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ABSTRACT 

In an earlier publication the validity of the radiation transport 

theory was studied for the calculation of multiple scattering of eléctro-. 

magnetic wavesby a turbulent plasma. In the present paper we extend the 

transport theory to include a description of the Doppler shift in frequency 

due to electron motion. 
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I. fl\TTRODUCTION 

In Part I of this series' the classical radiation transport 

equation was derived from Maxwell t s equations for the study of scattering 

of electromagnetic waves by a turbulent plasma. 	 2 
In Part II some 

techniques for using the transport equation were discussed. In both of 

these papers the Doppler shift in frequency due to the motion of the 

scattering electrons was neglected. In the present paper we extend the 

transport theory to include any frequency shift of the scattered waes. 

An exhaustive, analysis of the relation between a wave equation 

and the corresponding classical transport approximation has yet to be 

made.. The first such analysis seems to have been given by Fo1dy who 

discussed the scattering of scalar waves by a set of uncorrelated point 

scatterers, obtaining a transport equation. The quantum theory of 

scattering by a "weakly bound medium" was related to a classical trans-

port theory by Watson. It was an adaptation of the methods used in 

this work to Iaxwell's equations which was given in I. A different 

approach was used by Barabanenkov and Finkel'berg, 5  who derived a transport 

equation from the scalar wave equation using a ItBethe  Saipt " type of 

equation. 

In Section II we summarize the results derived in this paper. 

These lead to a radiation transport equation of conventional form, 6  the 

scattering kernel being explicitly expressed in terms of plasma density 

fluctuations. The reader who is not interested in the details of the 

derivation will probably find the account in Section II adequate f or 

using the transport equation. 
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II. STJIV1WRY OF RESULTS 

The phenomena which we wish to descrIbe are illustrated in 

Fig. 1. A plasma of finite extent is illuminated by an electromagnetic 

wave emitted by a distant source S and propagating in the direction 

The intensity of the waves scattered by the plasma is measured with a 

receiver R, also a great distance away. (The restriction to a distant 

source and receiver is of course not required for .a derivation of the 

transport equation.) 

Several assumptions concerning the plasma were introduced in I. 

We shall accept these here and, in addition, explicitly suppose the 

plasma electrons to have nonrelativistic energies. The assumed turbulence 

properties of the plasma will be reviewed later in this section. The non-

relativistic assumption will be expressed by the inequality. 

(Ic R ) (/c) << 1 . 	 (IJR) 

Here k/art is the wave number of the radiation, R a measure of the 

distance over which plasma motions are correlated, ye the mean speed of 

the plasma electrons, and c the speed of light. 

As in I, we suppose the plasma to be underdense and that 

kR5  >> 1, 	 . 	 (BJ+) 

where R5  is the ' t size tt  of the plasma. Assumption (Bl) allows us to 

ignore diffraction scattering from the entire plasma (in all but a small 

cone with axis parallel to k ). 
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H n.theclassical theory of radiation transport the flow of 

radiant energy,  at a point 	x per unit area, per unit time, and traveling 

in the direction 	p 	is 

I(x,,u)dc.. du (21) P .  

The notation here implies that the radiation has an angular frequency 	cn, 

within the interval 	&0 	and is confined to propagation directions lying 

within the solid angle 	dQ. 	. 

For waves which -have some degree of polarization it is necessary 

to generalize (2.1). 	This was done by Chanase1thar 6  and, in a similar 

manner, in Ref. 1. 	To do this we shall follow the notation of I and 

introduce the two unit vectors (j) , 	I = 1, 2, for a plane electro- 

magnetic wave traveling in the direction. The electric field vector 

for such a wave is of the form 

= (l) 	+ (2) 	(2)j e1t.  

The unit vectors 	(i) 	are defined in terms of 	Ik ; the direction of pro- 

pagation of the incident wave before entering the plasma. 7 	These are 

eA(2) 	= 	C(p) p x 
P -  

e(l) 	= 	e(2) x 	k , (2.3a) 

where 

c) 	= 	(J 	x ( (2.3b)  
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To define the, polarization vectors for the incident wave, we orient the 

z-axis of a rectangular coordinate system to be parallel to 	and 
choose 	(i) and 	(2) to be parallel to the x- and y-axes, 

respectively. For backscatter we define 

1% 

ei =l , 

= 	-(2) . 	. 	. 	 (2.4) 

The electric field at any point can be represented as a sum of 

waves of the form (2.2 )'. If we fix our attention on a single "bundle' 1  

of wavelets propagating within d and &o , we may define the intensity 

as 

i (x, , w) = constant x ( E,s(i) F..(j)  13 	 , 	
£ 

1,2. Eere "(•")".'.represents an ensemble (or statistic1) average 

over the plasma (and any source) fluctuatiOns. The "constant" in Eq. 

is defined by the following condition. We suppose that a filter at 

passes only the component of E parallel to some direction Ae. Then 

the power per unit area passed by the filter, . corresponding to propagation 

within d2.- and frequency within d , is 

li,j=l 

(i)(X p, 	) 	()] 	d 	ä 	 (2.6) 

I 
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We suppose the statistical properties of the plasma to be 

represented as a stationary random process. If the plasma contains N 

free electrons with coordinates z, z , • z , we take the probability l 2 	'N 

that electron 1 is at z within d 3z at time t
1  , etc., to be 1  

Nl t1; 	, t2; 	N' tN)dzl ..  •d3z . 	 (2.7) 

The statement that this is a stationary distribution function is equivalent 

to9  

• 	Nl' 1 + 	 • 	N' tN + 	Nl' 	2' t2;. . .zN, tN). 

(2.8) 

We further suppose that from P we can define a hierarchy of distribution 

functions as follows: 

= f N dz2 dz 	 (2 9a) 

P211 	,t2) 

= f N d3z3• •d3zN , 	• 	 (2.) 

etc. Here 

P2 ( 1,t1 ; 	,t2 ). = P2 ( 1,o; 	,t2 -t1 ), 

etc. 

Following the notation of I, we assume that P2, P3 " may be 

developed in terms of correlation functIons. Thus, for example, 

P2 	
'2' t2 ) = 	) l 	[1 + g 	

2' t2  )j . 	(2.10) 
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Here the "pair correlation function" g is consideredito vanishwhen 

1z1 
- '2 >> Rc.  the "eoni1ation range," or for Jt1  - t2  I >> t, the 

"correlation time " Again, we write P3  in the form 

P3 ( 1,t1, z2,t2 , z3,t3 ) = P1 (z1 ) P1 (z2 ) P1 (z3 ) 

x[l + g( 1,t1 , z2,t2 ) ~ g(z 2,t2 , z3,t3 ) 

+ g (z3, t3, Zr t1 ) + g3 (Zr  t1 , 	, t2 , 	, t3 )J 

(2.11) 

The "triplet correlation function" g3  is assumed to vanish when any 

pair of the three coordinates is separated by a distance large compared to 

R or any pair of times by an interval large compared to t 

Continuing as above, we can express the probability functions 

P) , P5,••• in terms of correlation functions) 0 	The n-particle correlation 

function g(z1,t1;•"z,t) vanishes unless all n coordinates lie 

within a volume characterized by the linear dimension 	and all n 

times within an interval of order t . c 
In the absence of significant effects from external magnetic 

fields and/or Conchs forces time reversal invariance implies several 

symmetry relations for the P s and g S. 11,12,13  For the pair 

correlation we have, for example, 

g(z1,t; 2,0) 	= g(z1,-t; 	,o) 	. (2.12a) 

Because we have assumed a stationary random process, we may conclude that 
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9(1,t; Z2 '0) 	g(1,0;  

	

= g(z1,O; 	,t) , 	 (2.12b) 

using (2.12a). On setting t2 - 	, we obtain 

g(z1,t1 , z2,t2 ) 

= g(z1,  

We finally assume, following I, that 

= g(1 	l - 	I; 	) 

	

. 	
l - 	r) . 	 (2.lL.) 

[The assumption (2.14) is not required for the derivation of the trans-

port equation. It does permit us to write the scattering kernel (2.19) 

in "prettier form, however.] 

The mean p1ama electron density at a point z is 

= N P1 (z)  

The electron collision frequency at z will be written as v() and 

the plasma frequency as 

2 	1/2 
w(z) =. 11 e p(z)/m] 	 (2.16) 

The refractive index n(z) of the plasma was discussed in I. 

The first approximation to this was written as n 1  and is given by the 

familiar expression 
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n12 (z) = 1 - w 2 {u(w + iv)] 	. 	 (2.17a) 

We shall, as in I, suppose the imaginary part of n(z) to be negligible 

for propagation over distances comparable to R. This permits us to 

take 

n12 (z) 	- u 2 (w2  + v2.) 	 (2.17b) 

in Eqs. (2.20) and (2.22) below. 

The absorption length 	due to electron collisions is 

expressed as 

(zJ 	co 2 	v 2 	() 	
(2.18) 

( 	+) 

where c is the speed of light. 

We now define the scattering kernel M for scattering a wave 

from the direction 	to direction 	as 

(ij I 	c2)I s r) 	a (  g 	,'; £)(i j 	m 	s r) 	(2.1) 

where 

(i 	ml s r) = 	[(i) • 	,(s)][,,(j) 	(r)] 	 (2.19b) 

and 

P31 L 	I [p2(z)] 	f 	dT 

xfd3R g(z R,) exp{i n(zk(' - )R] . 	(2.20) 
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For later reference we observe that because of the time reversal 

inriance property (2.a) a is even in 

• 	 The absorption length Z z) for scattering is defined by the 

equation 

(P 	P 
2] 	

(2.21) 
t 	 P g 

where 
00 

g 

-cD 

= 	

r2 2 

	
P2(z)fdR g(z, R) 

i+// 

> exp[i n k('  - 

(2.22) 

and 

g(z; R) 	g(; R,O) . 	 (2.2) 

An elementary calculation yields 

2 	OD 

f d .fdaN, (i jfM(,; )Is.$) 	 (2.24) 

S 1 J c0  

The net absorption length (z) is defined, finally, as 

1 	1 	1 = 	+ 
.- . 	 (2.25a) 

t 	C 
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We note that this is equivalent to the equation 

= 2k Im n, 	 (2.b) 

where n is the refractive index given to the order of accuracy obtained 

in I. 

The transport equation for I.,. (to be derived in Section V) is 

V,,w) + () 
	

= r d lf d 	,, 

(2.26) 

Here we have written I.. as a column matrix with four 
1J 	 elements and 

(i .jjMjs r) as a !. X l. square matrix [evaluated at the point x , of 

course]. The product M I. is then the column matrix with elements 

(i jIMs r)i r 	j= 1, 2 

s,r=l - 	---- 

We see from Eq. (2.20) that M will vanish for IM -  w'J >> 1/tc 

If I is nearly constant over a frequency range of order i/t we can 

re-write Eq. (2.26) in the form 

•V I(x,,w) + 	 ,w) = f d, M()  

• 

	

	 (2.27) 

Here 

PIP 	

f  OD 

d2M('; 	) . 	 (2.28) 
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Alternatively, if the radiation is confined to a sufficiently 

narrow frequency interval 	we can integrate Eq (2.26) over 

frequency to obtain Eq. (2.27) as satisfied by the integrated intensity 

f I(x, , co) 	 (2.29) 

Jo 

It was this equation which was obtained in I 

The fundamental assumption required to derive the classical 

transport equation (2.26) is that 

	

R << 	, 	 (22.) 

where (we recall) R is the correlation length. When R may be 

taken as k, we may re-write (2.2) as the äôndition that 

II. 

<<1, 	 (2.2) 

where 

= 	• 	, 	 (2.30) 

with 5 p2  the mean, square electron density fluctuation. 

In the derivation of Eq. (2.26) it was alsoassumed that the paths 

of geometrical optics for rays propagating with the refractive index 

could be approximated by straight lines. More generally, Eq. (2.26) must 

be integrated along curved ray paths. 
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III. TIE, POWER SPECThUM 

We consider an electric field variable. E(t). defined over the 

"long" time interval -(T/2) < t < (T/2) and vanishing outside this 

interval. In representing a scattered wave, E will depend parameterj-

cally on the electron coordinates zl.••ZN and on any random variables 

characterizing the source It will be convenient to use a complex 

representation for E , so the "power densityU is 

F0 = 	( E(t) E(t)), 	 ( 1) 

14 

	

in a suitable system of units. 	Here the average "(.)" epresents 

an average over both plasma electron coordinates and over source 

fluctuations. That is, 

((t) E(t)) 	j
= d3zl .. d3zN ( E(t) E(t) 	(3.2) 

where "(•)" represents an averageover source fluctuations only. We 

extend the assumption (2.8) that we are dealing with a stationary random 

process to include the source. Thus, for example, 

T/2 

(E(t) E(t) 	
. 	 f 	. 	E(t)E(t)) . . 	() 

The field E(t)is expressed in terms of its Fourier transform 

as 	 . 	. 	 . 
T/2 

E(t) = 	
r 2 	1 	(u) e 1  dU . 	 () (21)1 	j 

-(T/2) 
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The power spectrum of E(t) is then 

G)w 	E (w) 2 = 	
8t 

1 	* 	 e )T  
E (t)E(t + 

normalized to 

f (w) w = 	 (3.6) 

-00 

It should be noted that we are here defining the power spectrum 

over the interval -cc <cn <+cc . We shall see that our transport equation 

is even in w,so I maybedefined onthe interval O<w<a. 

The incident plane wave emitted by the distant source (see Fig. i) 

is assumed, for the present, to be plane polarized15  and of the form 

t 	Ae (1) ' E (r,t) 1 (r,) =  
-a 

i (k. r 
E1(r,t) 	

(2)f0 	
e 	d.  

The power spectrum of the incident wave is 

/1 	 J(w)I 2 . 

= 	 ) = (T1(-w) , 	 ( 3.8) 

which must be even in u if it is to correspond to a physical wave. The 

incident.intensity, representing flow of power per unit area, is then 

[here c is again the speed of light] 

/ 
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I(o) = 2c 	 0 < CO < OD• 	(. 9) 

The total intensity is then 

10 	 I0 (u) D . 	 ( 3.10) 
.Jo 
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IV. THE BOR1'T APPROXThIATION 

It is instructive to first calculate the scattered power in the 

Born approximation. 1  The scattered waves at a point r far from the 

plasma can then be written in the form [see Eqs. (2.3)] 

(j) E(j,t) 

E(j,t) = > 

	
° 	Eiat) 	 (.i) 

Here E1  is the incident field (3.7) and ZC, Zc,(tc,), a = 1,2, •N, is 

an electron coordinate evaluated at the retarded time 

ta = t - Rc/c, 	 (4.2) 

where 

= r - (ta ) 	 (4 -3) 

and A A 
p = r 

For a plane wave having wave number k/2it and angular frequency 

= kc, 

and 

ikR 
a Oe 

¼Ira - R 
a 

V -1 
= _r(1 + i 	) 	(j)(i) 	 (.5) 

is the Thomson amplitude (here r 0  is the classical electron radius). 
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Since E1  contains a spectrum of plane waves, we interpret (L.i) as 

follows: 

r ikR  
° 	

i(kz 
Gra f1() Et(zat) 

= I (2r)/ 	
f.1(,.n)%(w)e 

Here k = k(k) is the wave number after scattering fm' an 	 yrf- 

wave number k . Now, 1k - kI 	vjc) <<k by as sumpt ion NR 

made at the beginning of Section II. We shall interpret this to mean, 

for example, that 

f..(,k,a), 	 (4.7) 

where U)=kc 

On setting t 	t + r , using Eqs. 4.1) and (!..6), and writing 

R 	r - 	• 	, etc., we obtain Ce 

T/2 

(E(j,t) E(,t)) = 	 dt K E sc (jt) E(,t') )sc 

-(T/2) 

N 	 OD 

1 f d f . (p,k,a) f (pk,a) 
 3 a_ '41 

a,=lr 

2 

OD 

K II 	i(w) 	exp[-luYr.] 

x exp( i[(t) - 	(t)).( 	- Ic)] )) . 

According to Eq. (3.2) the average tt( 
... ) here implies the integration 
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J P2 (, t' 	, t" . 

From Eq. (2.10) we see that the term not involving the pair correlation 

function does not involve the times t and t., which could be taken 

to be anY two times in the interval -(T/2) < t < T/2 ,. Also, for this 

term we have k = k, corresponding to coherent scattering. 

For the other term, involving the pair correlation function, we 

have JZa - 	I 	(R) . Since the distribution function is stationary, 

wemayset 

- 	(t) = 	(t ta  + r/c) - 	(t + nc) 

=  ( a (t') - (t)+&' _R) 	(li..lo) 

within the average in Eq. (4.8). The term of 	R k') may be c   

dropped in the exponential, using assumption NR. Also, since 

k - k 	(k ve)/c , we may use assumption NR to set k = k in 

Finally, then, we may write this equation in the form 

(E*(j,t) E(,t')) = 	

f 	
ji 

-oo 

U 	
) f 	(, k,(j ) 18 	)] 

x e
J  P

1 (x) P1 (x')[ 1 + g(x,x; ) 

exp[i(k' - p')(x - ')] d 3x d3x' , 	(.fl) 

where p = kt 	. 
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The power spectrum of the scattered waves is then 

= J (8c) 	( E 	(j,t) E(.,t') ) edr 

1f*() f()f 	(t )f dr  

'(fdx dxt p(x) p(x'){l + g(x, x, 	)] 

x e 	 exp{i(k - p)(x - 	. 	 (4.12) 

We have here used the relation ( 4.7) to remove the scattering amplitudes 

from the w'-integrand. 

The coherent scattering in Eq. (4.12) is given by the term that 

does not involve g. This is immediately seen to reduce to 

Icoh = 	f(w) f 1(,th) 

2 

X 	dx exp[i(k p)x] p(x) 	, 	(11.13) f 
where p=kr 

The remaining part of (11.12) represents the incoherent scattered 

power. This may be written in the form 

linc 	r 
= 4j1 d(j 	M(,k; w -w')u)(w'), 	(.1) 

where M is defined by Eqs. (2.19) and (2.20) and the refractive index 

is replaced by unity. 
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To derive the transport equation we must consider a sequence of 

scatterings, just like the single one just described. In I it was 

shown that all coherent scatterings result in propagationwith the 

refractive index n . The incoherent scatterings lead to the transport 

equation. 

A sequence of coherent scatterings will not lead to a frequency 

shift. On the other hand, a long sequence of incoherent scatterings 

may lead to a large frequency shift in the wave. For each single 

scattering in such a sequence, we can continue to assume that the 

frequency shift (W - w) = &(W ye/c) is small, because of the 

assumption I'JR. In particular, we can continue to use the relation 

•where w and u are the respective frequencies before and after a 

given single scattering. 
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V. DERIVATION OF THE TRANSPORT EQUATION 

The derivation of the transport equation as given in I needs 

only minor modifications to take account of the frequency shift. In 

this section we shall therefore rely heavily on the development given 

ml. 

Following the discussion given in I, we write a particular 

component of the scattered electric field vector in the' form 

E(r)
= > 	Q(r, l 	 1) 

n=l.a1,a2,...a 

Here Qn represents the contribution from a wave multiply scattered 

by electrons at z , 	 and the sum is over all electrons and numbers 
1 

of scatterings. 

To find the scattered power we must evaluate such quantities as 

6pnm 	Q 
m 

 (Z;. 
Z13 	;~13 	Qn  (Z; z ... zC'  

i 

= 	f m+n Q*m 
	d3z"d3z 	 (5.2) 

using the notation of Eq. (5.2). We suppose the probability function 

m+n to be decomposed into a cluster expansion of correlated coordinates, 

as in Eqs. (2.10) and (2.11). For each term of this expansion each 

coordinate is a member of a correlated cluster of coordinates. First, 

given coordinate 	may be uncorrelated with another coordinate. If 

not uncorrelated, 	is correlated with other members of the set 

in  
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Let us suppose that 	belongs to the correlated cluster set 

	

which consist of only Za 	In this case the integral over 

.a •.• z involves only Q. . This was called a "coherent part" of the 
c 	d 

average in I. Such "coherent part" averages may clearly be performed on 

each factor of E() before squaring. It was shown in I that the effect 

of the "coherent part "  averages is to give the plasma a refractive index. 

This result may be taken unchanged for our present analysis. 

To see this, we notethat the introduction of the time-dependent 

correlation functions does not modify the expressions obtained in I for 

the refractive index. This is obvious [because of the stationary property 

for scatterings which are uncorrelated. Scatterings which are 

correlated are separated by distances of the order of Rc • During the 

time RJc required for propagation across a correlated cluster a 

typical electron will have moved a distance (R ve)/c . The resulting 

change of phase in the exponéntials is therefore of order 

(kR) 	<<  

by assumption NE, and can be neglected. 

The resulting equations for the multiply scattered waves are 

[see Eqs. (I 3.31), (I 3.32), (I 3.33)] 

N 	2 

E(,t) = E(,t) + 	 (j) E(j,t), 	(5.1) 
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N 	2 

E(i,t) = I G 	f.1(, o) E() + 	 G 	f..(a,)E(j,t). 

(5.5) 

Here 

,. (j)  , 	 ( 5.6) 

where 	is the unit vector parallel to - 	. The quantlty 

represents the coherent wave [see Eqs (3 7)] 

E(z,t) = 	E(,t) ., 

• 	• 	 i(ks-wt) 

E(,t) = (2)1/2 f 	(w) e 	a 	
( 	) 

where Sa is the eikonal for the coherent wave [Eq. (I 3.34)] 

z 

S 	S() 
= 	f 	[n(x) - l]ds + P,. 	. 	• 	(5.8) 

-cD 

Here n(x) is the refractive index and the constant of integration has 

been chosen to be consistent with Eq. (3.7). The Thomson amplitude ( 4 .5) 

for scattering has been re-written in Eqs. 	to indicate scattering 

from the direction of (z - z) to that of ( 	- 	), etc. For a 

monochromatic wave G 

	

	is the Green's function [see Eq. (i 3.29)] 

013  
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s 	

= f 	n(x) ds , 	 ( 5.10) 

the integral being taken along the straight line path fromz to 

and 

• 	(5.11) 

We have used the notation of Eq (ii. 6) on the right-hand side of Eq  

writing 

ikS 
G 	f..(, 	) E(j,t) = 

	
f..(, 	; u) 	(j, w) e 0)t  Pcr

(5.12)• 

in terms of the Fourier transform E 	of • E 
CT 

The argument given following Eq. (4.6) lets us set k = k in the 

exponential in  

The "coherent part" averages in the expressions (5.2) permitted 

us to derive the multiple scattering equations (5.4) and (5.5). On 

performing the remaining averages, after using Eqs. (5.4) and (5.5), we 

must omit "coherent part" averages. This means that every coordinate 

z 	must be now correlated with at least one of the 	s in (5.2). 

Continuing to follow I, we define [a generalization of Eq (I 5.6)] 

1r 
e ' fãz d3z 61 	+ ) - 

p(z)p(z) g(z7,z, T) j (E*UY (i,t) Ea(J t + 

(5.13) 
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Here the notation " 	means an average over all coordinates 

except for 	, 	, and z which are held fixed. 17. 

We now follow the derivation of Eq. (I 5.11). Equations 

are substituted into the right-hand side of Eq. (7. 13). Equations (I 5.9) 

and (I 5.10) are used to write E 	in terms of E , etc., for 

- 	I = 	. There finally results 

u..(a,; ) .= (2Ylf dT  eTJd3z 	 + yt) - 

, 	p(. y ) P 	) g(7, 	; 

( f( 	o) f 1 (, o)(8) 	(E (z,t)E(z, t + 

exp [i in () ( 	- ) ( 	- _YPY I P 

+fd3z d3z, p(z) p(z 1 ) g(z,z1, T)_CF

s,s'=l 	. 	. 

[ f( 	 51 (,)]exp[i n1()(-k) 

(8) 	E*(s,t) E(s', t + t) 	+ cross terms} 

(s.i) 

To simplify the first term above we write 
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( 

I 	 * 
(211)'J dr e 	(8t) 	( E(,t) E(,t + 'r) ) 

1 lik(S-S) 
[- I(u)je 

TC 

where [see Eq. (3.9)], 

= O() exp1 -f 	)] 	 (5 16) 

and the integral is taken along the straight line parallel to 

On making use of the assumption that 	<< 1 , we may 

neglect the cross terms in Eq. (7.14 ) and express the second term in 

terms of U . In so doing we make use of our conclusion of Section IV 

that the change in frequency on a single scattering may be neglected 

in the Thomson amplitude and in the exponentials. 

To simplify the second term in Eq. (5.14), we write it in 

the form 
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jW' 

(2Y 	d e J dz7 d3z7 , 6( ( + f -  
x 	 ) 	f e  0TfdT ? e lW T 

s,s'=l 

X 
fdZ d3z, jd3zx ö (z + z,) - 
	

) p(z) p(z,) 

xg(z, z; T') 
t f*( 	

n1().i).,j 

x ((8) 	E(s,t) E1(s?, t 	T i )) 

= fd3  z 	&i 	GI (13 	 w) ss') 

s,s-1 

x
ss

t(P'%;_W 1
) 

In writing the exponential involving R 	here we bave replaced 

in Eq. (5.14) by 	. This is permissible since we assume 

> R . The quantity M in Eq. (5.17) is defined by Eqs. (2.19) 

with the obvious notational cbange of indicating directions of propagation 

as 	7\• 	and "Q3. 

The resujts (5.15) and (5.17) permit us to write (5.111.) in the 

form 



UL192 

U. 	c) 	=C1W I 1 	(iI 
M(COP  o, w)  

+ 	)  fdzd (ii 	J M(,; ai)J 	ss')U( 	Wt

.  
s,s=l 

Since 	M 	is even in 	(w - w') [see remark follong Eq. 	(2.20)] 

and 	I 	is even in 	&, it follows that 	U 	is even in 	à 	. 	This lets 

us define the intensity I.. 	for 	U) > 0 	with the equation 

IijaW) 6i1 	+ 2c fR2 	n 	U(a,,a) 
ij 

• • 	(.i) 

The 6-function here is defined by the condition that 

= 	f() 
1p 

for a function 	f(p) which is regular at 	k = p . 	The integration in 

Eq. (5.19) is performed over 	Z, along the semi-infjnjte straight line 

beginning at 	and directed parallel to 	(-) 

Using Eq. 	(5.19) we can express (5.18) in terms of 	I.. 	. 	If we iJ 
write 

r 	I 
IGI2 	= 	1 

exp 
	

ds 

we obtain [in the matrix notation of Eq 	(2.26)] 
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.. 

. 
o)= 	(,w) 	

~ 	

ds( 	exp FI 	4:)1 
00 

xfo 	i' f d, 	'.; u - w') I(z, 	w') 
, 	 (7.20) P  

 

where now o > 0 and 

) = I(w) exff 	J 	(5. 21) 

The path integral in Eq. (5.20) extends along the straight line from 

to co in the direction (_). 

Differentiation of Eq. (5.20) along a ray path leads to Eq. (2.26). 

Equation (5. 20) is evidently valid for arbitrary incident 
8 

polarization, to be specified by the choice of 10(a) 
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VI. RADAR BACKSCATTER  

It was pointed out in I that the transport ecjuation is not valid 

for backscatter. The reason for this is illustrated in Fig. 2. To each 

ray path defined by a particular sequence of multiple scatterings there 

corresponds a path obtained by reversing all propagation vectors. These 

pairs of paths can interfere coherently, and this.is not included in the 

transport equation. As was shown in I this effect can be accounted for, 

however, by choosing a certaii linear combination of solutions of the 

transport equation. The specific expression for backscatter was given 

in Eqs. (I 7.7) and (I 7.10). 

When there is a frequency shift, Eqs. (I 7.5a) and (i 7.5b) are 

modified. These now read, respectively, 

- 	ik1S 	
A A ik1S 

Q(i,$). = 	 er 	 )"f(2,k)e 	l 
 rn 

l'n-1 

(6.Ja) 

- 	ik1S 	
ik S 

(i,$) = . 

	

	 f11 	 1 nr 

3n-1 
(6.lb) 

Here k1  is the incident wave number, Ic2  that after the first scattering, 

, and kn+1  that after the nth scattering. 

For Q and Q, to interfere coherently, the frequency (wave-

number) spread must be small enough that the phase differences 

is 2  1(1c2 - Ic 22 )] are small compared to unity. The criterion for 

this is that 
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(u 2)/c 	< 1, 	 (6.2) 

where 'u is the total spread in frequency due to scattering. if 

condition (6.2) is satisfied the expressions (I 7.7) and (i 7.10) may 

be used. 	 - 

On the other band, when 

• 	 (W '01c >> i, 	 (6.3) 

Q and Q
h will not interfere Then the transport equation (2 26) 

[or (5.20)] does tend to be valid for backscatter, without the special 

correction of Eqs. (i 7.7) and (I 7.10). 

In intermediate cases it. is not anticipated, that thetransport 

equation will be applicable to the calculation of backscatter. 
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Fig. 1. Illustration of scattering from a plasma. 
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Fig. 2. Illustration of backscattering. 
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