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ABSTRACT 

A multiperipheral model, based on one-pion exchange dominance 

of low-momentum-transfer processes, is used to study the dynamical origin 

of the leading Regge trajectories which are coupled to the two: pion 

system. A Bethe-Salpeter technique.is used to calculate the leading 

singularities in the angular momentum plane from an input interaction 

• 

	

	 that is determined by the observed low energy pion-pion scattering 

amplitude plus the high energy contribution of the Pomeranchon. The 

solution results in a partial bootstrap system in which the parameters 

• 	• 	of the Pomeranchon are determined self-consistently. The output 

trajectories are found to correspond to what we conjecture are effective 

Regge trajectories, which in reality correspond to both Regge-pole and 

cut contributions The trajectories and coupling constants obtained 

seem to be in reasonable agreement with the values allowed by 

experiment 
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I. INTRODUCTION 

The boo.tstrap description of elementary particles is certainly 

one of the most appealing and ambitious proposals for determining the 

masses and coupling constants of elementary particles. In this picture 

all particles are dynamically interrelated in such a way that all the 

parameters describing the S matrix for strongly interacting particles 

are determined through self-consistency requirements. At present, 

though a tremendous amount of effort has been expended on investigating 

such theories, little has been learned except that simple models of this 

type fail to describe the spectrum of particles that occur innature 

and we are still left with thefact that thebootstrap theory may be the 

correct theory; better means. of investigating its relevance to strong 

interactions must be developed. 

Recently Cew and Pignotti1  proposed a calculational scheme 

known as the "Regge Bootstrap," which adds onenew ingredient to the 

older bootstrap models. Papers2 ' 3  based on this general approach have 

yielded encouraging results. In this paper we present a careful 

calculation employing as much experimental information as possible, 

with particular emphasis on investigating the dynamical origin of 

the Pomeranchuk trajectory. As an introduction let us examine what 

the proposal of CP has added to the usual bootstrap model of a 

dynamical particle. Consider, for example, the bootstrap of the p 

meson, of the type that was proposed by Chew and Mandelstam4  in 1960, 

and followed by more sophisticated calculations performed in the early 

sixties. This is illustrated by the equation represented by the 
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diagrams in Fig la The left-hand side represents a dynamical pole of 

the pion-pion scattering amplitude, namely the p meson with angular 

momentum J = 1. The right-hand side of this equation is some sort of 

ladder representing the repeated interaction between the constituent 

particles, produced by the exchange of some particle A sum of ladder 

graphs seems to be the only model of a composite particle which 

•satisfies analyticity and some truncated form of unitarity. The general 

procedure was to guess a set of graphs to sum on the right, perform an 

approximate calculation, and then check to see whether the output p 

• 	meson had the correct width and mass. This becomes the simplest boot- 

• strap model when the interaction is taken to be the exchange of a p 

meson, which then binds two pions together to form a p meson, and the 

mass and coupling constant are determined self-consistently. More 

sophisticated calculations involved considering several resonances 

• 

	

	simultaneously, such as the p and f°  on both sides of the equation, 

and including additional constituent particles such as I( mesons and the 

w meson. 	The general results, of these calculations were that if the 

p meson was produced with the correct mass, the width of the p was 

necessarily too large, being somewhere between twice and four times 

experiment, depending on the particular model being considered. The 

general fault of this type of model is that there is no direct way to 

check whether the input to the right-hand side of this equation is 

reasonable. 

The 'observation by CP is related to our current understanding of 

a dynamical particle as a pole in the angular moment variable whose 
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position depends on the energy variable. In particular, if one 'considers 

the point t 0 and the variable s large, then the left-hand side of 

the equation in Fig. la is interpreted as the contribution of the Regge 

pole to the -,r scattering amplitude at high energy. Furthermore, if 

one takes the imaginary part of both sides of this equation the left-

hand side becomes the total cross section at high energy and the right-

hand side becomes a sum over the two- to n-particle partial cross 

sections. This is particularly clear for the Pomeranchuk trajectory,, 

as it is the leading singularity in the scattering amplitude, but also 

must be true for the p and other nonleading trajectories provided 

the appropriate partial cross sections are suirmed on the right. From 

this point of view the dynamical equations representedin Fig. la is 

simply an identity and the correct ladders to sum are those that give 

the correct two-particle to n-particle cross sections. From experiment 

we know that pions are most copiously produced in high energy reactions, 

thus the equation represented in Fig. la is more correctly represented 

by that given in Fig. ib, where the n particles are n pions. The 

requirement that we have a useful bootstrap equation is that the 

inelastic partial cross sections be calculable correctly by some 

tractable model related to the Regge pole calculated on the left. 

The original proposal by CP was that the "two-to-n", amplitude 

could be calculated from the multi-Regge model; however, most of the 

experimentally observed production occurs for relatively small sub-

energies for particle pairs and therefore lies outside the region of 

phase space where the .multi-Regge model is directly applicable. If 
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the duality picture is correct, in the sense that the Regge pole which 

describes the scattering at high energy continues to give the correct 

energy average cross section at low energies in the resonance region, 

one could set up a set of bootstrap equations for the leading Regge 

trajectories. It appears that duality seems to be a 

sometime thing, forcing one to search for a more generally applicable 

model. It has been suggested by Chew 5  that the OPE model, which has 

had considerable success in describing production. processes, 6  might 

provide a good description of multiparticle production. 

The basic assumption of the OPE model is that the pion pole 

which exists in a scattering amplitude at the pion mass in the approp- 

riate momentum transfer variable continues to dominate for small negative 

values of this variable. Since experimentally all processes are domin-

ated by the small -momentum- transfer region, one might hope that this 

model would give good results for the total production cross sections 

also. Comparison of this model with production processes in which the 

vertices are actual physical scattering amplitudes produces surprisingly 

good results, and one might expect the generalizations of this model to 

multiparticle production to produce equally good results, at least in 

some average sense. The generalization or perhaps iteration of this 

model for pions produced from 	collisions is that shown in Fig. 2. 

The two-to-four amplitude is shown in Fig. 2a, and the two-to-six 

amplitude in Fig. 2b. Note, however, the vertex that appears in the 

two-to-six amplitude is just the two-to-four amplitude given by Fig. 2a, 

and one can conclude that the two-to-six diagram is that given in 
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Fig. 2c. The production of nparticles is then given by a diagram 

obtained by an.i.teration of the foregoing procedure, and such an 

iteration we recognize will generate the multiperipheral model propOsed 

by Amati et al. 7  With this picture the ladders to be summed to .produce 

the leading Regge trajectories are those shown in Fig. 3a, and the sum 

is the solution to the Bethe-Salpeter equation shown in Fig. 3b, which 

has as a kernel the off-shell elastic pion-pion cross section. One 

should note, however, that since experimental momentum transfers are 

generally less than 0.5 0eV 2 , andoften dominated by smaller values, 

only a small extrapolation off shell of thephysical. TtTt cross 

section is required. A detailed comparison of the ORE predictions with 

experimentally measured multiparticle production is being conducted by 

Chew, Rogers, and Snider8 following earlier work by Berger. 6  

in a previous paper3  we considered a multiperipheral bootstrap 

model of a single Regge pole in which duality was assumed to be exact. 

In this paper we investigate the generation of the leading trajectories 

in rr-r scattering, namely the p and P, via the model described 

above. In the absence of a duality assumption this results in a 

partial bootstrap of these trajectories. A complete bootstrap model 

may be possible, but will of necessity be more complicated than the 

one we consider. 

In the following two sections we generalize our previous work 

contained in paper I, to treat .both the p and P poles simultaneously 

and use experimental information to eliminate the duality assumption. 

Section 4 contains the numerical solution to these equations at t = 0 



-6- 	 UCRL-19282 

together with a discussion of the range of solutions possible Section 

5 deals with the generalization of this model to nonzero momentum 

transfers, allowing the calculation of the t dependence of the trajec-

tories. This of necessity includes a treatment of the interaction 

between the poles and the cut produced by the P pole. The experimental 

relevance of this work is discussed in Sec 6 It is suggested that 

the experimentally observed Regge poles are really effective Regge 

poles which represent both pole and cut contributions, and that only 

at extremely high energies will theactual Regge poles dominate the 

scattering amplitude. 
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• 	 II. FORMULATION OF THE MULTIPERIPHERAL MODEL 

• 	• 	 FOR :rt-lt SCATTERING 

Our procedure is as follows: We first present the formal 

equations of the niultiperipheral model, diagonalize the resulting Bethe- 

• 	Salpeter equation for the special case of t = 0, by using the o--) 

• 	symmetry of the equation, and finally invoke several reasonable approxi- 

mations which simplify the numerical calculations and make the bootstrap 

• 	aspects of this equation clear. The Bethe-Salpeter equation shown in 

Fig. 3b forthe jTjr scattering amplitude •T is 

B(p,p',Q) + fdq 	B(p,q,) T(q,pQ) 	
2 

J 	[(q - Q/2) + 	][(q + 	+ 

(2.1) 

where the momentum assignments are those shown in Fig. 1  and 

s = -(p - p') , u = -(p + p') , and t = -Q 	Here the isospin 

indices have been suppressed. 

For the remainder of this section we consider t = 0 only, 

and drop this variable from T and B. As explained in paper I, the 

discontinuity of B across the cut in the s variable is givenby 

unitarity, • and has the form 

3
00 	

2 
Im B(p,p') = 2 	

2 [T(p,pt ,k) 	
G(x - x  

fo 	(x - i) 

where T is again the pion-pion scattering amplitude; but in this case 
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two of the pions are on the mass shell and 

x = (p2  + p' 2  + s)/2pp', 	x = cosh ( + s'), with 

cosh = (p2 + 	+ 2)/2pk and cosh 	(p.2 + 	+ 

The function B also has a similar cut in the u variable, which 

becomes a cut for negative s or x, which we consider later in 

relation to defining the signature of the Regge poles that are being 

calculated. In particular for t =. 0 the imaginary part of B is 

given directly in terms of the pion-pion elastic cross section by the 

relation 

2' 
Im B 	[s(s -411

)]2 	

(2 3) 

where the cross section is forpions off the mass shell Since both 

• 

	

	the input and output of these equations are the pion-pion scattering 

amplitude, the bootstrap aspects are evident but not yet explicit. 

Again following paper I, Eq. (2.1) can be dlagonalized in the 

0(4) index n; however, the resulting equation cannot be directly 

continued into the complex n plane due to the presence of both left- • • 

and right-hand cuts in B in the x plane. The procedure for the 

• 

	

	 analytic continuation in n is similar to the usual continuation in. 

2, and is accomplished by the introduction of signature. This is as 

• 	 follows: We define 
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T±(x) = 
	± T(-x) , 

where TE and TL are the contribution due to the right- and left-hand 

cut, respectively, to T. The 0(4) partial-wave projection of T+ 

then takes the form 

CO 

T± = 4TI f 	dx Elm TR(x) 	-Im TL(_x)] 	 (2.4) 

with f(x) 	Ex - (x2 - l)]1 and X0  = 1 + th/I 2  The diagonal 

form of Eq. (2.1). is then 	 . 	. 	. 

T±(p2 ,p ? 2 ) = B±(p2,pt2) + 2(n+ i) fdq2 2 

(q 

	

B(p2,q2) T±(q2,p?2) . 	 (2.5) 

The analytic continuation of the plus and minus equations, is now 

obtained by the continuation of B 	and B -, as these functions have 

a unique definition.. A pole of T :±  in then plane at n 

contributes to the scattering amplitude the term  

+ 2 ,2 	 a 	Ta+ 	. 
T(p,p') = 	(PP ) Ix  + ( x2 -

________ 	, 	. (2.6) 

where 	(p2,p' 2 ) is the residue of the pole in the n p1ane 
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We now consider the I-spin structure of these equations Note 

that there are three relevant isospins to consider, the total I-spin 

of the ladder. I which is the I-spin of the output pole, and the I-

spin of the four particle vertices along I 	and across the ladder 

I. Since unitarity, which is expressed by:Eq. (2.2) is diagonal in 

I-spin,, a definite value for I is given directly by a sum of 

and is obtained, by use of the crossing relations. On the other hand, a. 

definite value of I 	is in turn given by a sum of. I,,, again 

obtained by simple application of the crossing relations. The resulting 

relation between I and I, is most simply expressed by introducing 

the functions 	 . 	. . 

	

Im B111(p,p') = 
ppt f 	1)2 

T'(p,p',k) T1 *(p 	k) 9(x - x0 ) 

(2.7) 

and the superscripts on the T's refer to the value of I. The 

imaginary part of B with a definite isotopic spin along the ladder 

(t-channel isospin) is 

Lu B °  = Im B 	+ 	Im B 11 	 00  

(2.8) 
Im B 	=. 	Im B 11  + 	Im(B 	+ B01) ,

1. 

where we neglect the I = 2 contribution due to the absence of Regge 

poles in that channel. Due to the Pauli principle 1 = 0 has only 
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even signature amplitudes, and 1 = 1 onlyodd. We then obtain 
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III. DETERMINATION OF KERNEL FROM EXPERINTAL 	 - 

SCATTERING 

The equations which we have obtained appear to be of a bootstrap 

nature in that the T's, which are the solutions of Eq. (2.1),. are the 

same T's as are used to calculate 8 in Eq. (2.8). This is not the 

case, however, as the assumptions used in deriving this set of equations 

restricts the energy region for the various Tt.s . Since the T's 

solutions of Eq. (2.1) are calculated by a multiperipheral model, S.  

must be large, certainly greater than 10 GeV 2, and in the region in 

which multiparticle production dominates the cross section. On the 

other hand the input T's in Eq. (2.2) have a large contribution from 

the resonance region, and may well be dominated by the region of s 

less than 2 GeV2 . From this discuss iota we see that the only region of 

overlap is the high enerr part of the input, which must be equal to the 

outpit, and a partial bootstrap is possible only for this part of the 

amplitude. 

At this point we consider a possible simplification of this 

model, based on the observation that•the average subenergies are small 

in production processes. If one considers the pion-pion elastic cross 

section determined fromeeriment, 9  one sees that except for the high 

energy tail the. cross section is dominated by p resonance. If one 

approximates the input by the resonance contribution, the calculation 

that is actually being done is just the old-fashioned p bootstrap 

for a different range of the variables, i.e.,, t = 0 rather than 

t = m 2 . The results. of this preliminary calculation are the foflodng: 
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If one wants to ijroduce a p Regge pole with the experimentally 

observed intercept [a(0) 	0.71, the input p width must be of the 
P. 

order of twice the experiment1 width and because of the similarity to 

the older calculations this result was certainly riot unexpected. It 

is of interest, however, that the P pole produced by. this model has an 

interceptvéry close to unity, and that both trajectories have about 

the same slope and are in reasonable. agreement with experiment. 

With these results in mind we described the procedure used to 

approximate the input T's. Clearly some source of additional inter-

action is required if reasonable results are to be obtained. The two 

most reasonable possibilities are either including the effects of the 

high energy tail which are certainly there as the P exists or making 

some rather drastic assumption about the off-shell dependence of the 

cros section. The off-shell dependence of the pion-pion scattering 

amplitude is.already constrained to some extent by the fact that the 

experimental measurement of this amplitude can be accomplished only 

with the assumption that this dependence is weak- -at least when only one 

pion is off the mass shell. Furthermore, the nearest singularity in 

the pion mass variable is at 9L2 , and, since this is a three-body 

branch cut, important contributions probably come from much larger 

values. For these reasons we restrict ourselves to rather weak depen-: 

dence on these variables, allowing substantial variation only when the 

mass is changed by the order of a GeV. 	. 	. 

Direct observation of the P contribution to pion-pion 

scattering has not yet been possible; however, the Regge pole fits to 
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pion-nucleon and nucleon-nucleon scattering together with the factoriza-

tion imply a nearly constant high-energy tail for the elastic cross 

section, and because of this nearly constant behavior this contribution 

can be quite important in the calculation of output scattering amplitude 

in the limit of very high energies: 

We now take as our interaction terms the contribution of the 

resonance region of pion-pion scattering as given by experiments including 

the p, f°, and g contributions, plus the Pomeranchuk contribution to 

the high subenergy region. Since we are looking for poles in the n 

plane, it is, convenient to assign certain n-plane singularities to 

these various terms although the exact positions of those singularities 

associated with the resonance terms, cannot be taken very seriously. 

The procedure will be similar, to that in paper 'I, where the input T' s 

are taken to be the p and p Regge poles, but rather than trusting 

that duality will allow the p contribution to give an acurate repre-

sentation of the resonance region, we simply adjust the p coupling 

to make duality exact. This of course 'means that our input p pole has 

nothing in principle in common with the output p 'pole, which'is that 

applicable to high energy processes. Should these terms prove to be 

equal we will have shown that duality is not violated in this case. The 

form we assume for the input T's in Eq. (2.8) are 

T1'(p,p';k) = 	 - k)2,k 	(pt2,(p - k) 2,k2) 

I(k2)(t 	
+ (x2 - 
	

(3.1) 

C, 
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where 0,  is the vertex function normalized to unity at the zero value 

of all three arguments, and contains all the off-shell dependence. 

I 	2 The quantities a I  (-k 	and 91 . 	are the trajectory, the 

signature factor, and the couplingto the 	system, respectively, 

for the Regge pole with isospin 1, evaluated at t =-k 2.. The signature 

factor is 

I 
(k  2 
	

(e• 	 = • 	 ± 1 /sin Tta 	 (3.2) 

We now impose the condition that 

B(p2,p'2) 
= (2) 

Jdx [s(s - 42)] 	
f(x) 	 ( 3) 

for small values of p2  and  p' 2, i.e., near the mass shell, and allow 

g. 	to be a function of ,  n. The quantity g 	 will be needed both 

for n a(0) and n a(0). The resulting n-plane interaction terms 

are computed as in paper I, where the form of Eq. (3.1) allows analytic 

integration of x in Eq. (2.9). For example the contribution of the 

term containing two p poles, Im B 11 , to the I =0 amplitude is 

B1(p2,pt2) 
= 

	100 2 .~ (pp  ) 

22 	- JA  k2) Ø2L'2 
_2, k

2 ) (so-r(pkP)ip1k) n+1-2a(-k2) 

n + 1 - 2aC-k2) 	 1 

() 
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where r(p,k) = exp(-) This function has just the AFS cut7  

arising from two p's, beginning at n = 2a(0) - 1. if the P 

pole has an intercept near one, the I = 0 channel will have a cut 

arising from two P's near the expected position of the pole, and a 

more distant but perhps stronger cut due to the two p's. The I = 1 

channel has a p-P cut near the expected position of the p pole, and 

again the two-p cut farther away. 

A modification of the signature factors is required to eliminate 

the ghost poles that appear in Eq. (3.2) when a(t) is at a correct 

signature- point for negative t. The procedure which we adopt is to 

simply replace sin a(-k 2 ) by 1 when a(-k2) reaches the half-integer 

before the first ghost pole. 

in paper I we examined in some detail the dependence of the 

solution to the trpe of equation we are considering on the particular 

off-mass-shell vertex function used. In that work quite a number of 

different forms of 0 were tried, and as long as the functions did not 

vary too rapidly the results were more or less independent of the 

• 

	

	particular form of 01 chosen. For this reason we use the simple 

factorizable expression 

012(p2,q2,k2) = C2 A22)2 
	

2 2q2) 

() 

	
(3-5) 

where A is a free parameter, but necessarily of the order of a GeV or 

larger, and v for the P can be determined by the diffraction peak. 

For I 0 we take ii = 1 GeV and m = 1. 
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The situation for the p is somewhat less clear in that we are 

really trying to represent an amplitude that really looks more like a 

p-wave resonance in thes channel, which, rather than falling off like 

some diffraction peak, looks more like a polynomial in the t variable 

(-k2 ). For this reason we considered two cases, m1  = 0, and m1  = -1, 

with v fixed to be 1 GeV. The condition given in Eq. (.3) is imposed 

in both cases, and this should reduce the sensitivity of the output to 

the particular fprm assumed for the input p term. 
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IV. NUMERICAL SOLUTIONS AT t = 0 

Equation (2. 5) is readily soluble by the numerical method 

described in paper I, where the location of poles in the n plane is 

determined by obtaining the, eigenfunctionsof the homogeneous formof . 

this equation. The general form of the output pole obtained is 

T1(p,p') = a 	,1 (p2)(p'2 	2
jTE

)[x + (x - 

=[x + (x ... i)]] 	. 	. 	( 14.1.) 

where a' is the position of the pole, 	(p2 ) is the first eigen- 

I 	 i function evaluated at n = a , and E' 	s the derivative of the first 

eigenvalue with respect to n. 

Let us now enumerate the fixed parameters that enter into the 

calculation. The Regge trajectories were taken to be linear functions 

of t,a(t) a + a't, with the slopes both taken to be the canonical 

• 	value of 1 GeV 2 . We assume the values of the output a and a , and 
p 	p 

this determines at what values of n Eq. 	must be used to obtain 

the input p coupling. For convenience we chose the input p intercept 

to be that of the output p. Since the values of g . 	determined p,in 

by Eq. (3.3) depend on the value of 	we chose a value of 	• 	• 

g . p,in in the range allowed by experiment (see Appendix). With • 

a 
p p p,in , a , g . 	all fixed, we vary A to see whether the remaining 

bootstrap condition on the P, gp,in = gp,out can be satisfied. . Note. 
'  



that a p,in = a p,out has already been iniposed. Once a solution has 

been found the parameters of the output p poles are also calculated. 

The results of these calculations are given in Table I for 

both forms of m1  

Table I. Value of the solutions: 

A2  
2 

(G-ev) a 
p 

a 
p 

2 
g 
p 

2 
g. 	;n=a 
p,lfl 	p 

2 
g. 	;n=a p,ln 	p 

2 
g p,out 

= 0 
Ml 

4 0.95 0.5 0.1 0.119 0.126 0.09 

-1 3 0.97 0.55 0.1 0.087 0.099 0.02 

We tested the effect of the condition a . =a 	by fixing p,lfl 	p,oUt 

=0.5, and the results are given in Table II for the case m1 = 0; 

one can see that the paraineters of the P area e.ss entiallr 

unchanged. It should benoted that there is some range of acceptable 

solutions possible around those given in the tables with a determined 

to about 2% and 10% variations of a and g are possible. 
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Table II. Value of the solution a . p,ln 	 p,ln 
fixed to be a . = 0.5 

2 
A a p 

2 
a 	g 
p,out 	p 

pi ; 

n=a 	. p,in 

2 
pjn  

n=a 
p 

2 
g p,out 

ml 	0  3 GeV2  0.957 0.51 	0.1 0.120 0.128 0.059 

A comparison of the output p parameters with experiment is in 

principle possible, and in the Appendix we examine the various types 

of experiment that give some information abOut the p--t coupling. 

The values we have obtained are in reasonable agreement with those 

obtained from factorization and Regge-pole fits to charge-exchange 

processes. The experimental p intercept, ap  = 0.57, is somewhat 

larger than ours, and leads one to favor the solution with m 1  

As far as duality is concerned our results indicate that it is correct 

within a factor of two for the case we have considered) °  

The solutions we have obtained of course imply definit.e 

multiparticle production cross sections, and a comparison between a 

model very similar to ours and experiment is being carried out by 

Chew, Rogers, and Snider. 

It was shown by AFS 7  that the average multiplicity of partic1e 

generated by a multiperipheral model at large s is quite simple, and 

is giver.i by 
(N) 	CN On 	, 	 (I.2) 
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where 

2 	p - g 	, 

and g is the coupling constant of the three-particle vertex. For 

our case, with a fixed ratio of P to p coupling, a(0) is the 

solution of 

E(a) = g 

From this relation, and noting that each time a g appears in our 

ladder two particles are produced, we obtain 

= 2 g 	= 2 

From our solutions CN is around 0.2, to be compared with experimental 

estimates of 1 to 3, but these depend heavily on ultra-high-energy 

cosmic-ray data, which have large errors. 

The explanation of the small multiplicity predicted by our 

model is the following: The eigenvalue E(n) of the homogeneous 

equation has a logarithmic singularity at n = c which dominates the 

derivative of, E if a. is near n . This is the case for our 

solutions as the P intercept is close to unity. We will return to 

this difficulty later, as it will be seen that the proximity of this 

cut also causes problems with the t dependence of the trajectories. 
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V. TEE SOLUTION FOR t 0 

We generalize our previous calculation to consider a value of 

ttl less than 1 GeV2 . The O(It) symmefry of E. (2.1) is for t 	0, 

broken by the propagator and by the function B(p,p',Q). The symmetry 

breaking in B is produced by the vertex functibns 

± , _, k ± ), by the signature factors 	(k + 
	

- 

and by the sum a'(k + 	+ a1(k - ). This last term does not break 

the symmetry if the slopes ofthe trajectories are equal, as in the 

model we are considering. 

If one expands in a power series in t the terms breaking the 

O(Li) symmetry, the expansion parameter of the propagator is the 

quantity t/ 2  1i , whereas the breaking terms in :B are proportional to i/s 

and t/A2  and should be negligible for small. values of t. In this 

, approximation B is diagonal in n and B(p 2 , p 2  , t) is again given 

by Eq. (3.4), with k2  replaced by k2  - t/!. Since all the symmetry 

breaking is now in the propagator, we apply directly the method of Chung 

and Snider, 11  defining 

• 	
.(p,p'Q) 	

= 	 T(p,p',Q) 	 • 	
(i) 

Q2 	2 	Q2 	2 [(p 	) + 	] [ (p ± ) ± 	] 

I 

The O(L) projection of Eq. (2.1) then becomes 
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2 	222 	2 	22 	£ 	2 	£ 	2 
(p 	t/L + 	nInt + P t(fnn  Tnn + 	 + f,_2 Tn_2,n) 

	

.1 	r2 	2 

	

= B + 	17  j 
q dq B Tnnt 	(5.2) 

where 

2 	
= (A 

2)2 
+ (A 	

2)2 
n 	n-i 

- A 2 A n,n+2 - n n+l 	' 

f t 	-A 2A 2 n,n-2 	n-i n-2 	' 

and 

1 

A2 -. 
	((fl_2+1)(fl+2+2) 2  

n 	\ t(n ± l)(n + 2) 	) 

£ is the usual angular momentum and.n,n' '=2 + integer. The system of 

equations given in Eq (5 2) is an infinitely coupled integral equation, 

however, the coefficients of the nondiagonal part f2n' become very 

small as n and n' grow. In addition, the coupling terms are 

22 	
i proportional to p2 t/(p 2 - t/4 + p. ) , which s less than unity for 

• • 	< 	
This allows one to solve the Eq. (5.2) accurately with only a 

few coupled equations, for example for t > -1 GeV2  no more than four 

coupled equations are important 
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We solved Eq. (5.2) for £ = n' for the solutions reported in 

Table I, and the resulting trajectories are shown in Fig. 5a and b for 

the case with m1  = 0. The general features are the f011owing: For 

positive t the trajectories appear to have about the same slope as 

the input trajectories, but, as the pole approaches the cut, it appears 

to be repelled and ends up with about the same slope as the cut, 

of the input slope. This effect is again due the logarithmic singtlarity 

in E. which is in turn due the singularitypresent in the kernel. 

To clarify the question of the interaction of a pole with a 

cut, let us consider a simple model proposed by Frazer and Mehta 12  in 

which the denominator function [the functiOn .g2  - E(n) inourmodel] 

is assumed to have the form 	 . 	 . 

	

D(n) = n - (a + bt) + c £n(n - 
"c 	 .. 	

. 

The trajeàtory is obtained from the equation D(a) 0. 

Let us consider the variation of D as a function of t for 

.the case in which c is small. For t . large positive the .zero is 

at n = a + bt; as t is reduced the pole .moves to the left, approaching 

the cut, but never, passes through the cut. Because of the logarithmic 

singularity at n. the residue of the pole gets quite small when n 

approaches nc,. as the log term controls the derivative of D with 

respect to n. There are of course poles on all other sheets of the 

log function. For large positive t these poles simply move with the 

pole on the physical sheet, but as t is reduced these poles move by 

the point nc and continue on to the left. One of these poles is close 
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to the physical sheet and should have a normal residue. Thus for 

negative t it appears that the cut-plus-pole combination looks like 

a pole on the second sheet of the n plane, and this single complex 

pole should provide a good representation of the amplitude. It is of 

course true that at infinite energies the actual pole, which is to the 

right of n,  dominates, but at finite energies the pole on the second 

sheet should be more important, due to its larger residue. From a 

phenomenological point of view the behavior of the pole and cut appears 

to: be the following. For positive t the pole moves linearly with the 

expected slope, and for some negative t it intersects with the rather 

weak P cut and passes into the second sheet, becoming complex, but 

continuing to be a linear trajectory with the normal slope. Some of 

the consequences of such a model have been investigated by Ball and 

Zachariasen in a recent paper. 1  

Let us now see how this discussion relates to our model. Because 

of the large intercept of the P trajectory, the point of intersection 

of a linear trajectory with the cut is very close to t = 0, and the 

• 	
calculation around t = 0 is near this complicated region of crossover. 

In our model the kernel becomes complex when evaluated for 

fl K n, as can be seen from Eq. (3.4); however, the imaginary part of 

B has a simple factorizable form; We then write the kernel in the 

form 

K = ReK 	 . 	 (5.) 
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The function analogous to D(n) for our. equation is the determinant 

of 1 - K, and because the imaginary part is factorizable we obtain the 

simple result 

det(1 - K) = det(l - Re K) det(l + 	- Re K) 1  c. x) 

det(l - .Re K)l ± 	- Re.K)lx) 	. 	( s.) 

The zeros of the real part of the determinant then give the locatiOn of 

the poles on the second sheet of the n plane; these zeros are most 

easily obtanedby solving the eigenvalue equation that uses the real 

part of the kernel. In Fig. 6 we show the inverse of the first eigen-

value plotted versus n, for.the solution of Table I with m1  =0 in 

the I = 1 channel.. In this case n = c 0•4 Note that the function 

we have plotted has a behavior very similar to the function D given 

in Eq. (.3). Changing.the value of .t corresponds roughly to shifting 

the curve vertically. For t positive the function has only one zero 

to the right of the cut, but as t moves to the left the curve falls 

and for some value of t develops three zerOs. The rightmost is the 

actual pole, which is stuck to the right of the singularity at nc. 

The next zero is a sort omirror image of the pole-in that log I - n d  

is a symmetric function around nc.  The leftmost zero is the position 

of the pole on the second sheet, which moves freely as one -varies t. 

Furthérmore,it appears that the curve to the right of 0.5 joins 

smoothly with the curve to the left of 0.3, meaning that the trajectory 
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• 	 should- be nearly linear and one should be able to extrapolate the 

location of the effective pole for negative t • from the behavior of 

the actual pole for positive t. 

a 
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VI. DISCUSSION 

In this paper we have presented a dynamical calculation based 

on the multiperipheral model which produced acceptable values of the 

intercept of the p and P trajectories and reasonablevalues of their. 

coupling to the TcjT system. The range of possible intercepts of the 

P is rather restrictive, and may be considered one, of the predictions 

of this model. The value of the p coupling is also predicted to be 

relatively small and in agreement with the rather uncertain number 

obtained from experiment. 

The apparent defects of this model are the.very small value of 

the multiplicity predicted and the behavior of the trajectories calcu-

lated. Both of these effects are directly related to the existence of 

the P as a normal Regge pole. Admittedly, one needed to include this 

pole in order to have enough interaction to produce the P and the p 

in the output, but it seems inescapable that a P-like object does 

exist and plays an important part in obsel-ved high energy processes such 

as xN scattering and NM scattering. There are of course several 

possible means to resolve the apparent conflictof this type of theory 

with experiment, other than discarding this model as incorrect, or 

claiming that some at present unknown term is important, or that some 

violent off-shell dependenceis required. 	. 	. 

One possibility is that the Pomeranchuk trajectory is exactly 

unity at t = 0. In this case the P poleand all the cuts obtained 

from the iteration of this pole are no longer separated singularities. 

The resulting combination of singularities might have a considerably 



different behavior from the simple log behavior that one obtains when 

the intercept is less than one. 

Another possibility is the following conjecture: We accept the 

P cuts are correctly given by a logarithmic singularity that forces all 

poles to remain to the right of the cuts, and this will be the observed 

behavior as the energy goes to infinity. Based partly on the observa- 

tion that pure cut terms have not been shown to be important at current 

accelerator energies, we conjecture that in some intermediate energy 

region the amplitudes containing a pole plus a cut due to the P are 

well represented by a single complex trajectory which represents the 

pole on the second sheet of the n plane and that it is this pole that 

has been observed experimentally and has a slope of 1 GeV 2 . This type 

of pole then appears to pa.ss through the cut without difficulty, and 

can easily be a linear function of t. The multiplicity implied by such 

a pole is still given by Eq. 	.5); however, the function a is the 

smooth one that would be obtained by removing the logarithmic singularity, 

and can be obtained in our model by simply evaluating the multiplicity 

for some positive value of t for which the effect of the cut is less 

important. A rough evaluation of this quantity gives CN  in the range 

of 1 to 2. Note also that the trajectories have a reasonable slope if 

one extrapolated the trajectory from the positive t region. The 

calculation of the coupling of the poles to the -ct system at t = 0 

is probably not strongly affected by the presence of the branch cut. 

The use of an effective pole to represent a cut is very much like using 

a Breit-Wigner resonance form to represent a branch cut in the energy 
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variable. Finally, the use of these effective poles in the input 

simply includes a more accurate description of the intermediate-energy 

amplitude used to calculate the kernel. 

If such a picture is correct the experimental implications are 

as follows: At t = 0 the energy dependence should be that given by 

the effective pole, as there is little difference between the true pole 

and the effective one. However, for. negative values of t, the true 

pole has a small residue, but dominates for sufficiently high 'energies 

because of higher intercept. At a fixed value of t and increasing 

energy one should see a shift in the energy dependence that marks the 

transition between the intermediate and high energy region,. The new 

energy dependence should be that given bya poie with half the slope 

of the effective pole,which controls the enexg 1y dependence at lower 

energies. Note, however, that the leading dependence is still given 

by a pole and therefore still satisfies factorization 

This conjecture about effective poles mr still be valid if 

the P .interc:ept is unity but the analysis of this paper is no longer 

applicable.  
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- 	
APPENDIX 

Determination of .Regge pole couplings from experiment. The 

P coupling constant asdéfined in Eq. #.i) can be evaluated 

from the total 	cross section. This cross section isestimated to 

be about 17 mb, from the factorization theorem and the observed NN and 

N total cross sections. ' 	This gives 92 	0.13. If one assines 
p, ou 

that the t dependence of the scattering amplitude is similar to that 

observed for other elastic processes, the elastic cross sectiOn can be 

calculated to be a few mb. 

The determination of the slope of the P trajectory from fits 

to experimental data is somewhat confused due to the presence of the P' 

trajectory. The value of 1 GeV 2  seems to be a reasonable guess for 

the average effect of these two trajectories) °  

The p Regge pole coupling to the r-rr system àan again be 

obtained by factorization, and the Regge pole fits to TtN and NT 

charge-exchange scattering. At t = 0 the 1= 1 -pion-pion amplitude 

is given by 

2 

T(s) = (2) 	'f AN2/l ' 

where 	is the NW helicity amplitude and AN  is the tsual nonflip jr 

N amplitude. All these quantities refer to the p contribution only. 

Unfortunately the analysis of np charge'exchange is complicated by 

uncertainties about how the pion trajectory is to be included and whether 

or not a conspiracy occurs. As a result the p parameters for this 
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process are not well determined, but using the analysis of Ref. 16, 

we obtain 
g2p,out 	

0.025 - 0.02. 

	

Another way of estimating g2 	is from the coupling p,ou 

onstant17  y 	obtained from the e+ - e 	data with the vector- 
pT1T 

dominance h7Tothesis.18  The value from this source is 

g2 	0.07 - 0.04, deending on the extrapolation of this quantity p,out 

from 3= L to J= -. The last estimate is to use the experimental 

p width and the extrapolation from the p mass to t = 0 as, defined 

• 	• 	by the Veneziano formula'. This result is .in.agreement with the value 

obtained above 
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FIGURE CAPTIONS 

Fig. 1. (a) Graphical representation of a dynamical particle. 

(b) Graphical representation of a dynamical particle in the 

large-s limit by multiparticle unitarity. 

Fig. 2. (a) OPE model for 2 

OPE model for 2 —6r(. 

Multiperipheral model for 21t - 6i( obtained by iteration 

of OFE. 

Fig. 3.. (a) Multiperipheral contributIon to the multiparticle.produc-

tion cross section. 

•(b) Graphical representation of the Bethe-Salpeter equation 

for jT3T scattering amplitude. 

Fig. 1i. The momentum assignmnt for the pion-pion scattering amplitude. 

Fig. 5. (a) n-Plane singularities in the 1=0 channel. The dashed 

curve (a) is the input P trajectory, the solid curve (b) is 

the output P trajectory, and curve (c) is the input cut 

produced by two P's.. The variable. t is given in units of 

2 

(b) n-Plane Singularities in the I = 1 channel. The dashed 

curve (a) is the input p trajectory, the solid curve (b) is 

the output p trajectory, and the curve (c) is the input cut 

produced by the p and the P. 

Fig. 6. A plot of the inverse of the first eigenvalue, E(n), as a 

function of n for the 1 = 1 channel. 	 . 
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