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Lawrence Radiation Laboratory 
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July 2, 1969 

ABSTRACT 

Necessary and sufficient conditions for baryon spectral-function 

sum rules are obtained under the assumptions that (1) the equal-time 

commutator of the axial charges Q(x0) (a = 1) 2,3) and the nucleon 

field. 	(y) is given by [Q,a(y,), ()] = - rAV(y)Y5 	+ (Al 	- terms) 

and that (2) the axial current Aa(X) is conserved.. For each of these 

sum rules (enumerated by n = 1,2,3...) the equivalence to 

fd 	[ 	[ 	2n-1

3z (LQa, 	
(y), 	

YO 

is actually shom under the weaker conditions, assumption (1) and., 

instead. of (2), 

2n-2 
[{()i[ 3X  A.a(Y() Mz 
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Further equivalences are given. The sum rules connct the 

(I = 	J = 	) and (I . 1 , J = 	) baryon spectrum and include (for 

n = 1) a sum rule, obtained independently byJ. Rothleitner and (in the 

one-particle approximation) by M. Sugawara. In our derivation we make no 

assumptions on high-enerj behavior and we use an identity of the 

Jacobi type. 

Assuming the first two sum rules to be valid, the model then predicts 

a P(m :> 1470 MeV) resonance [which may be identified as the observed 

)J from the existence of the four nucleon resonanöes P11(175o  

p11(940), P11(1470), 1550), and s11(171O). 
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The spectral-function sum rules, derived by Weinberg 1  for the 

chiral SU(2)®STJ(2) currents have been extended byseveral authors2_ 

and various proofs have been given. 	Among these, Glashow, Schnitzer, 

and Weinberg3  have described a derivation of the first Weinberg sum rule 

using the Jacobi identity,and Jackiw5  has used the Jacobi identity in 

order to derive a condition for the second Weinberg sum rule. The main 

difference between Weinberg's 1  original proof of the second sum rule and the 

one given by Jackiw lies in the replacement of the assumption on 

high-energy behavior, made in Ref. 1, by the assumption that a certain 

vacuum expectation value of a triple commutator vanishes. 

Among the extensions of the Weinberg sum rules, J. Rothleitner 4  

has derived a sum rule for baryon spectral functions, assuming that T  

urn 	lim 	fd4 x dy 
-iqx  + ipy  ( T{(_) Aa(X), 

p -,00  

(u) 

and that 

[A0a(X), (y)] 

0= 0 
 = - rA (x5b( - y) + (i = 	- tes). 

(2) 

In the above, we have denoted (for a = 1,2,3) the a±ial• vector current 

by Aa(X)  and the nucleon field by j(y). The sum rule derived in 

Ref. 4 from Eqs. (i) and (2) reads 
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00 

s1 

= 

f dM2  m (F,2 ( m2 ) - F2(m2)) 	
() 

where we have defined 

3 	m € 	 w(p) Fa(m2) 	for € = 1 
()2 (o (o) 	cx 

) = 

	

pr 	
2 

Fa(m 	for € 

() 

2 
mE 

Here, 	 a ) denotes a state with the same baryon number, spin, 
p 	r: 

isospin,and strangeness as the nucleon, a stands for additional quantum 

numbers. We have also 

F~2(m2) =TF+a(m2)2 	
() 

If we saturate the sum rule (3) by one-particle intermediate states, it 

reads 

F 	( M. 
	
m. =.O 	 (6) I 	i •E. 	1 	1 

1 
1 

This is the sum rule derived by M. Sugawara 8  as a consequence of his 

self-consistency conditions. The proof of these conditions 8  uses, In 

addition to Eq. (7) below, assumptions on analyticity and high-enerr 

behavior. 
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The purpose of the present note is two -fold. First, in analogy 

to the derivations of the Weinberg sum rules using the Jacobi identity, 3 ' 

we will derive the following statement by means of an algebraic identity. 

Statement 1. It' 11  

[Qa() 	
(Y)] = - rA(y) 7T +(y) 7 	 () 

and 

([[fd3xAa(x), ()] Tkz )1 )= 0 1 	 (8) 

wl- iere 4(y) denotes possible LI = 3  terms. 

Then we have 

2rAltayfdm2  m (F2(m2) F 2(2))( - ) 

In the above statement, Qa(X) is defined by 

I 
Qa() =Jd3x A0a(X) 	 (io) 

Note that Eqs. (8) and (9) have anticommutators for fermion 

operators. The statement shows that given Eqs. (7) and (8), which we 

discuss below, at most the non-Schwinger part of the 
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• anticonimutator 	7(z] survives in Eq. (9). The vanishing of this 

expression itself is then equivalent to the sum rule Eq. (5). 

As to the validity of the assumptions made, Eq. (7) is a 

consequence of the more restrictive assumption Eq. (2), allowing for 

additional arbitrary Schwinger terms. Models in which Eq. (7) holds 

have been investigated by several authors 1.,8,lo,l2 - 16, . 	. 	and in neither 

case a contradiction with Eq. (7) was found. On the contrary, assuming 

Eq. (7) without •() terms, M. Sugawara16 has reached reasonable 

agreement with experiment in a number of cases. Rothleitner 

obtained agreement with experiment, too. 17  

The main advantage of Eq. (7) as compared to Eq. (2) is that 

Eq. (7) is more likely to hold for fermion operators introduced into a 

field theory of currents.18  As gas. shown in Ref. 15, for 4(y) = 0, 
Schwinger terms are then present in the equal-time commutator of 

the time components of the currents with (y)29  As to the second• 

assumption, Eq. (8) is [and so are the.later Eqs. (13)}  an obvious 

consequence of &Aa(X) = 0 . If PCAC holds for massive pions and 

the so—defined pion field and '(y)  are canonical fields, Eq. (8) follows 

from the canonical rule12' 2°  

[Aa(X), V()] 	= o 	 (U) 

However, Eq. (11) does not prove the assumption in Eq. (13)  of statement 

2 below [as does the assumption &A(x) =0]. 
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Assuming the local conmutator Eq. (2), 	it was shown in Ref.. 11. 

that Eqs. (1) and (3) are eqüivalènt, and thus 

([a(X) 	
[(), 	 (z)] 	

]

= o, 
x 

 

O~yo-zo  

if and only if Eq. (1) holds, under the above assumptions. 

The other purpose of the present note is to give conditions for 

additional sum rules. 	We will prove: 

Statement 2. 	Let Eq. (7) be valid and let 11 
 for 	n > 1 

0= 	

22 	
([{()J[f3a( 	()J]J (z)]) 

 

Then we have 

1 	 2n-1 

= if 	m (F+2( m2 ) - F2(m2)) 

( 	

- m2)'(Y 
- 

n -1 
v-I 	 n-i-v 

= i7 rA 	Sl~

2V (ni) 

( 	 ) 

(l1i) 
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In the above statement we have defined S, by 

1 	
s 
V 

= fdm 2 mV F+2(.m2 ) - F2(m2)). 	 (15). 

Note again the anti-coimnutators in Eqs. (13) and (14). CondItions under 

which Eq. (13)  is valid. have been investigated above. In Eq. (14), 

the highest-order Sehwinger term is of order 2(n - 1). That this term 
vanishes is equivalent to the sum rule Eq..(3). 

The rule (for 0 <v < n-i), 

s~ 1 =o, 	 (16) 

is valid if and only if the Schwinger term of order 20ñ - .1 - v) is 
absent in Eq. (iii-). Note that each S 

+ • 

is present in all the ex 

pressions (iii-), for which n > v+i. In Eq.. (14) S2+1  multiplies the non-

Schwinger term These remarks establish a set of conditions for each sum 

rule, as well as identities between Schwinger terms in Eq. (14). These 

can be read off easily. 

For all integers v> 0, Eq. (16), would imply 

m (F+2(m2) - F 2(2)) = 0 	 (17) 

1-  That is, up to massiess fermions, the 	and , spectral functions are 

identical. As there are no J=I= 1  parity.doublets, r(y) would not 

allow any particle interpretation. Unless this is the case, the 
r 	21-1 	 1 

anticommutators [(-_ ). 	r(y), r(z) 	are not c numbers for 
.0 	

+ x=y 
00 

it.' 
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all integers k > i [and Schwlnger terms are present in some of the 

Eqs.(1)]. 

Finally, from Ref.  e 4and the high-energy expansior21 of the spectral 

representation for ('i'(p)) , 	one derives that, if Eq. (2) holds 

in addition, Eq. (16) is.equivalent to a vanishing of the expression in 
-v--i 

Eq. (1),like (p2 ) 	in the limit p - 

In order to prove the above statements, it would be sufficient to 

prove the second one (Statement 1 is Statement 2 for n = 1). However, 

we would rather prove statement 1 and generalize the proof. We start with the 

following algebraic identity of the Jacobi type: 

[[as 
bi, c

i + + [[b y  c] + , a] - [[c,a] , b] +  = 0 . 	(18) 

Then Eq. (7) allows us to write 12,20  

IQ5xo) 	
= - 

	r(y)+75 2(y) [fd3x 	Aa(X), 

75T r(y) + Y 2(Y) _[x A 3(x),  
AL 

(l) 

We have used the Jacobi identity forQ [5 (x ) , [H,* (Y)]] and haveadded 
 °  

[fd3x 	A(x), *(y) 	0 to the first line in E. (9). Then 

one derives 



2n-1 	 2n-2 
[a(X)  ( 	

= 	
[ a(X)() 	()]Ty 

2n-2 I 
_[ja3x __ A(X), 

2n-1 	 2n-1 
= 	- r75T () 	 () 	y5 . ( y) 

2n-2 	 2n-2-j 
- 	

()i  [fdx &Aa(X), 

(20) 

First we prove statement 1. We write the identity Eq. (18) with 

a = 	a(X) b = c(y),and c = i7(z) . Thus, from Lqs (7) and (19) we get 

[rA Y5Ta(Y),(Z)] + rA 
	 (Y)] 

+ IQ5

a(), [() 
	(z)] ] = [(z) 	()] 

+ [iv, (z)] + 	 Aa(X), ()], (z)] 

If we take vacuum expectation value, the right-hand side vanishes due to 

our assumptions, and we are left wIth 
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rAy5T ([() 	(z) ] 

 ~
= 

0 	

+ ([) 	(z)] 
+ 	

= 	

a 

( [;() 	( 
z)] +1 0=Y0=Z0 

(22) 

Using necb the spectal representation., 

( 1 ( y) ,  (z)1 	) 

	

L 	
(23) 

	

= f2 [F 2 
 (M

2 ) (i 	+ 	+ F(m) ( 	- m)] 	z,m2) 

we see that, due to the presence of 	in Eq. (22), no term proportional 

to y contributes upon substituting Eq. (23) into Eq. (22). Finally, 

performing the time differentation under the intea1 we get Eq. (9) .  in 

the equal time limit. 

To prove statement 2, we write Eq. (18) for 
dn-1 

a = 
Q 5. 
	b 	 lr(y), c = (z). Performing precisely the same 

manipulations as above but this time using Eq. (20) instead of (19)  we have 

[ 	2n-1 	- 1 	[ . 2n-1 	
- 1 

	

(y), (z)I 	 + q () 	(y),(z)I 	
7 Ta 

L 	 J 	 L 	 +y=z 	) 
00 	 . 	 00 

2n-1 	 . 

= - 

 

	

Sa(xo 	[() 	(y), (z) ] 	
0) 	 (24) 
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Note that due to Eq. (13)  there is no contribution from the sum in 

• 

	

	 Eq. (20). We again insert the spectral representation and observe that 

terms porportionalto y drop. Then, using 

2n-2 	 n-i 
•- ( - ) 	L.(y _z;m2) 	 ( 	m) 	(z - y) ,. 

• 	 0 	0 	 y=z 
00 

(25) 

we reach Eq (14), the desired result. 

• At to the consequences of Eq.(l6), restrictions follow from the 

positivity 

F 2 m ( 2) > 0 	 (26) 

Evidently, any of the Eqs.: (16) -- if satirated by one-particle 

intermediate states-- can hold only if baryons of opposite parities exist. 

For, S1  = 0, this has been noted in Ref S. 4 and 8. 

To derive a further consequence, let us enumerate by 

N1, 	., N 	the four nuleon resonances P11 (9 11.0), 	(lli-6G), ji5li-8) 

and $(1709),  and let us denote F 12(m 2) by F 2 . We assume 

• 

	

	1 + 0 , and we normalize to •• F 12  = 1 • The assumptions of 

statement 2 for n.= 2, together with assuming 

(y), (z)]+] 
x0=y=z0 

) = 0 

(27) 

give us the sum rules 

	

• s1 = 3 =o • 	 ( 28) 
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If saturated by one-particle intermediate states,. Eqs. (28) allow us 

to predict the existence of at least one further nucleon resonance, N 5, from 

N1,...., N. Concerning its mass and parity, there are two possibilities. 

Either we have ln5<m and €=l or 1112<  n and =+1. As the existeiice 

of an undiscovered resonance with a mass smaller than rn 2 . ts very unlikely, 

the actual prediction is 

	

ni5> 1112 	
C 

5 = 
+ 1 	 (29) 

This agrees with the existence of the P 11( 1750). 

In order to derive the conclusion, we write Eq. (28) as 

N 

M. + m2F2 .2 = rn3F3 
2 

+ m)F) 
2 

- 	 m. F 2  

i=l 	
(30) 

~ ni23F22  = m33F32  + rn43F2 

- i=l 

€ 
m 3  F 2  

Thus we have: 	. 	 . 	 . 	 . 	 . 	 . 

2 	2 	2 	2 	2. 
- m1  ) m3(m2  - m3  ) F3  

R 

	

+ mj(rn .22 	2 	 2. 
- nih 	

€ 
) F 	

- 	
i rn

1(rn2  - m1 
2  
.) F 2 

i=l 
(7k) 
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