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ABSTRACT 

The possibility that the mass of a bound electron changes 

when placed in an intense electromagnetic field has been investigated 

both theoretically and experimentally. 	The atomic-beam magntic- 

resonance technique was used to examine hyperfine-structure shifts in 

133CS that occur when the atom is subjected to an intense, non-resonant 

magnetic field perpendicular to the static "C" field. 	A 2921 MI-Iz 

TM010  cavity was situated between Ramsey separated oscillatory loops, 

which induced the transitions of interest. 	Shifts were observed for 

six AF = ±1, Am 	= ±1 transitions at field-independent points. 	No 

evidence was found for an electron mass shift. 	Excellent agreement 

is found between all observed shifts and those expected from a 

multi-level Bloch-Siegert effect. 	Theoretical reasons, based upon 

perturbation theory, are given explaining why the mass-shift effect 

does not occur in the ground state hyperfine-structure of a hydrogen- 

like system. 
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I. INTRODUCTION 

The atomic-beam magnetic-resonance technique was developed by 

Rabi' and his co-workers in the late 1930's to measure nuclear magntic 

moments. Since then the method has proven extremely fruitful, yielding 

detailed knowledge of nuclear and atomic structure through precise 

measurements of nuclear spins and moments and atomic hyperfine-structure 

(hfs) energy separations. Alkali g  values 2  and hfs separations A 

measured by this technique to better than one part per million are some 

of the most accurately known of all physical quantities. Even so, 

these measurements do not exhaust the potential of the method. 

• Because of its inherent high precision, the atomic-beam magnetic- 

resonance technique has often been used for special studies of extremely 

• 

	

	small effects. In 1957, for example, Haun and Zacharias 3  used this 

method to measure the differential Stark shift of the 133Cs ground state 

hfs, an effect so small that an electric field of 10 V/cm induces a 

shift of only 2-1/2 parts per million of the transition frequency. 

Lipworth and SandarsL  have measured even smaller Stark shifts of 133Cs 

ground-state Zeeman levels that amount to a little more than one part 

in 108  of the transition frequency for a 10 V/cm electric field. Tests 

of parity conservation and time-reversal invariance have been the object 

of very precise work, again using 133Cs, to establish an upper limit to 

the electric dipole moment of the electron. 5  The cesium atom and the 

atomic-beam magnetic-resonance technique make a good combination for 

the study of very small perturbations within atomic systems. 
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In 1952 the Indian physicist Sengupta, 6  while studying the solutions 

to the Dirac equation for an electron in a plane wave field (Compton 

Scattering), first suggested the possibility that the mass of a free 

electron might be observed to increase when the electron is allowed to 

interact with an intense electromagnetic field. This mass-shift effect 

is just one of many interesting and controversial predictions of theories 

of intense-field electrodynamics that have appeared over the past few 

years. Sarachik 7  has recently made a comprehensive survey of these 

effects, none of which has yet been observed experimentally owing to 

the difficulty in generating sufficiently intense fields. 

In 1966 Reiss 8  suggested that, under favorable conditions, an 

intensity-dependent mass shift could be observed for a bound electron. 

An electron mass increase would affect precision measurements made of 

spectral lines from a hydrogen-like system placed in an intense plane 

wave environment. Such spectral lines depend on the electron mass 

through the Rydberg energy 

122 Ry = - a mc 

(where a is the Sommerfeld fine structure constant, and mc 2  is the 

electron rest energy), and through the Bohr magneton 

e 

Thus motivated, it was decided to investigate transition frequency 

shifts of the 13Cs ground state hfs induced by the intense non-resonant 

fields in a microwave cavity. The mass-shift hypothesis for an electron 

bound in the ground state of a hydrogen-like system was examined in 



-3- 

detail both theoretically and experimentally. It was found that if all 

the effects of the field are treated in a consistent manner using 

perturbation theory, then the mass-shift effect does not occur. In 

addition, extensive experimental work of sufficient sensitivity to 

observe the mass-shift effect has yielde.d negative, results. 



-4- 

II. THEORY. OF THE ELECI'ROMAGNETIC MASS SHIFT 

A. Introduction 

It has been suggested' that when an electron interacts with a 

classical, plane polarized electromagnetic field, a finite mass 

renormalizatjon occurs such that the electron's observable mass 

increases, becoming 

= 	
.+ ()2]½ m +

Moc

ea  

where m0  is the electron rest mass in the absence of the field, e is 

the electron charge, c is the speed of light in vacuum and a is the 

(real) scalar amplitude of the vector potential describing the field. 

The relative mass shift is defined by 

in,-m0 	6m 1 e 2  a  2 	
(11-2) - 

In this chapter an argument is presented which is intended to 

show that the dominant effect of a plane wave field on a hydrogen-like 

atom is to cause an observable shift in the electron mass which is in 

agreement with Eq. (Il-i). The discussion below is similar to the one 

outlined by Reiss 2  for the hydrogen atom, but it is more detailed because 

it does not neglect effects due to the electron spin. A non-relativistic 

wave equation is obtained, for hydrogen-like atoms, which displays the 

mass-shift effect explicitly up to and including the Zeeman energy and 

spin-orbit coupling terms. Perturbation theory is applied to the 

eigenfunctions of the approximate Hamiltonian, and the usual Fermi 

formula for the hfs splitting is obtained, and it also displays the mass 
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shift. Finally, an examination will be made, of the dependence of the 

hyperfine-structure Zeeman levels on the electron mass. 

B. . Origin of the Mass Shift Hypothesis. 

t 
As shown in Appendix A, the interaction of a spin 1/2 particle 

with external, electric and magnetic fields can be described by the 

following equation: 

(E-e)2 = [c2( - 	+ (mc2)2 - ech( 	- 	 (11-3) 

where 

• 	 ': 

c3t 

The electric field will always be written with an arrow so that it 

will not be confused with the total energy operator, E = th 	. The 

other quantities appearing in Eq.. (11-3) have their usual meanings 

(see Appendix A). 

Consider the following vector potential: 

= X 	+  rot 	s 	
.. 	. 	, 	 (114). 

. 

'where 	. 	 ... 

a Re[(9 ± i) e 1t )i 	 . 	. 	(115) rot 

is the vector potential of a circularly polarized plane wave of angular 

frequency w = ck propagating in the x direction with velocity c and 

amplitude a, and  

= -B0  y x 	 (11-6) 
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is the vector potential of a uniform, static magnetic field, = 13 z. 

1 	+1 The commonly used potential m 
= 	

x 
r = 2. B0 (xy-yx) may be obtained 

from 	by the gauge transformation 	= 	+ VG, where ,G = - B0xy. 

Since Eq. (11-3) is invariant under gauge transformations, no generality 

is lost in the above choice for the form of . When Eq. (11-4) is 

inserted into Eq. (11-3), one obtains 

(E-e) 2  =[C2( - 	+ (2)2 + e
2A 0  - ec( 	-1 5 ) 

- 2ec Irot .P - ech(rot - 	rot)] 	
, 	(11-7) 

where the subscripts "rot" and "s" refer to the plane wave field and 

the static fields, respectively. In order to keep the wave equation 

time-independent, the last three terms in Eq. (11-7), which depend 

explicitly on time through trot' rot' and  trot  will be temporarily 

ignored. It will be shown in Sec. E of this chapter that for the 

frequencies of interest, the two terms involving 
rot  and  trot  are of 

small magnitude compared to the e 2A2 ot term and compared to the teTnns 

containing 	arid t (Zeeman effect and spin-orbit coupling). These 

two terms can be satisfactorily accounted for through the use of 

time-dependent perturbation theory. The rot term, on the other hand, 

will be shown to be of the same order as the e2A0  term; suggesting 

that, for the sake of consistency; one should drop the e2A2 ot term 

at this point as well. 

Once the last three time-dependent terms are dropped, the only 

term left in Eq. (11-7) involving the plane wave field is the e2A0 

term. From Eq. (11-5) one finds that 
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e 2  A2 	= e2 	•& 	= e 2  a  2 . 	 (11-8) rot 	rot rot 

Since e 2a2 , like (mc2) 2 , is a constantscai•ar; itwas suggested by 

Reiss that the e 2  a  2  term serves as a finite mass renomalization, and 

that one should define an effective mass In  by 

(mc2) 2  = (mc2 ) 2  + e 2  a  2 

which is the same as Eq. (lI-i) above. 

With the mass renormalization )  Eq. (11-7) becomes, dropping the 

subscript "s" and ignoring the small time-dependent terms, 

= IC
(P2. - eX2 + (c2)2 - ec( 	- i)] 

This equation is identical to the quadratic Dirac equation for a 

spin 1/2 particle of mass m in an external electromagnetic field. 

Since all time-dependent terms have been dropped from Eq. (11-7), 

the time variation of i can be separated out and the operator E can be 

replaced by the total energy, also designated E. As a first step toward 

obtaining a non-relativistic wave equation, move the (m,c 2 ) 2  term to 

the left-hand side and divide by 2mc 2  to get 

Ee 	+ e 2 2 	
=)2 - 	

(- i)l 
L 2mc2 	m*c2  2mc2j 	ITM_*c 

	2mc 	j 

With the aid of the definition 

W E - m*c2 

the left-hand side can be rearranged to read 
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LHS = W2-2$W+e22 + .w - e 
2mc 

= W - e + 	2 (W - e) 2  
2mc 

so that the wave equation can be put into the form 

ITMIL* (* - e)2 + e - 2nc 	 - 2mc 	
e)2] 	W 	(11-9) 

This equation is the sane as the one given by Bethe and Salpeter 3  

(their Eq. 12.9) for an electron in an external, static field, except 

that the electron mass has everywhere been replaced by m., the 

renormalized mass given by Eq. (11-1). [Bethe and Salpeter use a 

different convention than that employed here to represent the electron 

charge. As a result, Eq. (11-9) differs from their Eq. 12.9 by the 

sign of e.] In the next section this relativistic wave equation will 

be reduced to a non-relativistic approximation which contains terms 

only up to order 4 or (v/c) 2  or p2/(rnc) 2  . Since the last term in 

Eq. (11-9) is of the order 1/rn it will be neglected. Hence the starting 

point for a reduction to a non-relativitic wave equation will be the 

following: 

- 	)2 + e - 2c 	- i)J = W 	. 	(11-10) 

C. The Non-Relativistic Wave Equation 

Equation (11-10) is a relativistic equation describing a spin 1/2 

particle of charge e and mass ln.k  in external, static electric and 

magnetic fields. The mass-shift effect should be observable for a 
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non-relativistic electron if the rotating field has sufficient intensity. 

Equation (11-10) can therefore be replaced by an approximate non-

relativistic equation. In this section the relativistic Eq. (11-10) will 

be transformed, in the spirit of the Foldy-Wouthuysen method, to 

obtain a non-relativistic Hainiltonian which contains Zeeman energy and 

spin-orbit coupling terms which are the same as in the usual non-

relativistic theory' except that the electron mass is everywhere replaced 

by the renormalized mass m 

Let the four-component spinor wave function p  be written as 

where x1  and  x 2  are two-component spinors. If it were not for the 

term in Eq. (11-10), x1  and  x2  would each obey the same differential 

equation. Because it contains the odd operator a, the 	term serves 

to couple x1  and  x2 . Equation (11-10) will now be transformed in such 

a way that terms involving a which couple the positive and negative 

energy solutions x1  and X2 will be eliminated to order (v/c) 2 , or 

equivalently, to order a 2  since a, the fine structure constant is equal 

to the ratio v/c for an electron in the (non-relativistic) hydrogen 

ground state. The result of the transformation will be an approximate 

wave equation for the two-component spinor x1  suitable for application 

'1 	 to the hydrogen atom. 

Begin by writing Eq. (11-10) in the form 

Hoijo=WiO 
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1 	-+ -- 	 eh 	+ -'- 	ieh 	-- ~ H 	= 	 + e 	- 	 c•B + - 	 c•E 0 	2m 	 2m.c (11-11) 

Make the following unitary transformation 

U 	—U' 
Hnr=e 	H0e 

nr eO 

where 	 u = 
2mc 

(11-12) 

The unitary of the transformation can be established by using 

the identity 

e ABe -A 	B + [A,B] + 	[A,[A,B]] + -3T [A,[A,[A,B]]] + •. (11-13) 

The plan is to consider the transformation of H0  term by term. 

Since u commutes with 	, it follows from the above identity that 

u 	-u 	1 Trir e 	= —Tr.r e 2m 
— 	

2m 
(11-14) 

Consider the transformation of the second term: 

eUee 	= e 	
+ 
2mc [',e] 	

2 	
[,[,e] J 

8mc 

It can be verified by a straightforward expansion that 

[.,e4] 	-ieh•  

The application of the identity 

(
0'

)( (5 ) 	 = 	+ jx (11-16) 

leads to the result 

± 	 . 	 .. ~ ± ± ~ 
[a.iT,a.E] = 	 = -thV.J + 1ci.(1rxJ - tx'ii) 	 (11-17) 
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With the aid of Eqs. (11-15) and (11-17), the transformation of the 

e term in H0  becomes 

eUeqe = e 
- 2mc a•I 

+ 	eh 2 
	

- x) 

8(mc) 

- 	
(h)2  

With the use of Eq. (11-16) and the identity 

~ 4 
TrXlr = i.e (11-19 

it can be shown that the commutator 	vanishes identically, 

and therefore that 

	

U( 
2m*c 	

e' e 	 = 
- 2mc 	

(11-20) 

Finally, the transformation of the 	term in H0  is 

eU ieh 	e = iet 	+ iet 
2m.c 	 2mc 	4(m,,c)2 

With the aid of Eq. (11-17), this becomes 

eU 	 e ieF 	eu = i 	
- 	 - x) + e ( h ) 2 

2mc 	 2mc 	4( c2 	 4 mc 
(11-21) 

When Eqs. (11-14), (11-18), (11-20), and (11-21) are combined, one 

obtains 

	

- 1 	e )2e 	~ 	 et 	(xx) 	eI 	.2 	. 
nr 	m 	c 	2mc 	2mc 2 	2mc 	8 m*c 

whidi is free of odd operators to order (mc) 2 . By a straightforward 

expansion, one can verify that 
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so that Eq. (11-22) becomes 

H = ik 	eX )2 + e - 2mc 
	

11-23 
ehExnle+ 	e2 	

) 

	

2m.c 2 mc 4 2inc a • 	+ 

Equation (11-23) is essentially the desired non-relativistic Hamiltonian. 

An interpretation of the various terms appearing in Hnr  will be given 

before writing it in its final form. The first two terms make up 

the Hamiltonian in the Schrodinger theory of an electron of mass m 

in an electromagnetic field. If just these terms were taken as the 

approximate Hamiltonian, the resulting problem for a Coulomb potential 

and no magnetic field would be identical to the, elementary hydrogen 

problem. It would yield the same energy level scheme (gross structure) 

as the non-relativistic problem but the electron mass would be changed 

from m to m*  in the Rydberg energy, i.e., 

12 	2 	12 	2 Ry= - c mc ---c m.c 

The third term in Hnr  is the interaction energy of a magnetic 

dipole 

eh 
'e 	2m.c (11-24) 

with the external magnetic field . This is identical to the dipole 

moment obtained without the plane wave field except that the electron 

rest mass has now been replaced by the renormalized mass m 

The last term in H nrl  the so-called Darwin term, gives a relativistic 

shift to s-states for a Coulomb field. It can be interpreted as an 

additional energy due to the electron's Zitterhewegung. 
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The next to last term is the interaction energy of the electron's 

magnetic dipole moment with a motional magnetic field, i.e., 
' 4 

I 	• x_l-- 
4e m*c 4e m*c 

1~ v 

	

' e 	c 

	

=- 	• 

	

 e 	mot 	. 	 (11-25) 4  

The remaining term in Hnr  represents the spin-orbit coupling 

Ignoring the x  term, 

eh 	xl h 

	

2m,c Z inc 	
2 (mc)2 	

e xp 

where the electron spin operator is 

For a central potential, one can write 

so that, withL=rxp 

eh a 9X7T 	h 	ld gt 	 11 - 26 
2m*c 2 ffT( c) 2   

Note that Eq (11-26) contains the correct factor of 1/2 (Thomas 

factor) Equation (11-26) is in the usual form of the spin-orbit 

interaction energy but, once again, the electron mass has been replaced 

by the renoimalized mass m.. 



-16- 

The starting point is the non-relativisticHainiltonian, Eq.(II-27). 

Neglecting terms that are qUadratic in: the vector potential , the 

interaction with the magnetic field is 

= - 2rnc 2.p - 2rnc 2 

or 

3C= -211(j+) 

where S 	a is the electron spin angular momentum A nucleus 

possessing a static magnetic dipole moment p pro1ucès a static 

magnetic fieldl derivable from the vector potential 

r3 =X(  

i.e., 

The Hanaltonian for the magnetic dipole, hyperfine interaction can 

therefore be written 

ifs = -2 	 - 	• Vx [x (V i} 

With the aid of standard vector identities, and by taking due care 

for the behavior at the origin, this can be written as 

fs = -2 	
{ 	

- 	 - 	[2 MJ} (11-28) 

The correction to the ground state energy due tois, to 

first order, 

Whfs  = (O!3flO) 
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In the ground state of a hydrogen-like atom = 0, so the first term 

in 	gives no contribution. The last term is odd under inversion 

and therefore cannot have non-vanishing matrix elements between states 

of the same parity. One is left with 

Whfs = <01 !çL 	() JO> 

or 	
Whfs = Te I o (0)I 2  <j> 

Since , T, and = + I all commute with the Hamiltoniari, S 2 , 

F 2 , and i 2  are good quantimt rnmibers, and the expectation value of 

can be evaluated for eigenstates of angular momentum. 

Writing 

one obtains 	 ~ P I  
= F< 

Squaring both sides of = + I , and solving for the product 'I 

one obtains 

	

<Fm I .Ij FmF) = 	<FmF I 	-t.II FmF> 

or 

	

= 	[F(F+l) - S(S+l) 
- 

1(1+1)] 

The energy of the hyperfine state now becomes 

Whfs = 	 I 0 (0)I 2  {F(F+l) - S(S+l) - 1(1+1)] 
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The energy difference between the two states F = I + S and F = I + S-i 

isfoundtobe 

i-i AW 8ir - 3—  e r o(0) 	2F . 

With S = 1/2, 2F = 2(1+1/2) = 21+1, and 

	

= 8Tr2I+l 
1e 'i 	o 0)I 2 	 (11-29) 

where the nuclear spin has been designated 11 1  instead of simply p 

Equation (11-29) is known as the Fermi formula, and AW, known 

as the zero-field hfs separation energy, is the energy separation 

between the two hfs levels of the 2S112  ground state. 

It remains to show how the Zeeman sublevels of the hfs are 

affected when the electron mass changes A brief sketch will be given 

here of the derivation of the Breit-Rabi formula. 7  Two terms must be 

added to the hfs Hamiltonian [Eq (11-28)] to describe the interaction 

of the electronic and nuclear magnetic dipole moments with an. external, 

static magnetic field. The electronic contribution to the interaction 

is obtained from Eq. (11-27):

Pe  el = - 	- 

Equation (11-27) is based, in part, on the assumption that the 

nucleus is a point electric monopole, and therefore, as was done with 

hfs corrections for higher multipole nuclear moments must be added. 

The appropriate perturbation Hamiltonian is 

e 
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Consider the first term. When = -Byx , then 

e t -' 	 eB 
- 	

1k • = jj 	YP 

This has the form of an electric quadrupole interaction whose matrix 

elements vanish in a J = 1/2 state.. 

Owing to the result for 	it is possible to write 

where a (not to be confused with the plane wave field amplitude a) can 

be calculated fairly accurately for hydrogen with the Fermi formula but 

has been determined experimentally to a very high precision for hydrogen 8  

and for the other stable alkalis. 9 ' 10 ' 11 ' 12 " 3  The total hyperfine 

interaction can therefore be written 

.3C 	ha 	- Pe  

The eigenvalue problem to be solved is 

3OE 

where 4' is an eigenstate of the total angular momentum P. The secular 

equation C-EI)4' = 0 must be solved for the eigenvalues E. Since 

F1  commutes with 3C, 3C can only connect states which have the same mF 

i.e., (F.1mF'I3CIFmF)=  0 if m' 	mF 

The application of standard, degenerate perturbation theory' ' 

leads to the Breit-Rabi formula for the energy of the state IF mF> 
as a function of applied field: 
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E = - 2(21+1) - 	H 	± 	+ 	i 	
+ x2)½ 	(1130) 

where 

x 	(111/I - e'' 	HØ/W 

and 

= -ha(2I+i) 

The minus sign in this equation is used for the states F = 1-1/2, 

mF = F, F-i, •., -F, while the plus sign is used for the StateS 

F = 1+1/2, mF = F, F-i, •.•, -(F-i) 	The energy of the state 

11+1/2, -(1+1/2)> is fodby uing the plus sign when* <.1 and 

the minus sign when x > 1. 

The change in the hfs energy levels due to a change in the electron 

mass can be obtained by differentiating the Breit-Rabi formula with 

respect to the electron mass. The hydrogen wave function can be used 

to evaluate I o (0)I 2  in the Feniii formuia so that the explicit mass 

dependence of iW can be ascertained. Using IO(0)l2.= . (Ze) m,/h 6  
eh and 11e =2mc, one finds 

AWm 2  

and 

6(iW) = 2 	AW , 	 (11-31) 

where Lis the electron's relative mass shift. In the same fashion 

one can write 

p1I-I 	h1elO 	-2 	-3 x = 	- c1m + c2m 
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where c1  and c2  do not depend upon m. The change in x due to a change 

inmis 

• 	
Sx = 	

( 	

+ 31je) 

With these results for S(AW) and 6x, one obtains, after a straight-

forward differentiation of the Brèit-Rabi formula; 

6W6m 	AW 	r
H0 	2p, + 3pel (2mF 	1 = 	L 

21+1 ± IWR ± 7W 
	+ X 	(11-32) 

where 	 1 

2 R. 	1+ 21+1 x+x 

Equation (11-32) gives the change in energy of the hfs level IF m F > 

due to a relative change 	in the mass of the electron. This shift 

is not the same for all hyperfine levels as indicated by the dependence 

of (SW on mF  and F (i.e., through the ± sign). The frequency shift for 

a transition between levels of energy W 1  and W2  due to a shift in the 

electron mass is given by 

(SW -(SW = 	1 	2 	(Sm 	
(11-33) h 	m 

It turns out that the proportionality constant in Eq. (11-33) is 

of order unity for most cases of experimental interest. Hence the 

shift of a transition frequency is proportional to the relative mass 

shift, and a relative mass .shift of, say, 10-6 results in a transition 

frequency shift of the same magnitude. 



E. Consideration of Small, Time-Dependent Terms, 

In the previOus sections the following three terms were neglected: 

3C 	=- ---- 	- 	 - i 	) 	(11-34) rot 	m.c rot 	2m,c. 	rot 	rot 

They were neglected in order that a time-independent Hamiltonian 

could be obtained whose eigenfunctions would be stationary states. 

In order to get an estimate of their importance they will be treated 

as time-dependent perturbations of the stationary ground state which 

is an eigenfunction of the time-independent Hanultonian Eq (11-27) 

It will be assumed that the only static vector potential is that due 

to the hyperfine interaction (see Sec D above), in the absence of 

external magnetic fields. Any time-dependent perturbation can be 

broken up into its Fourier components, each of which can be studied 

separately. A typical component may be written in the form 

tb 	Vet, V V(t) . 
	

(11-35) 

The resulting transition probabilities, mixing parameters and energy 

level shifts, are proportional to the matrix elements of V between 

stationary states. The following discussion can therefore be simplified 

by dropping the factor et  from trot' rot' and  trot 

The last two terms in Eq. (11-34) can be expressed in the form 

of a magnetic dipole interaction. For a circularly polarized plane 

wave = ± iA so that these terms can be written, dropping the subscript 

t!rotU 

eh 
2inc (•-i•) = 2mc 	= e(+ ±1) 
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This term has the form of a Zeeman energy. Since perturbation 

theory will be used on the ground state hfs, this term should be kept 

maller than the hfs separation energy. For example, Ehfs = 6.6 x 10 6  ev, 

for an hfs separation frequency of 10 GHz, while
e • = 5.8 

x  10 eV 

when B is one gauss. 

This Zeeinan energy term can be written in the form 

rf = 1'eHrf et 

The treatment of such a term by time-dependent perturbation theory 

yields transition probabilities' 5  for magnetic dipole transitions when 

w is near a transition frequency and small frequency shifts' 6  (Bloch-

Siegert effect) when it is not These frequency shifts will be 

discussed in more detail in Chapter IV where it will be shoim that 

they are three orders of magnitude smaller than expected frequency 

shifts due to the electron mass shift. 

It should be pointed out under what conditions this term is 

small compared to the e 2a2  mass renormalization term. The comparison 

is to be made between ehc 	and e 2  a  2  since this is the way the two 

terms appeared in Eq. (11-7), prior to the dropping of the time- 

dependent terms For low magnetic fields 	11'p IBI = mF a 
since=Vx=±.Thus, 

C 

e2a2  - 	e2a2  

This Zeeman energy term will be much smaller than the mass renormal-

ization term as long as 
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ea >> Iiw (11-36) 

For w/27r = 10 GHz, this requirement amounts to ea >> 6.6 x  10 6  eV. 

Consider the matrix element (nI -!_ X 	t1El" 	where In stands 

for InjIFm> which is an hfs sublevel of the 	nj) eigenstate. In 

first-order perturbation theory, only the ground state hfs sublevels 

need be considered, and the basis can be designated by JFmF). When 

= 	± i2 and i = k, the vector potential can be written 

= aRe(eik) = a(9-12kx+.,o) , rot 

and a typical matrix element takes the form 

(nI_-In) 	{<n'IpJn) 	k(n'JxpIn)} (11-37) 

The following four identities 3  hold whenever H = p 2/2m + V and 

[,V]0: 

= - !2L [,H] (11-38) 

(mI(n) 	= im,.w(m(Jn) (11-39) 

r1p3  = - 	-t- [rr3,H] + 	-Lk 	(ij) 

1 	- 	2 	1 rp1  = - 	L [r1 ,H] + 	ill 
(11-40) 

(ml rip. In) = 	w<mI rr I n) + 	<ml Lk n) J  
1 	2 	1 <ml r.p1 Jn) = 2 imw 	<ml r.Jn) + 	jJ5 

(11-41) 

where 

w  inn = 	m (E 	-E n)/h .  
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and Im> and In> are eigenstates of H. Equations (11-39), (11-40), and 

(11-41) are corollaries of Eq. (11-38). 

With the aid of Eq. (11-39) the firt term in Eq. (11-37) 

becomes a matrix element of the position operator between two hfs 

levels. Such a matrix element must vanish since the ground state hfs 

levels all have the same parity. An application of Eq. (11-41) 

converts, the second tern into the matrix element of xz. ( 	0 in 

the ground state so the expectation values of all of its components 

vanish ) This is essentially an electric quadrupole matrix element 

which vanishes because there can be no electric quadrupole inter-

action within a J = 1/2 state. 

The second order correction to the ground state energy due to 

ea the interaction - 	- 9 is 

	

E2 = ea ) 2 	<0IP(n1PI 0) 
0 	 jo 	E0 -E0 0 	n 

where 10 represents any of the ground state hfs levels whose 
unperturbed energy isE( 0) ,and In> represents any hfs level of any 

other state. By the use of Eq. (11-39) this energy correction may 

be written as 
22. E2 = e a 

	

2 	<01p JnXnyo> 
m.c JO 

which becomes, upon application of closure 

E2 = ie2a 2 
{<oip yb) - <°lp b0)<OIybO>} 

hmc 

The second term in brackets vanishes as a result of the parity 

selection rule. With the aid of Eq. (11-41) the first tern in the 
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brackets is just 1/2 i.h. Hence 

E 2  = - e2a2 	•• 	
(I1-42) 

2mc 

Now, if the e 2A2  tern in Eq. (11-7) were retained, instead of 

being used to renormalize the mass, it would persist through the 

transformations of Sections B and C above and appear in the resulting 

non-relativistic Hamiltonian as e 2a2/2mc2  . Also,, when the mass 

renormalization is not made, Eq (11-42) reads -e 2a2/2mc2  Hence, 

the X..term, taken to second order, exactly cancels the e2A2  tern, 

taken to first order. These arguments based upon perturbation theory 

do not necessarily invalidate the mass-shift hypothesis. When, for 

example, the relative mass shift has the experimentally realizable 

value 	2 x lOs, then 

22 	22  e a 	e a 	2 i6m 2 
2= 	22 mc =—mc =1eV 

2mc 	2(mc ) 

which is certainly not small compared even to the gross structure. 

It is therefore not clear that perturbation theory is the proper method 

for 'handling these terms. 

F. Summary 

It has been shown that when time-dependent terms are neglected, 

the principal effect of a circularly polarized plane wave field which 

interacts with a hydrogen-like atom is to cause a finite renormalization 

of the electron mass. This renormalization has been exhibited explicitly 

in the spin-orbit, hyperfine and Zeeman interactions as well as in the 
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gross structure. The effect of an electron mass increase on the 

hyperfine structure has been discussed, and it has been found that, 

if a mass change occuts, then frequency shifts should be the same 

order of magnitude as the relative mass shift It has been pointed 

out that, if the mass renormalization is not made, then the effect 

of the time-dependent terms is to exactly cancel the mass renormal-

ization term. 
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III. DESCRIPTION OF THE EXPERIMENT 

A. Introduction 

The atomic-beam magnetic-resonance technique was used in this 

search for an electron mass-shift effect in 133Cs. The relatively 

10 high cesium transition frequencies (' 10 Hz) together with the 

narrow linewidths (nu lO Hz) obtainable with the Ramsey. separated-

oscillatory-field method allow transition frequencies to be determined 

to a precision of a few parts in 108...  Oscillating microwave fields 

of sufficient intensity to produce a relative mass shift of one part 

per million were produced in a resonant cavity powered by an inex-

pensive, mechanically-tuned magnetron. 

133 	. B. Experimental System - 	Cs Ground State hfs 

1. Justification for Studying Cesium Rather Than Hydrogen: Although 

the theory of the electron mass shift was developed in Chapter II 

with the hydrogen atom in mind, it should' apply to alkali atoms as 

long as the central field approximation is valid, i.e., as long as the 

valence electron experiences an electrostatic potential which is a 

function of radial position only. The non-central magnetic dipole 

interaction has already been accounted for by perturbation theory 

and has, led to the hyperfine interaction described by the Fermi 

formula. The spherical symmetry of the 2S112  electronic state forbids 

the existence of any multipole interactions beyond electric monopole 

and magnetië dipole. 

Breit 1  and Kopfermann 2  have summarized some of the correction 

factors which should be applied to the Fenrti fonnula before it is 
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usedto deduce alkali nuclear magnetic dipole moments from measured 

hyperfine energy separations. Kopfermann gives the following ex-

pression for the hfs frequency: 

3 
8 	' 

= - (21+1) 	 th 
(l) Fr  (j,Z1)(1-5)(l-c)  

aona  

The factor Z 1Z/n is a correction to I 0 (0)I 2  [see Eq (11-29)] 

obtained by assuming that the valence electron is under the action of 

an effective nuclear charge eZa  when it is outside the electron core, 

and that it is under the action of äneffective nuclear charge eZ 

when its orbit is inside the electron core For cesium 2  Z1  = Z = 55, 

Za = 1, and 	= 6.53. The factors (1-a) and Fr  (j,Z) are relativ- 

istic corrections which do not involve the electron mass. The para-

meters 6 and e, which do depend upon the electron mass, correct for 

the fact that the nuclear charge and magnetic moments are distributed 

throughout (or on the surface of) a sphere of finite volume 

When these correction factors are taken into consideration, one 

obtains 

(Av) = 1.96 	Av 	 (111-2) 

• 	 which differs by only 2% from the result oltained above [Eq. (11-31)] 

assuming hydrogenic wave functions and no corrections to the Fermi 

formula 

Further corrections to the Fermi formula exist. 3  A reduced mass 

correction due to the finite nuclear mass contributes a factor of 

(1 + M/m) 3  to Eq. (111-1) and a correction to Eq. (111-2) that 
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magnetic dipole radiation are 

AF=O,±l 

Transitions can be observed with the atomic-beam magnetic-resonance 

technique only if the initial and final states have opposite effective 

magnetic moments, defined by 

1 eff 	37 

where W is the energy of the state and H is the external field. 

Since neff  is just the slope of the W vs H curve, one can see from 

Fig 111-1 that, for large fields, a change in the sign of the 

effective moment corresponds to -a change in the sign of m. Therefore, 

when large deflecting (A and B) fields are used, the machine selection 

rule 

AM = ±1 

does not permit observation of AF = 0 transitions except for the 

so-called standard transition II + 1/2, -I + 1/2) 1 + 1/2, -I 

- 1/2). 

b. Field-Independent Transitions: Stimulated transitions will 

occur when an atom passes through a region where it is subjected to a 

time-varying field of the appropriate frequency and orientation. Since 

the lifetime for spontaneous transitions is so long compared to the 

transit time At of an atom traversing this interaction region, the 

linewidth (in I-Iz) can be found, from the uncertainty principle, to be 

TT 
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This linewidth can, in principle, be made as small as the natural line-

width for spontaneous transitions by increasing the transit time 

At, or, equivalently, by increasing the length of the interaction 

region. 

Transitions usually take place inside laboratory magnetic fields, 

and it is not possible to produce perfectly uniform magnetic fields 

over arbitrarily long distances. Since transition frequencies, in 

general, depend upon the value of the external field H 0 , any inhomo-

geneities in H0  will cause transitions to occur at slightly different 

frequencies at different points along the interaction region The 

net result is a broadening of the resonant line Field inhomogeneitie 

can be minimized by working at fields where the transition frequencies 

are only weakly dependent upon H0 . At those magnetic fields where 

df 0 the transition frequency f is independent, to first order, of,  

magnetic field H. Such field values are referred to as field-

independent points. 

Table 111-1 is a list of the field-independent AF = ±1 transitions 

for 133Cs. Four are of the a type 	= 0) while six are of the ii 

type (Am = ±1). The six TT transitions occur in three doublets which 

are labeled a, b and c in Fig. 111-1. These three doublets were chosen 

for extensive study in the search for an electron mass shift. 

C. Apparatus 

A standard flop-in atomic-beam magnetic-resonance apparatus 3  

utilizing the Ramsey separated- oscillatory- field technique 3  was 

used to investigate shifts of hfs transition frequencies that occurred 

as a cesium beam traversed a microwave cavity. 
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Table 111-1 	133Cs Field-Independent Transitions 

Field Transition. Frequency 
Designation (Gauss) (F,mF) Type (MHz) 

0 (4,0) 	(3,0) a 9192 631770 

a1  416 (4 ) -l) 	(3,0) Tr 9119.6 

a2  417 (4,0) 	(3,-l) Tr 9119.1 

820 (4,-l) 	(3,-l) a 8900.7 

b 1  1252 (4,-2) 	'. 	(3,-l) IT 8509.5 

1253 (4,-i) 	(3,-2) TT 8508.1 

1640 (4,-2) 	(3,-2) a 7961.0 

2104 (4,-3) 	.'. 	(3,-1) Tr 7115.3 

c2  2105 (4,-2) 	(3,-3) Tr 7112.9 

2460 (4,-3) 	(3,-3) a 6080.4 
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1. Beam Machine: Figure 111-2 is a schematic representation of the 

atomic beam apparatus used for this experiment. 

Cesuun atoms are produced in a resistance heated steel oven by 

the reaction of calcium metal with a cesium halide, e g 

Ca + 2CsC2. + heat +:CaC9., 2  + 2Cs 

The oven 'shown in Fig. 111-3 was designed to hold about 1-3/4 cm 3  

of CsC9, and Ca filings mixed in the ratio of two parts (vol) Ca 

to one part CsCZ. Such a charge is sufficient for about fifteen' 

hours of running (4 runs). A full beam of,about 6 x 1010 atans/sec 

reaches the detector (detector current 10 'A) when 60 W (2' A at 

30 V) of ac power is dissipated in the filament. The filament is made 

from about eighteen inches of .010-in. thoriated tungsten or tantalum 

wire tightly wound on a 060-in rod 

Atoms effuse from the oven through a .005-in, slit into the oven 

chamber where the pressure is typically 4 x 10 6  nimHg. The beam then 

passes through a buffer chamber (7 x  10 mm Hg) and into the field 

of the A magnet. Typical pressures in the rest of the machine (A and 

B magnets, C magnet region and detector chamber) are all less than 
• 	

3X107inHg, 

For the two angles of exit from the atomic beam oven in Fig. 111-2 

beam atoms in states of opposite mj  are deflected along different paths 

toward the machine axis by the inhomogeneous field of the A magnet 

(H " 5 kG, H/Z ' S.  kG/cm). In the uniform field' of the C magnet the 

beam is subjected to an appropriate microwave frequency of sufficient 

strength to cause a transition between two states of different 
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Fig. 111-2. Flop-in type atomic-beam magnetic-resonance apparatus. 
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Fig. 111-3. Photograph of oven. 
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m. The sign of eff  is therefore reversed for atoms which 

undergo transitions, and the atoms are again deflected toward the machine 

axis (solid line in Fig. 111-2) as they pass through the inhomogeneous 

B magnet where the field and gradient are the same as those in the 

A magnet. In this manner atoms which undergo transitions in the C 

reg ion are said to be"focused"at the detector. Atoms which do not 

undergo transitions follow the dashed line in the B magnet and are 

not detected. 

The detector is a standard tungsten hot wire ionization detector. 3  

An atom whose ionization potential (3.87 V for Cs) is less than the 

work function of tungsten (4.5 V) will be ionized on impact and may 

be accelerated to a collector. The beam reaching the detector is 

hence converted into a current that is measured by a sensitive 

electrometer (Keithly model #417). The electrometer is capable of 

suppressing constant background currents up to lO A, so that below 

that level the current is proportional to the beam intensity. For 

the flop-in arrangement used here, maximum current is registered at 

the detector when the frequency of the rf field in the transition 

region equals a transition frequency of the system under study. 

2. Cavity-Hairpin Assembly: The actual experiment is perfomed in 

the C region (Fig. 111-2) where appropriate resonant and non-resonant 

oscillating fields are introduced through the cavity-hairpin assembly. 

Two assemblies were built which could each be used with either of two 

cavities. 

Figure 111-4 is a photograph of one assembly with the cover 

removed to show the inside of the cavity. The beam passes from left 
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Fig. 111-4. Photograph of cavity-hairpin assembly showing interior of 
2921 M-Iz A Y10 

 cavity and coupling loop. 
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to right, and the static field H 0  is at right angles to the cavity 

faces. The entrance and exit apertures in the cavity each consist 

of four .055-in, diameter holes which serve to collimate the beam. 

The cavity shown was resonant at 2.921 GHz (TMC)  mode). The two 

hairpins are made from shorted X-band (8.2 GHz to 12.4 GHz) wave-

guide. The rf magnetic field inside the waveguide is mostly 

parallel to H0  and is appropriate for stimulating c transitions 

(see Table 111-1). The two smaller diameter tubes shown in the 

figure allow cooling water to circulate through the body of the 

cavity. Figure 111-5 is a second photograph of this same assembly. 

Figure 111-6 is a photograph showing the second assembly with a 

cavity designed to operate at 7.93 GHz (N 210  mode). These hairpins 

consist of loaded, 5/8-in., 50 Q rigid coaxial transmission lines. 

These hairpins were used for virtually all the work reported here 

since they produce an oscillating magnetic field which is, for the 

most part, at right angles to H0  and is appropriate for stimulating 

r transitions. 

A high-powered, continuous wave microwave signal produced by a 

mechanically-tuned magnetron is fed into the constant field region 

via a 1/2-in., 50 Q rigi.d coaxial transmission line and is inductively 

coupled to the cylindrical cavity. The coupler designed for this pur- 

- 	 pose is exposed in Fig. 111-4. A loop of #20 copper wire is soldered 

to one end to form a coupling loop, and a type N coaxial connector 

Times Wire U Cable #NS-5012NF-18s) is attached to the other end. 

The end nearest the loop is threaded so the loop can be positioned 
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J I 	hot oriph 01 0:IVi to- io 1D 0 :Lou:1h10, 	•1 ho 	oc 
hairpins shown here are suitable for studying Am = II 
transitions in the frequency range 8.2 GHz to 12.4 GI-Iz. 
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Fig. 111-6. Photograph of cavity-hairpin assembly. The coaxial 
hairpins shown here are suitable for studying AmF = ±1 
transitions. 
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for the best impedance match by twisting the coupler from outside 

the vacuum system. 

Most of the experimental work was done using the cavity shown in 

Fig. 111-4. The rf magnetic field lines inside the cavity are 

concentric with the cylinder axis. Hrf  is zero at the center and 

rises to, a maximum valuer about three-quarters of the way out to the 

wall. At the wall, Hrf  has a non-zero value. The beam Oxperiences 

an oscillating rf magnetic field that is perpendicular to the static 

field H0 . The electric field and vector potential are directed 

parallel to the cavity axis and perpendicular to the faces. The beam 

hence experiences an oscillating rf electric field• and vector potential 

that are parallel to the static magnetic field H 0 . 

3. Ramsey Pattern: Fields oscillating in phase and at a frequency 

equal to the transition frequency of interest are established in the 

two hairpins which are separated by a distance of six inches (center 

to center). The separated hairpin technique used here and developed 

by Ramsey 3  has become standard for precision atomic beam work and 

will not be discussed in detail. The method has two features which are 

particularly important for this experiment. 

The first important feature of the technique is that it produces 

narrower linewidths than one using only a single hairpin of the same 

size. The signal observed at the detector for.a cOnstant static 

magnetic field, constant power input to the cavity but varying hairpin 

frequency is shown in Fig. 111-7. This is also a plot of transition 

probability versus frequency. The pedestal is the resonance that 



-45- 

7 	MHz 
XBL 698-1146 

Fig. III7. Chart recorder tracing of beam intensity versus 
hairpin frequency (Ramsey pattern). 
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would be obtained using a single hairpin while the (Ramsey) pattern 

at the top is due to the interference of the two hairpins. The base 

line has been suppressed. The full width at half-maximum of the 

single hairpin resonance is typically 20 to 30 kHz, while the width 

of the central peak of the Ransey pattern is a factor of 10 smaller. 

The second important feature of the Ramsey technique is that the 

transition probability is a maximum when the hairpin frequency equals 

the average transition frequency in the region betveen the hairpins. 

Thus the technique is sensitive to changes in transition frequency 

caused by perturbations introduced in the intermediate region. 

4. C-Field Stabilization: The constant magnetic field H 0  in the C 

region is provided by a 12-in, electromagnet (Varian Associates V4012A) 

powered by a constant-current supply (Varian V2100) which is stable 

to one part in 10 5 . Additional stability is produced by a proton 

nuclear-magnetic-resonance field controller (Harvey-Wells FC502). 

The marginal oscillator used to generate the proton NMR frequency was 

coupled to a highly stable oscillator (Schomandi ND5) to prevent drift. 

The complete field control circuit is shown schematically in Fig. 111-8. 

With the use of this control circuit the field remained locked for 

as long as several days. 

S. Radio- Frequency Equipment: 

a. Transition Frequencies: Microwave signals oscillating at 

cesium transition frequencies are generated by a phase locked, con-

tinuously operating klystron (Sperry model 2K44 or Varian model X13 

or X13B) and fed to the separated hairpins as illustrated in Fig. 111-9. 
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Fig. 111-8. NMR magnetic field control unit. 
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A very stable reference oscillator (Schomandi F1)3) provides a 

fundamental frequency between 300 MHz and 1000 MHz. This frequency 

synthesizer is adjusted to generate an output frequency 

ref = (f 10 MHz)/N, where f is the desired klystron output 

frequency, and N is an integer, usually 8 or 10. The phase of the 

beat frequency f - Nfref 10 MHz produced in the mixer is compared 

with that of a 10 MHz if reference which is also produced by the 

reference oscillator. This comparison is made by a Schomandi FDS-3 

syncriminator which applies a correction voltage to the reflector 

of the klystron that is proportional to the cosine of the phase 

difference between the beat (if) signal and the if reference signal. 

Kiystron frequencies are counted directly with a Hewlett-Packard 

5245L counter using the 5255A frequency converter which is capable of 

counting frequencies between 3.0 and 12.4 GHz. Both the reference 

oscillator and the counter are referred to the same 100 kHz quartz 

crystal oscillator (James Knight FS1100T) which is, in turn cohtinu-

ously compared with the 60 kHz standard frequency broadcast by the 

National Bureau of Standards' station WWVB, Fort Collins, Colorado. 

Because of the high stability of the 100 kHz reference, the precision 

of frequency measurements was determined by the uncertainty of ±1 in the 

last place of the counter display. 

A traveling wave tube amplifier (Hewlett-Packard model 493A or 

495A) boosts the klystron signal which is then divided, one-half 

being sent directly to one hairpin, and the other half being sent 

through a phase shifter (AMCI Line Stretcher model 3807N) and variable 

attenuator to the other hairpin. 
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The attenuator allows one to equalize therf field amplitudes in 

the two hairpins. The phase shifter provides a way of equalizing the 

phase of the signals reaching the hairpins by changing the electrical 

length of the transmission line leading to one of them. The two 

signals are judged to be in phase when a symmetrical Ramsey pattern is 

b. Magnetron-Cavity Circuit: The circuit used to power the cavity 

is shown schematically in Fig. 111-10. The signal from an isolated 

continuously operating magnetron (Raytheon QK60) can be fed either to 

the cavity or to a dummy load (Narda model 369NM) capable of absorbing 

175 W average power. Both input and return power are sampled with a 

20 db dual directional coupler (Narda model 3022) and measured with 

the same power meter (General Microwave model 454AR). The magnetron 

frequency is counted directly with a Hewlett-Packard 5245L counter 

using a 5254A frequency converter. 

Insertion losses of all circuit components (including cables) 

were measured, so that the actual power absorbed by the cavity could 

be determined from power meter readings of input and return power. 

These calibrations agreed with manufacturers' specifications when 

given. Assuming that these insertion losses are known to within 

±0.1 db, the input power P. can be determined from the power meter in 

reading 'meas 

P. = 0.95 ±.03 x 	P in 	 meas 

When making measurements of the cavity resonance profile, the 

power divider was removed, and a sample of the signal taken directly 
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after the isolator  was counted. Figure ill-il is a plot of the ratiO 

of reflected power to incident power versus frequency for the TM 010 

cavity used in Runs 11 through 25. The points represent measurements 

while the curve is an inverted Lorentz profile characterized by 

= 2921.2 MHz 
0 

Q=4200± 200 

Base line: 0.77 ± 0.01 

At resonance the return power was less than 0.1% of the incident power. 

The displaced base line is due to constant circuit losses and suggests 

that the power absorbed at resonance is 77% of the incident power. The 

calibrated circuit losses gavethe result P. =  0.95 ±.03 x 10 P 

	

in 	 meas 

so the actual absorbed power is 77% of this, or 

P 	= 0.73 ±.02 x 10 P abs 	 meas 

Thus a power meter reading of 1 mW corresponds to an absorbed power of 

7.3 ±.2 W. 

6. Cavity Design: The effective vector potential experienced by an 

atomic beam that traverses a TM010  cylindrical cavity along a diameter 

midway between the ends is given by (see Appendix B) 

A=-iA e -  iwt  

where 	

1Al 2  = 0.455 (c)2  E 

and 

2 PQv 
E=203 

2,c 
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• 2920MHz 	 2922 
XBL 698-1150 

Fig. 	N010  cavity resonance (absorption) profile: 

Normalized reflected power versus frequency. 
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The square of the aniplitudeof the vector potential can be written 

IAI2 = 2.34 PQ 
0 

where P is the power dissipated in the walls in erg/sec, v 0  is the 

resonant frequency in Hz, .Q is the length in an, and Q is the unloaded 

Q. A more practical expression is 

Al2 = 2.34 x 102 PQ 

where P is in Watt, 	in GHz, Q in cm and IA1 2  in esu (erg/cm) The 

electron relative mass shift is assinned to be, 

- 	e2IAl2 1 	- 1 T0 	2 
2 	2 	211, (mc 22  ) 	mc ' 

or 

4.03 x  l0 m 	 v. 	* 
0 

Thus a relative mass shift of 4 x 106 can be induced when 1 W of 

power is absorbed in a cavity of length 1 cm, resonant frequency 

1 GHz and Q 1000. 

The above formula suggests the following design criteria for 

obtaining a maximum mass shift: i) use as low a frequency as possible, 

ii) use as short a cavity as possible., iii) use as much power as' 

possible, and iv) maximize Q by choosing a high conductivity metal 

from which to fashion the cavity. These criteria are not all inde-

pendent. For example, in the IM6 10  mode the radius determines the 

resonant frequency 5  so that a low v implies a large radius. A large 

radius R and short length £. produce a large ratio R/2,. However, a 
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large value of R/2 yields a small Q. 6  With these considerations in mind 

it was decided to build a silver-plated TMO10  cavity 1 7 91 cm long, 

resonant at about 3 GHz. The parameters for the actual cavity were 

=2.921GHz 
0 

= 1.91 cm 

Q =4200 ± 200 

Thus, for one watt of absorbed power, the expected relative mass shift 

is 

3 x 10 6  

D. Experimental Procedure 

A typical run proceeded as follows: Once the apparatus was 

• 	
evacuated, the magnetic field set and locked, the radiofrequency 

equipment set up, and a nominal beam intensity achieved, the phase 

shifter was adjusted to give a symmetrical Ramsey pattern. The 

magnetron was then set for maximum output and tuned to the cavity 

resonant frequency by adjusting the tuning knob for minimum return 

power. After several minutes the water-cooled cavity came to 

equilibrium, and the return power was steady and less than 1% of the 

input power. 

• 	 A measurement was then made of the position of the center of the 

• 

	

	central peak in the Ramsey pattern. This was done by averaging 

frequency readings taken at two or three positions symmetrically located 

on each side of the central peak. 	Hence, four or six frequency 

measurements, when averaged, gave one value for the center frequency. 

This procedure was performed ten times and the average of the ten 
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center frequencies so measured was taken to be the best value for the 

transition frequency. Without changing the cavity input power, 

the transition frequency of the other member of the doublet was then 

determined in the same way The cavity power was then decreased, and, 

after equilibrium was achieved, the two frequencies were again measured. 

In this way the transition frequency was measured for five values 

of cavity power, including zero power. The five measurements of 

each transition frequency were then fit by a least squares procedure 

to a straight line 7  with each point weighted in inverse proportion to 

its standard deviation 
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IV. EXPERIMENTAL RESULTS 

A. Introduction 

The results of twenty-seven measurements of 133Cs hfs transition 

frequency shifts induced by the fields of a high-Q microwave cavity 

reveal no evidence of an electron mass shift. The measurements were 

sensitive enough to detect the Bloch-Siegert effect which, is three 

orders of magnitude smaller than the expected mass shift effect. 

The negative result is in agreement with the conclusion of Chapter II 

that the second order effects of the plane wave field cancel one 

another. 

B. Presentation of Data 

Figures TV-i, IV-2 and IV-3 are representative plots of transition 

frequency versus cavity power for the three field-independent doublets 

studied. Neither the mass shift effect nor the Bioch-Siegert effect 

are strongly dependent upon the static magnetic field H 0 , so the field 

values quoted are only nominal, i.e., within a couple of gauss of the 

desired field-independent points. Each of the three figures summarizes 

the results of one run and indicates how well the data fit straight 

lines. 

• 	 • 	Table TV-i summarizes the results of runs made with a TM01  cavity 

resonant at 2.921 GI-Iz. The designations a 1 , a2 , etc. refer to Table ITT-i 

and Fig. ITT-i. The shifts quoted are normalized to a power meter 

• 

	

	reading of 0.1 mW. Errors quoted for individual measurements are one 

mean standard deviation of the fitted slopes and indicate the precision 
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.5 	1.0mW 	15 	2.0 

• 

.5 	10mW 	1.5 	2.0 

 
XBL 698-1152 

Fig. IV-2. Transition frequency versus power meter reading. 
1250 G doublet (Run 18). Cavity frequency = 
2921 MHz. (a). (4,-2)4--*(3,-l). Slope = 
82(4) Hz/0.1 mW, intercept = 8509,53557(6) MHz. 
(b). (4,-l)—(3,-2). Slope = 96(3) Hz/0.1 mW, 

• 	itercept = 8508.13870(6) MHz. 
Error bars represent one mean standard deviation. 
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to which frequency measurements were made. The errors quoted for the 

averages are due to the spread of results from different runs and 

indicate the reproducibility of the measurements. 

The results of someearlier exploratory runs (Runs 1 through 10), 

made with a more primitive cavity and each studying only one transition, 

are not included here. Problems with drifting magnetron power, 

drifting C-field, and insufficient beam intensity made their results 

insufficiently reproducible to merit comparison with later runs. 

C. Interpretation of Measured Shifts 

Three corrections have to be made to the raw data presented in 

Table Tv-i before it can be interpreted. The first correction is 

merely the change in units from mW to Watt. As discussed in 

chapter III (Sec. C-Sb), a power meter reading of 0.1 mW corresponds 

to 0.73 ±.02 W absorbed in the cavity. Each average shift must, 

therefore, be divided by 0.73 to get the actual shift in Hz/W 

Whenever the applied perturbation does not act over the entire 

distance between the separated hairpins, the measured shifts must 

be multiplied by the filling factor L/D where D is the length ofthe 

interaction region (cavity diameter), and L is the separation 

between the hairpins. This correction is necessary because the 

• • Ramsey technique samples the average transition frequency between 

the hairpins, and therefore the measured frequency is an average of 

the (perturbed) transition frequency when the atom is inside the 

cavity and the (unperturbed) transition frequency when the atom is 

between the hairpins but outside the cavity. 
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Table IV-l. DATA SUMvIARY - Shifts Listed Here are Normalized 

to a Power Meter Ieading of .0.1 mW •. 

A-415 Gauss Doublet .' 

/ 

a1  a2  

Rim No. Shift Shift 

21 73±3 Hz 	. .. 77±3 Hz 	 .• 

22 70±3 65±4 

23 78±1 72±1 

24 79±1 85±2 

Average 75±4 75±7 

B-1250. Gauss Doublet 

b2  

Run NO. Shift 	.. Shift 

16 92±4Hz 

17 80±3 Hz 97±2 

18 82±4 96±3 

19 86±3 92±3 

20 89±3 89±2 

Average . 	84±4 	. 93±3 

C-2100 Gauss Doublet . 

Cl  C2 . 

Run No. . 	Shift . 	Shift 

11 46±1 Hz 165±2 Hz 

12 40±3 177±3 

13 .. 	49±4 174+2 

14 49±2 146±3 

25 46±1 186±1 

Average 46±3 	. 170±22 
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The third correction is an additive one. Whenever the average 

energy level separation of an atom in the region between the hairpins 

is not equal to the energy level separation in the hairpins, the peak 

frequency is shifted by an amount' j,2  1.2 Aw where Aw is the difference 

between the transition frequency in the hairpins and the average 

transition frequency in the intermediate region, £. is the length of 

the beam path in a hairpm and L is the length of the intermediate 

region. The total correction to be applied to the averages meas  

given in Table TV-i is 

S 	S L 1 	- 
obs 	mea.s D 0.73 	- 1.2 

Sobs = 2.05 ±.04 S meas 

The observed shift can also be written in Hz/G 2  by using the conversion 

(Appendix B): 

1W3.10±.14G2  

When these corrections are made to the average frequency shifts 

given in Table TV-i, the results listed in Table TV-2 are obtained. 

The observed shifts 5obs  are given in both Hz/W and Hz/G 2  for 

cOmparison with the expected mass shift effect (S) and Bioch-Siegert ms 

effect 5B-S•  In addition to the discrepancy in absolute size, more 

than two orders of magnitude, between the observed shifts and those 

expected due to an electron mass shift, there is also a striking 

discrepancy in the relative size of the shifts of the 2100 G transitions 

and c 7 . If these shifts were due to an increase in the electron 



Table IV-2. 

Comparison of Observed Shifts (Sobs)  with Mass 

Shift Effect (S) and Bloch-Siegert Effect (SBs) 

Transition Frequency S ms Sobs  Sobs 2 SBS 	
2 (MHz) (Hz/watt) (Hz/watt) (Hz/gauss 

) 
(Hz/gauss ) 

a1  9119.6 55 ±4 x 10 3 154 ±9 50 ±3 60 

a2  9119.1 55 ±4. 154 ±15 50 ±3 62 

b 1  8509 5 52 ±4 172 ±9 56 ±3 61 

b2  8508.1 52 ±4 191 ±7 62 ±4 72 

• 	 c1  7115.3 43 ±3 94 ±6 30 ±2 38 

c2 	• 7112.9 43 ±3 349±46 113 ±8 150 

I 
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mass, the two should be equal (to within a few percent), wherea they 

differ by a factor of about 3.7 

On the other hand, there is good agreement, between the six 

observed shifts and those expected on the basis of a many-level Bloch-

Siegert effect. This effect amounts to a shiftin the maximum 

transition probability (i.e., the central peak of the Ramsey pattern) 

due to the presence of ,a non-resonant perturbation. Evidently, the 

rf magnetic field in the cavity has been slightly over estimated, 

causing the calculated Bloch-Siegert, shifts to be somewhat larger than 

the listed measurements The relative sizes of the six measurements, 

however, agree completely, within experimental error, with the 

calculated . Bloch-Siegert shifts. 

An oscillating magneticfield Hrf,  oriented at right angles to 

a given C-field H0 , shifts a given magnetic dipole transition 

frequency £ by 3  

- 'o 	Hf 2 
	I< i I Jx>J 2 	l (2 I Jx>t2  

- 	 w i.-w 	+ ______ 
3' 	l,

j 
	IW2 -Wi 
 h 

where (W2 -W1)/h is the transition frequency under study. The index 

j takes on two values corresponding to v = ±v 0 , the frequency of the 

non-resonant perturbation. The index i runs through all the states 

that can be reached by a ir-type transition from either the initial or 

the final state. This many-level Bloch-Siegert effect is seen to be 

proportional to the square of the rf magnetic field and hence is a 

linear function of power. 
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Because of the resonance denominators, remotely probable 

transitions which lie close to the non-resonant perturbing frequency 

(i e , the cavity frequency) will influence the total transition 

probability more than those lying farther away. Figure IV-4 

illustrates, for the 2100 G doublet, what transitions can be induced 

(with remote probability) by the cavity rf magnetic field The 

left-most line in each case is the transition under study (i e , the 

7.1 GHz transition) The other five in each case serve to distort 

the total transition probability unequally for the two transitions 

The inequality comes from about the unequal influences of the 

(3,-2) 	(3,-1) transition on the left and the (4,-4) +-- (3,-3) 

transition on the right due to their unequal frequencies 

Perhaps the quickest way to test whether one is observing the 

Bloch-Siegert effect or the mass-shift effect is to choose a cavity 

mode for which a mass shift theory predicts large, positive and 

equal frequency shifts for the two members of a it doublet, while 

the expected Bloch-Siegert shifts are small, negative and unequal 

Such is the case for the 2100 G doublet when the cavity frequency 

is 7930 MHz, and Hrf  is perpendicular to H0  Seven runs were made at 

this, frequency using a TM210  cavity powered by a Litton L3508 

mechanically-tuned magnetron. Figure IV-5 is a plot of transition 

frequency versus power for one such run The frequency shifts are 

clearly negative and unequal. The results of these runs reinforce 

the conclusion drawn from Table IV-2; namely, that no shifts are 

observed which cannot be interpreted as Bloch-Siegert shifts. 
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XBL 698-1149 

Fig. IV-4. Remotely probable transitions induced by non-resonant 
rf magnetic field oriented at right angles; to static 
field H0. 
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D. Conclusion: Vhy the Mass Shift Effect Was Not Obsenred 

Arguments similar to those used in Chapter II. Section E can be 

invoked to explain the negative results summarized above. RetLirn 

to the point where the mass shift was introduced [Eq. 11-7]: 

	

(E-e) 2  =[( - e)2 + (mc2) 2  + ea + e( 	- i.)] 

where the time-dependent terms have been dropped. There are three 

• 	ways in which the constant term e 2  a  2  my be handled: i) combine 

e 2  a  2  with (mc2 ) 2  to get arenornalizedmass as was done in Chapter II, 

ii) combine e 2  a  2  with W = E -mc2  and get the same shift for all energy 

levels, or iii) leave the tern in the equation until after the non-

relativistic approximation has been obtained, treat it by perturbation 

theory, and get an equal shift of all energy levels. Alternatives 

ii) and iii) are equivalent to order 1/rn 2 , i.e., when the relativistic 

term 1 2 (W-e) 2  is neglected. 
2mc 
The oscillating fields experienced by a beam atom traversing a 

diameter of a Th1010  cavity are roughly similar to those of a linearly 

polarized plane wave which can be represented by 

= aeIt) 

2 a2  A = 	(1 + cos 2(1<x-ut)) 

where 2 is the (real) polarization vector. If the e 2A2  tern is carried 

through to the non-relativistic approximation, it becomes 
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e2A2  e 2  a  2  e2a2  2ikx 	-2ikx 
2 = 	2 	2 (e 	 ) 

2mc 	4mc 	8mc 

where the e±21t  factors in the cosine have been set to their zeroth 

order values, namely, unity. When the previously neglected 

term is treated in second order perturbation theory and the e 2a2/2mc2  

term is treated in first order perturbation theory one obtains, with 

the aid of [Eq. (11-41)], 

-e x + -e2a2  • 	
2mc2 	• 

22 	22 	22 	22 • 	 eA 	ea 	ea 	• 	ea 
2 	+ 	22 	2 2mc 	4mc 	8mc 	2mc 

i.e., the (first order) energy shift due to the mass renormalization 

term is exactly canceled by the (second order) energy shift due to 

the p term. In the light of the negative experimental results, it 

appears that the proper way to treat the e 2  A  2  term is by perturbation 

theory, and not to consider it as an electron mass renormalization. 

/ 
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APPENDICES 

A. Quadratic Dirac Equation 

I. Introduction: This appendix contains detailed calculations which 

supplement the theory given in Chapter II for an electron in an 

electromagnetic field. The quadratic (or second order) Dirac equation 

is obtained from the linear (or first order) Dirac equation. 

_Metric The signature of the metric is chosen to be 

(1, -1, -1 5P -1) sothat the.product'of two four-vectors A and B is 

A'B = (A0 ,).(B0 ,) = A 0  B  0 - 

Representation of y Matrices:' The following representation 

will be used: 

= ( -) = 	
(Al) 

(0 
CY 

) 	
(A2) 

+ 	0 
a=L 	)=Y0Y' 	 (A3) 

\cT 0J 
where 

= (0 1) + (. 
4 	

+ (1 01)  
cr 

and 

Ol) 

II. Construction of the Quadratic Equation: The relativistic wave 

equation for an electron in an electromagnetic field may be written 



 

[cy.(p - 	A) - mc2] = 0 	, 	 (A4) 

where e = -4.803 x  10 	esu is the electron charge and mc2  is its rest 

energy. The energy-momentum four-vector 

p = (., ) = I'D = (th 	-, -thy) i  

is composed of the total energy E and the total linear momentum 

and the four-vector potential 

A 

is composed of the electrostatic scalar potential and the magnetic 

vector potential . 

Equation (A4). can readily be converted to the more familiar form 

involving and 	After multiplying by -y on the left, one has 

e 	 - 	e+ 	2 

	

[-cyy0(p0 - E A0) + cy0y• (p - E A) + y0mc 	0 

[-c(-- -) + 	- !) + mc2]ib = 0 

or, 

(c'.+ e + mc2) = E 	(AS) 

where 
(A6) 

is known as the kinetic momentum. 
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By analogy with Eq. (A6) the kinetic four momentum Tr is defined 

as 
e rp -A 

• 	Define 

yen 	 (A7) 

so that Eq (A4) becomes 

(c-mc2)O 

multiply by cf + mc2  to get 

(c + mc2)(c - mc2) = 0 

or 

[c2if' - (mc2 ) 2 ] = 0 	 (A8) 

Equation (A8) is a second order differential equation for the four 

component spinor wave function . The remainder.of this appendix is 

devoted to evaluating the product 	in terms of the electric and 

magnetic fields acting on the electron. 

III. Evaluation of 7f•f: In this section it is shown that 

= 	+ 	
-. i•) 	• 

The proof of this identity is straightforward. Beginning with the 

definition of • given by Eq. (A7), one can write 	• 

= (y.)(y.) = (y-y.)(y00-y.m) 
= 	

i(~ 

	

oJ\° 	o 
(C 	

T  

= - 
(.;)(.)} 

( 	 ) 

+ [,7r] 
( 	 ) 
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Apply the identity 

	

+~ 	-.* 
(cY•A) (a.1) = p.jj + ia.(AxB) 

and the definition ofla given by Eq. (A3) to get 

=
- 	- 	

+ 

or 

= rr.rr - i(X) + 	 (A9) 

4. 	4- 
Consider the operator it x  it 

4- 	 • 	 e - 	9- 	e + 

x (-thy - 

= -h2VxVlp + ill 	+ th 	+ 	xj 	 (AlO) 

Now, V x Vip = 0 because the curl of any gradient vanishes identically, 

and x = o since is parallel to itself. Furthermore, 

	

V x 
() = - x 	+ (Vx 

so thatEq. (AlO) becomes 

	

e ~~ 	 e ~jl~itxinp=jj_(VxA) j =_Bip 	 (All) 

Consider next the operator 

= [-thy -. 	
, 	 - 

= th 	V() - th 	 + 	
() 
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(_~D
.iAJi, + 	- 

=i 	(x+) 

eh 

[,ir} = -' 	 (Al2) 

when Eqs (All) and (Al2) are inserted into Eq (A9), one finds the 

desired result 

= 	+ 	- i•rn • 	 A13 

IV The guadratic Equation When the expression for 	derived 

in the preceeding section is inserted into Eq. (A8), one has 

	

[cur.crr- (mc 2) 2 ]i = -ech(• - i.)ij 	. 	 (A14) 

The square of the kinetic momentum four-vector is 

e 	2 	-'- 	e2 
= (p0  - E A0) - (p - E 

With this result, Eq (A14) becomes 

(E - e ) 2l  = [c2( - e)2 + (nlc2)2 
- ec 	- 	 (A15) 

Equation (A15) is the desired second order equation for the four-

component spinor iJi. It should be noted that if i is a solution to the 
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linear equation (A4), then it is also a solution to the 

quadratic equation (A15). As pointed out by Rose, 2  the presence of the 

non-hermitian term 	in Eq. (AlS) need not cause concern. Equation 

(A15) is not, strictly speaking, a quantum mechanical wave equation 

since it is not in the Hamiltonian form, i. e instead of being written 

2 
it contains the second time derivative -h 4- = E2 . 

at 

B. Effective Fields of a TM 0  Cylindrical Cavity 

I. Introduction: This appendix contains detailed calculations which 

supplement the discussions of Chapters III and IV regarding the electric 

and magnetic fields experienced by an 'atomic beam as it traverses a 

cylindrical cavity that is resonating in the 'TM010  mode. Expressions 

are found which 'relate the fields and the magnetic vector potential to 

the measurable cavity parameters P, Q, £. and v 0  (defined below) 

Suitable spatial averages are made, to deduce the effectIve fields which 

act on, an atom when it passes along a diameter, midway between the plane 

ends of the cavity.  

II Standing Wave Field Configuration The explicit expressions for 

the electric and magnetic fields inside an evacuated, cylindrical 

cavity of radius R operating in .the Th010  mode are,' in Gaussian units, 

= 2'E0  J0  (xOl  ) e 	,' 	 . 	 " 	 (Bl) 

and 

= - iE J1  k ) e 	. 	 (B2) 

where x01  = 2.405 is the first root of the zeroth Bessel function J0(x) 
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and p, and z are the radial, azimuthal, and axial coordinates, res-

pectively, of a point inside the cavity referred to a cylindrical 

coordinate system whose origin lies at the center of one of the circular 

ends of the cavity. 

The niagnetic field lines are circles concentric with the cylinder 

axis,. while the electric field lines are straight lines parallel to 

the cylinder axis. 

Since no charges are present in the evacuated cavity, the electro-

static scalar potential vanishes and the electric field satisfies 

ct 

Hence, 

= -cf dt = -z c E0 10 	 f eibit dt 
or 	

= -2 i E0  J0 ( 
	

p) et 	 (B3) 

It can -be verified by taking the curl of Eq. (B3) that Eq. (B2) 

satisfies 

as it should 

III. Field Amplitudes: It remains to express the amplitude E 0  in 

terms of the measurable cavity parameters P, Q, Z and v 	 When this is 

done, one will be able to calculate the electric and magnetic fields 

and the vector potential at each point inside the cavity when P, Q, 1. 

and v are known, where 
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P = power input in erg/sec, 

= length of cavity in cm, 

= resonant frequency in sec, 

and the parameter Q is defined by 

Stored energy 	 (B4) o Power loss 

This parameter, Q, is sometimes referred to as the "unloaded Q" 2  

since the only dissipation considered here is that which takes place 

within the cavity walls, namely ohmic heating. It should be pointed 

out that Q is directly related to the half power (or 113-6 11 ) points 

of the cavity power absorption curve, as measured when the cavity 

is used as a matched load. This resonance curve is of Lorentzian 

shape;' if the frequency separation between half-power points is tv, 

then 

C' 

Av 

where ' 'is the resonant frequency defined as' the frequency at which 

maximum absorption occurs. 

At equilibrium, the power dissipated by ohmic losses is equal 

to the input power P. If U is the time-averaged energy stored in the 

cavity, then, from Eq. (B4) 

(B5) 

The time average of the stored energy in an evacuated 

cavity is given by' 	' 

2, U = 16 	a IE z I 2  da 
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where Q is the length of the cavity and a is the area of a cross section 

taken normal to the cavity axis. Thus, 

El2 	
21r jR 	fx01\2 

	

U =8ir 2,Jd 	[J0 --- P)J p dp 

With the change of variables 

r=p/R 

this becomes 

	

u = 11
2 2 R2 	r J0 2  (x01r) dr 

The integral appearing here is evaluated in standard integral tables: 

f l  r J0 2  (x01r) dr = 112 J 12  (x01) 

Finally, 

E012 	2 	2 U 	8ir 	2 J1  (x01) 	. 	 (B6) 

Equations (B5) and (B6) can be coüibined to give the square of the 

amplitude E0  in terms of P, Q, Z and v 0 . Thus 

2 
PQ 	B  0 1 	2 	2 U = 	= 8ir 	iiR J1  (x01) 

or 

E 2 	8 	PQ 	 B7 

	

2 	2 J1  (x) 	02R 

Now, the resoiip. t frequency v0  is related to the rdius R by' 

2Tr\=x01 
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sothat 
xOl 

C 
(B8) 

and Eq. (B7) becomes 

1 E012 = 
	22 	 (B9) 
x 	J1  (x01) 2c01 

When the numerical factors are collected, one obtains 

_ 
1E0 1 2   = 203 	20 	 (BlO) 

kc 

Eq. (BlO) gives E0  in statvolt/cm when P is in erg/sec, 	is in Hz 

and 2, and c are in cgs units. An expression which may be used for 

practical calculations is 

	

2 	PQv 

	

IE0 1 = 203 	2,0 	
(BIl) 

where now.  E0  is in volt/cm when P is expressed in watts, v in GHz, 
and 2,  in cm. 

WithE0  given by Eq. (BlO) one can obtain B in gauss and A in 

statvolts at any point within the cavity from Eqs. (B2) and (B3). 

IV. Average Fields Acting on a Beam Atom: In this section a spatial 

average is taken of the quantities E 2 , B2  and A2  to determine the 

effective fields experienced by atoms in a beam which travels along 

a cavity diameter midway between the ends. The average of the square. 

of the magnetic field is taken, rather than of B itself, because it is 

B which appears in expressions for transition probabilities and for 

the Bloch-Siegert Effect (Chapter IV, Sec. Q. The average of the 

2 square of E is taken rather than of E itself because it is E which 
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appears in expressions for theStark Effect. The average of the square 

of A is taken rather than of A itself'because it is A 2  which appears 

in the expression for the electron mass shift (chapter II). 

From Eqs. (Bl), (B2) and (B3) one sees that the desired averages 

involve average values of squres of Bessel functions, i.e., 

2 	1f R  2frol <E ) 	
0 10 
	p,j dp 

and 

2 	1CR 	2(x01.\ 
(B)pctjJi _-1 dp  

These integrals are not evaluated in standard works on Bessel 

Functions, and it is necessary to evaluate them numerically. A 

Fortran II routine was written to perform the numerical integration 

A subroutine evaluated J(x) for a specified n and x to a chosen 

precision of about 0.1%. The main program employed the trapezoidal 

method to perform the integration. This method breaks up the area 

to be computed into m trapezoidal sections and adds their areas. 

The results for 100 intervals (m=lOO) are 

102 ( 
	

p) dp = 0.478 ±0 002 	 (B12) 

and 

JR 

	fx\ 
. 	J12 (-4- ) dp = 0.203 ±0.000 	 (B13) 

The results for 200 intervals differed from these by .002 and 

.000, respectively, and this difference was chosen as the uncertainty 

in the calculation. 
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The one-dimensional averages just computed were made for a beam 

which has no height. or width. The actual beam width is immaterial 

since neither B nor E (and hence A) depend upon axial position. Atoms 

traveling along a diameter go from p = R to p = 0 and back to p = R. 

Due to the finite height of the beam, most atoms will travel along a 

chord parallel to the diameter, and hence their minimum radial position 

will be slightly greater than zero The magnetic field is zero at 

p = 0 The average of B 2  for an off-diameter path (i e , one which 

does not pass through p =0) will be slightly larger than for a path 

that follows a diameter. The electric field and vector potential have 

their maxima at p = 0, so the average of E 2  and A2  for an off-diameter 

path will be slightly smaller than for a path which follows a diameter. 

If one were to average over the beam height, as well, as along its 

length, one would obtain slightly different averages than those given 

by Eqs. (B12) and (B13). For example, consider an atom located on the 

upper or lower edge of the beam It will pass through the cavity along 

a chord which passes to within a distance Z of the cavity axis (po), 

where 22. is the vertical extent of the beam. The averages for such an 

atom are (R = 1.546 in , = 125 in ) 

R 	
(XO 1- p) dp = 0.432 ± 002 	 (B14) 

•I
R 112 	01 

 ) dp = 0.220 ±•.00l ,. 	, 	(B15). 
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As anticipated, the average of J 12  (and hence of B 
2  ) is slightly 

larger for an atomon the fringe of the beam than for an atom at the 

beam center, and the average of J0 
2  (and hence of E 2  and A 2 ) is 

slightly smaller for an atom on the edge of the beam than for one that 
A l 

follows a diameter. This difference amounts to about 10% in both 

cases. 

Owing to the fact that there are deviations of unknown magnitude 

from the theoretical field configurations due to the holes cut in the 

cavity for entrance and exit apertures, and for the coupling ioop, no 

averages will be exactly correct. Furthermore, uncertainties of about 

5% arise in the determination of input power P and of Q,  and these 

affect the accuracy to which the average fields can be determined. The 

following rough values will be used 

	

(J0 2) = 0.455 ±0 023 	 (B16) 

	

012) = 0 212 ±0 009 	 (B17) 

The uncertainties given here amount to about 5%. 

In summary, the effective fields experienced by the beam will 

betakentobe 

E= IEI e t 	 (B18) 

B = iIBI e t 	 (B19) 

A =_l IAI e t 	 (B20) 

where 

El2 = 0.455 E0 2 	 (B21) 

1B1 2  =  

	

0.212 E0 2 	 (B22) 
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