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ABSTRACT 

We extend the group theoretical analysis of the 

multiperipheral integral equation of Chew, Goldberger, 

and Low to general momentum transfers. Using a set of 

variables for .the multiparticle phase space analogous 

to those of Bali, Chew, and Pignotti, we obtain, through 

the 0(2,1) symmetry; a partial diagonalization of the 

equation, without requiring asymptotic approximations to 

• the phase space. As an example, we apply our technique 

to a multi-Regge model and an AFS-type model. 
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I. INThODUCTION 

Interest in the multiperipheral model of Fubini and collaborators 1  

revived when Chew, Goldberger; and Lo 2  (cGL) noticed that a geeraliza-

tion of the model prpvided the framework for a bootstrap program directly 

4 involving Regge parameters. 	They proposed an integral equation which 

provides a powerful tool for investigating the role of multiparticle 

unitarity in determining the dynamics of high energy peripheral processes. 

The equation has been studied both at zero momentum transfer (t = o) 

and at t c 0 by several authors 	who made use of various asymptotic 

approximations to the phase space in order to achieve a. partial diagon-

.alizati,on of the equation. Such an approach is very fruitful since it 

yields important information about the qualitative features of the 

model.. 

It is an empirical fact, however, that the. iniportant.range of 

intermediate-particle subenergies is not very high. We present here a 

procedure for exploiting fully the 0(2,1) symmetry of the CGL equation 

with no approximations to the phase space. The burden of more carefully 

representing the low- and intermediate particle subenergies now lies with 

the choice of the model. Our scheme should provide some insight into 

the validity of the approximations made in the Mellin transform approach. 

In particular it exhibits some intereting effects of correlations among 

phase-space variables which may be of consequence even in asymptotic 

calculations. 	 .- 

The central problem in diagonalizing the COL equation with an 

I 	L tIL(itmlnt of pht e space 16 to find a proiier set of kinematical 
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variables. 8  Bali, Chew, and Pignotti 9  (BCP) defined as variables the 

momentum transfers squared and a set of "angular" variables which are 

asymptotically proportional to the subenergies. They were, more 

precisely, the parameters of the three-dimensional Lorentz group which 

preserve the momentum transfers in the multiperipheral chain (Fig. i). 

These variables were adequate for the analysis at •t = 0, where the 

p::oduction amplitude and its complex conjugate in the unitarity integrand 

may be expressed in terms of the same variables. Making use of factor-

•.ization at the Reggepoles.in  the multiple 0(2,1.) decomposition of the 

• unitarityintégrand, Chew and DeTar 10  (CD) deived an equation for the 

• absorptive part of the elastic amplitude at t = 0, which can be partially 

diagonalized by using its 0(3,1) symmetry. 11  

At t < 0 the amplitude and its complex conjugate are no longer 

simultaneously evaluated at the same point in phase space, and so we 

• must choose a new set of variables. Consider the unitarity diagram in 

• Fig. I with the upper and lower momentum transfers Q and 0 with
lu  

squares t and t2 
12 
 In a reference frame in which the overall 

momentum transfer Q has only a z component (-t) 2, we have 

( w-t) 

where both w and the magnitude of the Lorentz three-vector k. are 

fixed in terms of t 2  and t. Therefore the subenergy s 	is, for 

fixed t's and t's, a function of 	 and asymptotically 

pLopottional to it. 
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Fig 	1 Momentum conservation diagram for the (n + 2)-body contribution 

• 	 •• 	• 	 • 	 : to 	the 	uni.tarity 	sum. 	• 	• 	 • 	 • 	 • • 	 • • 	 • 	
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We are led in a natural way to consider the little groups of 

the k's 'instead of those of the Q,e's  and Q's. Due to the fact 

that the most important contribution to the phase space comes from 

spacelike '- (Sec. II), these little groups are noncompact, one-

parameter 0(1,1) groups,. and these parañieters will be our "angular" 

variables. 

In reconstructing the CGL equation we first project the unitarity 

integrand onto the 0(1,1) groups. It is at the poles in the 0(1,1) 

quantum number that we wish to make the facto,rization assumption which 

underlies the CGL multiperipheral model. For each Regge pole with 

factorizable residue in the production amplitude, the 0(1,1) partial-

wave amplitude il1 contain an infinite sequence of integrally spaced 

o(i,i) poles with factorizable residues For this appioach to be useful 

..weassumethat, by including only a,few leading 0(1,1) poles, which are 

derived from the first few Regge poles, we obtain an adequate average 

representation of the low energy.region. It is of course not necssary 

that this assumption be made at every link in the inultiperipheral chain. 

We treat a model of.the type in Ref. 1 ("the AFS-type. model") as an 

example of a model which does, not require such an extreme assumption. 13  

In the present paper we deal essentially with the definition of 

our variables and, the' crossed partia1wave analysis Of'thé resulting 

equation The precise connection with the BCP expansion will be discussed 

in a forthcoming paper, together with the t 0 limit. Moreover, we 

do not study hej.e the kinematical singularities of our production ámpli-

tudes in the nonleading 0(1,1) contributions. 
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In Sec. II we define our variables and we use them in deriving 

an exact expression for the many-body phase space, which is suitable for 

establishing our multiperiphera]..equation. •To.illustrate the use of 

our scheme, we construct the integral equation for both the leading 

power multi-Regge model and the AFS-type model in Sec. III. The crossed 

partial-nave analysis is given in Sec IV A remarkable technical result 

is that the kernel of our partial-wave equation is analytic and well 

behaved in the right half 2 plane, since we use a basis in which the 

relevant representation functions of the 0(2,1) group are second-type 

Legendre functions 
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II. KINEMATICS AND PHASE SPACE. 

The kinematical analysis at t < 0 proceeds by direct analogy. 

with the approach of BCP and CD. We begin with a review of the key 

features of their method. 	. 	. 

In expressing the multiparticle phase space in terms of group 

variables, BCP selected a séquencé of standard Lorentz frames, correJ 

sponding to a given arrangement of the outgoing particles in the process 

La - Lb -* 0 + 1 + 	+ (n + 1) 	 (2.1) 

Associated with each four-momentum transfer (see Fig 1) were a 

12 right standard frame (Li, r) in which. . 	 . . 	. 

= 	[o, 0 1  01 (_t)] ' 

(2.2) 

= (_t2,i+1) (sinh q 	0, 0, cosh 

and a left standard frame (Li, L) in which 

= [0 1  0, 0, (_tL i ) ]  ' 

= (_t) (-sinh 	0, 0, cosh q21 _1 ) 

The two frames were related by an 0(2,1) transformation, 

	

-iJ .0 . 	-iK l . 	-IJ v 	 . 
: 1 	= e . 

Li 	x Li 
e 	Z . , which preserved the z axis.14 
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In terms of the parameters of g 2 1, the four-vector 	assumed, 

in the frame (Li, r) the form 	. . 

= 	 2(_sinh q2,1 _1cosh t 1i , sinh q.. 1 sinh 	.cOs v 2 , 

• 	 . 	 - sinh q.21sinh 	.sin v2 , cosh. q21) 	. . 	 (2..) 

• 	 • 	 . 	 From the standpoint of the frame (Li, r) this was an adequate. param- 

eterization of Q, . . 	under the assumption. that t . -1 < 0 and 

t2  K 0. This observation facilitated the change of integration 

• 	 variables. The boost 	• was connected with the subenergy • 

• •  • s " -2 Q21  Q2 ., thereby providing a framework for the multi-Regge 

expansion. After linking the frames (Li, r). and (2 i+l, 2) with a 

pure z boost q it is possible to go from a particular rest frame of 

particle Lb to a particular rest frame .of patricie La via all 

• intervening standard frames with the transformation 

• 	 • 	 • • 	 • 	
• • rLa q20  g21  q21 	g21  q21 rLb 

• 	 (The rotations ra  and  rLb are taken in. the rest frames of particles 

La and Lb.) 	 . 

In constructing a recursive expression for the (n + 2)-body 

phase space, •CD introduced the Lorentz transformation 

L'a 	a q0g ill 
q 	 •.•. 	, 1_1 g2.1~1 
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which transformed four-momenta from their configuration in the frame 

(2i,r) to their configuration in a general reference, frame. The 	 'a 

incomplete absorptive part B(a 2 , t2 ), which appeared in the integral 

equation at t = 0, was a function of a Lorentz transformation of the 

trpe a2 	The equation was partially diagonalized by projecting 

B(a2, tL)  onto representations of the Lorentz group 

At t < 0 we shall construct an analogous function B(a, t2, ta), 

which depends upon an 0(2,1) transformation a This transformation 

preserves the overall four-momentum transfer 

1 

Q = 10 1  0 1  0, (-t) 2 1 , 	 ( 2 o) 

and plays a role analogous to the 0(3,1) transformation a2  

If we fix Q in this way throughout, the components of the four-

momentum transfers 15  

= [ 	w + 
 

(27) 

= 	w - 

are partially determined by the constraints 

- 	= 	, 	 = 	 = t2 

with the result that 

w 	= (t 	- t)/2(7t) 

-(t21, tui t)/lLt , 	 (2.8) 

•(a., b, c) 	a2  4 b2  + c2  - 2ab - 2ac - 2bc . 
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The key to the analysis at t < 0 is to recognize that the Lorentz 

three-vector k. plays a role analogous to the Q. In effect, the 

• 	 z-component has been set aside, with the result that the 0(3,1) symmetry 

• is reduced to an 0(:2,1) symmetry. In place of 0(2,1), the group 

preserving the form of Q, we introduce the 0(1,1) or 0(2) group, 

which preserves the form of . k 	As before, large subenergies at 

• 	• 	• fixed t Li , t ui  .. can occur only when the scalar product k. 	k. 	is 

large. • 

Except at the ends of the chain for a fixed value of t, the 

are space-like in the sense of three-vectors This follows from 

a condition on the invariant three-vector masses analogous to the 

familiar condition for space-like four-momentum transfers Referring 

to Fig 2, one sees that if 

> P 2 = X(m 
2 
 m  2 t)/Lit La 	ua 	• 

(2.9) 

P.ib 	> 'b 	= 	mLb2, 'nub' t)/)#t 

then 	< 0 The minimum three-vector mass 
2 
 is in12 , the four- 

vector mass. Hence the constraint (2.9) will automatically be satisfied 

for a particular value of t after a sufficient number of particle 

momenta have been included in 	and 	,b• For pairwise equal ' 

masses '(m =
La mua 

and  m
Lb 
 = m

ub 	i 
) k. ' is negative when 	 ' 





	

2 	2 1 
S 	 +W 

i 	m -rt , a.,i-1 	 a 

(2.10) 

2 	2 1 
Sib + W.i>

1 mb- t , 

where s = P2  is the four-vector mass The positions of the Regge 

poles in the elastic absorptive part are determined by the central part 

of the chain, the ends of the chain serving only to define the pole 

residues Hence for notational convenience we shall treat the more 

important case of space-like internal k and shall later indicate the 

simple generalization to time-like k i , which occur only at the ends of 

the chain 

We define a sequence of standard frames (i,.e) and (i, r) 

	

by analogy with (2 2)-(2 ) 	In frame (i, r)16 

k.= (o, k] , 0) 

(2.11) 

i+l = (k 1sinh q, k11cosh q, 0) 

and in frame (i, £) 

= (o, k, 0) , 

(212) 

= (-k 1sinh q 1 , k 1cosh q 1 , 0) , 

'0 	 I 

where k.' = -k. k. . 
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Because k. is along the x-axis in both frames, (i, 2) and 

(i, r) are related by an 0(1,1) transformation, namely a y boost 

which preserves at once the x- and z-axes Hence in frame (i, r) 

	

= (-k 1sinh q 1cosh , k 1cosh q 	k 1sinh q 1sinh 	) 

The subenergy s = (p 1  + p) 2  is proportional to cosh 	for large 

• 	. and fixed t, t ui 

	

Si 	_2 i "  2k1k1+1sinh q 1sinh 	cosh 

(214) 

which follows from (2.11) and (2 13) 

We have introduced the x boost q 1  to relate the frames 

(i, r) and (i + 1, 2) 	From the constraints 

• 	 2 	2 	 •. 
- QLi = 	' 	= 

cosh q. can be calculated as a function of the momentum transfers or 

equivalently, the k's and w's: 	• 

• 	 2 	2 	 2. 	• • 2 
i 	

• 
k. + k 	+ (w. 	i - w 	) + M. 

1 	+l 	1 	+l 	1 	 . 
cosh q. = 	 z. 	• (i 	1,2, ",n). 	• 

	

i 	 2k.k. 	 •' ii+1 

(2.15) 
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If k. . k. in Eq. (2.11) had been positive, we would have 

written 

= (E1 , 0, 0) 	 (2.16) 

wher.e E. 2  k.• k.. In this case the y boost 	
. 

must be replaced 

by a z rotation 	[an 0(2) transformation] as the transformation 

relating the frames (i, 2) and (i, r) and preserving the form of 

The form (2.16) is required at the very ends of the chain Here 

we define the frame (a, r) in which 

(E, 0, 0) 

(2 17) 

(k1sinh q0 , k1cosh q0 , 0) , 

the frame (b, 2) in which 

= (Eb, 0 1  0) , 

(2 18) 

= (_k1sinhq1, kn+iCosh 	0), 	 I  

and the frame (b, r) where 

V 

= (Eb, 0, C), 

= (-k ~1 sinh q 1 , k 1 cosh q 1cos 	, 	k 1cosh q 1sin 

(2.19) 
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Corresponding to Eq. (2.15) we find 

2 ' 	2. 	2 	 2 m -E +k +(w +w) 
0 	a 	1 	a 	1 	- sinhq0 .= 	 z0  

2Ek1  

(2.20) 

2 	.2 	2 	 . 
- Eb. + k 	 + (wb - n+1 	. sinh q 
	 2Ebk1 

From these results the procedure for generalizing to an arbitrary choice 

of space-like and time-like three-momentum transfers should be obvious 

For vertices with adjacent space-like k. on both sides, it 

is evident from (2.15) that cosh q 1  1 and from (2.11) we see that 

0 	 (2 21) 

if P. is to be forward time-like From (2 19) it is evident that 

for time-like--6pace-like vertices, q may be negative 

Pursuing our analogy further, we define the 0(2,1) transformation' 7  

a 	= ba  Oa q0 l  q1 	_1 5i, (2 22) 

where ba  is an arbitrary 0(2,1) transformation which preserves Q 

The construction of the (n + 2)-body phase space in terms of the 

0(1,1) and 0(2) .group variables 	' b' and the variables k,  w1 

proceeds in much the same way as before. The familiar expression for 

the phase space in terms of the four momenta, 	. 	 .. .. 

/ 	 /1 	
- 
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d n+22a' 	
dP03(p02 

- 
m02) dF1(p12 - 2 )  

	

dP1(p21 
- m2 1 ) 8( 	P. 

- 	 - 	

, 	 (2.23) 

may be iewritten in terms of the components of the four -momentum 

transfers 	
= 	' 	

- 

d n+2a' P2 , t) = B)(P2 
- m02 ) d3 t, dw1 5(+)(2 - m12 ) 

d3  k 	dw, 	(+)(2 	- m2 
) 	 (2.24) 'n+i n+1 	n+1. 	n+1 

We picture the phase-space volume element as being defined for a fixed 

initial 0(2,1) transformation ba which defines 	and a fixed 

overall 0(2,1) transformation bb ,  which defines 

= a ( Oa 	1)q1 ~
n+l q1 0b 	 (2.25) 

If we integrate first over d3k1  dw1, next over d3 dw2 , and so on, 

from the standpoint of the first integration a 2  is a constant. Lor.entz 

transformation, since a2 = bb b q• 
. 	

q2 	does not depend 

upon 	and w1 . Transforming tj  by a2 ' brings l  to its 

configuration in the frame (2, r) where the parameterization (2.13) 

applies. We make use of this parameterization to change variables, 

k12  dk1 d cosh q1  d 2 
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The range of variables 0 k < cc and —oo w . co spans that portion 

of the phase space in which k. is space-like. The complete phase space 

must, of course, include an integration over dE. dw. dq 	for time- 
i 

	

1 1 	+1 

like k., where 0 . E ,co, - 	w 	oo. An additional constraint 

upon the range of integration is imposed by the 5 function in (2.29) ., 

since q0  depends upon all the integration variables through (2 25) 

This constraint places an upper bound on the E 1  which is eventually 

reduced to zero after a finite distance along the chain 

The recursive property of the phase space may be stated as 

follows 

dk 
d 0n+2 a  bb, t) 	d +i(ba  a 1, t) n±l dWn+1 db 

d 	(b,a 	,t) = d(b,a,t)!dk dw d 

	

n+l a •i+l 	 i a 	i 	2 1 	i 	i+l 

(for, 1 = 1,2, 	,n) 1 	 (2 30) 

5(sinh q0  - z0 ) 
d j(ba  all t) = 
	2E 

with the proviso that 

bb = a1 +l b ' 

	

a 1 	a q 	
if-l' 	

(2.31) 

a1  = bq01 
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It may be helpful to remark that when the 5-function constraint is 

satisfied in the integration d. 	it is automatically satisfied in 

d 	because of the second condition. (2.31)',which is consistent with 
1+1 

(2.22) and (2. 25) .  

Because there was no rotational freedom left in defining our 

standard frames in (2.1l)-(2.13),we cannot use the simple device of 

replacing a helicity sum with an integration over a rotation in the 

little group of k. as CD did with the little groups of 	The sum 

over spin degrees of freedom must be performed explicitly, therefore 

The correct procedure using the BCP amplitudes will be described in a 

forthcoming paper. Here, for the sake of simplicity, we shall treat 

only pions in the intermediate states 
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III. FOflM OF THE ANPLIUDE AND CONSTRUCTION OF THE 

MULTIPERIPHERAL INTEGRAL EQUATION 

(A) Multi-Regge Model 

In order to construct the niultiperipheral integral equation for 

t K O we must first express ML +2) and the amplitudes fdr 

the processes La + Lb .-O + 1 + •.. + (n +1) and 

ua + ub —O + 1 +••• + (n + i), respectively, in terms of our variables. 

The expressions are similar because our choice of variables is symmetri-

cal with respect to the upper and lower amplitudes We therefore drop 

the labels fl i tt  and "u" for the moment 

If M+2)  is a square-integrable function of the 	s, it 

can be written in terms of its projection onto the unitary irreducible 

representations of the appropriate groups 

(n+2.) 
M 	a' l' 	n+l' 0b' Ea  Wa k1 , w1 , 	k

+1
, w11, Eb, Wb t) 

-- 	 +i 	
im 0 

= (2) 
2 	 n+l 	

l d
1  e a a 

mamb 

11 	n+ln+l lflibøb 
e 	e 	 e 

(n+2) 
x M 	(ma, 	, 	Ifl+1, nib E, 	Wb t) 	 (3 i) 

For non-square-integrable functions of physical interest, Eq (3 1) is 

valid provided that the cpntour of integration is deformed away from 

the 1m3inary ax is, in an appropriate way.  
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We must evaluate s. and w. in terms of our variables. Recall 

that the asymptotic form of the subenergy (2.14) is given by 

k11  k1+1  sinh q11  sinh q e 	 ( )4) 

18. As for w.
1 , e have 

= w1(k1,w1,k11,w11,m12,t,sgn 	, sgn 	 ( 5) 

Because the extra variables sgn are needed to label the residues 

at the 0(1,1) poles, in the following we discard the w dependence 

(see Acknowledgment) 

Substituting Eqs (3.4) and ( 5) into Eq (3 3), we easily 

find that 

M +2 ) 	 (t  eaa maI'Ea w, k1 , W1  m02, t) eaTl 	l 

mmb 11  

1112 	 2 	a(t2 )l 2 J 	UYIi  

	

(k1 , w1 , k2, w2 , m1. , t) e 	 • 

Tn1nfl 	 2 (k, W k +1, w1, m , t) e 

Tn+l 	 2 	1%øb 
X(kn+1 w+1, Eb, Wb 	t) e 	, 	( 3.6) 

mb 

where the kinematic factors k. and sinhq. have been absorbed into 
i 

the residue functions. 
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Thus a Regge pole at a.(t) in M (n+2) generates, in 

leading order, 0(1,1) poles at i. =.± a.(t.). In general, we expect 

a Regge' pole to generate a sequence of. 0(l,l)poles spaced by integers. 

The residues at the poles are factorizable, enabling .us to derive an 

integral equation for the absorp 1tive part of the amplitude. We note 

that whereas the 0(1,1) vertex functions depend upon the overall momentum 

transfer, 	the positions of the 0(1,1) poles, crnisidered as a function 

of t and t j, are independent of it. 

We are now in a position to derive an integral equation for 

determining A(b a 1  bb, t), the absorptive part of the amplitude 

(ea, Lb -3ua, ub) As noted in Sec II, time-like k. occur only at 

the ends of the chain, and so do not affect the positions of the output 

Regge poles For the sake of convenience, therefore, we write the 

integral equation integrating only over space-like k.. 20  We assume 

that ML +2) and M(n+2) can be approAimated by sums of 0(1,1) 

poles with factorizable residues as in ( 6) 	Restoring the labels "L 1 ' 

1111+1 
and u, 	we define ma, nih , a, and B 	by 

m 	in 	-m , 	in.. =mL  -m a 	La 	ua 	0 	b 	ub,  

a(k1, w, t)= aIL(tL) + a(t) ,
rui 

T.r. 
2 R 	(k1., w. 1  , k i , w i , in.1 	t) +1 	+l  

= 	
2 

m. , t 

x [U Ui1+1(k , w, k11, w11, m12 , t)] 	 (3 ) 
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The derivation of the integral equation closely parallels that of CD. 

We merely quote the results. The incomplete absorptive part is the 

solution of the equation 

B1 (a', k', w', 	)= (0)B1 (a' 	k', 	', t) 

+ . 	JakdwdY BT(a, k, w, t) R(k, w, k', w', m2 , t) 

a , ( Ic', w' , t) I' 
(38) 

where 

a' = aq' 	 (3 9) 

and 

cosh q 	2k' [Ic2  + Ic' 2  + (w - w') 2  + m2 ] 

The inhomogeneous term is given by 

r f 

(0)B (a', Ic', w', t) = 	

m 	

5(sinh q0  - z0 ) 

£aua 
.1 

im 0 	 2 	a
T 
 ,(k',w',t)I' I 

X e 	R 	(E,w,k',w',m0 ,t) e 
£aua 

(3.11) 
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q0 	. The complete absorptive part A(ba 1  bb, t.) is with a' = 0a  

determined from B1  by 

A(ba '  bb, t) = 
	

fdk dw dØb B(ba1a, k, w, t) 

minT £aua. 

mlD ø 

	

X R 	(k, w, Eb, Wb m2 , t) e 	
b 	 (3.12).  

£aua 

with 

= aqØ 	 (313) 

(B) AFS-type Model 

In the model of Fubini and collaborators 1  the factorization 

assumption in the production amplitudes is introduced through the pion-

pole dominance, and the building blocks of the multiperipheral chain 

are the (off shell) pion-pion scattering amplitudes 

In evaluating the unitarity integral (Fig 3) we can make, on 

the momentum transfers Q2 's and .Q's, the same change of variables 

as in Sec II, while the remaining loop integrals simply give the off-

shell elastic 	cross section A2  for each link of the chain 

So we have. 

-II - 	 - 
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IV. CROSSED PARTIAL-WAVE ANALYSIS 

Equations (3.8)  and (3.16) have 0(2,1) symmetry because both 

kernels are invariant under the transformation a -ca, a -*ca, 

where c is an arbitrary 0(2,1) transformation not affecting ba• 

To exploit this symmetry, we shall expand B(a) (we drop the k, w 

variables for the moment) in terms of representation functions of 

2 	Because of the parameterization of a [Eqs. (2.22) and. (3.17)] 

we shall use a mixed basis, namely an 0(2) basis associated with timelike 

	

and an0(l,1) basis 22 ' 2  associated with spacelike k..where the 	H 

y-boost generator Ky  is diagonal and has eigenvalue p(— co < P < 

The representation functions carry an extra index r = 	because each 

.eigenvalue p of K. occurs twice in the completeness relation. The 

properties of these representation functions are given in Appendix A, 

which relies heavily upon the work of Mukunda 22 

We expand 

B(a) 
= f dEl] (—i) f 	d 	B 1 	 (4.1) 

where Ji ip, and we assume for simplicity that the helicity difference 

24 ma = m1 - m = 0; C is an infinite contour along Re £ = - -, and 

d[2] = (8i) 	(22 + i) cot jTi dl . 	 ( n.?) 	- 
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The fOrm of our equations is 

B(a') = (Q) B(a f ) + fd cosh q d 	B(a' 1  q) K(cosh q, ') 

(4.3) 

where 

K(cosh q, 	= 	(cosh q - z) R ea 	I 	(multi-Regge) 

() 	a) 

= G A2 (cosh q) 	(AFS-trpe model) , 	)m) 

and all the irrelevant labels have been dropped for simplicity 

Substituting ()-.l) into (14.3)  and making use of the identity. 

Dir(aY1 q) = 	

f-i 

(-i)' D,r,(a') e'' 

(145) 

we obtain the partially diagonalized equation 

+jD 

Bt r t = (0)Bp I r ? + 	f 	(-i)d B r  K r t r t 

(14.6) 
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d 	= 	(cosh 	
)_2_2 

f 	e') 

x (e + tanh q) 21 	(i + e tanh 

1. 	1 -2-2 	1 -(+') r( ±1 + ') r( + 1 - = .. —(sinhq) 	(tanh q) 	
r(2 +2) 

+ 1 + t, £ + 1 + 	2 + 2, - (sinh 	
)_2] 	

( 10) 

and is therefore a pure Q 2 -type function In particular 

d002 (q 1 ) = ( i/+) Q2 (cosh q) 	 (4. II) 

Equation (1  9a) is still an integral equation in p = - iii, 

as is expected in general, p being the analog of the intermediate 

• 

	

	helicity in a t-channel two-body unitarity sum. Considerable simpli- 

fication is, however, achieved for the kernels (4.1) which represent 

only the leading 0(1,1) poles at each link in the multiparticle 

amplitude. 	 • 

In the AFS-t3rpe model [Eq. (!,Lb)] the kernels Kr 	contain 

• • 	a. 	(') factor, due to the lack of c-dependence (spihiess particles). 

By factor:.i.i the s-function out and restoring the k,w variables we 

c)bta1n çr j]y 	 . 	 . 
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B~2 (k)w') = (0)B+(ktw') + Jk2dk dw B~2 (k,w) K2 (k,w; k',w) 

(!4.12) 

K2 	G(k,w)2 f 	dz A2 (z; k,w; k'w')Q2 (z) , 

mm 

where z.. >1 is the threshold value ofcosh q in (3.15) with s•= min 

Note that K2. is the same partial-wave kernel as the one obtained from 

the Bethe-Salpeter equation corresponding 2  to the. unitarity Eq. (3.16). 

26,13 
This kernel can be obtained either by means of a Wick rotation :. or 

through the crossed partial-wave anaiysis. 2 	 . 

In the multi-Regge model we can approximate the integral 

• 	 equatiop in t . with.a system of equations coupling the 0(1,1). poles 

together. From Eqs. (4.4a) and (7) we have. 	• 	 • • 

= 2a 
2 R d2,(q1) , 	 ( 13) 

the modification fOr more than one 0(1,1) pole being obvious 

• 	 • 	 Due to the analytfcity properties in 	of d, : given in 

Eq. (4.10), itis•evident that B 	has both some "kinematical" 

poles which can be factored out, 	• 

B 
2 	r(2 + 1 + ) 

r(2 + 1 
- ) 	

2 
r(21 + 2) 	 ,. 	. ... 

and "dynamical" poles at i = -ia. The meaning of the kinematical poles 

can be. seen .from.the partial wave projection of Eq. (3.12) 	. 	. 
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A2 	= 	(2Eb)' 	fdk dw(-i) fdi 
B2 d,(q_1) 

(for 	mb = m2b - 	b 	= 	a) (4.15) 

The pinching of the poles 	= a 	and 	= £ + 1 + n 	(Fig. 	6), 

(n=0,1, 	),gives use to a singularity in the £ plane at 	2 	a - 	- ii, 

moving with 	k 	and 	w, and therefore to a Regge cut in Eq. 	(6.15). 2  

By dividing the 	-integration of Eq 	10) into the pieces 

(->,o) and 	(O,+cx) 	we can write 

rU + i + 	t') 1  r(2+ 1 - 	
1 d

2 , r(2 +i + 	) r(2 + i- 	) 

AO 
= 	d2 	d+ (4.16) -j .,-j , 

where 	d, 	has only the poles 	i = £ + 1 + n 	(n = 0,1,") 	in the 

r.h. 	i plane, and is well 	behaved when 	Re t 	 In terms of 

our equation reads 

+100 

- 	(o)' 	(•-i) 	d ,2. 
j a2 

(6.17) 

We now displace the i integration towards the left in the t.L plane 

1j 	A  Ll 	tind 	LOWmLd 	the 	i 	fo picking up the dmamica1 
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lm,u 

1+2. .... 

x x x x x x 

000 	a2 1 I 12 	000 

Rep. 

••• -/-2 -I-I -L -i+i 

x x x x x x 

X8L698- 3422 

Fig 	L 	Poles in the p.-plane for the integration of Eq (1 	15) 
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• 	 •po1e at i = -+a. If we neglect the remaining background integral we 

•get,finally,

YT' db 1 , t  - (0)b 1 	= 	 b 	R(,a 	+ 	-a 	( 18) 

• 	 where b 	is the residue of B 	at the pole t = a1  and we have 

• 	 generalized to the case of several 0(1,1) •poles. 

The background integral iepresents the contribution of lower 

ranking singularities in the input 0(1,1) series. Neglecting this 

integral involves an assumption about the convergence of our solution 

• 

	

	 as we include successively more input singtilarities. For our method 

to be usefu], the locations and residues of the leading singularities 

in the P plane of the solution should be determined to a good approxima-

tion by a small number of leading singularities in the p. plane. Note 

that the background integial has its first 2-plane singularity at 

£ = -M - 1 on the left, where p. = -M is the position of the net 

singularity in B 2 ,which has been neglected. This lends credence to 

the above stated assumption 

If we now restore the • k,w variables, the approximate Eq. 4.18) 

reads Or is short for 

b 1 P (k!, w t) 	(0)b(kw) 	 f dk dw 
19) 

(k,w. i' ,w' 	
r'i' 

 



I 
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-r rl ri * 	 a,  
(2 + 1 - 
	)_1 22 	£ £ 	

U U) [(tanh 	q) 	+ (tanh 	q) 	I 

	

-2-1-i-a - 	, a 	a 

	

: 	(sinhq) 	 k 1 ,.k'  

It is interesting to compare it with the kernels obtained by using the 

Mellin-tiansform technique with an asymptotic representation of the 

phase space 	One striking difference is the presence of the last 

three factors.. For small k this term factorizes in k • and k' and, 

after a redefinition of b 12 , yields a "threshold" factor (0) 	C 

where 	= a1  (t 2 ) + a1  (t) - 1 This factor can be neglected when 

	

.2 	u.. 	 . 

£ is close to the branch point, where the output Regge pole occurs in 

weak coupling models This is also the limit in which the Mellin 

transform approach is most plausible. 	. 	 . . 

An additional featur.e of our kernel is the presence, through a 

dependence on sinh q, of a kinematical correJation between the k 

and k' variables for k, k'> m , wheren'i. is the mass of the outgoing 

particles(s) at the vertex. For linear input trajectories this also 

provides a natural cutoff at large values of k 
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APPENDIX A 

(a) 0(2,1) in a Noncompact Basis 

We summarize here the properties of the representation functions 

of the 0(2,1) group in noncompact bases which are relevant to our 

paper The reason is that we use a slightly different basis than 

Mukunda, 22  and also that the representation functions in the 

0(2) X 0(1,1) basis are not found in the literature 

We are interested in the matrix elements of transformations 

like 

-iJØ 	i1c r -x 
x 	y (A.l) 

which connect time-like to space-like three-momenta and transformatibns 

of the form 

-aK ' 	-aK T] -aK 
(A2) 

for the space-like-space-like case Although the latter parameterization 

of the 0(2,1) group is not complete, it is suffiàient for our purposes, 

due to the form (2.22) of a.. We shall use.the mixed basis for the 

transformations (A 1) and the 0(1,1) basis for (A 2), with the 

definition 

-iK 
dpr() = (2,me 	

X 	
pr)= [d r,m(1_l )] *  , 

(A.3) 
-K 

d 	 tr)1 
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f() 	(ch 11 + ch E sh 11)21 f(y) 

f() = •(ch 	sh 	ch 11)_2_1  f1 ( 1 ) Q(ch 	sh 	- ch 11) 

+ (ch Tj -  ch E sh 11)21  f2 ( 2 ) 9(ch 11 - ch 	sh ) 

	

e+thfl 	 e -th11 	
(A.7) 

e 	= - 	• 	, 	e 	= 	1 

	

1+6 th11 • 	 • 	e th11-1 

= 	e -th 
e
211  

1 - e th 

(b) 0(1,1) Basis 

By substituting (A 5-7) into the second definition (A 3), we 

get for example 31  

= 	f 	dE e '  (ch 11 + ch sh )21 

(e+th.fl 

	

( 	 1 	
(A8) 

th 	11) 	 • 

By using the relation 

ii 	( 	 i) ( 	ti 	i) (ch 	lY, 	(A 9) 
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d2 	 ) 	••• f h0+ 1 I 	
- r( + 1) 	Q 	c 

(A.17) 
•_•l 	r(2+l) h  C 1 

We finally mention, without proof, the relation 

cos Tti d,(i1 ) = -cos 	d,++(1
-1 
 ) + cos TqA d .,:_(1 )' 

 

	

valid when 	> 0 It can be used to prove that Eq 	9b) of the text 

is actually solved by the relation (B 1) between (-) and  (+) amplitudes 

derived below.  

(c) Mixed Basis 

We can obtain the representation functions in the 0(2)X 0(1,1) 

basis by using the same Hilbert space as before, by using the represen- 

tation of the state.s I m) in this space 22,23 , 	which is 

	

( 
m 	

) , 	f() = 	11(ch) 	
(1+ie 

m 	(2 rt ) 2 	 \l - ie 

 

From (A.'(), after some algebra, we obtain 0 >0) 

d *m(1 ' ) = 	
/ 	

d e(ch ch 1 ± sh nY2 ' e() t. 

•(A.2o) 



UCRL-19286 

where 

tan 	= (e ± th 	th 	± 1) 	 (A 21) 

For m = 0, r = +, (A 20) is a standard representation of a 

Q 
34 

function, 	and we obtain, for 	> 0, 

d 0() = 	F(; 
+ I) 	

1 	Q(i sh i) = d 0 (), (A 22) 

where the last equation follows from the relation 22  

inJ 
Zj+) 

= 	I -n,-) , 	 (A 23) 

and from the fact that the d2 
0 
 is even in 

I-I, 

For m 0, r = -, the r h s of Eq (A 20) is proportional 

to the analytic continuation of Q(i sh ii) from ii > 0 to II K 0 

onto the Riemann sheet reached through the cut -1 < z K 1 Therefore, 

by making use of the discontinuity formula 35  

Q2 (x + iO) 1~1 -,rt 
Q(x - iO) - i P(x - iO) , 	(A 2) 

we get 

dt - d2 	( • - - 
cos 	 ( l 

	

n/ - 	 cos 	+,0' 

+ 	' r(-) 	d 	(i') 	
A 2 4-1) cos  
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• 	.• 	. 	
(d)Group Properties of 	B Functions, 

By the use of the r index it is possible to have pure Q, 2 -type 

representation functions thus providing group-theoretical properties 

for For instance, using (A.l)-), we oltain • • 

- iK x  Tj 
1 
 1K 	iK02. 	• 

• 	• 	(2, 0+ I .e 	e 	e 	12, 0  +) 	• 	 • 	• 	• 	• 

+joo 

dt d 	 e 	dI 	 (A 26) 

and using (A l() we get the addition theorem (for z = ch TI) 

Q2 [z1 z2  + (z12  - i) (z22  - i) ch ] 

	

+i3 . 	 • 	 .• 	 .•• 

(z1 ) Q2(z2) et 	 (A 27) 

When e > cth 	cth'q2, or if z 1  = i sh i, the i contour can be 

closed in Re p > 0, picking up the poles of Q 	at i = £ + 1 + n 

and giving (A 27) a form known in the literature 

The result (A 27) can be used to give the crossed partial wave 

analysis of the AFS type Eq () 16) without explicit use of the group 

theory.37  
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APPENDIX B 

Relation Between + and - Amplitudes 

• 	 We have seen in the text that the (+) amplitude can be 

determined separately from Eq ( 9a) 	Then Eq ( 9b) gives B 2  

• 	.. 	 2. 
• 	 in terms of 

Note first that the only additional Regge poles which can arise 

from(IL9b) come from the singular points of (1 - K 2 ) 1  and,since 

K 2  is related to K 21  [Eq.: (A.13)], they are simply the Regge 

poles at the symmetric points 2' = -2 - 1 	(Remember that the output 

amplitude A2  is symmetric under £ 	- 2 - 1. ) Therefore, only 

• 	 • 	K +2  is releVant for determining the position of the output Regge 

poles 

On the other hand, an explicit simple relation between (-) 

and (+) amplitudes can be found if T > 0 in the pararneterization 

of a. In such a case, from the definition (.i) of Br2 

and from the r&ation (A 25),we get 

B12 

= f 	d e 	[00 
d sh I d 0 () B(,) 

nun 	 • 

(B 1) 

B 
21 

B -  . 
- cos 	

B 2 
p.- 	- 	cos yti 	i+ 	 r(2 + 1) cos 	r(  

wh.i il 	v 	cxplic: t.iy, for this case ), the system of Eqs. .(7 .9) . 	This 

can be verified in a straightforward way by using (A.18) given above to 

.2 	 -2-1 relate K+ 	to K++  and  K++  . 	. 
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APPENDIX C 

Generalization to Toiler Angle Dependence 

We indicate here, for the sake of completeness, how our 

equations are modified in the case of Toiler angle dependence of the 

production amplitudes. We use a method of Mueller and Jzinich,
38  

which essentially consists in adding an extra index T = sgn 	to the 

incomplete absorptive part. 	. 

As remarked in Eq. (3.5) . , the Toiler angle w. depends on 

T. and. 	This means that the residues at the poles p. = a and 

p. = -a are different. Therefore, we. must treat positive and negative 

S separately. . . 

The 0(1,1) expansion of the production amplitudes becomes 

M(n+2 ) e a a 	e 1lil  — > 	I a 
ma ,m.b,Ii,Ti 	 . 

111212 T22 	
Tn+i 	'b 

?K 	T 	
e 	
.m 

 

12 	 -. 	n+lTh 	 . 

where the k,w . vaiab1es have been dropped. For the incomplete 

absorptive part we now have. the equation 	 . 
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The separation of r.h. and 1.h. kinematical singularities in 

the -p1ae for d, 	proceeds as before except that, for a given 

Aj 
-r, only one of the functions d 	and d 	contributes. The 

L4L 

final equation is 

b, (k',w) = (0)b 1 (kW') + x 	fak dw b(k,w) 
• 	 •• 

X RT(k,w, 	t) 	 (c 5) 

	

TT 

where (0)b 	is defined as in Eq (4.20), except that nou,e g , 

I 	I 
= 

Equation(.19) fo11ow from (c.) in the case of T independence 

of the residue functions. • 

• 	 •• 	 !• 	 -•• 
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(2.2) and (2.3) a definition of the y a'xis. This can be accomplished 

by specifying a standard form for 	2 and 	2 respectively 
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The three-vector k always refers to the components. 	Q, Qy ); 
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Iteft as in the BCP frames (Ref. l)). 	 ' 
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We use the same symbol for the Lorentz transformations 0, q, and 

as their parameters. 

In terms of the variables for M, 

(cos W 	 + coshii  

= (ti t 1+1 )(sinh q21 ) 2 (sgn 	sgn 	+ cosh q 1 )/ 

k i k 1 (sinh 	)2  

The 0(1,1) variables are defined in reference frnes which are 

partly determined by Q (2.6). so this t dependence is not 

surprising The 0(1,1) expansion is natural for the unitarity 

integrand, but not quite for the production amplitudes themselves 

It is always possible torecast an integral equation of the type 

(3.8) in terms of B = B- B,where B represents the sum of 

the first n terms in B, obtained by iterating the original 

equation Since the time-like k's disappear after a finite 

numbei of iterations, one can always obtain, with this device, an 

integral equation involving strictly space like 	's. 
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We assume that all Regge poles are to the left of Re £ = - 	so 

that this expansion converges properly. When the poles move to the 

right, the contours have to be distorted, accordingly. 

In Ref. 1 the construction is givenof a Bethê-Salpeter equation 

whose absorptive part, due to the Cutkosky rules, is the unitarity 

Eq. (5.16). If a Regge-pole expansion of.the off-shell r-]r 

• 	 amplitude is assumed, such an equation does possess the AFS cuts (Ref.15). 

B. W. Lee and R. Sawyer, Phys. Rev. 127, 2266 (1962). 

L. Sertorio and M. ToIler, Nuovo Cimento 55, 415 (1964). 

• 	28. As shown in Fig. 4, there are also poles at i = ±(2 - 

coming from d 	(q), which appeaiin (.15) andnot in 0 .17). 
,pr 

The only effect of the additional pinchings is to generate a 

• 	 symmetric cut at 2 = -a in A2 , as expected. This is most easily 

seen by performing  on B £ and d2 	decompositions similar to 

(4.16). In this respect the i-plane singularities here are similar 

to the 2-plane singularities of Toiler amplitudes (symmetric under 

£ 	4 - 1) and a separation of 1 .h. and r.h. poles simplifies 

the distortion of the contours. 

29. The expression for (0) b is the one given below if z 0  > 0. 

If 	0, Q2 	has to be replaced by a more complicated 

expression derived from (A.25). 

50. In the Appendices we adopt the abbreviations ch q, sh q, th q 

for the herbolic functions. 

1. We prefer to give directly the representation functions occurring 

in the kernel ()- .7) and in the amplitudes (B.l) instead of those in 

the expansion #.l). They are related by complex conjugation. 
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