vector 

(V2 + 	= [(Er  -v) 2-u 

with E 
•ff 	 C 

the energy of the pion, V the Coulomb potential,p the pion 	 - 

mass. Terms of order V V and V are dropped. 
c o 	o 

The following variables are defined: 

b0  = -2(27r)3 Err a0/p2 

b 1 = -2(2ir) 3  E a1
Tr 

so that 

U = {_Abop2pN() + Ab 1  v PN(r) } j 

Now, b0  and b1  are the complex optical parameters which are 

introduced to represent the S- and P- wave irN scattering, respectively. 

The optical parameters can be theoretically related to the TFN 

phase shifts as follows: 

Since <PItIP> Lab  = _f(0)lb/( 4 rr 2E,l ) 

and f(0) 
lab 

/p
lab 	cm cm = f(0) 1k from the optical theorem and the 

invariance of total cross sections, for 2 	0,1 

+ 2E NN 	[kf (0)cm] 

2 
1ab 	 MN 
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2i 
and if, a. = !_l 	with the phase shifts and I = (2T, 2J) for 

•isospin and spin irdices, we havefor TT and an (A, Z) nucleus where 

Z is thenuinberof protons. 

k1 OJ 0  _ 	[a +2a1  + (A-z)a3 J 

= fZ(2a33  +a31  + 4a13  + 2a11) 3 + (A-Z) (2a33  + a31)] 

+ 
For ir , Z and A-Z are interchanged. 

In rewriting the equation to allow for the recoil of the a 

particle and provide for relativistic kinematics, a mod±flcatjon 25  

of the expression of Goldbergerand Watson 26  is used 

(V2  + k2) = (2Eeq V + (1 - 3Eeq/W) V - 

where Eeq  is the equivalent relatjvisitic one-particle C m energy, 

W is the total c.m. energy, and k is the c.m. momentum. 7  

This center-of-mass equation is solved for the radial wave functions 

Given b031 b1, Eeq  PN(r), and V, cross sections are obtained for the 

Solutions by matching logarithmic derivatives at 4F., well outside 

the nuclear surface, to the external Coulomb wave functions in the 

conventional way. For a given energy, then, therearesix parathetrs 

which lead to predicted cross sections the real and imaginary parts of 

b0  and b 1 , and radius parameters for 	and for p() A Gaussian 

form is taken both for the nuclear densityand the combined IF-He 
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charge density p(): 

PN(r) = A exp(_r2/a2)/[()1/2a]3 and p(r) = Ze exp(_r 2/Rc)[n 1/2R] 3  

The Coulomb radius parameter is related to the rms radius of the 

pion ly 	= 1.5 R - R, with Rie = 1.65 ± 03 F, from electron 

scattering experiments. 28 ' 29  

An optimum set of parameters is found by searching for the best• 

fit to the data. A fit is made simultaneously to the average cross 

section and to the D/A data. 

The parameters b 0 , b 1 , a, and Rc  obtained by this direct method of 

fitting the data with an optical model are listed in Table IV. The 

errors quoted are derived from the diagonal elements of the error 

matrix shown n Table V. R's diagonal element is sufficiently larger 

than its off-diagonal elements, so that the error quoted for R, and 

consequently for R, is, we believe, reliable. The errors on the 

parameters in the table also include uncertainties in absolute and 

relative n 	normalization. 

The values of X obtained by using statistical errors only for the 

best fits are somewhat larger than expected from the numbers of 

degrees of freedom. In propagating the errors Of the data to include 

systematic errors, we have increased the estimate of the errors by an 

appropriate fa'ctor (x2 /x2
) 1

" 2 . The fits to the D/A data are better than 
expected 

those for the average, since some systematic errors in the experimental 

corrections made for a particular angle would cancel in D/A. 
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In Figs. (10 & 11) we show the values for the optical parameters 

predicted from phase shifts for A2Z, and some results for other 

elements . We also show the values obtained from our data. Re b 1  

agrees well. Re b0  differs sharply from the prediction, but our data 

arees with other experimental results. Auerbach surmises 7  that this 

divergence is due to the deviations from free irN amplitudes. In theory, 

N 	 3  Re b0 (26 3  + •5 1)/p which is fairly constant due to accidental cancellations 

of the terms linear in p. These accidental cancellations can then be 

easily spoiled if the impulse approximation is only slightly wrong, 

resulting in a lip 2  dependence, which is what is found. 

• 	 Our data for Im b 1  falls below predicitions (as does other data) 

and our values for Im b 0  have the wrong sign for three of our four 

energies and this parameter is not plotted. A possible reason for these 

discrepancies is explained below. The Lorentz-Lorenz effect has been 

neglected here 	The inclusion of the Lorentz-Lorenz effect involves 

replacing AblpN(r)byAblpN(r)/[l - ..AblpN(r)] in analogy to the scattering 

of an electromagnetic wave by a polarizable medium. (See M. Ericson 

and T. E.O. Ericson, Ann. Phys. 36, 326-362 (1966).) When this is done 

in the search routine, the optical parameters change slightly, but 

R varies only by about 3%. 

It should be emphasized that the relation of 1TN amplitudes to 

optical parameters is heavily dependent on the assumptions mentioned. 

above. The impulse approximation has been used, excited nuclear states 

have been neglected, and two-body forces have been assumed to be weak. 

Also, nuclear recoil has been neglected, which may bein error, especially 
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for off-mass-shell terms in the matrix elements of V which contribute 

to large angle scattering; 30 ' 31  The Kisslinger model has, however, 32  

been successful in fitting pion-nuclear scattering at low energIes, where-

as the local potential model has failed. 

A problem in this analysis has been pointed out by Baker et al. 32  

The radial wave equation arising from (1) is 

2. 

	

2 	+ p(r)— + q(r) x = 0, 

	

dr 	 dr 

and q(r) = k2 - AbOPN(r) - 2EeqVc  - (l_3Eeg/W)V  

l+AblpN(r) 	 .r 

Because of the term 1 + AblpN(r)  in the denominators of the 

coefficients, there is a regular singular point in the equation when 

33 
AblpN(r) = -1 

Since A and PN(r)  are real, the denominator factor, 1 + AblpN(r), 

induces a logarithmic branch point in the radial wave function, for 

Reb1 = ,_l/APN(r) and 1mb 1  = 0. For 1mb 1  small, the singularity becomes 

a sharp peak. The presence of the singularity means that certain 

regions of the optical parameter space are forbidden implicitly by the 

model. 34  Because of the couplLng between 1mb 0  to a slightly positive 
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value, which violates unitarity. 35  

Further, this close approach to a singularity gives a peak in the 

radial wave function at Re b1 = l/APN(r) when 1mb 1  is small, as it 

is for the best fits. The peak has no apparent physical significance and 

	

• 	 may be considered a failure of the theory. 

B The Phase-Shift Method 

Another method of anlaysis uses the optical model only to 

calculate the distortion amplitudes in the hope of reducing the model 

dependence. However, there is still a dependency whidh cannot be re- 

moved (see part C of the analysis.) The phase-shift analysis is used to 

obtain amplitudes for 7 and TF scattering. 	 • 

If one writes the total amplitude as the sum of a nuclear 

amplitude, fN. a distortion amplitude, fD, and the point Coulomb 

amplitude, fPt, the total cross section is 

= j fN + fD + FfPt 2 

This equation is solved to find the form factor, F, for each data point 

at each energy, giving 

F=A+B,. 

where 	 • 	 . 	• 	• 	• 	. 	 * 	. 	 . 	 • 	 . 

	

_da+ 	dc 	, 	• N 	Pt 	 •, 

	

• 	• 	. • 	• 	. . 	A-- 	- 	- 	,4Ref 	f 

	

• 	 C.M. 	c.rn1 	. 	 • 	• 

and 	B = -4 Re fN* fD/4 RefN*  fPt 

The measured quantity is A and the distortion effect is B. Where 
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A>>B, the distortion effect is negligible 

The distortion amplitude is calculated following Auerbach (Séè 

Appendix) In Fig 12, -A and B vs cos 0for 60 MeV are shown This 

figure shows that fD  is extremely Important in determining F. Combining 

all the data for the various energies, we can plot F (q 2) vs q (Fig. 13a). 

Assuming a Gaussian charge distribution for the helium and pion 

F = exp(-q 2  R2/6) with,R + R, we fit the F(q 2) to Find R. The 	sult 

is 2.96 ± 0.43F. In assigning the error the same X factor mentioned in 

part A Is used. 

This error does not include the uncertainty in the form factor 

due to the error in the relative normalization of the ir+ and it- data. 

This is displayed in Fig (13a) 	Figure (13b) shows the radius computed 

Independently for each F
7  (q2) data point with different relative normali-

zations. It is noted that below :i -2 the radius shOws only slight 

sensitivity to the relative normalization In fact, for all data points 

the best fit to F. 1 (q 2) is almost independent of the relatiie normaliza-

tion. At q2>1 F 2  the larger fluctuations are a consequence of the 

insensitivity of D/A to R in this region (see Fig 9) The normaliza-

tion error in Table 1 common to both signs of beam has a negligible effect 

on the form factor.  

This method can, in principle, be used to show the consistency of 

the form-factor measurement at different energies In this measurement 

the statistics are not sufficiently accurate for this check to be made. 

U. Distortion Amplitudes by Other Methods 

It is interesting to compare our distortion amplitudes with those 
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arrived at by using other approximate calculations of fD• 
 West6  obtains 

f 	-JV() [e2 	R (r)j (kr)_(e2i 	-1)/2k2r2 ] r 2dr,91  

CO 

where V(r) = 4nk ! F(q2) F(q2) j 0 (qr)dq, with a Yukawa form for 

F and a square-well density leading to F 	3 j (qb)Iqb 
7r. 

Here, b is the radius of the square well. The nuclear radial wave 

function is R and the nuclear phase shift is 52.  To evaluate 

West has chosen a square well; the Kisslinger model is modfied by 

s,bstituting [1-Ab1 PN(r)) for [1+ Ab1 pN(r)], following Baker et al. 33  

For our case, however, the term A.(r) as already mentioned passes through 

-1, thereby making the approximation invalid. 

Block obtains for the distortion amplitude another approximation, 

f D =[nx e2 + (e 2 	-l)( 2- 0)]/k, 

correct to first order in n, where nx 2,  = -k! V(r)[R  (r) - J(kr)] r 2dr.91  
and TI are the Coulomb parameters defined by n 	arg r (2 + 1 + in)

2nkand n = ZZ?e2/+ v relative. Here, V(r) = 	erf (r/R). Further 

discussions of these two methods were given by Auvil 36  and Thurnauer. 37: 

Block's R2  is found by using a local potential for each partial wave and 

a Gaussian distribution for both the nuclear and Coulomb interactions. 

The results for 60 NeV oltained from these equations are also presented 

in Table VI for comparison; the distortion amplitudes obtained by 

Block et al, 8  from the bubble chamber data are shown. The X cited In 

It 
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TaIIc VI. 	Distortion amplItudes. See text for more detailed assumptions for each method. 

R 	(F ) 	 P.,(F) 
,2 

exted pc 
Pe 	 len 	. - 

• j Method of Auerbach ci al 	Kisiinger model. 60-MeV data 

S -0.0024* .0007 	.0.010* 0014 

P .0.0063 * .0010 	.0.008 * .0009 	. 8.29 	 2.88 *0.37 18.4 	. 4 

D 00021* 0008 	0003* 0009 

Method of West 	60 MeV data 

S 0.00739 	 -0.00754 

P .0.01114 	. 	0.00097 	. .0.27 	. 	<1.20(1 s.d.) 84.0 4 

0 -0.00243 	 -0.00010 . 	 <1.77 (2 s.d.) 

Block integral Kisalinger model 	60-MeV data 

S .00477 	 ..0.00081 

P .0,00566 	 .0.00138 5.11 	 2.26*0.86 6.6 4 

0 000180 	 000113 

Block integral and local potentials, 60-MeV data 

S 000215 	 000015 -. 

P .0.04167 	 -0.00100 4.66 	 . 	1.Z*0.82 	. . 

0 .0.00271 	 0.00203 . 

Block integral and local potentials Block's 58 MeV data 

S 00033 	 ..0044 

P . .0.014* 	 0.0038 .0.4 	<0.9(1 s.d.). 	<2.1 (2,..d.) 

0 .00019 	 00025 

MOOS 

.-•,.. ---,—.v--.-, -, 



• Table VI are from the fits to F 1 (q2). 

Ericson has shown38  that all the information on the pion charge 

radius is in the STwave, due primarily to the S-wave overlap of the pion 

with the nucleus. Since the imaginary part of fPt  is negligible, R 

RefD 	is the important distortion amplitude to determine. It wilibe 

noted that RefD 	differs in sign from method to method. The correspond- 

ing. radii computed by the phase-shift method (except for Block's data, 

where his given radius for all his energies is quoted) are shown for each 

set of distortion amplitudes. 

To arrive at these distortion amplitudes, an iteration prbcess 

was used to calculate R. A fit was first performed using average and 

D/A data. The R obtained by calculating the Ri 's then was inserted into 

the fitting routine. From this point, only the average data were used 

to fit, and the process was repeated until a value forR 11  was converged 

upon. For .  the West method, the iteration stopped when R became negative. 

D. Discussion 

There are some deficiencies in the optical-potential description 

as applied to this problem. 

Firstly, although it may provide a good phenomenological fit to 

pion-nucleus scattering data in the sense that it attempts to include 

the strong p-wave ir-nucleon scattering, the model itself may not be 

• 	sufficient to calculate the distortion amplitudes to the accuracy 

required in this measurement. Secondly, as emphasized in the introduction, 

the optical potential Is .a non relativistic description of the li-He 

interaction. Specifically, diagrams of the type showrt in Fig. 14 are 
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neglected; 10 ' 39  such diagrams are clearly of importance for our purposes, 

since their amplitudes •are linear in the pion charge, and •a fundamental 

assumption in our analysis is that the only terms of this type are the 

pure Coulomb and the Coulomb-nuclear-dis tort ion terms. In fact, these 

inner-bremsstrahlung terms are not taken into account in any potential 

scattering model. Electrodynamit corrections of this nature involving 

strong interactions have not been calculated to our knowledge. In this 

connection we remark that since the pion form factor effect is at most 

10% in the differential cross section, violation of charge symmetry in 

the strong interaction at a relatively low level would be serious from 

our point of view. However, in a recent review, Henley4°  sets an upper 

limit of 0.8% on charge-symmetry violation in hadronic forces; this 

would correspond to less than 0.05F in the pion radius. 
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COnclusion 

We have measured the elastic differential cross section for 

±  
it + a - it

±  + a scattering. Several energies have been used and the 

phase shifts have been evaluated. Several methods and models have 

been used in an attempt to extract the pion electromagnetic radius. The 

detailed model available for tescribing the 1on nucleus strong 

interaction, which also reduces model dependence as much as possible, is 

the mthod used in Part B of the analysis. This gives an answer of 

= 2.96 ±0.43 F. However, as shown in Table VI, the result varies 

from method to method. Further, we have pointed out some inadequacies in 

the model, particularly in relation to its non-relativisitic nature. 
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ppendix 

The distortion Amplitude used in Section B we write 

f± = [E(2-I-l)(f±f±f71ze)P (cosO)] ± fPt 

= (2+l) 4( cos e)±fPt ,  

where the amplitude f is defined to be the distortion amplitude in the 

9th partial wave; if the strorinteraction vanishes, it disappears. The 

amplitudes f2e arise from the deviation from a point-charge distribution 

and are purely Coulomb; fPt is the point-charge amplitude, 

N - (f+ + f)
91 

2. 	' 

and 	 22+l) f size P(cosO) = (F-i) fPt, 

where F Is the product of the electromagnetic form faótors for the 

helium and the pion. The amplitudes f are found by solving Eq. (1) 

with and without strong interactions, using 

+ 	-. 	size fD_f_f9 _f. 

2 

Although fsize iaries with the charge radius, we find f to be almost 

independent of this input, and this small variation in f is included 

in assigning Its error as are the various sensitivities of f to 

changes in each of the optical parameters. 
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Figure Captions 

	

Fig. 1. 	Layout of the pion beam line. 

	

Fig. 2. 	Range curve for 'it obtained in the scattered beam (data from 

70 and 75 deg. combined). 

	

Fig. 3. 	The basic elements of the logic set-up. F BIN 3 is shown in 

detail. F BIN 4 mixes telescopes 2, 8, 13, F BIN 5 mixes 3, 19 9  

14, etc. 

	

Fig 4 	Pulse-height spectra obtained in the scattered beam at 70 deg 

for (a) 51-MeV 7i, (b) 60-NeV Tr 	(c) 75-MeV ii, (d) 60-MeV 'i. 

Empty target background has been subtracted. Typical error 

	

• 	bars are shown. The solid curves are. the best fit of two 

Gaussian curves to the experimental distribution. 

	

Fig. 5. 	A Gaussian fit to the pulse height distribution of a counter 

inthebeam. 	 •. 

	

Fig 6 	a) Parameters used in measuring a solid angle subtended by a 

	

• 	rectangle. 

	

• 	b) Geometry used insolid angle correction. 	 , 

	

Fig. 7. 	Elastic differential cross sections for 'up at 60 MeV. for (a) itt 

(b) it. The solid curves are the differential cross sections 

from .the phase shifts of Ref. 15.. 

	

Fig. 8. 	Cross sections for (a) ,rr+  and (b) 11 at 60 MeV with best phase- 

shift fits, and (c) average cross section with best optical- 

model fit. 

	

Fig. 9. 	D/A as a function of 
cos0c.m.' 

 with, best optical-model fits. 	• 

for (a) 51 MeV, (b) 60 MeV (c) NeV (d) 75 MeV. 
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• 	Fig. 10. Optical parameters - Reb and Reb 1  for. this and other experi- 

ments with theoretical curve Spread indicates uncertainty in 

the latter 

Fig 11 Optical parameter 1mb, with theoretical curve and spread 

Fig. 12. The quantities -A and B are p1ottd vs cos 0 
	for.60 MeV. C.M. 

 

(see Fq 2) 	The data points represent -A The shaded area 

represents B with its uncertainty. 	 • 

Fig. 13. (a) Frr  plotted vs q 2 . Best-fit curve is shown together with 

displacements of data points caused by shifting relative 

11+  - n normalization by its error 

(h) R vs q 2  for both extrema of the relative normalization 

Two points at the largest value of q 2  are missingbecausethey 

are not real. The best-fit value and error are plottedfor 

reference.. 	 • 

Fig 14 Feynman diagrams not taken into account by the optical model 
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