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ABSTHACT 

For multiparticle reactions involving massive particles of any 

spin, the amplitudes introduced by Bali,.Chew, and Piotti are cofl-

sidered as functions of the scalar products between four-momenta. A 

method previously used by Trueman for 2-to-2 -'particle reactions and by 

this author for multiparticle helicity amplitudes is used to classify 

and explicitly extract the kinematic singularitites of. the BCP amplitudes. 

This method concentrates on the Lorentz grOup parameters that define the 

state vectors in terms of which the amplitudes are constructed. The 

basic assumption is that the kinematic singularities of the amplitudes 

are due solely to:the  singular behavior of these group parameters on 

certain surfaces, given by the vanishing of particular Gram determinants, 

in the space of the invariant variables The kinematic singularities 

take a form which seems suitable for analyzing kinematic constraints in 

a factorizable multiperipheral model. 
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I. INTRODUCTION 

In a previous paper 1  we investigated the kinematic singularities 

of helicity amplitudes for multiparticie reactions between massive 

particles of any spin. The procedure employed was based on a method used 

by Truernan for 2-to-2 particle processes. 2  Trueman observed that the 

state vectors used in forming helicity amplitudes become ill-defined on 

certain surfaces in the space of the invariant variables. This is so 

because of the Lorentz group parameters -- viz., for helicity states the 

hyperbolic and polar angles of the partic1es' three-momenta -- become 

siigular when expressed in terms of the scalar variables as soon as 

partiular Gram determinants formed from the four-momenta vanish. Under 

the assumption that this is the only source of kinematic singularities 

in the helicity amplitudes, Trueman was able to explicitly extract ±hese 

singularities by giving the expansion of the amplitudes near each 

singularity surface. The method was then generalized to multiparticle 

helicity amplitudes by this author. 

From the point of view of applications, the raultiparticle helicity 

amplitudes do not seem very useful. Instead, Bali, Chew, and Pignotti 3 

(BCP) introduced another set of amplitudes which are most convenient 

in formulating muitiperipheral -- in particular multi-.Regge -- models; 

we shall call them the BCP amplitudes. In introducing their ampiitudes 

BCP applied group theory tecimiques developed by Toiler and his 

collaborators2 8  The BCP amplitudes have been further elaborated on, 

in particular by Chew and DeTar 	Multiparticle amplitudes which 

are essentially the BCP amplitudes have been investigated byToller' 1P 
and by Koba. 11 
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in this paper we consider the BCP amplitudes as functidns 

of the invariant variables formed from the four-momenta of the reacting 

particles,, and we investigate their kinematic singularities-in these 

variables'. As for helic,ty amplitudes, the basic assumption is that 

these singularities occur whenever one of the Lorentz group parameters, 

considered as a function of the invariant variables, is singular. 

Although the details deviate from the procedure for the helicity 

amplitudes, the tecimique used here is by and large the same. It permits 

us to explicitly extract .the kinematic singularities by giviig the 

expansion of the amplitudes near each singularity surface. 

- We. do not in this paper treat 2-to-2 particle reactions, but only 

consider processes  with at least three particles in the final state. The 

BCP amplitudes in the former case reduce to helicity amplitudes in a 

crossed (t) channel, 6)11  and their singularities are already known. 

We begin in Sec. II by reviewing the definition of the BCP 

3_1 	 9 amplitudes 	in the CD version, noting that in order to obtain 

unambiguous amplitudes we must be more specific at places where CD leaves 

a choice open. In this procedure, we give the explicit expressions for 

the Lorentz group parameters in terms of the invariant variables. The 

kinematic singularities of the amplitudes are then treated in detail in 

Sec. III 1under the assumption that they arise due to the singular 

behavior of the group parameters. The results are summarized in See. IV 

in away most suitable for application. A few concluding remarks on our 

approach appear in Sec. V. An appendix .reviews our .notation for 

determinants. 
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No attempt is made in this paper to actually apply our results 

in an analysis of concrete multiperipheral models. 

II. THE BCP AMPLITUDES 

Consider the multiparticle reaction 

a+b-*O+i+...+n+(n+l), n>l,  

in which particle j, for j= a,b,O,l ..., (n + 1), has mass M. 	0, 

four-mornentuni p. = (E. )  p.), spin 	, and magnetic quantum number 
- 	 J 	JAJ 	 J 

m.; the precise meaning of m. is given later. 

The particles are ordered in some definite, althoigh arbitrary, 

way to yield the "muitiperipheral chain" of Fig. 1, and we introduce the 

four-momentum transfers 

Q p' for j=l,2,.., (n.+l) , 	(2.2) 

and the momentum transfers squared, 

t.  
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We assume physical values of the. four-vectors until Sec. II D; in 

particular, each Q. is supposed to be a spacelike vector, so that 

with the metric (+,-,-,-) one has t. < 0. 

The multiperipheral choice of variables should in the context 

of this paper be regarded as purely a bookkeeping device, not implying 

any assumption of dynamical character, although of course our 

investigations ultimately aim at multiperipheral models. 

A. Choice of Lorentz 5ystins 

Following 3CP, 3  and more particularly CD9  (see also Ref. 7), 

we now introduce a series of Lorentz reference systems to be used in 

defining the particle states when constructing the BCP amplitudes. 

As already mentioned, in this procedure we have to be more specific than 

CD concerning the choice of space axes; we conmient in Sec. V on this 

question. 

First, define the rest system b0  for particle Q to have a 

three-dimensional coordinate frame with its z axis along 

= 	
a and its y axis along Q1  x 1  (see Fig. 2).. 

A rest system ba  for particle a is obtained next by a boost 

B(a0 ) along the z axis from the system b0 . Here, and throughout 

this paper, a Lorentz transformation always means an active transformation; 

in the present context, for example, the boost B(cz0)  transforms the 

four-momentum for particle 0 from rest into its value in the system. ba• 
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As a consequence one has 

cosh a0 	p0)/(M 	M) 	, 
a 

 

sinh a 	2a' 	o/(Ma  M) 	; 
 

the notation for Grain determinants follows 	Ref. 1, reviewed in the 

appendix. 	Moreover, the 	z 	axis in 	ba 	is along 	ZO 	J1
1 

and the 

y 	axis along 	• 	
x p1, 	as exhibited in Fig. 2. 

Note that in the CD terminolor our choice of 	b 	implies 

ra = 1, 	so that their system 	(0,r) 	coincides with 	ba• 

Next, one defines a Lorentz system 	(1,2) 	in which Q 	 has 

only a (positive) 	z 	component, the 	z 	axis 	being parallel to 	p , 

while the 	y 	axis is btill.along 	Qx 	. 	It follows that the system 

b 	is obtaihed by a 	z 	boost 	B 	(q) 	from 	(i, 2), and that 

cosh qO= 	2a' Qi)/Ma  ( - t1)} 	, (2.5a) 

sinhq= (p 	Q1 )/ {M 	( - t1)} (2..5b) 

For further use we also note the expressions 

cosh (a 	- 	) = 	(p0 , Q1 ) 2/ {M0  ( - t1)} 	, (2.6a) 

sinh(a0 - 	
) = 	- p 	V 	M 	 ( - t1 )} 	. (2.6b) 

1 
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In analogy to the definition of b 0  one defines, for each 

final-state particle j for j = 1,2...,n + 1, a special rest system b. by 

repiiring the z axis to lie along ,., and the y axis to be parallel 

to p.
1' 
x Q. (Fig. 3). By a z boost B (a.), one then obtains 

4'3 	 Z J 

a Lorentz system (j,r) in which Q has no energy component, the 

z axis is along Q. 	and the . y axis along p. 1 x Q.. It follows. 
MJ 	 hW 	ftJ 

that in this system p is parallel to the z axis, as exhibited in 
—J 

Fig. 3, and that 

cosh a. = 	(p., Q.)/ 	M. ( - t.)} , 	'. 	(2.7a) 

sinh a= ( - P Q)./ {M( - t)*} 	. 	. 	(2.b) •  

for j = 1,2 1  •.°, n, n +1  

Next, one defines another Lorentz system (j.,2), for 

= 2, 	, n + 1, by requiring as in (j,') t1e.vector  Q,. to have 

no energy component and the z axis to lie along Q., but now 

P. 1 is parallel to the z axis and the y axis is defined to.lié., 
- 

x Q. (Fig.  3). along P.  j-2 	...j 

vidëntly, for j = 2, ••. , n +1, the system (j,2) is 

obtained from the system (j r) by successoiofw®fLorentz trans-

formations, the first being an x boost, B 	and the second a. 

rotatbn 'R(.i.) around the z axis. It is straightforward to 'dethce 



7 	
UCRL- 19262 

a 	 r 
L• H • 	cosh 	= 	 3 	

1 •' 	 (2.8a) 
A2(Q.) p. 1 ) 2 L2(Q., 

1 

(2.Bb) sinh.= 
3 	 P1)2. 	p.) 

for j = 1,2,..°, n + 1 

Q i 
	

pi-1  p j-2 

LQ 	0 	p 
COS L. = • 
	 L 	 -J 	

- 	1 ' • 	( 2.9a) 
L3(Q., 	p)2 	pj_1, 

= 	E(.Q., p 1, i 	p 2 ) 	pj_l 	
, 	(2.9b) 

p.2)2 	pj_J, 

	

for j = 2, 	, n + 1. 

= 0 	• 	 • .(2.9c) 

Here we have again used the notation for determinants introduced in Ref. 1 

(see also.ti-ie appendix). Moreover, we have anticipated the iredite 

conclusion that the results above also apply to the case j = 1, only 	• • 

that 	= 0. 
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Note that our. choice of three-dimensional reference frames 

implies that, in the CD notation, V. = 0, for j = 1,2, •• , n + , 

so that 	
. 

is just the !HTo11.angle!t;  see Sec. V for further conents. 

Furthermore, it fol1os that the Lorentz system (j,r) is • 

• 	
• 	 obtained from the system. (j+l, 2) by a z boost B (q), with 

ff cosh ci 	3 	~ )/ 	( - t) ( - t~ ), 	(2 lOa) 

1 	 11 •  
siiTh q = L 2 (Q3 , Q~1)2/ 	- t 	( - t,. 1 ) 	, 	(2 lob) 

	

for j = 1,2, ... n . 	 • 

It remains only to define the special rest frame bb  for particle 

b to have its z axis along Qn+1 . = - 
pn+1 and the 	axis parallel 

	

— 	 • 	 •• 	 • 	 • 

to p x 1  (Fig. Ii). In the CD language this means choosing 	• 	 • 	 • 

r, = 1 •  Clearly the system (n+1,r) is obtained from bb  by a 	• 

•z boost B(.q +1 ), where 	• 	 • 	 • 

cosh +l = 	 b/ {(_ tn+i) Mh} , 	 (2.11a) 

sinh  

	

qn+l = ( - 	 b/ 	
- t~1) M

13 

	 (2 un) 
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B. Definition of the State Vectors 

The rest frames b., for j = a,b,l, ", n + 1, as introduced 

above, are chosen to be the frames in which the rest states 	m.) are 

defined; m. denotes the magnetic quantum number, and the usual Condon-

Shortley phase conventions are understood. 

In an arbitrary reference system (Tthe laboratory systemhl) the 

state vectors Ip.J , in ) are, following IBCP and CD, obtained by 
 3 

applying the series of Lorentz transformations that take a vector from 

the system b, over the system (j,r), and down through the multiperipheral 

chain to the system I, followed finally by a Lorentz transformation 

from b to the laboratory system. The reaction amplitude is independent 

of this last transformation. 3,6,7,9  

It is convenient for our purposes to use the freedom in the choice 

of the laboratory system to specify it differently for each particular 

application. As an example if the laboratory system is taken as the 

system b , one has 
a 

'a' 
	 ' in ) 	, 	 (2.12a) 

•& 

	
(ao) 10, rl0  ) 	, 	 (2.12b) 

!i m1) 
	

()B( 1) B(1) l,m) 	, 	 (2.12c) 

'k mk) 
	

(2.l2d) 

B( q 1 )R (t1)B( l)B(ak) O, .rn1 , for k = 2,''', a ± 1,
AV 
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hThb ) = B(q0)B(1) ••• R.( 	+1)B ( 	1)B( 1)I, 	> 

(2.ie) 

In terms of the generators J 
k 
 and K1  (for k = x,y,z) for 

rotations and boosts, respectively, the operators defining the states 

read 

	

= exp ( - i u K, ) , 	 (2.13a) 

	

R1 (v) = exp ( - i v J1 ) , 	 (2.3-b) 

for k=x,y, z. 

C. Definition of the BCP Amplitudes 

The reaction amplitudes, being the expectation value of the 

•T matrix between the initial state 

= 1 a  ma  )1p 	 rUb ) 	I C) 	. 	(m 3:) 	(2.1a) 

and the final state 

n±1 

= 	 m ) 	I 	(mj ) , 	(2 i-o) 
0  
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are given by 

• 	 (. [m) , c f) ITI 1:) , (m.) ) . 	
(2.15) 

VIQ 

Here, the state vectors in Eqs (2.14) are of course the BCP ones 

defined above. Moreover, (m) stands collectively for all magtietic 

• 	 quantum numbers, (rn.) and (mf) for those of the initial and final 

• 	state, respectively; similarly, (p.) and (p 4.,) denote collectively 

the momenta. 

D. Variables and Analyticity 

• 	
. 	 The amplitudes T 	are now considered as functions of all 

[m) 

thescalar products Pj pky 	
>k.(for j,k = a,b,1,.",n~l), 

subjected to those restrictions that arise from ener,r-momenturn 

conservation and from mass-shell conditions. Some of these questions 

were treated in Ref. 1, where additional references are quoted, and 

we do not discuss them further here. The same apiies to the fact that 

the reaction amplitudes are also functions of,the pseudoscalar products 

that can he formed from four linearly independent four-vectors. 

As is 'aturaJ from the way in which the BCP amplitudes are 

defined, we shall most often use those combinations of the scalar . 

products given by t, 0. p )  Q p, etc It should be 1 ept in mind, 

though, that not all of these are independent. 

Following Ref s. 1 and 2, the assumption is now that kinematic 

singularities of the BCP amplitudes occur whenever the Lorentz groui 
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parameters (a., q., •., p..) considered as functions of the scalar 

products are singular, and that this is the only source of kinematic 

singularities in the amplitudes.. 	If follows from Eqs. (2.4) - (2.11) 

that kinematic singu1rities could occur, on the surfaces 

t=O , 	for i=1,2, 	,n+1, (216a) 

(Q,p) 0 	, 	for j= 	1,2, 	, 	n + i 	, (2 16c4 

0 	, (2.16c) 

= 0 	, 	for j = 1,2, 	, n + 1 (2 16d) 

Here, we have not listed the singularities die to the vanishing of the 

aboie_mentioned pseudoscalar products; they can be treated by the method 

used for he1iity amplitudes in Ref. 1. 	.. 

It is convenient to have the following concepts and notations, 

introduced in Ref. 1.1 An amplitude T 	is said to be b-analytic 

if it is analytic except possibly for dmamica1 singularities and for 

the occurrence of the pseudoscalar variables. Moreover, the notation 

f(Z) at Z = 	. . 	(2.1a) 

means that g(Z) - f(Z) is b-analytic at Z = Z0, and 
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g(Z) 	i(z) at Z = 
	 (2.l7h) 

means that g(Z)/f(Z) is h-analytic at Z = Z 0 . 

III.TBE KINEMATIC SINGULARITIES 

Each of the singularity surfaces (2.16) is now treated one at a 

time, by use of the general procedure described in Ref. 1. As we shall 

see, special attention must be paid to those surfaces pertaining to the 

left and right ends of the multiperipheral chain of Fig. 1. 

In the treatment we assume that whenever one of the Gram 

determinaits (2.16) vanishes, all the others do not. As was discussed in 

Ref.l, this problem of "coinciding singularities" is really a harmless 

one in the sense that the combination of the separate singularity' 

structre on two (or more) of the surfaces (2.16) gives the structure 

of the coinciding singularities also. 

A. The t. = 0 gingularity, for, j = 1,2, •", n ± 1 

If the masses obey M / M and M IT, , the treatment 
a 	0 	n+1 	b 

in this section applies without restrictions, The case when these 

inequalities are not true is treated in 'Sec. III B-C below. 

	

At t. 	0 we find from Eqs. (2.5) - (2.8) that UV q. 1, q., 
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::d 
are singular 	In fact, using the notation (2 17), we find 12  

a (_t)} if 	Re(p 	)> 0, 	for 	j = 1,2, 	, n + 1 

(3.ia) 

q ln(_t)} if 	Ee(QQ 	0 , 	for 	j = 1,2, 	, n 

(3.11)) 

q 1 1n(t) if 	Re(QQ) 	0 	for 	j = 2, , n + 1 

(3.lc) 

(_t 	2 	if 	Re(pRe(Qp 	) > 	0 

for= 1,2, 	n+, 

(-t) 	if 	Re(Qp)Re(Qp 	) < 0 

(.ia) 

while those cases not covered by the general formulae are 

qO  ln(_t1 )} at 	t1  = 0 	if, 	Re(pQ1 ) 	0 	, (3..3.e) 

q 1  (_t 1 )} at 	t 1  = 0 	if 	Re(Q 	
1b 	0 (3 J) 

Now, since Re(Q.Q.) equalse(Q.p.). 	at 	t. = 0, 	with similar 

relations for the other real parts entering in Eq. (3.1), itfollows 

immediately that 
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+ qj  is analytic at t. = 0 if. Re(Q.P.)Re(Q.P. ) > 0 

(3.2a) 

	

- q. is analytic at t. 	0 if R(Q.p.)Re.(Qp. 1) < 0 , 

for j = 1,2, •, n + 1 ; 	 (3.2b) 

note in particular the correlation with Eq. (3.1d). . 

If, in the definition of the state vectors, the laboratory system 

is chosen as the system ba  it follows from Eqs..(2.12) that the 

potential singularity at t = 0 for j = 1,2, 	, n + 1, will occur 

only in the states 	
k' mK) , for k = j,j + 1, 	, n + 1, b If here 

k t j, one may use commutation rules for Lorentz group generators 1  to 

deduce 	. 	 . 

= exp {i(qj i. + 	 (3.3a) 

Z) 

Xexp {_i(K cosh. - J sinh q.)} , 

which from the relation (3 2a) shows that this product of boost operators 

is analytic at t. = 0 if Re(QP.) Re(QP 1 ) is .psitie If it is 

negative, one must instead write 

B(q 1)B()B(q) = exp {i(l - 

exp{ - i( i) 	 e 	-i( 	- i)(K cosh q - Jy  sinh 	)} 

to obtain an analytic expression. 
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For the state. 1P ., m.) the only modificatio:i is that the boost 

operator B(a.) replaces B(q.) in Eqs. (3.3); the conclusion is 

again that there are no singularities. 

In summary, there are no t. =0 singularities in the. state 

vectors (2.12). By assumption, thereare'thereforeno kinematic 

singularities in the BC? amplitudes at t. = 0. This conclusion applies 

at t1  = 0 -only for Ma ' M0  and at t 	= 0 only for M 1 	M,. 

If these inequalities are not fulfilled 5  there will be singularities, as 

discussed in the next two sections. 

B. The t1  = 0 Singularity for •M =M, 	 -. 

In this mass configuration we have 

a' 	= 	a' 	 o' 	lo2  - 	t1) , 	( 3 L ) 

so that Eqs (2.7) and (2.6) imply, in the notation (2.17), 

(_t )2 	at t1  = 0 , 	 (3 5a) 

a0  - 	(-t1) 	at t1  = 0 , 	 ( 3 5b) 

while a1  and q1  have thebehavjor given by Eqs. (3.1 a-b) for j = j. 



UCRL..19262 

Finally 

sinh 	= i 	at 	t= 0 , (3.6a) 

áosh 	(_tl)2 	at 	t 	= 0 	, (3.6b) 

from which we conclude S  

+1 It (-t1 ) 2 	at t1  = 0 	. (3.6c) 

No other group parameters are singular at t1 	0. 

• 	It is here• convenient to identify the laboratory system with 

• 	
• 	the system (2,2), 	so that 	• 

Ip, ma 	) = B(.-q1)B(-1)B(-q0) 	f, m , (3.7a) 
a.  

1p n 	) = B (-q1)B(- 1)B(a0  - q) 	10, m0 	) 	, (3 Tb) 

1p1, m 	
) = 

B(a1  - q1) 	10, m1 ) 	. • .3.7c) 

• 	No other states have parameters singular at 	t1  = 0. 	Note also that 

- 	 is analytic at 	t1  = 0, 	implying that 	1p, m 	) has no 

• 	singularity either. 

Now, the commutation relations for Lorentz group generators 

allow us to write 
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B(-q1)B(- 1) = expi( 1  +i) (K cost 	- J sinh 

Xexp 	(1)K} 	e 	(i q1)J} , 	( 3 8a) 

and, furthermore, 

exp i

( 	Y) 
 (i q1)J 	B(_) 

= exp i qO  (K cosh q1  + i IC sith q1) exp i (1 q1)Jy

) 
(3.8b) 

Therefore, from Eq (3 7a), 

'a 	= 	) ex[ (i qj)Jy} IQ, in 

= (••.) 0, n 	) 	( - 
aa. 

a 

where the dots indicate factors that are analytic at t 1  = 0 

In an analogous fashion we find 

p0, m0 > = 	 exp{ (i i)J}. 	, in0  = 

= 	
l, m' 	d 	

° - 	q) m  

(3.9) 

(3.10) 

I, 
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As a consequence, the amplitudes may be written 

T 	A 	 d 	
a( 	)d 	

-CY 

(m} 	(1m0 , 	, m, m,) xn' m 	
1 q1 	' 	-i 

	

where the function A 	are all b-analytic at t1  = 0, and where a 

sum over m' and m' is understood. The kinematic singularity of the 
a 	0 

BCP amplitudes T 	at t = 0 for N = M is therefore contained 

	

(m) 	1 	 a 	0 

in the two d. fnct.ons of Eq. (3.11). They may be coupled, and the. 

reslting dfunctionexplicity expanded in powers of (-t 1 )2 in a manner 

used many times in Ref s. 1 and 2. We give this expression In the 

summary, Eq. (4.1) 

C. The t 1  = 0 Singularity for Mn+i =Nb 

An argument paralleling that of the preceding section shows that 

the amplitudes have the representation 

.B 	 d 	b( 	) d 	
n±l 

(m) 	, 	+1, m, 	 -m 	ml 	
( - 1 

(3.12) 

- 	 where the functions B 	are all b-aralytic at t 	= 0 if 
(m) 	 n+l 

= MD, and the kinematic singularities of the amplitudes therefore 

are contained in the d  functions with the singular argument given by 

Eq. (3.1c) for j = n + 1. 
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D. The A(Q Pj ) 	0 Singularities for j ='1,2, •••, n 

For convenience, the two cases 	p) = 0 and 

p+l. = 0, affecting as they do the two extreme vertices in 

the multiperipheral chain, are treated separately in Se. III E and F 

below. 

Since 

) = 
	+1) = 	 ) ' 
	 13) 

it follows from Eqs. (2.7) - (2.9) that a ;  qj., 
	'

and 	are 

singular at 	pP .) 	0 for j = 1,2, ..., n. In particular, when 

the notation (2.17) isused, . 

i 	D2(Q, 	2 at D2 (Q3 , 	= 0 , 	( 1 ) 

where the determinant z(Q.; p.) has been factorized into the two 

functions 

p) =Q p ±i M( -t) 	. 	 (3.1b) 

Similarly 

q 	{D2() (Q. Q+1)} 2 
at 	 +i = 0 , ( 3.15a) 
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- 	
)} 

2 at D 	 0 , (3.15b) 

where we introduced 

+) 
= 	

± ( -t.) (t 1 ) 	 (3.15c) 

Moreover, for the x-boot parameters we find, at 	(Q Q 1 ) =  01  

± ] 
	(Q, 	 for Re ( 	 Re {(t)4 

[ 	

0, 

(.i6a) 

j+l  
ln  (3.16b) 

( 	1 rQ ~1  pj1 

for Re 	 Re(-t1) 

2L 	j 	0. 

Q. 	j p 
j+1 	+l 

Here, the notation for Gram determinants follows Ref. 1; see also the 

appendix. 

Finallr, for the z-rotation angle one has 

sin J"~t(Qj at 0 ' 	 (3.17a) 
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while a short calculation using in particular the determinantal identity 

(A.5) of Ref. 1, leads to 

cos j+l K 5 	at 	j+l  =0 	 (347b) 

K = ± 1 	if Re ( 	) 	Re C 	 (3 17c) 

± 1 	if .D2(Q 	j+l 
 =0 	 3.17a) 

where the•nottiofl introduced in Eqs. (3.15c) and (3.16) has been used. 

The states (2.12) effected by 	 )= 0, j 	1, •••, n 

are k' k = j,j+l,. •", n+1, b. For all except, k = j, the 

relevant operators B() 3(q) R(IL+) B( 3 ~1) are treated as 

follows First, commute to obtain 

R( 1) B( +1) = ex{_ 1 +l K} 
	 (3 18a) 

Xexp 	1 	 cosh 	- K sinh 

Next, use 	
0 

exp 	1 q K} exp 	 K} = exp 	1 	K} 	(3 18b) 

X exp - i  (K cosh j+i 
+ J sith j+1)} 
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to find that the two operators B•(.) and .B(. ~1) have been brought 

to adjacent positions in the operator product. 

Now, provided fl(+)(Q, Q) = 0 and Re 	Re( 

is negative, our being able to handle the operators aswe did, together 

with the behavior (3 15a),  (3 16), and (3 ii), shows that the operacor 

product has no singula±'ity here. For the remaining three combinations 

of the signs K and 5 inEqs. (317 c,d), an appropriately modified 

procedure shows that in no case have the states Lk' 
(for k = j+l, 	, n+1, b) any singularities at 

p) = 0, (for j = 1,2, •.., n). 

	

J 	J 	 - 

It remains to considerthe state p.,  in ). Hèie, the singularity 
—J J 

is contained in 

	

B( 	B 	10, m ) = exp 
{ - 

i i (a 	)(K cosh 	- J sinh 

	

)( ecp i ( 1t)K} e{± i (i 	) 	, m ) = 

r' ) a 1 	 1 	) 

(319) 

where the dots indicate factors that are analyttic at, respectively, 

(+ 
r 	 . 

3 
	
1 
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If 2a' p
0) is factorized into 

(±) D2 	a' po =  a p0  ± M M0 , 
	 (.22) 

the usual arguments lead, in the notation (2.17), to 

+ 	ilt 	D 2 ) ( pa 	0)} 
2 at D2(pa p0) = 0 , 

(5.23a) 

± 	
2 at D2(pa  p0) 	0 if 1a i  

(3.2b) 

The case •Ma = 	
already treated in Sec. III B, is neglected in 

Eq.. (5.25b). Similarly 	
0 

- ao  - 	i 	{D2 +.  0)} 
2 at D2 (p p0) =0 , 

± 	{D2_ 	0)} 2 at D2(Pa  p0) 	if Ma 
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Finally, as in the preceding section,. 

cosh 	
-1/2 

	

Pa)3 	a 	(Q1, 	 (3.25) 
sinh 

Consequently, the same technique as used in Eqs () 39) and (3.20) 

leads to the representations 

Cr 

T( m) = E(mi 	, in' in) d, 	 d, m0 
OO( 	

l' ( 26a)VI 

here the functions E ()  are all b-analytic at D 2 (p, p0 ) = 0, and 

T 	=F? d, 	a(±)d (in) 	(me, •.. 	1%) 	in in 	 1. 	
o 
m0 	1 , 

(3.26b) 

where the functions 

provided M >M0 ; 

inequality. Again, 

in the summary, Eqs 

• (±) F - 	are 
(in) 

the sis 

the explic 

(-.2) and 

all b-analjc at 4D2- -(Pa .,  i) = 

in Eq. (3.26b) correlate with this 

it dependence on D(;p0)2 is given 

(!.3). 
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F. The 	'n+J! 	
= o Singularity 

Arguments similar to those in .  the preceding section show that 

the BCP amplitudes have the representations 

0 	 0 
- 	b, 	 flU. 

--r 	 G 	/ 	 , 	1, 	(i 	)d, 	 (i 	) Tfl, 	[ •.., in 	; in , in ) 	rn in 	 n+l 	in 	an 	 n+l 

	

- n+l a b 	b h 	 n+l n+i 

(3.27a) 

where the functions G(m)  are all b-analytic at D2(pb, 	+1) = 0, and 

.T 	=H. 	, 	, 	d, 	b (±i 	)d, 	. 	n(_. 	
), [an) 	. . m 	; in , an ) 	in rn 	

+1 
n+l 	in 	in 

n+l a h 	b b 	 n+l n+l 

(3.27b) 

where the functions H I are all b-analytic at D2)(p, 
11+1 

= 0 if. 

1'1n±i the sigus in Eq. (3.27b) correlate with this inequality. 

G. The 	p. 1, .) = 0 Singularities for j = 2,3, •••,n 

/ 
The cases j= 1 and n+l are slightly•anore conipliëated and are 

treated separately in the two following sections. 

It is clear from Sec. II A that only, 
3 
. p. 

3  
. and p. 

3
. 	are 

n,1.nu1ar at;(Q.,  p.1,  p1) 	0, 	for j = 2,3, •.., n 
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In particular, using the notation (2.17), 

at D(Q, p 1, p) = 0, 

(3.28a) 

D3(Q; Pjl, P)} 2 at 	 p 1, p.)  =0 

(.28b) 

there &(Q, 	p) have been factorized into the two functions 1  

2)(Q 	)} 	

± [: 	::z:i 
( 28c) 

Moreover; both sine and cosine of t. and . 	behave as 

Ni l p 1 , 	 and a short calculation shows 

tan kL j 	 = 	tan 	at D3 (Q; 	 0 	 (5.29) 

It follows inmiediately that 

± 	is analytic at D3 (.; p 1, p.) = 0 . 	(. o) 
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In the state vectors 'k' 'k 	
(for k = j+l, •••, n + l,b) we 

find, for the relevant operators, 

R ( i ) B( ) R( +i) = 	± j+l exp 
	i .(K 	+ K 

so that this operator product is analytic at D 3 (Q.; p 1, pj = 0. 

A simi1r argument using instead Eq. (3.28b) leads to the conclusion that 

	

the product is analic also at D 5 (Q.; 	0. 

Concerning the state Ip., m.), the appropriate procedure is.to  
—J 3 

write 

R() B( 	= exp {_ 	(K cos 	- K 	ep 	i 

(3.52) 

in order to find that the singularity of this state occurs only in a 

factor e 	( _i1i .  m) at D 5((; 
p. 1, p. = 0. By a similar 

• argument, the singularity at D3 (Q; p 1, p.) = 0 may be isolated in 

a factor exp (i.t. m.). 

As a consequence, the kinematic singularities of the amplitudes 

are given by the representations 

	

1 	1 

	

T 	= N ()(j) exp<± 34L. 	, 	 • 	( 3.53) 
(m) 	(m) 	 3 
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where the functions N(±(j)  are b-analytic at, respectively, 
(m) 

p.1, p.) = 0, for j = 2, 	,n; the notation (3.23c) is used. 

The angle 	. is given by Eqs. (2.9). 

Because the angle i. depends on the pseudoscalr product 

p. ,, ., p. ), the singularity (3.33) cannot be written 
JJ -i 	3 	J -  3.  

unbigously in powers of D 	p.1, p.)*; this circunstance is 

discussod in relation to Eq (- 50) of Ref. 1. 

H. The(1,p0,p1) = 0 singularity 

Here, 	and p 2 
 are singulri in particular, Eqs. (3.23) 

apply also in this case with j 1. It is therefore convenient to identify 

the laboratory system with the one obtained from (l,r) by a z rotation 

B -2' in which system the states containing any singular parameters 

are 

p, ma) = R( - 	
B( -1  B( - 	) 	

, m) , 	(3 3a) 

1o' 	= 	B( - 	
B(a0  - q) 10, n) 	, 	(3 3o) 

B(a1 ) to, r) 	 (3 3Lc) 

The usual 	 qZa therefore allows us to write 

T 	)(} =N 	eq {- 
	

± 
mo + 1} 
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where the fun 

(+) 
D 7 ' ( Q1; PU , 

amplitudes is 

by Eqs. (2.9) 

(+(j) 
tions N 	are b-analytic at, respectively, 

p1) = Q in the notation 	.28c). The singularity of the 

thus contained in the exponential factor, with 	given 

for j 	2. 

	

J. The n+1' 	n+i = 
	Singularity 

In a maimer analogous to the treatment in the preceding section 

one deduces the representation 

()(n+i) 	I 
T o 	= 	 exp 	1n+l (mb _ in 1 ) 	, 	 ( 3. 3) 

where the functions Nñ (+(n+i) are b-analytic at, respectively, 

p, p) = 0, and. n+l is given by Eqs. (2.9) for j = n+l. 

IV. SUM4ARY OF RESULTS 

In summarizing the findings Of the detailed investigations in 

Secs. III A through III J, it is convenient to appeal to the multiperipheral. 

picture, Fig. 1. Indeed, our results show that the kinematic singularities 

of the BP' amplitudes, apart from the 	(.Q1,p0).p1) = 0 singularity, are 

always associated with a particular vertex in the multiperipheral chain. 

Of course, this is just a reflection of the way the BCP amplitudes.are 

defined. We now proceed to exhibit our results in the concepts and 

	

notations laid down in Fig. 1. 	 . 
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A. The Leftmost (p - p0  - Q1) Vertex 

rfl ere is a t1  = 0 singularity only if the masses are equal, 

Ma =0 In that case, invoking a method applied several times in 

Ref s. 1 and.2, one concludes from Eq. (3.11) that the amplitudes have the 

representation 

a 	J 
To 	

= 	i 	
(°a 	

exp 	ic (J + rn 

	

J=0 	0 V 	rn0 	in 	
(j + in) 	(j _),• 2 

x ( - t1) -J/2 	- t1)} 	[m} ' 	
(4.1) 

where the standard notation for Wigner's 3-i symbols13  is used, and where 

the functions a3 	have no kinematiO singularities at t 1  =0 

provided M = M0 ; they are, moreover, indepeñdeit of the magnetic quantum 
a.

numbers m and rn 
a 	0 

Note that the singularity structure (4.1) is very similar to 

that of the 2-to-2 particle helicity amplitudes as given in, e.g. Eq.. (L..5) 

of Ref. 2. As there, suitable linear combinations of the amplitudes may 

be formed which have still simpler kinematic singularities, viz., they 

equal a power of ( - t')2 times a functiOn kinematicaily regular 

at t 1 =0. 

A 
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At the incoming, state threshold t = (Ma + 4)2 for the 

t1  channel, i.e., the reaction a +0 - 1 -+ 2 + .•. + (r + i) + , one 

may, from Eq. (3.26a), deduce the representation 

(.2) 

(a °o 	) 4 
.Tt) 

J=O O m m 	m : 
	

/ 

-J/2 	 ifl 
{_..t 	+ 

(Ma + M0)2} m 	t1  '+ (Ma  ± 

with all the functions e kinemat.ically relar at 
12 

t 	= (M 	± M 
1 	0 a 

and independent of 	ma and m0 . 	The analogy to the 2-to-2 particle helicity 

amplitudes, Eq. (2.14) of Ref.2, is evident. 

Similarly, at t1 = (Ma - M0 ) 2 , 	and depending on whether 

M 	> M 	 or Ma < M , 	Eq. (3.26b) may be transformed into the representations 
0  

('i-.) 

	

(a 	O 	
• exp f 	(j ; m) 

j=o 	o ma  m0  mJ 	C.J + ni) 	(J  

	

+ (Ma - M0)2 	

12 

	

+ a - 14O1 fJ(m), 
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where the functions I 	, being independent of m and rn 
J'(m. 	

a . 	0 

are without kinematic singularities at the t 1-channei pseudothreshoid 

= (Ma - N0 ) 2 , and the signs correlate to the mass inequality 

M > M0 . The 2-to-2 particle analogue is now Eq. (2.21) of Ref. 2. 

The "Toiler angle singularity" at p0, 	= 0, is 

exhibited in Eq. (3.35) and further commented upon in Sec. V, below. 

B. The rightmost 	- 	- 	
Vertex 

By Eqs. (3.12) and (3.27), the singularities 

variable t 	are obtained from the results of the 

the substitutions a 	b, 0 - (n+i), and t - t 
1 	n+l 

The Toiler angle singularity at 	 n 

exhibited. in Eq. (3.36). 

involving only the 

previous section if 

are made throughout. 

,p J_ 
)=o is 

n+ 

	

C. An internal (Q - P 	Q +J 	Vertex for j = 1,2, ", n 

From Sec. III A, the BCP amplitudes have no kinematic 

singularities at t. = 0, with the exceptions already coveredoyEq..i) 

and its rightmost vertex analogue. 

Furthermore,the results of Sec. III D, in particular Eq. (3.20), 

imply 

	

exp ut (c. ; m.) 	 2 -a/2 
T(,)= 

5(o+ m) 	(o. 	111_l/2 t J 	
+ 	_t.)2± i M 	

} 
d 	J 	3 	J 

f. 	
+ {( t 	± i 
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(+ ' 	P1 (i'( 	' 
where the functions c 	' u  

cm ) 	
are independent at m and have no 

kinematic singularities at the ??threshold parabola 7  
1 

=(t. 
3  2 
 ± M.) , respectively, for each j 	1,2, •.., n. 

d 	 3 

Finally, the Toiler angle singularity at 	Qj P pi-V 	
) = 0 

is exhibited in Eq. (3.33). 

V. CONCLUDING REMARKS 

Wehave in this paper investigated the kinematic singularities of 

the BCE amplitudes as functions of the invariant variables. In its 

choice of variables our approach generalizes the conventional lines 

followed for 2-to-.2 particle reactions, where a knowledge of the kinematic 

singularities in terms of invariant variables 15  is essential in 

understanding the kinematic constraints that any model, in particular the 

Regge-po.le model, must obey. 

5-8,io Toiler and his collaborators 	have taken another approach. 

They conider the, amplitudes as functions of the momentum transfers 

squared and of certain Lorentz groupparameters which are similar, 

3 	9 although not identical, to those specified. by BCP1 and CD, 	and 

proceed to show that,'with proper conventions, there are no kinematiC 

singularities in these variables. Moreover, as a consequence of having 

"too many" variables in this group theory approach, the amplitudes obey 

certain covariance conditions. 	 . 

The amplitudes in the BCP and CD. conventions, being a 

particular,' realization ,  of the Toiler amplitudes, are still not 
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unambiguously defined, since they leave open the choice of the y axis 

in the definition of the rest system b. for each of the reacting. 

particles; it goes without saying that this is not a defect of their 

conventions. In the CD language, it means that the two z-rotation 

angles V. and q . are not uniquely defined. However, the "Toiler angle" 

(U 
3 
. = V 

j  
. 	j+l 
+ i 	is unique once the other conventions have been accepted. 3  

. 	 .. 
In order to have a unique set of amplitudes in our approachwe 

have had to specify unambiguously the rest systemq b., amounting to a 

more or less arbitrary definition of the angles V. and q 	 However, 

from the fact that a3. is indenendent of thth definition it follows that 
3 

the only place where these conventions are of any importance is in the 

	

= 0 singularities exhibited in Eqs. 	(3.36), and  (3.37). 

Namely, independent of the choice of y axes, if there is a kinematic 

singularity at a surface 1= 0, it will oc.ur in (a product of) 

factors exp ( i m. 4r). where sine and cosine of the angle r are 

proportional to 	); we have not specified the arguments in the 

Gram determinant here, since they may depend on the conventions. 

MoreoVer, the. a priori possibility exists that some convention could be 

found for which there are no .&= 0 siniarities at all. . We have, 

not been able though, to find such a conventian, at least not without 

introducing other singularities. 	. 	. 	 . 

Apart fro--m these circumstances, relat.d to the choice of 

z-rotation angles, the kinematic singularities of the BCP amplitudes 

involve only the momentum transfers squared im a way which seems useful 

for a subsequent muiti-Regge-pole analysis ineorporatin; problems 

arising from spin. 
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APPENDIX 

Notation for determinants 

For convenience we repeat here the determinant8.l 	notation of 

Ref. 1. 

The Gram determinant between two sets of 	n four-vectors 

[cii 	and 	ft.) 	is denoted 

[q1... 	q 

Det (q. r1 (.i) 

r2 	mn 

and the symmetric ones 

... 	(_)fl+l . (A.2) 

Finally 

e( 	' 	' 

7u 
' 	) = 
	 • 	

q1 
K 	

q3 V. (A. 3 ). 

where is the completely antisetriC isotropic tensor with 

0i23 . 
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For a function u = f(z) that is positive in the physical region 
1' 

the continuation of u2  is throughout this paper defined to have a 

positive real part or, if u < Or is real, to have a positive 

imaginary part. Therefore, we shall always in a statement referring 
1 

to the sign of Re(u) 2  include the implication that if 

Re(u) 2  0 but u 0, we mean the sign of Im(u) 2 . 

A. R. Edmonds, Angular Iviomentum in Quantum Mechanics (Princeton 

Univ. Press, N.J., 1971), p. 46 fT. 

In these summary sections we use phrases like "haveno kinematic 

singularity" to mean 'be b-analytic" as given prior to Eq. (2.17), 

and in Ref. 14 

See, e.g., Ref. 1 for a list of references. 
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FIGURE CAPTIONS 

Fig. 1. The multiperipheral chain for the reaction (2.1) with the 

notation for momenta, masses, spins, and magnetic quantum 

numbers. 

Fig. 2. The Lorentz systems associated with the leftmost particles of 

the muitiperipheral chain. 	Only the x-z planes are shown; 

the three-vectors drawn have no y-components. 

Fig. 3. The Lorentz systems associated with an internal vertex 	j, 

j = 2,3 •.., n, 	of the. multiperipheral chain. 	Only the 

x-z planes are shown; the three-vectors drawn have no 

y-components. 	 . 

Fig. 	Li. The Lorentz systems associated with the rightmost particles 

of the multiperipheral chain. 	Only the x-z planes are shown; 

the three-vectors drawn have no y-components. 
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