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ABSTRACT
For multipartiéle reactions involving massive particles of any
spiﬁ, the amplitudes intrdduced by Bali, Chew, and Pignotfi are con- .

sidered as functions of théfscalarlproducts between four-momenta. A

‘method previously used by Trueman for 2-to-2-particle reactions and:by

, this author for multlpartlcle he11c1ty amplltudes is used to cla581fy

and exp11c1tly extract the kinematic 51ngular1t1tes of. the BCP amplitudes.

- This method concentrates on the Lorentz group parameters that define the

state vectors in terms of which the amplitudes are construcfed. The -
basic assumption'iS~that the kinematic'singularities of the amplitudes
are due solely to the 31ngular behavior of these group parameters on'

certain surfaces, given by the vanlshlng of partlcular Gram determlnants,

in the space of the 1nvariant variables. The kinematic singularities- w7

take a form Wthh seems suitable for analyzing klnematlc constralnts in
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I.. INTRODUCTION

In a previous paperl we investigated the kinematic singularities
-of helicity amplitudes for multiparticle reactions between massiveJ
particles of any spin. The procedure employed was based on é method used
by Trueman for 2-to-2 particle processes.g Trueman observed that the
state vectors usedbin forming heiicity amplitudés become 1ll-defined on
certain surfaces in the_spacé of the invarianf'variables. This is so

ecause of the.LOrenti.groupvparameters -- viz;, for helicity states the
:hyperbolic and polar angles of thé particles' three-momenta ~- Yecome
éihguiar when expressed in terms of the scalar variables as soon as
partiéular Gram determinants formed from the four-ﬁomenta Qénish, Under
the assﬁmption fhat this is the only source 6f~kinematic singularitiés
in the helicity amplitudes, Trueman was éble to explicitly extract these
singularities by giving the'expansion.of the amplitudés near each
singularity surface. The méthod was then generalized to multiparticle
helicity amplitudes by this.author.

From the point of view of applications, the multiparticle helicity
amplitudes do not seem very useful. Instead, Bali, Chew, and Pignottil5'a
(BCP) introducea another set df“amplitudes which are most cdnvnnient ‘
in formulating multiperipheral -- in particular mult1~Regge -~ models;
we shall call them the BCP amplltudes. In 1ntroduc1ng their amplltudes,
RCP aoplLed group theory technlqpes developed by Toller and his |
collaborators.5 -8 The BCP amplitudes have been further elaborated on,
in particular by Chew.and DeTar (CD). 9 Multlpartlcle amplltadeo Wthh
are essentlally the BCP amplltudes have been investigated by Toller' 7510

and by Koba.ll
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Inlfhié paper we cohsider the BCP amplitudes as functions
- of fhe invariant variables formed from the four-momenta of the reacting
- particlesz,and we investigate their kinematic singulariﬁies.in these
variables. As for helicity: amplitudes, the basic assumption is fhaﬁ
theée singuiarities occur whenever one of the Lorentz group ﬁafameters;
considered aé a functioﬁ of the invérianf’variables5 is singular.
Although the details deviate from the prdcedure fbr the heliéity
amplitudes, the technique used here is by and large the Saﬁe.-;lt ?ermits
us to explicitly extréct_the kinematic singglarities by giviﬂg’ﬁhe:>
expansion of the amplitudes near each singﬁlarity surface.r
Wé do'no{ in this>§aper treat 2-to-2 particie reactiéns, buﬁ only
consider procegses with atvleast threé particles in the final state.” The
BCP amplitﬁdes in the former case reduce fé helicity.amplitudés in'af
_ : 11 L

crossed (t) channel,6’ and their singularities are already known.2

We begin in Sec. II by reviewing the definition‘éf the BCP .
' amélitudesBiu in the CD >version,9vnofing that in Qrder to obtain

. unémbiguous amplitudes ﬁe'must.be more specific at places where CD leaves
a choiqe opéﬁ. In this procedﬁre, we give the explicit expressions: for

the Lofentz group pafameters in terms Qf the invariaﬁt variables. The
kihematic éinguiarities of the amplitudes are then treated in detail_in
Sec.‘III/under the assumptiqn that they arise due to the singular
behaVior:of the group parameters. The results are summarized in Sec:AiV

in a way most suitable for application. A few concluding remarks on our

approach appear in Sec. V. An appendix reviews our notation for

determinants.

.m
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- No attempt is made in this paper +to actually apply our results

© ' ‘ in an analysis of concrete multiperipheral quels.

‘II. THE BCP AMPLITUDES

Consider the multiparticle reaction

a+b->0+1+.c. +n+(n+1), n>1 , (2.1)

in which particle J, for Jj= a,b,O,l;‘---;'(n " i), has mass Mj £ 0,
fpur—momentuml pj = (Ej{:gj)’ épin Uj’ and magnetic quantum‘nuwber
mj; vthe precise meaning of mj is given later. |

The parficles are ordered in some definite, although arbitrary,
way to yield the "multiperipheral chain" of Fig. 1, and we introduce the

four-momentum transfers

s

2 - |
b= Q. (2.3)
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We assume physical values of the four-vectors until Sec. II D; in
particular, each Qj is supposed to be a spacelike vector, so that

with the metric (+,-,-,-) one has tj < 0.

The multiperipheral choice of variables should in the context
of this paper be regarded as purely a bockkeeping device, not implyiﬁg
any assumption of'dynamicel character, although of course our

investigations ultimately aim at multiperipheral models.

A. Choice of Lorentz SyStemS

Following BCPvB‘ and more particularly CD9 (see also Ref. 7)
we now introduce a series of Lorentz reference systems to be used in
defining the partlcle states when constructlng the BCP amplitudes.
As:already menticned in this procedure we have to be more spec1f1c than
- CD concerning the choice of space axes; we comment in Sec. V on thls

question.

First, define the rest system ibo for particle O to have a

three-dimensional coordinate frame with its z axis along

9 =-p, ond its y axis along & *p (see Fig. 2).

*g
A rest system ba for particle a is obtained next by a boost

BZ(aO) along the =z axis from the system’ b, Here, and throughout

this paper, a Lorentz transformation always means an active transformation;

in the present context, for example, the boost BZ(aO) transforms the

four-momentum for particle O from rest into its value in the system. ba'
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As a consequence one has
cosh @ = (pa po)/(Ma MO) 3 (2.4a)
sinh o ='Aé(pa’ po) /(Ma MO) N : (2.40)

the notation for Gram determinants follows Ref. 1, reviewed in the

' gppenqix. Moreover; the 2 axis in ba “is along -QO = g&,’ and the

¥ axig along 'Qi X Dy, 8as exhibited in Fig. 2.
VNOte that in the CtherminOlogy our choice of ba implies
r =1, so that their system (Orr) coincides with b ..
a ’ _ a |
Next, one defines a Lorentz system (1,£) in which Ql has
only a {(positive) =z component, the 2z axis being parallel to 'pé;
It follows that the system

while the y axis is still along bis

8 % By !
b, 1s obtained by a z pboost B (qo)' from (1, £), and that

coshrgo _ Aé(Paf‘Ql)%yp{Ma ( - tl)%} - : (2.5a)

hVie

‘sinhiqo‘=-(pa le/ {N% ( - tl) } .f_ : | (2‘5bj.

For further use we also note the expressions

i1

Y
N~

-cosh (ao - qo)f A?(PO: Ql)

/ {Mo (-t

} , (2.6a)

(- 18 Ql)/ {Mo ( - tl)ﬁ} - (2.60)

sinh (a, - qO),
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In analogy to the definition of .bé one defines. for each

final-state particle j for j = 1,2,...,n + 1 a special rest system'bﬁ.by'

J

requiring the =z axis to lie along»j%r and the y axis ﬁo;be parallel

to p. .xq. (Fig. 3). By a z boost B (a.), one then obtains
wwoj=1 T ' Sz ] ,
a Lorentz system (Jj,r) in which Qj ‘has no energy component, the
z axis is alogg- Qd’ and th§ 'y axis along ‘ijl X,gg’ It follows,
: that in this system P is parallel to the =z axis, as exhibited in .
. b

Fig. 3, and that

: i 1 ‘ 1) o :'.. »

3 = 2 A -1 2 c . . .7 o
cosh o, = £(p.; @))%/ {Mj (- } , | (2.7)
inh = L . . /) . I‘/I. - t. . - - . >. g
stnhoay = (- py @)/ My (=%, o ey

for J - 1,2’ s+, n, n +. l " . 1

Next, one defines another Lorentz system ‘(j;ﬁ), for

j=2, +++ ,n+1, by requiring.as in (3,r) fhe vector Qj to have

no energy cémponent and the z axis to lie along ‘35, but now
pj 1 is pérallel to the 2z axis and the y"axis is defined to .lie,
rw ] = . :

along Eip Xlgg (Fig. ‘3).

Evidéntly, for j= 2, *++ , n + 1, the system (j,4) is.
p A A

obtained from the'system‘ (j,r)”‘bymaosucceésiembof.iW®9LorentzAtrans—

formations, the first being an x boost, Bx(gj), and the second a.

rotation “RECH{) around the =z axis. - It is straightforward.fé ‘deduce
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95 Pyan
Q. P. -
cosh gj = o lJ T (2.8a)
sinh £, = -ty { 3 ?J’ Py-1 By) ) (2.80)
RN 2<Qj,.pj>z»
for § = 1,2,-ee, n 41,
Q  Ps1 Pip
Q o P
cos uj = d Jil . s (2.9a)
A (QJ, Py1s Pyp)? A3(Qj, P. 15 D.)2
.
, Qy, Py p p { . J>
sin . = N a2 S Aé ’ -1 5 - {2.90)
' v 5(Qj, Pj_q pj_2)2 A (Q > Pyys p‘)
for j =2, **+ , n + 1.
b =0 R - (2.9¢)

Here we have again used the notation for determinants introduced in Ref. 1
(see also the appendix). Moreover, we have anticipated the immediate
conclusion that the results above also apply to the case j= 1, only

that by = 0.
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Note that ouracﬁoice of three~dimensional reference frames
implies that, in the CD notation, v = 0, for j= 1,2, «+¢ , n+ 1,
so. that “j is Jjust the "'Toller angle"; see Sec. V for further comments.
Furthermore, it follows that the Lorentz system (j,r) is

obtained from the system (j+l, £) by a 2z boost Bz(q.), with
L J

)

j+17 {7

1
2

]

cosh a = (- @, )/ {(=2)% (- (2.100)

-

il

FOr j = 1,2, eeey n . -

It remains only to define the special'rést frame bb for particle -

b to have its = axis along i%n#l = _Mgnfl

and the 'y .axis .pafallel
. , o
to poXQ . (F;g. %). In the CD language this means choosing

‘r. = 1. Clearly the system (n+l,r) is obtained from b by a

[

'z boost Bz(gn+l)’ where
. " v . _é— %‘ N . . _‘ .
cosh q .y = 8(Q 5 )%/ {(‘ b)) My o (2.112)

cinh Oy =‘( _ Qn+1 pb)/ .{( ;.tn+l) Mb}>>. | ‘  _ (2-11?5

B
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B. Definition of the State Vectors

The rest frames bj’ for j.= a,b,1, ***, n+ X as ;nfroduced
ahove, are chosen to be the frames in which the rest states ]&% 1nj) “are
- defined; mj denctes the magnetic ‘quantum numbér, and the usual Condon-
Shortley phase conventions are understood. |

In an arbitréry reference system ('"the laboratory system") the

state vectors pj, mj ) are, following BCP and -CD, obtained by

applying the series of Lorentz transformations that take a vectorvfrom

the system 'b%, over the system ({j,r), and down through the multiperipheral

(%

chain to the system ba, follcowed finaily by a Lorentz transforméﬁion
from ba' to thenlabofatofy System; The reaction amplitude is independent
of this last transformatlon 26,759

It is convenient for our nurposes to use the fréednm in the cnoice
of the laborafory system to spec1fv it dlf:erentWy for chh yértlcuTar

'apnllcatlon As an example, 1f the laboratory.system is taken as +the

system b _, one has

i}

% m) o - (2.120)

pw)

=

) IQ;,mO ) P v » ,(2.12?))

=3
O
=
O
S
i
o

(2.12c)

to
=
=
~
it

5 (q,)5, <g )3, (a:) lem )

3o
~
-
=3
L
=
~
{

,(05)8,(8,)8 (2 )R (1,8 (5,)3 () (2.120)

Blay )R, ()8 (6B (@) [, m), for k= 2,-++, n+ 1,
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- Vo = B [ cee . £ ) .- m

Bo M ) = Blag)B (¢,) Ryl B8 0B (a0 g s o )
(2.12¢)

In terms of the generators Jk‘and Kk‘ (for k = X,V,%) for

rotations and boosts, respectively, the operators defining the states

- read

s}
—~
o
N
it

e#ﬁ ( -1 u.Kk) ;o | (é.lBa)

5
=
~
<
e
il

- exp ( - i v Jk) s . (2.13p)

for k=X,Y¥, 2.

- C. Definition of the  BCP ~Amplitudes

The reaction amplitudes, being the expectation value of the

T matrix between the initial state

li)=Ipgs m ) ]'E‘o’.,_;mb -).E"l g s (ml) (2.1ka) '

- and the final stéte..

o+l _ o o
ley="10 Ip, m )= (g > (md )  (2.24p)
o k=20 . - s :

!
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are given by

Ty = Ond {ng} o] g s ) ) - - ew)

{m

Here, the state‘vecfbré in'Eqsg (E.lh)'arevof course @he BCP ohés
defined above;‘ Moreo&er,_ {m} sténds collectively for all mégnetic
guantum numbers, [mi}'_and.v{mf} lfo::those of the initiél and‘final
state, respéctively; éimiiarly, {ﬁﬁ] 'énd ggf) denotg éollecfiveiy

the momenta.

D. Variables and Analyticity'

The amplitudes T are now considered as functions of all

Rt | |
thg;scalar'produéts pibk, 3> K:i(for. i,k = a;b,lll...iLn+l),
subjected to thbse restrictioﬁs that'ariSe from.energy-momentum-l
vcoﬁserVatioh and. from méss-shell'éoﬁditions. Some ofvthesé queétioﬁs
were treated in Réf. l; where additional refefences are.quoted, and»
we do not discuss them further here. Tﬁe same'apﬁlies'to the fact that

vthe reaction amplitudes are algo functions of‘thg pseﬁdoscalar préducts‘
that can be formed froﬁ foﬁr linearly indépendent‘fourevectofs.

| .'Aé‘is nétufal from the way in which tﬁe BCP émplitudes[ére
defined, we shall most often use those combinations of the sdalar‘d
producfs given.by tj, Qj‘pj’ Qj.bj;i;vét?. ItAshouid bé keﬁt in mind,
though, that nqt all of thesé are indepeﬁaent. |
Folioving Refs. 1 and 2, the assumption is nbwithat ﬁinematié

singulgrities of the BCP amplitudes occur whenever the Lorenfz groun ‘
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. parameters’ (aj, ay; gj, uj) considered as functions of the scalar

products are singular, and that this is the only source of kinematic

singularities in the amplitudes. If follows from Egs. (2.4) - (2.11)

that kinematic singularities could occur on the surfaces

'“_bj - 0 , for §= 1,2, #e, n + 1», (2.16a)
_.A:é(‘gj,p(];) =0 , for j= '-1,2{'_..., n +_Y1,; ,, (2.16?0‘)
slpz=o L s
%(Qj,pjnl{pj) =0 , for j = 1,2, cee.n + 1  .‘ , (é.iléd)

~ Here, wve have hot.listed the'singulafifies duevﬁo the vanishihg of tﬁe
abave-mentioned pséudoscalar'prbduéts; they can be treéted by the method
used for heliéity ;mplitudes in Ref; 1. |

| If is convenient to ha?e'the following conceﬁts and notatioﬁs,
;qtroduéedlin Ref. 1. An amplitude T(mi‘ is sai@itd be'béanglytic
if it is analytic except possibly for.dyﬁamical singularities and for‘

the occurrence of the pseudoscalar vériables. Moreover, the notation

&(z) ¥ £(2) at Z= 12, (2.17a)

and -

means that g(Z) - £(2) is b-analytic at 2 =’ZO,




e}

determinants (2. 16) vanishes, a'L1 the others do not. As vas dlscussed in

. "UCRL-19262
-15=-

glz) ~ f(z) at Z=72, E (2.170)

means that g(Z)/f(Z) 18 b-analytic at Z= 2,

ITII. THE KINEMATIC SINGULARITIES

Each of the 51ngular1ty surface° (2. 16) is now trcated one at a

“tine, by use of the general procedure described in Ref 1. As we shall

see, special attention must be paid to those surfaces pertaining to’the
1eft and right ends of the multlperlpheral chain of Flg. 1.

In the treatment we assume that whenever one of the Gram
Ref.l, this problem of "c01n01d1ng 81ngular1t1es" is really a harmless
one in the sense‘that the combination of the separate singularity
structures on o (orfmore) of the surfacesv(2.16).gives the'structure

of the coinciding singularities also.

A. The 6= 0 gingularity, for. J= 1,2, ==+, n +1

| If the massee obey M, 7 M, end Mo 1%' M, the tregtmegp
in this section applies-witheut restrictions.‘ The case when these
neqpalltles are not. true is treated in -Sec. III B-C below.

At tj = 0 we find from Egs. (2 5) - (2. 8) thet aj, 912 Gy
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: . ' ‘ e sl2
and &, are singular. In fact, using the notation (2.17), we find
J _ .

i

at t. =0 o S . _ -
J - ] . . |

_aj'j {%'é,ln(-tj) if Ré(ijj)z 0, for j= 1,2, e, n+1 ,
(3.1a)
4 53 + & In(-t.)y if Re(Qij+l)z 0, for j = 1,2, «oo, n
‘ {3.1p)

1 ' A
~ (~t.)2 i .p.JRe(Q.p, .) >
E. =~ ( ) i Re(Qp,)Re(Qp, 1) > 0

| R for § = 1,2,-+en + 1,
= 1w~ (it 5':if Re . ..Re .‘... < O v o :
gy - : ( 5) . §QJp3) ,<QJPJ*l) ‘ !
: S (3.14)

- while those cases not éoveréd'byAthe general formulae are
F:\\; + L - ) = T . - e
4 % {— 5> In( tl2} at t, 0 if iBé(_pan) g 0, ()_;e)
- N o L - | e . R (s R
o1 ¥ {‘ z 1n( tn+1{} BT = 03 Re(Qp) 20 (3.22) E

Now, since Re(Q.Q. .) e uals',Re .P.) at t, =0, with similar
. ~ Re(Q;a,,,) eq (asp,) t,=0,0 pitar
relations for the other real parts entering in Eq. (B,l),,it'follows

immediately that
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2

+ is analytic at t.=OV1f Re Re Yy >0

(3.2a)

) <0

2

- . . . = R R
;.0 - 9y 18 apglytlc atv'tj; 0 if e(Q P ) e(Q. P51

for j= 1,2, see, n+1 ; = ’ (3.2b)

note in particular the correlation with Eq. (3.1d).

If, in the definition of the state vectors, the laboratory system

is chosen as the system b, it follows from Egs. (2.12) that the

potentialvsingulérity'at~ tj_z 0 férx'j'—_l,Q, *e*, n+ 1, will occur
only in the states ka, mk)-, for k= j,j +1, ¢eo, n+ 1, b. If here

k f J, one may use commutation rules-for»Lorentz group generatorsl

to
I

deduce

‘Bz"(qj_l)BX( §,)8,(q;) = exp {—i(qj_l e ‘fé;j)Kz} o (3.32)
X exp {—igJ(Kx,FOSh a - Jy §inh gj) ,

which from the relation (3.2a) shows that this product of boost operators

0 if Re(Q P ) Re(Q, Pj l) is positlve. If it is

" negative, one must instead write .

5,098,808, (a)) = e {-alay - g,

X exp {-i(iﬁ) KX} exp ‘{-i( gj - iﬁ)(Kx 'c_os'h'qj - -J sinh q, )}

| "G.3n)
to obtain an analytic expression. R
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For the state. %b,-ﬁﬁ)'Vtheionlyvadification is that'the booét
operator Bz(aj>' replaces Bz(qj) 'iﬁ Egs. (3.3); the conclusibn‘ is
again that ‘there are no singularities. |

’Ih summary, there are no tj‘%*o singulérifiés'iﬁ the.staté'

vectors (2.12). By assﬁmptioﬁ, there are therefore no ' kinematic

n

singularitiesdih the . BCP amplitudes at tj O;' This conclusion applies

at ty =0 ,onyy for Mé,% M, and‘g? tn+1 =.Q qnlyvfor" Mo # Mb':
If these inequalities 'are not fulfilléd, there will-be’sihgularities, as,

~discussed in the next two sections.

'B. The t, =0 Singularity for Mo=M

In this mass.configuration we have
l) 2

800 70) = 8B, &) = Az &) = ()2 -6 L (5

50 that Egs. (2.5) and (2.6) imply, in the notation (2.17),

1 o : ' :
Y (2% et %, =0 o (3esa)
i . ¥ : .
ao ...qo :’-‘:: (-tl)a A a-‘t tl = O ) v ) (B'Bb) o

while di and q, bave the behavior given by Egs. (3.1 a-b) for j = 1.

UCRL~-19262
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Finally

sinh &, =‘i . oat t, =0 , (3.6a)

cosh £ =% (-tl) at t; =0 , - '(j.6b)
from whiéh we éonclude.
1 N\ .
g+ i (-tl)2 at t; =0 . (3.6c)
; No ot?er group parametef§ §re singﬁlarngt';ti Z Q.

It is here’ C6nVehient to identify the laboratory system with

the Systém (2,8), so that

Iz 5y )= Ba)B ()3, (00) [oom ) - (3
Bys my ) = 'B;?(*ql)_Bx(-él)Bz(% -9 1@ my ) s U (3.70)
by m y=B (e -a) lgm y - | L (307e)

No other states have parameters singular at t., = 0. Note also that'

1
| @) --q is analytic at t =0, implying that

singularity either.

»tgl, ml }‘ has no

Now, . the commtation relations for ILorentz group generators

‘allow us tol%rite
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BZ( -q_l)vBX(v—gl) = exp {1(& + = m) (K cosh ql - J sinh q )}

-)(exi; {-i (% m)Kx} exp {1’ (i ql)Jy}l-, | (3.8a)

and, furthermore,

exp {i (1 ql)Jy} Bz(-éo) =

= éxp {‘i.q‘o '(szcosh q +1 Kx sinh ql)}»exp, {i (i ‘ql)J-y}‘ .

Therefore, from Eq. (5.7&),

...) exp{ (l ql } L,) 18; ) = o _ .
o ; - -
...) Z l m; ) dm"m ?‘(-— i ql)" | (5.9)

~ where the dots indica'te factors “bha't”aré analytic at 'tl =0 .

it

ARy ™y )

In an analogous fashion we £ind

l..rid" my ) =. (ee) _e@. {l (i"q’l)J&};. 12, mo Y=

- )Z .y .'qro"v.“' ‘ .
(- ! g, m ) ém;) n, (-iq) . (3.10)
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As a conséquencé, the amplitudes may be written

. X . . - - o . .
. T = A, Ry 4 &, (.-:1-»-_q )d v (,.-i‘ q), .
B e T B T

(3.11).

-where thévfunction 'A{ﬁf' are all b-analytic af ) = O, and where a

sum over 'm; and mé "1é‘understood. The kinemaﬁi# singularity of the
BCP 5ampiitudes T{mj at ¢, =0 for M =M, is therefore contained
in the two d-f&ncﬁpﬁsbf Eq. (3.11). They may be coupled; and the
resulting d~functiénéexplicity expanded-iﬁ'pﬁwérs of (-tl)% in a manner>
usgd many timés in Refs. 1 and 2. We give this»expression'in the

summary, Eq. (h.i)

L]

C. The tn+l 0 Singularity for Mn+l = Mb

An argument ?aralleling that of the pfeceding section shows that

the amplitudes have the representation

. - a

. g o
" Cn : b, - : n+l,.
T =B s , . , d Y] (f" i ) d / ("-,' i ) ’
)~ CCee mps my, ) T 000 T Sy ey TS
" S - | - (3.12)
where the functions B{m} are all_bjanalytlc at tn+l ;.OH if

M_,, =M, snd the kinematic singularities of the amplitudes therefore

" are contained in the g functions with the singular argumént'given by

Eq. (3.1c) for j=n + 1.
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~ D. The 8(ay, py) = 0 Singularities for J ='1,2, **+, n

For convenience, the 'cwo cases AZ(Q]_, b, ) = O and

AE( Q‘n 417 pn +l) = 0, affectlng as ‘chey do the two extreme ver‘clces in .

the multlperlpheral chain, are treated separately in Secs, III E and F

belqw.

' Sipce | -

42(Qj; ;) = AE(QJ, Q) = 4R, 2, ;'». - ;3.;55 :
it follows from Eqs. (2. 7) - (2.9) that a . q,j’ g , §j+._1’. a.nd‘uj*-l ' ave.

singular at AZ(Q' . p ) =0 for j=1,2, «e=, n. In,paa‘rtiéula;r, when

- the notaplon (2.17) is used,

3070 (3.14a)

% F 3 ix ~{ N )(Q 2 s )} : a’?---.Dé(t)('éj""._? )=0

where the determinant Az(QJ, pj) has been fact'orized'in'bo the twoc =~ = -

fl;tnc‘l:ionsl

Nlr-'

O o Gaw

Similarly - .= A -

éjf { (+)(Q QM)}% ai: D(+)(Q Q) =0 (3.150)
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)=0 , (3.15b)

ay - ix ~'{ (- )(Q . QJ+1)} 7 at D, - )(Q Q34

where we introduced

Jmay e, £ () (4, 0F L (3.5

( )
(Q QJ+1 5 9

Moreover, for the x-boost parameters we flnd at A?(Q .5 QJ+1) = 0,
: L B 2% Pa
~ +,-,—- or [ eee v = -T . >
éj +_{—-% (Q " QJ+1) for :Revg }J £ Re (( tg) | | 20,
- Q, P,
dJ J
(3.16a)
~Jx  (3.160
53+1 > {- 5 1n Ab(Qj, Qj+l)} | (3.160)
ot B
for Re (..-]j+l_:. = Re (-§j+l) 2 0.
| o s Pl

Here, the notatibn for Gram determinants follows Ref. 1; see also the

{

appendix.

Finally, for the z-rotation angle one has

e T {AQ(QJ ’ Q3+1)}_2 at Ae(Q QJ+1) =0 (3.172)
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while a short calculation using in particular the de‘berminantal idéntity

(A.5) of Ref. 1, leads to

cos p..+l-=K5 at AE(Q‘ Q

; 1) =0 o ~(3.170)

k: + 1 if R ’mi-,!' ~ .. o> .iC
ir ne [ }J Re { “:‘}j-i-l. 0 ’ : (57)

N (% ) ' , .
5 = + 1 if D, (Q " QJ+1) =0 , o (3.174)

where the notation introduced in Egs. (3.15¢) and_ (3.16) has been used.
The states (2.12) affected by vAé(Qs, p.) =0, J=1, +»o, 1
arg lpk mk), k = 3,5+, -v-~, n+1, b. For all except. k = J, _the

Vrelevant operators B (§, ) B (q ) R (uJ+l) (§J+l)' are t?ea’ted as

follows Flrst, commute tq obtain L

ARz<“j+l)_. (§J+li % 635{ '  §j+1:Kx} ¥.' - .1. ': v}(é‘?eé)
| X. exp {- ‘i',uj-!-lA(Jz cosh iéj-l—'i - Ky Siné gJ+l)} .

Next, use - o . : E . ,'

B T e S

X exp { - i qj(Kz covsh §j+l + Jyvs:_nh §j+l)}
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to find thatvthe two operators Bx(gj).and'_BX(gj+l) - have been brought:
to adjacent positions in the operétor product.

Now, provided .D2(+>(QJ,VQJ+%) = 0 and Re [‘..]j * Re ({ ";]j+l |

is negative, our being able toihandle’the operators. as we did; together

- with the behaviofy(3.15a), (3.16), and_(5.17),.shdwsbthat'the operator

product Has no singularity here. For the remzining threélgombinations'
of the signs K and 'Sv in.EQS.-(B;lT é,d), an appropriately modified
proéédure shows that in no case have the states |pk,-mk)

(for k = j+l, +++, n+l, b) any singularities at
- 2 ) J - - g

'AZ(QJ.; PJ) = 0, (for J'=bl:21 "'_':. n)-

_it remains to consider the state [pj, mJ). Here, the singularity

‘i1s contained in

: _ oo 1 S B .
Bx(gj) Bzgaj) lngmj )‘— exp {_ i (aj.+ 5 ln)(KZ:cosh gj :Jy sinh 532}

5 exp{; i (% iﬁ‘)Kz}_ize:vcp{i' i (i 'gj) Jy} o, m. ) =
= (e E«.g, Yy A TicE
RN R TR

o ( 5.19)

where the dots indicate Ffactors that are analytic at, respectively,.

0, *a, »)) = 0.



Ceehe o vmnage

. In summary, tho»jBCP; amplitudes'mayVbe”writténlff;:_f”"'

O e
m 7L g

-'where the functlons f ( )(d) _are all b—analytlc at respectlvely,‘.;of

[m}

( )(Q 5 ﬁ.).-50,3 for oj- l 2 ",Tﬁgk so that the klneﬂatlc :'ifo‘—;'

52

Y TR 1€ R IO R T GO
Tt My mY mmy 0T TN (3,20

e 51ngular1t1es of the amplltudes arc contalned 1n the d functlons. Théfﬂ_'
- _ _':.1 T
exp]1c1t representatlon of the amolltudes in’ powers of D (& )(Q y D )ZQf

2
o is. glven 1n Wq (h u) Lo

E. The A(Q., p ) =0 Singularity . = .

The group para“eters, belx 51pgular, are nov qb, and
-It 1s therefore convenlent to 1dent1Ly the laboratory system w1th the

'3tsygtem : l,r),_ in. whﬂch

* rand no other states cortain any singular parameteérs.. . .
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If A?Cpa, po) is factorized into

(+) ) . v . o
D2 (pa) Po) - pa pO - Ivla MO ) (5“22>

the usual arguménts lead, in the notation (2.17), to

1

qO+ 3 ix f_"'{D2(+)(pa; pO)} 2 at D2(+_)(pa" po) v:- o ,
" |  (3.2%a)
0

(3.230) |

The case 'Ma = MO, already treated in Sec. IIT B, is neglected in

Eqg. (3.23b). Similarly

qo - Oﬂo - 721— in ? {D2(+)(Pa,' PO)} 2 gt D2(+)(pa’ pO) :O s (3.2ha)
qo_'oz + L in =~ D(’)(p D) z at D(*)(p p.) =0 if‘M >1‘4- 
- -0 . 2 a’ =0 2 a’ f0 a< o "

v(B.éhb)
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Finally, as in the preceding section,. -

cosh gf

| . _ e | -
'_? ;{AQ(Ql, pa)} at 4,(Q, p ) =0 .  (3.25)

sinh gl

Consequently, the same technique as used in Egs. (3.19) and (3.20)

leads to the representations

i _gl), _(‘

v : ) . ay . .
Temy = P, d i) dy 3.06a)

coe 3 ’ : m’ .
o7 3 ma, mb} m
where . the functions .E{mj‘are all b-analytic at D2(+)(Pa; PO) = 0, and

0 o) a Beigya,
- ! . 1 . ST

o+ o ) . =) |
vwhere the functions F%;; -are all b-analytic at 32( {(pa, po)'; 0o
provided M_ 2 M_; the signs in Eq. (3.26b) correlate with this
, Ly, L
inequality. Again, the explicit dependénce on ‘Dé(")(pa;'po)? is given

 in the summary, Eqs.‘(&.a) and (L.3).
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¥. The Aé(Qn+l, pb) = 0 Singularity

Arguments similar to those in the. preceding section show that

. the BCP émplitudes have the representations

Gn+l '
n+l) dm’ s (1 §n+l) ?

o}
. b,
=G 7 d-l (lg
‘ n+l T n+l

ml, co, n’ s, m i m
(m); (e mn+l’ o T T

(3.27a)

) = 0, and

fhere the functions G - - ()
.vhere the functions (m) B%C all b-analytic at ng (pb, Pl

; (%) : | % : %+l
T =BT by 4y (f2iE )d, (FiE o),
{1} {e, Wy mb} my n+1 Mg P n-+1
(3.27b)

, R () tieat 0 Vo 0 Yoo it
where the functions H{m} are all b—analytlc at D2 v (pb, pn+l) = 0 if

M z M

D

1’ the signs in Eq. (3.27b) correlate with this inequality.

G. The AB(QJ? Pj.q pj).= 0 Singularities for J = 2,3, «++, n

I ror

w - ~ The cases J = 1 and n+l are slightly more compliCatedvand are
tfeated separately'invfhé two following sections.

It is clear from Sec. II A that only gi, Hj and uj+l are

singular at A%(Qi, Pj—]’ p.) = 0, for J=2,3 seo, n .

J
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In particular, using the notation (2.17),

N R O
= > P. . o .3 s 4 ) =0
€57 {D5 (Qs5 Py 5 Py) at Dy (@3 »5_15 2y) - %

- (3.28a)

D B O PN () € P
€ -lﬁl"{D5 (@5 py 5 Py) at Dt Qs Y p,) = 0,

(3.28b)

where AB(Q" pj 17 pj) have been factorized into the two functionsl.-

J .
B N1 . [N P
+ . — _— .
- . — P 2 p 2 +
: ' _ QJ “J-1
(3.28¢)
Moreover; bhoth sine and cosine of p, and “j+1 . behave as
_'{AB(QJ’ RY pj)} % gnd a.shorJ calgulatlonvs?ow
itan h. . =T tan i At- D (i)(Q ;D - p.) =0 . | (3.29)
3+ "3 R TR R LR Rl -
It follows immediately that
L%, . is amalytic at D.\TN(QL p. ., p.) S0, (3.%0)
J ¥l , 5 S L R
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In the state vectors [pk, ni? (for k= j+l, <<+, n + l,b)'_we

find, for the relevant operators,

R (1,) B (&) R (u

- . -1t (K + X simn, .
2 P35/ Pk 55 Ty j+l> Rz(“j* “j+1) exp{ * gj( x SOy y'Sln“3+l)}’

(3.31)

: ‘ o o (+ v
so that +this operator product is analytic at D5( )(Qj; pj-l’ pj) = 0.
A similar argument using instead Eq. (3.28b) leads to the conclusion that

© the product is anaiytic also at D5(—)(Qj; Py pj) = 0.

Concerning the state lpj, mj), the appropriate procedure is to

write

R (un.) Bv(gj)’= exp {~i gj (hx cosFj - Ky sinuj)} exp {a.iuj JZ}

(3.32)

in order to find that the singularity of this state occurs only in a

5

e (+) -
factor e ~ip, m, at D .5 P. ) = 0. By a similar
Xp ( J i J) (QJ’ pJ—l’ pJ) 1
argunent, the singularity at- DB(—)(QJ; Pj—l’ pj) = 0 may be isolated in

a factor - exp (iuj mj)._

As a consequence, the kinematic singularities of the amplitudes

' are given by the represéentations -

() s 1w o
T{m] B N[m} ' eXP{i gl j} ’ = (3.33)
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MEINS))
[ m}- ) e
( )(Q 5 p 1 p ) =0, for j=2, ***,n; the notation (3.28¢) is used.

where the functions are b-analytic at, respectively,

3
" The angle ‘“j is given by Egs. (2. 9)

Because the angle pj' depends on the pseudoscalar product

e(Qj, Py 1 Py P 2),v the singularity (3.33) cannot be written
! Pyo 3= / .

J

+ : i o o
unambigously in powers of D (")(Qj; pj’l’ p.)3; this circunstance is
' : - J v ,

3 o
discussed in relation to Eq. (4.50) of Ref. l.

H. The AB(Ql’ po, pl) =0 .Slngolaolty

Here, 3 and ”2 are singular; in partlcular, Eqs. (5 23)

apply also in thls_case w1th - J -71, It is therefore convenient’ to 1dent1Lv

the laboratory system w1th the one obt ained from (l r) by a z rouatﬂon :
RZ( _“2)’ in which system the states contdlnlnv any singular paranetors

are

Lmy=R(-u) B -8)B(-q) g m) ,  (3:3%)
'Lao, ﬁlo);'_Rz( --ﬁé)rax(a-.g ) B (a %) | C(3.340).
2 B = R - ) Ble) 2 m) G

The usual technigque thersfore allows us to write

T —N{(;n")( 1) exp" {— 1 g Fomgok r.;o _+'ml)} . | (_3.35.)7
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+1(1)

vhere the functions N[m} are b-analytic at, respectively,

£t

+ B
D3<_)(Ql; Py pl) = 0 in the notation (j.28c). The 51ngularity of the

» amplitudes is thus comtained in the eprnential-factor, with pg given

by Egs. (2.9) for J = 2.

J. The ABKQn+l’ pn’>pn+l) = 0 Singularity

In a manner analogous to the treatment in the preceding section

one deduces the representation

() (1) . IR U
T{m}-_VN{m} S XPQ + tHppa (mb - mn+l) ? (3.36)
s +) . ' :
vhere the functions E }(n+l) are b-analytic at, respectively,

\)\l

Qn+l Dn? pn+1) = O, and p_ . 1is given by Egs. (2.9) for § = n+l.

IV. SUMMARY OF RESULTS

In summarizihg the findings of the detailed inVestiéations ia
R : gecs. IIT A thraugh IiI J, it is convenientvto appeal to the multiperipheral.
| . picture, Fig. 1. TIndeed, our.fesults shoﬁ that the kinematic singularities
of the BCP: amplitudes, apart from the AB(Ql’p ,pl) = 0 51ngularity are
alvays assoc1aued w1th a particular vertex in the multiperipheral chain.
Of course, thia is just a reflection of the way the BCP amplitudes,are
defined. We now proceed to exhibit aur results in fhe concepta and

notations laid down in Fig. 1.
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~A. The Leftmost (pa - Py - Ql) Vertex

There is a tl = 0 singularity'only if the masses are eqpal;

Ma = M_ . in that case, invoking a method applied several times in

0

‘Refs. 1 and 2, one concludes from Eq. (3.11) that the amplitudes have the

representation

E =ZZ a % 'exP{ M(JHH)}I
(m) =2 'p;:O ' {(J +m) 1 (s 2

m, -y m t (9 -In)}

X(—t) / : {n(-t)é_} Aé(p)J,{m} -,.. (4.1)

15

where the standard notation for Wigner's %-J symbols

(p)
J o, {

is used, and where

the functions nﬂ have no kinematic singulari’siesll‘L at t, =0

1.

provided Ma = MO’ they are, moreover,;ndependem;of the nagnetlc quantum

numbers : m and m..
) : a 6]

Note that the singularity structure (L4.1) is very similar to

that of the 2-to-2 particle helicity amplitudes as given in, e.g. Eqd (4.5)

of Ref. 2. As there,'suitable linear combinations of the amplitudes'may
be formed which have stlll simpler kinematic 51ngular1t1es, viz., they

equal a power of ( - t, )2 times a function kinematically regular

|
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| O)2> for the
t, channel, i.e., the reaction a +0=>142+ «.0 +(n+1) +b, one

mey, from Eq. (3.26a), deduce the representation

At the incoming.state threshold t, = (Ma + M

)

(h.2)

. _ Z Z 0; 9, J exp{:’zist‘(J—m)L -
A {?}f L ' v {kJ +m)1(J - m)! }%'”

J=0 =0 ma mo m-
b
}-e (p)
Jy{mp 7

- -3/ o )
L ol /=) VN
X {_.tl + (Ma + MO) } {? {-tl + (Ma 4 MO) }
= (M o+ M)F
a

with all the functions (p} kinematically regular at t ),
. . J: {m} : : : ' 1 Y

and independent of ma and mo. The‘analbgy to the 2-to=2 particle helicity

N

amplitudes, Eq. (2.14) of Ref.2, is evident.
Similarly, at ty = (Ma - Mo)z, and depending on vhether

M, > My oor M < Mb, Eq. (3.26b) may be transformed into the representations

' 4 o | (L.3).
! Zv o, o J . oexp(Fix (FEm)y
{ m} PR . _ - i
‘ J::O ‘p:o ma _mo m [J + m) . (J - m).J 2

—

o . V ’ 1/ o 1, .
X {'—.tl ,+'(Ma - Mo)e} ._/ m I- by + (M, - My 2 /l ;[m(]p) )’

|
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where the functions £ ‘P)("), " being independent of my and m _,

are without kinematic singularities at the tl-channel pseudqthreshold
ty = (Ma_*kMO)e’ and the signs correléte to the maés inequality
: Ma z MO. The 2~to-2 partic%e analogue is noﬁ Eq. (2.21) of Ref. 2.
The ”Toller'angle_singularity”vat A3(Ql’ Py, P ) =‘O is

exhibited in Eq. (3.35) and further commented upon in Sec. V, below.

B. The rightmost (pb - P

el " Qn+l) Vertex |

By Egs. (3.12) and (3.27), the singularities involving only the
variable tqml are obtained from the results of the previcus section if

the substitutions a » b, 0 > (n+l), and tl >t

- are made thrqﬁghout.
The Toller andle singularity at AB 0+l P P .) =0 is

exhibited in Eq. (3. )6)

C. An internal F(Qj - p. ) Veruex for § = l D, e%e, 0.

J J+l

From Sec. IIT A, the BCP amplitudes have no kinematic

singularities at tj = 0, with thé exceptions already covered>by_Eq.;(h.l)

and its rightmost vertex analogue.

Furthermore,thevresults of Sec. ITIT D, in particular Eg. (3.20),

1. -
exp { .5 ix (0, ¥ m,
o b { 2 ( 3 -+ Ji}

= _ t, oo+ (=t 0221 M,
Lu} {fa* - ) . (0 _ mj)3>l/2 J+l J J
; g | L |

imply

) ()
2% :
x 2; L [ et 5,)} ]2 (( (DD
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l

. . (£)()(p) . |
where the functions c@n] are independent at mj and have no
kinematic singularities at the "threshold parabola”7‘;
L ’
ﬁ*+l =(tj2 + Mj)g, respectively, for each j = 1,2, +-., n.
<J .

Finally, the Toller angle singularity at A3(Qj’ Ps_1s pj) -0

is exhibited in Eq. (3.33).

V. CONCLUDING REMARKS

We have iﬁ this paper investigated the kinematic siﬁgularities of
the BCP_'amplitudes as functions of fhe invariant variables. In its
choicé of %ériables our approach generalizes the conventional lines
followed for é—to-E particle reactions, where a knowledge of the kinematic

15

singularities in terms of invariant variables™ is essential in
understanding the kinematic constraints that any model, in particular the
Regge-pole model, must obey.

Tcller and his‘Collaboratbrs have taken another'approach.

5-8;10
They consider the‘amplitudes as functioné of the momentum transfers
éqﬁafed and of certain L&:ehtz‘groupaparameters which are similar,
'.although not identical,.to those specified. by 'BCP5 and CD,9 and
proceed to~shbW'that,-with proper conVentioné, theré are ﬁb kinematic
singularities in thesé va%iables. 'Moreover, as a consequénce of having.
"too many" yariables in this  group theory approach, the amplitudes bﬁe& :
cértain covarignce conditions. | |

Thé'amplitudes in the BCP and CD..conventions, being a

particular realization of the Toller amplitudes, are still not
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unambiguously defined, since they leave.open the’choice of the y axis
in the definition of the rest system -53 for each of the reacting

particlés; it goes without saying thatrthis is hot a defect_of'their
éonventions; In the CD language, if means fhat'the two z~rotation

angles vj and My are not uniquely defined. However, the "Toller angle"

wj,= Vj + pj+i is unique once the other conventions have'been accepted.3

In order to have a unique setrof amplitudeé in our approach we
~ have had to specify unambiguously the rest systems bj’ émounting to a
more or less arbitrary definition of the angleé 'vj and p,. However,
from the fact that wj is independent of this definition it follows that
the only place where these conventionsvaré off ény impqrtahce is in the
A3'= 0 singuwlarities exhibited in Egs. (3.34), (3.36), and (3.37).
Namely, independent of the choice of y aXes, #f there is a kinematic
singularity at a surtace AB = 0, itvwill:océmr in (a prgdUct'of)
factors exp ( i.m'j y). where sine and cosine:pf the angle V vére
proportional to f£3 }72; we have not specifieévthe argunenis in the
A3 Gram determinant here, since they méy depénd on the conventions.
Moreover, the a priorivpossibility_exists thaﬁ some convention could be
found'for which fhere are;no  A3_= C singu;gwities at all...We have,
not been able though, to find such a convention, at least not Withouﬁ

introducing other singularities.

g

N

Apart from these circumstances, relatéd to the:éhoice of
z-rotation éngles, the kinematic singularities.of,the' BCP amplitudes
‘involve only the momentum transfers squared im a wéy vhich seemsvusefﬁl
for a subsequent multi-Regge~pole analysis inmofporaﬁing,problems

arising from spin.

-
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APPENDIX

Notation for determinants

For cdnvenience_ﬁe repeat here the determinantal notation of
Ref. 1.
The Gram determinant between two sets of n four~vectors

(qj} and [rj} is denoted

rl ?2 T I‘n

D;t ;qﬁ rk)_E ‘ql % L I i} f ,  | (A.l)

-

“and the symmetric ones

. L i_q- q“\ oo e qn .
1 2
n+l !
s (ay ay s o0y ) = (-) . e (a.2)
v .l- _:r . L‘.ql q2 aea qh
Finally -
e(q Uyy Q) = € ' .q‘K‘ Mat ) . L (A.3)
10 9 % )T Gy B R Y R . |
where € wv is the completely antisymmetric isotropic tensor with - -

123
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For a function u = £(Z) +that is positive in the physical region
R

the continuation of u? is throughout this paper defined to have a

positive real part or, if u < 0. is real, to have a positive

imaginary part. Therefore, we shall always in a statement referring
: . o, iR

to the sign of Re(u)? include the implication that if

i ; Y
Re(u)2 = 0 but u# 0, we mean the sign of Im(u)=.

A. R. Edmonds, Angular Mémentum in Quantum Meéhanics_(Prinéeton
Univ. Press, N.J., 1957), p. 46 ff. -

In these summary sections we use phiases like "have no kinematié,
singularity" to mean "be b-analytic" as given prior to Eg. (2.17),

and in Ref. 1.

15. See, e.g., Ref. 1 for a list of references.
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FIGURE CAPTIONS
The multiperipheral chain for the reaction (2.1) with the
ﬁotation for momenta, masses, spins, ahd magnetic Qpanfum
numbers. |
The Lorentz systems associated ﬁith the leftmost particles of
the multiperipheral chain. Only the X=Z blanes are shown;
the three-vectors drawn have novy-cqmponents.
The Lorentz systems associated with an internal vertex -j,
J = 2,3 ++«, n, of the multiperipheral chain. Only the
X~z planes are shown; the three-vectors drawn have no
y~-components. -
The Lorentz systems associaﬁed with the rightmost particles
of tﬁe mﬁltiperipheral chain. Only the x~z planes are shown;

the three~vectors drawn have no y-components.
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Fig. 1
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Fig. 2
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| (j+1,0):
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, ''person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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