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ABSTRACT 

UCRL-1922l 

This is the first in a series of papers investigating the 

properties of vector currents consistent with the hadron bootstrap, 

assuming duality and zero resonance widths. First, on general grounds 

and independently of current algebra, we show that two current amplitudes 

must have fixed singularities in the angular momentum plane. Then we 

discuss some general conse~u~nces for current amp+itudes of duality and 

the zero-width approximation. Throughout we treat amplitudes for one 

or' two vector currents and an arbitrary number N of spinless hadrons . 

. r. 
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I. mTRODUCTION 

This is the first in a series of papers in which we initiate an 

investigation of amplitudes for currents consistent with the hadron boot

strap assuming duality and zero resonance widths.
l 

In such an approach 

2,3 
to currents, as first discussed by Dashen and Frautschi, one assumes 

a bootstrap solution of the strong interaction problem and theninvesti-

gates the consistency requirements imposed on the nonstrong (current) 

amplitudes by this solution along with analyticity and unitarity. Recent 

progress made in the hadron model based on infinitely rising Regge trajec-

4 
tories and zero resonance widths,originally proposed by Mandelstam, 

provides a new basis for this investigation. In particular, the 

generalization of the f.our-body Veneziano5 amplitude to N-body amPlitudes
6 

provides an important new starting point for the investigation of currents. 

In this paper we discuss the general properties of amplitudes for 

one or two vector currents when duality and the zero-width approximation 

are assumed. These results provide the framework for our explicit 

investigation of currents in the N-point beta-function mode1
6 

of the 

meson bootstrap in the following paper. 7 There we shall find consistency 

8 
of the Gel~-Mann current algebra with that particular model of the hadron 

bootstrap in first approximation (single poles in form factors and 

factorization on leading trajectories). As yet, however, we have no 

definite answer to the question of whether current algebra is a consequence 
" 

of, consistent with, or perhaps inconsistent with the hadron bootstrap. 

In these papers we concentrate on the construction of amplitudes 

for conserved isoscalar and isovector vector currents consistent with 



UCRL-I9221 

-2-

current algebra; we discuss on~y occasionally the question of the uniqueness 

of currents with such quantum ,numbers and commutation relations. However, 

we believe that both the uniqueness and existence questions can eventl~lly 

be fully answered, at least in the' N-point beta-function model. Further 

we suggest the new possibility that the consistency problem for currents 

has a particularly simple solution (and current algebra is valid) only in 

dual zero-width models with linearly rising trajectories. 

The chief dynamical constraint on curre'nt amplitudes is factoriza-

,tion, since in the zero-width approximation factorization is the chief, 

remaining consequence of unitarity.9 The power of the factorization 

constraints is seen clearly in the model of II. Factorization mayor 

may not be enough to uniquely, determine the current amplitudes; if it is 

not, current algebra may be required as an additional constraint. We 

also make the dynamical assumption that all energy variables have Regge 

behavior except when they are required on general grounds to have fixed

power behavior' (see Sec. II.B). 

Throughout we treat currents from an S-matrix point of view. We 

deal only with the covariant tensor ampli tudes which ar,e directly related 

to physical trans~tion rates. We do not need to assume the existence of 

10 
local current density operators. Furthennor~asymptoticproperties are most 

conveniently expressed in terms of the covariant amplitudes; for example, 

the angular momentum plane structure (moving poles, fixed poles, Kronecker 

deltas, etc.) can easily be deduced from their asymptotic behavior. 

As an important technical convenience we discuss always amplitudes 

for an arbitrary number N of spinless hadrons. Such amplitudes give a 

.. ' 

i· 
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convenient way of handling the important factorization constraints. It 

is also much easier to handle the kinematics of high-spin mesons by 

extracting the amplitudes for such particles from the'residues of poles 

in many-particle amplitudes. A probable extension of our approach to 
, 

fermions is to multiply our amplitudes by spinors for half-integral spin 

fermions. Finally, we note that, in the zero-width approximation, a 

solution of current algebra in terms of N-body amplitudes is e~uivalent 

11 
to the saturation by single-particle states proposed by Dashen and Gell-Mann, 

since the singularities in any variable are simple poles. 

In Section II we discuss some general properties of current 

amplitudes independent of duality or the zero-width approximation. We 

discuss in some detail the conse~uences of the existence of a physical 

photm, since they:imply important boundary conditions at the point 
2 
~ = o. 

The chief result of the section is a proof that the two-current amplitude 

must have fixed-power behavior (a~d hence fixed poles) independently of 

12 any consideration of current algebra. In Section III we define our 

concept of duality and discuss the conse~uences of duality for current 

amplitudes. We shall find that the amplitudes must have a particular 

form as the momentum~ of a current goes to zero. The absence of 
I-L 

exotic resonances and SU(2) internal symmetry imply that only isoscalar 

and isovector charges exist. The re~uired properties of current amplitudes 

in zero-width models are listed in Section IV and their interrelationships 

are discussed. 

We shall asume SU(2) symmetry for the hadron bootstrap; the 

extension to SU(3) or other symmetries is in most instances straightforward. 
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II. GENERAL PROPERTIES OF CURRENT AMPLITUDES 

In this section we discuss some relevant properties of (A) single
\ 

current amplitudes and (B) two-current amplitudes that follow from Lorentz 

invariance and the usual analyticity and unitarity assumptions of S-matrix 

theory. 

A. Single-Current Amplitudes 

The description of the phySical photon as the zero-mass limit 

(ZML) of a massive vector particle is very useful in constructing photon 

amplitudes with the co:rrect kinematic properties.13 The transformation 

law of the physical massless photon follows from that of the "massive 

photon!! if the condition 

as m ... 0 
r 

(2.1) 

holds, where mr is the photon mass, q its momentum, and HO the 

helicity zero amplitude (the hadron momenta have been suppressed). The 

condition (2.1) assures that the physical (helicity one) amplitudes 

transform independently of the unphysical (helicity zero) amplitude. The 

Wigner rotation of the massive photon then goes over into a pure z 

rotation of the proper amount.
14 

The discontinuous change in little-

group structure at 

in m· r 

m = 0 often obscures the smoothness of amplitudes r 

If the condition (2.1) is satisfied, the helicity-one amplitudes 

will yield charge conservation and the low energy theorem~ since these 

follow from their transformation law13,15 (e.g., on-mass-shell gauge 

invariance). The undesired amplitude HO can merely be ,ignored. However, 

.. 

it 

• 



UCRL-19221 

-5-

for physically reasonable off-mass-shell amplitudes, one would expect 

2 H
O 

to vanish as q ->0 0, since a finite H
O 

would. correspond to a spin-

zero photo~in contradiction with experiment. 

The off-mass-shell amplitudes rr".(q} can be obtained from the 

electron scattering amplitude, A. This requires, of course, a complete 

knowledge of the electron form factor, the factorization at the J = 1 

. fixed photon singularit~and the weak coupling of the photon. The 

.projection of ~(q) from a diparticle (e.g. electron-electron) state 

gi~es a square-root kinematical singularity in HO' In general the 

projection shows how the kinematic singularities associated with high 

spin can be derived from analytic amplitudes for many spinless particles. 

If A is to ·be analytic in 2 
q and if HO is to be bounde~we must 

therefore have 

(2.2 ) 

This is a nontrivial constraint on the off-shell amplitudes. 

It is traditional and indeed convenient to introduce a covariant 

tensor (four-vector) amplitude for the photon through the expression 

~(q) = 

The polarization vector €1-l(A.,q) ,is the standard one for massive 

particles; for q = ° it is 2-1/2 (0, -1, -i, 0), 2 -1/2 (0, 1, -i,O) , 

and (0, 0, 0, 1) for A. = +1, -1., and ° respectively. 

The condition (2.2) for physical photons implies 

2 
O(q ) • (2.4) 
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This is the strongest conservation law demanded by the physical 

interpretation of the photor. For q2 ~ 0 the tensor T~ may be 

written as 

tP~V(q) = 

and the scalar (J 0) part is 

~V 
g 

q~ qV 
2 ' q 

(2.6 ) 

In general, the two parts of (2.5) have compensating singularities at 

2 
q 0 and the decomposition into ~onsingularparts is impossible when 

q2 0 (the axial current provides an example of such a phenomenon). 

The importance of (2.4) is that it removes this singularity in ~. 

The scalar part S of neutral vector currents is not measured 

in electron scattering. However, the scalar part of charged vector 

currents can be measured in the weak interactions (e+v,~+v, etc. probes). 

Hence the conserved vector current hypothesis (eve) has a direct 

empirical consequence. Further ~ mke the usual eve assumption that 

the charged vector currents of weak interactions are part of the same 

isospin multiplet as the isovector part of the electromagnetic current. 

Because of their physical interest we shall for the most part study 

conserved vector currents and hence denote them by ~. 
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For single current amplitudes there is no rigorous necessity for 

non-Reggebehavior. Dashen and Frautschi
2 

have shown that pure Regge 

behavior is a consequence of the consistencycondition~Regge behavior 

2 
for the hadron bootstrap, and unsubtracted dispersion relations in q. 

In Sec. IV we shall see that this conclusion follows particularly 

simply in the zero-width approximation. 

B. Two-Current Amplitudes and Non-Regge Behavior 

Two current tensor amplitudes, MiJ.V( ) ql'~· . (covariant current 

correlation tensors~ can be constructed from doubly nonstrong leptonic 

amplitudes in the same way as the single-current amplitudes. It is 

convenient to define the combinations 

where a and b are the internal quantum numbers of the currents and 

are usually suppressed (as on the left-hand side). We also suppress the 

hadron momenta i = 1,···, N. Due to Bose statistics, M+iJ.
V 

and 

M iJ.
V 

are respectively symmetric and antisymmetric under the interchange 

(qi'iJ.)~~ ?> (~,V). We note that for isoscalar and isovector currents only 

16 
the I = 1 combination of two isovector currents is antisymmetric, and 

physical photons contribute only to symmetric amplitudes. 

For physicalphotons, the arguments in (A) can be repeated to 

obtain the divergence conditionf 

= (2.8 ) 
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On the other hand, since there is no physical massless charged particle 

corresponding to the charged currents of the weak interactions we cannot 

directly obtain such divergence conditions for amplitudes involving these 

currents. Moreover, eve does not 'imply (~) since M~v is only indirectly 

related to current operators (if they exist). In fact, we can easily show 

that is nonvanishing as In this limit only the 

soft poles due to the coupling of the current to an external line can 

contribute and one can easily show that as ~l~ ~ 0, 

but 

o. 

Roughly speaking, the nonvanishing of the divergence is due to the lack 

of an internal pole in the current channel at 

corresponding to the soft pole coupling to the second current. In lieu 

of such an unphysical 2 
~ -dependent exchange pole, cur;tent algebra has 

an II exchanged II current. It corresponds to Kronecker delta and fixed pole 

singularities in the angular momentum plane rather than an ordi~y 

physical particle pole. 

The divergence conditions (2.9) and (2.10) are far less than 

that assumed by cu.:rrent density algebra, since they are restricted to 

the special point ~ = o. 
l~ 

In fact (2.9) and (2.10) are e~uivalent to 

only the charge-current density algebra. Since in (2.9) all the "over-

lapping variables1! ~l·Pi are fixed at zero,it provides no evidence for 

fixed power behavior •. However, we can extend the nonvanishing of the 

i' 
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divergence t9 arbitrary for 
2 

~ =t. Before 

stating and proving this important theorem let us first discuss briefly 

the variables in M~V. There are 3N-6 independent hadronic variables 

Pi'Pj (t is included among these by energy momentum conservation, 
N 

Cl ~ + ~~+ L PY = 1 . 1 J. J.= 
0) • . There are N-l 

only two (denoted 

overlapping variables 

·V 
1 

and are 

independent. The others are linearly related to them. There are thus 

the correct number (3N-4) of on-mass-shell variables plus 
2 2 

Cll and, ~ • 

A graphic way of visualizing the variables is togo to the two_current 

center of· mass (called the t channel) • The fixed hadronic momenta 

provide a coordinate system; t, Cll~ and ~2 determine the length 

of the relative three-momentum and 

angles. 

12 We now state the theorem: 

and determine its polar 

If M ~v is analytic on the (-) 

physical sheet of and V
2
,17 except for singularities due to normal' 

threshold cuts and bound state poles in the overlapping variables, and 

if eve holds for ~, then M ~v 
(-) has 'fixed power behavior in the 

overlapping variables. It then directly follows that there are fixed poles 

or Kronecker delta singularities (or both) in the ~ngular momentum plane 

of the two-current (t) channel atJ = 1. 

We first note that eve implies that the discontinuity of M~v 

across the normal threshold cut in any overlapping variable has vanishing 

divergence. To prove this one uses unitarity to express the discontinuity 

as a (finite) sum over intermediate states in the given overlapping variable. 

Each term in the sum is the product of two single-current amplitudes and 

thus by eve has vanishing divergence. Henc.e, 
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= 0, all i. (2.11) 

We now examine the divergence 

and t. Equation (2.11) and our assumption imply that 

singularities in VI and V2 and is therefore a polynomial in these 

variables. From (2.9) one sees that the constant coefficient is non-

vanishing at 
2 

q = 0 and 
1 

. 2 . 
~ =t and therefore has a 

nonvanishing fixed power (constant) behavior in .theoverlapping variables. 

The amplitude M( -r must then also have fixed power behavior. 

We have thus proved that the two cUrrent channel cannot have 

only moving poles in the J plane; there are fixed poles and (or) 

Kronecker delta singularities at J = 1. This is the heart of the 

problem of finding consistent two current amplitudes. 

We note that we have shown thatqllJ. M( -r has a nonvanishing 

contribution at q12 = 0, ~2 = t which is a constant in VI and v2 • 

We have not obtained any information about higher-order terms in VI 

and v2 which may in general be present. Also we do not learn anything 

about contributions proportional to since (2.9) gives information 

only at q = O. IIJ. . Thus without further information we do not have a 

detailed knowledge of the actual fixed power behavior. 

However, if local current operators exist the divergence of MIJ.V 

is determined for all q12 and ~ 2 
by the current commutation relations.

18 

In particular the Gell-Mann current algebra gives16 
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(2.12 ) 

o , 

which one sees is the simplest behavior consistent with the theorem and 

(2.9) and (2.10).19 Similar expressions hold for the ~v divergence. 

Equation (2.12) clearly is a very nontrivial relation between the one- and 

two-cUrrent amplitudes. 
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III. DUALITY 
5 . 

In the Veneziano model for' four-body amplitudes, the full 

amplitude is decomposed into a sum of three terms [B(-as ' ~t)' B(~t' ~u)' 

a.nd B( -a, -a ) J, one for each permutation of the external p3.rtkles 
u s 

(excluding cyclic and anticyclic permutations). A similar decomposition 

is used in the N-point beta function mode1
6 

for N-body amplitudes. For 

each permutation of the external particles (excluding cyclic and anti

cyclic permutations) there is a· separate term givenby an N-point beta 

function. Each such function has poles at fixed (real) values of sub

energies of adjacent lines [e.g., B(Pl' P2"",PN) with particle ordering 

1, 2, ···,N has poles in s .. = (P. + p. 1 l.J l. l. + 

Regge behavior .in these subenergies [e.g. 

2 
+"'+p.) J 

J 

B'" (s' . . )a as 
l.J 

and also has 

s .. ~ exl J. 
l.J 

These functions are hence dual in the sense that poles are generated by 

d · . 1· 1· . bl 20 l.vergences l.n sums over po es l.n over appl.ng varl.a es. In this 

section, we consider some general consequences for current amplitudes of a 

concept of duality based on this decomposition. 

There is an inter~sting correspondence between the terms in this 

decomposition and the sets of planar (Cutkosky or Feynman) diagrams for 

various fixed permutations of the external lines. The set of planar 

diagrams for a fixed permutation bas cuts (and bound state poles) in 

precisely those variables for which the corresponding N-point beta function 

has poles. In this sense each beta function approximates an infinite 

set of planar diagrams.by an infinite set of tree diagrams. The decom-

position of the set of all planar diagrams into its subsets for the 

various permutations of the external lines corresponds to the decompo-

sition of the amplitude in terms of beta functions. We suggest that an 
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appropriate name for this type of duality is. planar duality since it 

. assumes that each term in such a decomposition of the amplitude is self

dual. 21 

At present, the most successful Reggeized zero-width models for 

hadrons exhibit planar duality. Besides this pragmatic justification 

for studying its general conse~uences we can give some crude arguments 

. why it might be a good approximation. Whereas Feynman diagrams provide 

no reliable estimate of the relative importance of planar and nonplanar 

diagrams in hadron amplitudes, the multiperipheral model enables one to 

make such an estimat~at least in a restricted kinematic region,and so 

far the indications are that the planar diagrams dominate.
22 

Also 

Mandelstam23 has constructed Veneziano-like amplitudes corresponding to 

nonplanar diagrams with more than four external lines and has concluded 

that these have a more degenerate and hence less desirable hadron spectrum. 

In the remainder of this section we shall assume planar duality for 

current amplitudes and investigate the conse~uences of the fldual decompo-

sitionfl into a sum of terms, one for each permutation of the external 

momenta, each of which has singularities only in subenergies of adjacent 

lines (and is itself dual). Most of the discussion deals with the poles 

that contribute at ~I-l = 0, since they have a distinguished role in current 

amplitudes. We call such soft pole terms external line insertions (ELI)--

see Fig. 1. Finally, we note that in the zero-width approxi~tion where 

2 the only singularities in ~ are poles, duality for vector meson 

amplitudes implies duality for single-current amplitudes. 



\ 

UCRL-19221 

-14-

A. Single Current Amplitudes 

For simplicity we first neglect isospin symmetry and consider 

the amplitude ~(q) for a single photon and N hadrons. This 

amplitude has the dual decomposition, 

:::: L C. P ~ p(q) , J., J., 

i, (p} 

where ~ p(q) corresponds to the permutation P of the haqron momenta J., 

(Pl' P2"", PN)and the photon momenta q to the left of Pi' 

As we have seen in Sec. ILA, we must have q~(q):::: O. Each 
Il " 

term in the dual decomposition (3.1) has right-hand singularities in a 

different set of variable~ and thus there is no possibility of cancella-

tion between them in the divergence. Since duality rules out terms 

without singularities in the full set of variables, we have the important 

condition 

q '~p(q) :::: O. 
Il J., 

From now on we consider only the hadron ordering Pl""'PN and drop 

the subscript P. 

The term ,v Il 
i 

those corresponding to 

has only two 

p. 1 J.-
and 

soft photon pole, terms (ELI); i. e., 

t ( , )2 2 d PJ.' a q + p. 1 :::: m. 1 an J.- J.-
2 2 

(q + p.) :::: m. • Since for q ~ 0 these are the only possible 
J. J. tJ. 

contributions to (3.2), the residues of these poles must be equal and 

opposite, 

,. , 
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2p,ll + Cll.l 
~ 

2 ,2 A 
(Cl + p.) - m. 

~ ~ 

2 
(Cl + p. 1) -

~-

2 
m' l ~-

UCRL-1922l 

A , 

where A is the pUrely hadronic amplitude for PI' ···'PN· From now on 

the vY will alWays be understood to have their ELI poles normalized 
~ 

as in (3.3) (e.g., unit coupling of the current to the external lines 

atCl
2 

= 0). With this normalization we rewrite (3.1) as 

= t (3.4) 

i=l 

We note the normalization conditioR (3.3) applies only to the soft poles, 

'. 
and hence in (3.4) any contribution not containing any such poles need 

. not be proportional to Q •• 
~ 

From (3.3), (3.4), and the definition of the charge 

ith hadron we easily obtain the condition 

e. = Q. 
~ ~ 

From (3.5) charge conservation, 

N 

I 
i=l 

e. = 0., 
J. 

e. 
~ 

of the 

(3.5 ) 

(3.6) 

trivially follows as it must because -I'" is divergenceless (see Sec. ILA). 
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A natural diagrammatic representation of the photon amplitude is 

immediately suggested by (3.5)--see Fig. 2. The lines indicate a flow , 

of charge and show clearly how (3.5) and (3.6) are satisfied. The 

diagram also shows that in IJ. V].. ,the photon couples to Q .. 
. ]. 

One is thus 

led na turally to diagrams strikingly similar to the "duali ty diagrams II 

24 25 . 
drawn by several authors.' Finally we note that the solution of (3.5) 

is defined only up to the translation Q. ~ Q. + C. The constant C 
]. ]. 

corresponds to an additional closed loop in Fig. 2 which does not connect 

to the external lines. Such a translation gives an additional contribution 

of 

yIJ.(l:) (q) = vY((~J 
]. 

i=l 

The V Y in (3.7) may be entirelY different fUnctions from those in (}. 4), 
]. 

they are constrained only by the conditions (3.3). 

We now assume SU(2) symmetry and discuss arbitrary conserved 

vector currents. First we describe a particularly convenient way of 

handling the isospin indices. We may represent the lsospin representation 

and state of each external particle, p.~ in the hadronic amplitude A 
]. , 

as a direct product of isospin one-halfspinors--"quarks or antiquarks, II 

i.e. lower; indices ex ex'· •• ex (k) and upper indices 
i' i' 'i 

, . (t) 
~i' ~i ,"', ~i (one may require some symmetry and tracelessness in 

these indices but we may ignore this inessential complication). The 

amplitude A may thus be labeled 

~ (t) 
N 

~(k) 
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The number, M, of upper and lower indices can always be made equal by 

using the raising and lowering matrix Ca~. We note that in this notation 

the requirement of isospin invariance for infinitesimal transformations 

yields 

a x 

a 
(-r) x 

a a x 

(t) 
~ ••• R 

1 f-'N-

A a ... (i .. . a..~ (k) 
1 x ilJ 

~ ...13 ... ~ (t) ~. 
A 1 y N (~)_ y 
ale .. ~ (k) a ~y 

= 0, for a = 1, 2, 3, 

where ~ are the usual Pauli matrices. 
a 

Since o ~ 
a is the only invariant tensor in SU(2), A can 

always be expanded :in a sun of terms, each consisting of a product of M 

o's and an isospin invariant amPlitude. 24 Each term has the natural 

diagrammatic representation shown in Fig. 3 (a). Each term in the dual 

decomposition of A has a similar expansion. For these it is 

convenient to draw the lines around the periphery of the diagram by 

introducing extra 0 I s, using the trivial. .identi ty 

x 

o x 5 ~ 
a x 

compare Figs. 3(a) and 3(b). 

The isospin factors for current amplitudes can be treated in the 

same way. Consider first for simplicity an isovector current with spinor 

indices a and ~. There are nowM + 1 0' s in each internal symmetry. 

factor and the isospin one current i~ obtained by using the 

projection operator [ ('t'a )a~. Note that (3.9) assures that 
a,~ 
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t3t3 ••• t3 (t) 
_JJ. 1 N 

q V' (k) = 0 
IJ. 00' • '0: . 

1 N 

for q ~ 0 since the ELI's are given by 
IJ. 

2 2 
(q+p.) -m. 

. ~ ~ 

L 
~ (n) 

i 

t3 ••• ~.(n)'.'f5 (k) 
A 1 ~N . 

0: •• -0:._ (k) 
IN 

We now consider a particular isospin invariant amplitude. 
• t3. t3 • 

• •• 5 J 5 • •• 5 
0: ~ 

definiteness suppose it corresponds to 5 
• 

For 

, 
where only the 5' s involving the current s have been explicitly shown 

and O:k and t3 j are any indices for Pk and Pj resve~tively. This 

isospin invariant amplitude has a dual decomposition of the form (3.1) 

and (3.2) holds for each term. Thus by (3.3) each term must have equal 

and opposite contributions from its two ELIas q ~ O. This condition 
. . IJ. 

and the requirement that thefu:ll ELI residue be given by (3.10) can 

easily be shown to imply that this term has the form 

k~l 

• t3. • L V.IJ.(q) fL(E) (q) 5 ('t") J 5 + C , 
ao: • ~ • k 

i=j 
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-where is of the form (3.7) and has-no ELI. In terms of diagrams, 

this means that in - V.I-l the current couples (by T) to each t!quarkt! 
1 a _ 

line passing betweeri p. 1 1-
and Pi,as shown in Fig. 4. As seen in 

(3.11), for each quark line in the aiagram there is the possibility of 

an arbitrary contribution from a closed loop which does not change the 

ELI. These arguments may be repeated for isoscalar currents with the 

replacement ( T )- (3 ~ 5 -(3 
a a -a 

The above results [eo@; .. , Eqs. (3.4) and (3.11)] apply rigorously 

only for the ELI at 2 
q = O. However, when the dual nature of the 

amplitudes is fully takell1 into account we'expect similar results for the 

full amplitud~ since the soft poles are closely related to the full 

amplitude (for example, they lie on Regge trajectories). In II we shall 

find that results like (3.4) and (3.11) do indeed hold for the full 

amplitude. 

Exotic currents with isospin greater than one may be introduced 

straightforwardly by adding further indices a', (3', etc. However, if 

we assume that there are no exotic resonances in the hadron spectrum, 

exotic currents are excluded. The absence of exotic resonances forbids 

the presence of more than one quark line between each adjacent pair of 

externalmanenta25,27 and requires all CIS to be zero. This applies 

equally well to amplitudes with currentsjand thus only isoscalar and 

~sovector currents can be formed. If the zero-width approximation is 

made this result is completely trivial, since only vector mesons with 

these quantum numbers exist. 
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The prescription25,27 for eliminating exotic resonances is 

easily extended to SU(nh and we see that it leads satisfyingly to the 

2 existence of only n conserved currents transforming according to th~ 

n
2 

-1 dimensional adjoint representation of SU(n) plus the trivial 

representation. These are just the currents whose charges generate 

precisely the symmetry SU(n}, and no smaller or larger one. 

B. Two Current Amplitudes 

With the restriction of.the hadron momenta to the permutation 
IlV . 

Pl' "":i?N' the dual decomposition of ,M (ql' ~) is given by 

IlV ( )" 
M ql'~ =6 

IlV 

i/· . rJ 

C •. 
~J 

M~~(ql,q-) +~. c .. ~~(ql,q-) 
~J ~ ~ ~~ 1~ . ~ 

i 

where Mij(ql'~) corresponds to the permutation 

(or similarly for i < J.) Pl'" ',Pi-l' ql' Pi'" ',Pj-l' ~, pj ,,, "PN 

and the adjacent-current terms for the two different orderings have been 

'explicitly exhibited. (Mii is the term with ql to the left of ~, 

and 
, 

M ., 
~~ 

is the term for ql to the right of ~' ) 

There is an important new feature which has to do with the 

adjacent isovector currents and the ELI poles.for ql' First we note 

that the #.~ for i;' j have -two ELI's, as .in A • They may thus be 
~J 

taken to be individually divergenceless; in fact, if the divergence has 
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only fixed poles in the two current (t) channel where they are necessary 

by the theorem of Sec. II.B (and as is the case in current algebra), 

they must bedivergenceless. However, the adjacent current terms have 

only one ELI each; both M~~(ql,q-) 
- D. -2 

'J..LV 
and M ii (ql' ~ ) are needed to 

supply the usual two ELI on p. 1 and p . • This.implies, following 
).- ). 

the method of (A) and suppressing constants C, the condition 

as 

p .• 
). 

ql ~ 0, where the sums are over all quark lines between p. 1 and 
J..L ).-

Since MJ:L~ satisfies the assumptiomof the theorem of Sec. ILB, 
).). 

we may conclude from (3.13) that it has fixed power behavior at least 

for 
2 = 0 and 2 = t (Le., 0) • This result imposes an ql ~ q .~ = 1 

important boundary condition on the J..Lv it is more restrictive than M .. ; 
).). 

the general theorem [see (2.9) and (2.10) J, as it requires fixed poles 

in these terms for both symmetric and antisymmetric amplitudes. Note, 

however, that it noes not require fixed poles in the full symmetric 

amPlitude, since the contributions of the two adjacent diagrams cancel. 
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The isospin analysis proceeds very similarly to A, and we 

shail not give the details. We remark only that there are three free 

constants for each quark line, one associated with its coupling to each 

curr~nt individually and one associated with its coupling to both 

currents. For example, for physical photons we have 

Cij = (Q,i + Cl)(Q,j + C2 ) + C. For consistency the constants Cl an,9-

C
2 

should be those corresponding to ~(ql) and VV(~) respectively. 

Finally, for future reference we state the divergence conditions 

(3.13) for isovector currents assuming no exotic resonances (see Fig. 5). 

In this case, in order to satisfy Bose statistics, M~~(ql' ~) and 

M'~~(ql'~) must be related by the interchange (ql'~)~(~'V)' 

Hence with the unit coupling of the currents to the external lines at 

q2 = 0 [see Eq. (3.3) J, we obtain 

for 
2 

n = 0 and '"11 . 
2 

~ = t; possible additional terms on the right-hand 

sides which vanish as ql~ -+ 0 have been suppressed..The ~v 

divergence conditions are now equivalent to (3.15a) and (3.15b) under 

the interchange (ql'~)~(~'V)' We find this "signature" decomposition 

of the adjacent current terms very useful, particulary in the exchange

degenerate (i.e~ no exotic resonances) model of II. There one needs only 

construct a single fUnction M~~ (q ,Q_) and extract the symmetric and anti-
J.l. 1 c 

symmetric part to obtain both M{~) . 
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IV. ZERO-WIDTH MODELS 

In the zero-width approximation all singularities are represented 

by simple poles. In other words the ampiitude is approximated by a sum of 

tree diagrams. In this section we list and discuss·. the properties of (A) 

single -current amplitudes and (B) two-current amplitudes in Reggeized zero-

width models. 

A. Single-Current Amplitudes 

We require the following properties: 

(i) Divergence Condition: 

i,. e,., CVC hypothesis. 

(ii) Generalized Vector-Meson Dominance (GVMD): 

The only singularities in 
2 

q are simple poles and their 

residues completely determine ~ 2 
(no subtractions in . q 

2 2 
q = my dispersion relations). The residue of the pole at 

is a product of the vector meson (V ) 
n 

scattering 
n 

amplitude 

and a current-vector meson coupling constant ,(fV )' 
n 

(iii) Regge Asymptotics: 

~has Regge behavior in all subenergies s.. k == (P. + p. + ••• +Pk)2. l.J • • • l. J 

(iv) Particle Spectrum: 

The on, ly singularities in' s.. k are simple poles with polyno-l.J ••• 

mial residues in overlapping variables. Each pole is located at 

a fixed positive and real, value of some invariant (sijo"k =m
2
). 

(v) Factorization: 

At any pole in s. . k the residue of l.J ••• V~ factorizes into a 

current amplitude with fewer hadrons and a purely hadronic amplitude. 

Not all the above properties are independent. The Regge 

behavior, particle spectrum, and factarizat:;!..on of the vector meson 
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amplitudes and the no-subtraction assumption (ii) directly imply the 

properties (iii) (V).28 Hence the self-consistency conditions2 can 

be rather easily satisfied. 

The couplings fV of the Vn to the vector current are 
n 

arbi trary in the solution to the single-current problem. This is the 

analog of the freedom discussed by Dashen and Frautschi2 in specifying 

the dependence of their self-consistent currents. In their language, 

if we assume an infinite family of v , there will be an infinite 
n 

number of undetermined constants in the solution to the Omnes equation. 

One can hope to find constraints on the fV 
n 

involving more than one current. 

only by studying amplitudes 

Finally, we note that in constructing a GVMD amplitude one cannot 

just write 

( 4.1) 

where is the purely hadronic on-shell amplitude for v . 
n 

If 

( 4.1) is viewed as a dispersion relation in 2 
q for a fixed independent 

set of the s.. k' it is clear that for N > 2 some singularities in l.J ••• 
2 

q due to singularities in the dependent s.. k l.J' •• 
have been Omitted,29 

thus causing a violation of (iv). One may, however, collect together 

all terms from the dispersion integral corresponding to a given V and 
n 

regard the resulting 2 
q -dependent object as an off-shell continuation 

of A
V

V Also in order to satisfy (i), the constraint 
n 
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v 
llv A V = 

n 

must be imposed in order that ~ not have a spurious singularity at 

depend upon 2 
q • As we shall see q2 = O. This requires that A

V
V 
n 

in II) the N-pointbeta function model provides a natural way of 

handling these complications. 

B. Two Current Amplitudes 

We require the following properties: 

(i) Divergence Conditions: 

(a) Charge-Current Density Algebraj 

for 

(b) Photon Correspondence: 

and similarly for ~. 

(ii) Generalized Vector Meson Dominance: 

The only singularities in 2 and 2 are simple poles ql ~ 
2 2 

(or 
2 2 and the residues at ql = my ~ = my ) are single-

n n 
current amplitudes for the production of V. n 
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(iii) Regge Asymptotics: 

M~v has Regge behavior in.all s.. k except possibly 
lJ' • . 

those invariants Cll'P
i 

that overlap the two current channel. 

(iv) Particle Spectrum: 

The only singularities in s. . k are simple poles with lJ • • . . 

polynomial residues in overlapping variables. Each pole 

is located at a fixed positive and. real value of some 

invariant. 

(v) Factorization: 

The amplitude factorizes as indicated in Fig. 6; 

(a) !!Hadronic Factor:ization,!! at poles in s.. . knot 
lJ •.. 

overlapping t, 

(/3) !!Current Factorization,!! at JXiLes in s. . k overlapping t. 
lJ. 41. . 

Comparison of this list of properties with the list A. shows that 

there are essentially two new featurES: (ia) ,nonvanishing divergences and 

(vb) current factorization. These lead to nontrivial connections between 

two-current and one-current amplitudes and probably give the crucial 

2 dynamical constraints on theq dependence of form factors. 

In Sec. ILB we have shown that the condition (ia), which is a 

consequence of kinematics and internal symmetries,can,be extended 

to all 2 
ql = 0 and 

2 
~ = t, to within terms that vanish 

as ql~ ~ O. We should like to give a rigorous example of our proof 

of this statement in the zero-width approximation. This is possible 

since the factorization property (vb) is a consequence of the unitarity 
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assumed in Sec. II.B. One simply notes that at a pole in ql'Pi' M~v 

factorizes into a product of single current amplitudes. The contribution 

of this pole to the divergence is ,required to be zero by CVC. In the 

zero-width model these poles are the only possible singularities in the 

ql'Pi plane, and hehce there must be pure polynomial behavior in this 

variable. Hence (ia), (vb) and CVC rigorously imply fixed power behavior 

for Thus (ia) holds for 2 
ql = 0 and = t to within terms 

vanishing at q = 0 
l~ 

(e.g., proportional to 

The above discussion indicates the importance of the factorization 

constraints and especially current factorization (vb). This is further 

illustrated in II where we find that (vb) is the most difficult condition 

to satisfy. If the hadron bootstrap in fact uniquely determines the 

divergences (i.e., the current algebra), we expect the crucial constraint 

is (vb). 
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FIGURE CA...PI'IONS 

Fig. 1- An external line insertion (ELI) for the particle X. 

Fig. 2. Duality diagram for vY(q). 
~ 

Fig. 3. (a) Diagram for the hadronic isospin factor 

, 
. I 

Each line represents a 5. 

(b) Modified diagram. Each cusp represents a sum, e.g. 

Fig. 4. Diagram for isovector current. 

Fig. 5. Duality diagrams for (a) M~~(ql,a_) and (b) M~~(ql,a_). . ~J -2 ~~,-2 

Fig. 6. (a) Hadronic Factorization; (b) Current Factorization. 
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