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 ABSTRACT |
The Clebsch-Gordan series of the 0(2,1) group
and its covering group SU(1,1) for all cases except-that
of the subplemental series are derived. Thé_COntinuable Clebsch— '
Gordan coefficients (or equivalently, the Wigner coefficients)
are explicitly expressed in terms of the'generalized

hypérgeometric function The spectra in the décompo-

| s |
sition of the product of the two principal series are - 3
discussed. The applications to the unitary irreducible

representation of 0(2,2) are also studied.



2%

- B  UCRL-19306

I. INTRODUCTION
Recentiy, much‘atﬁentioﬁ has been paid to the group-theoretical
analysis of the scattering amplitude,at zefo or negative momentum
transfer.l’2 For theilafter case, the amplitﬁde exhibits an 0(2,1)"
symmetry; Reggeons, which take the role of forces in relativistic
S-matrix theory,B_transform under this symmetry group 0(2,1) as the

basis vector of its unitary irreducible representation (u.i. rep.).

' Thus the Clebsch-Gordan coefficient (the C-G coefficient) of 0(2,1)

plays the same role as that of 0(3) for physical particles.
The C-G coefficient of 0(2,1) for three positive discrete (or
equivalently, negative discrete) series was worked out by Andrews and

5

Gunson and'Sannikov.6 Pukanszk:y7 found the multiplicity of the
irreducible components resulting from decomposition of the product of
two u.i. rep. of 0(2,1), but he did not work out the C-G coefficients

explicitly. Ferretti and Verde8 worked out the Clebsch-Gordan series

"~ for .two continuous series with some restrictions on the magnetic

quantum numbers, by using the Somﬁerfeld-Wétson transform. However,'
their definition of the Wigner coefficient is not normalized. They
also did not investigate the relationships between‘the C-G coefficients‘
for various cases: Holman and Biedenhai"n9 _derived many CeG coefficients
from fhe difference equation of second order obtaiﬂed from their
recursion relations. Thus their C-G ceefficieﬁt is not continuable>
in the:sense that it has differeﬁt functional forms for varioﬁs'caSes.

Here we shall derive two continuable CeG ceefficients which are ortho-

normal to each other for the case of three continuous series.  For
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all other cases, one of them vanishes, and the other is identical to the
C-G coefficient obtained from the C-G series. ‘ _ .

In Sec. I, we introduce the definiﬁion of the C-G coefficient

.

and the conventions and notations used in this paper. We reproduce’
the derivation of the Clebsch-Gordan series for two continuous series
with positive magnetic qﬁantum numbers by the method initiated by

5

Andrews and Gunson” and developed by Ferréﬁti and Verdé.8 We poiht out
the differences between our results ahd'theirs, and explain how they
occurl vIn Sec. III, we study the symmetrylproperties and asympéotic
behavior of the G-function, which is equivalent to the Wigner coefficient

9 and which is simply related to the C-G

defined by Ferretti and Verde,
coefficient. In Sec. IV,VWe work:oufvall othe;lc-G series and thus all
chef'C?G coefficienfs.fdr‘positivé(ﬁagnetic quantum nﬁmbefs. From
them, we find twé C-G coeffiéients éatisfying the properties stated in
the end of tﬁe'laét paragraph above. In Sec. V;wé calculate‘for al;'o@hef'
cases the C}G series and thus the é-G coefficients. Finally, wé show:
that the C-G coefficients are also valid for the group SU(1,1), the
covering group of 0(2,1).
- The scattering amplitude at vanishing momentumAtransfer has
v larger symmetry.2 If one;fest?icts onéself.to the ofdinary heliéity‘-. 
amplitude, one has O(L) syﬁmetrylo when the total eﬁergy is less than  . | o ¥
threshold energy, and 0(2,2) symmetryll above threshold. The explicit;‘v \
expression of the u.i. rep. of 0(2,2), suitable for thisvpurpose, has:

not been worked out. In Sec. VI, we express explicitly the u.i. rep.

of 0(2,2) group in terms of the C-G coefficients of 0(2,1). The
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transformation between two u.i. rep. of 0(2,2), corresponding to two
different bases, is discussed. In the final section, we summarize

the results obtained.
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IT. DECOMPOSITION OF THE PRODUCT OF TWO CONTINUOUS
| SERIES FOR vy > By >0

The C-G coefficientl? (or equivalently the Wigner coefficienflg)
of 0(3) is obtained_essentielly from its recursfon-relationslB‘or
from the integrals12 involving three representatlon functlons like
d?uj( z) of .C(j) in the 1ntegrand. The calculation of the C-G
coefficient of 0(2,1) is more complicated than that of 0(3), even
though the representation function a “j(ﬁ) of 0(2 1) is a contlnuatlon.
in j of that of O(j). The method appllcable to the latter is not -
directly epplicéble to the former. The differences are (a) the group
O(é,l) is'noncompacf and has en infinite gfoup.nanifOId,‘and (b) the
u.i. rep; of 0(2,1) has threelprincipel series: COntinuous, positive
diéerete,_and negative discrete. Eachvprincipal series_has a different
renge fof'the magnetlc quantum numbers:. The firSt difference preventea

one from calculatlng the C-G coefflclent dlrectly from the 1ntegral

3y ‘ 3y Iy
a
.Dvlul(g) Dvgug(g) DVB“B(g) g ,

since there'are no general fefmulae for the integrale'of ﬁroducte ofe'“
"three hypergeometric functione corresponding to the O(é,i)'representai;
tien functions. Because of the second faet, there are no simple C-G
coefficients for parficular'values,of-the magnetic quantum numbers,
which are used as a starting point for the general case in the 0(3)

group. Therefore we use an indirect method, 1n1t1ated by Andrews and:

'Gunsonl and developed by Ferretti and,Verde.8

i 4

L
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We begin by introducihg notations and conventions. The angular

momentum j is defined through the Casimir invariant @ of 0(2,1)

where J. 1is the ith infinitesimal generator of 0(2,1). The quantum
number j differs from the corresponding O(3) quantum number by % R
the definition used here has the advantage that the Legendre transforma-

tion involves replacing j; by -J;- The reprgsentationvof 0(2,1) is -

given6’llL by

T . T,
v r3-3+w)rE+3+w)

NP BEETCES, PR S

l .
X (v -p + 1)

1, 1, : B § |
X gFl(EfJ-u,g-J-u;v-a-us‘v-u+l;§(l-2)>-
(1)

The principal sheet in the j plane is defined by requiring that dvua(z)
be positive for large and positive j. Thus quJ(z) has cuts along:
s, the real axis whose positions depend on the relative values of v and

p. With this convention, one has
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S - (s | o
dvu A(Z). = idvu (z) . _ (2) | | 1Y

CFor v >pu> 0, all the factors in (1) are finiﬁe, but some of these
factors may be divergent for other cases. However; one may take a
limit as J ~appraoches an integer'or a‘half-integer, and by usingrthe ,
wellfknown transformations of hypergeometric functions, one finds thatﬁ

the product on the right-hand side of (1) is always finite. The resulﬁs

are
@, (2) = (Ve )
0,0 = (0" Y |
' (3)
and
@, (2) = a,()

Usuaily, thede relations are quoted-fof V > 1L ; 0 and used to extend
the definition of the.representation function dvuj(z): to other césesf
Inlthe sense of the limiting process_mentioned above, the relatibns (3)
are Vélid for any integral v and u. When some factors in (1)'are
zZero or infinite, it is always implied that one takes the liﬁit as J .
approaches an intéger or a half-integer.

FOllowing.Bargmann,lu one has, for the continuous series, = v

Re j =0, vy =0, 1, £2,:-- , (14-)
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for the positive discrete series,

-1 2 2.
Jd. = 32 51 o7 b)
® (5)
. 1 . 3
vob = Jdt 5 d St
and for the negative discrete series,
;1535
= 5 D 2’ s
(6)
1
vsuo= =3 - 5 J-%’-
The orthogonality relation is
® .
az a 32)a '(z) = (3, 3')/0(3) (7)
1 .
where
5(j,i') = (i3 - i3") for continuous series - J and J',
= '6jj' o for discrete series 'j' and j',
i = 0 for one5continUOus.series and one .
, ' ' diScrete.series,
s . .

and
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- (d)

Ejrtén n(j -u) .for'the_continUOus éeries,
©

= 2] . . for the discrete series.

<

The analytic continuvation for [l -z] >2 of the representation

function dvuJ(z)- canvbé expressed as
3y o d ' -J . - -
-d = :
L (2) = e, 0(2) e () - (9)

where aVuJ(Z) is defined as.

| | SN R
j ‘ R - : F(g = J +—‘V) F(g +J + V) 7+ 1 "(V+}J.)/2
oy (7)) F s 1 z - 1 '
" sin 2x §| (5 - 3 + WG +3 +p)
G IR CEE RGN
¥ AGri-wirimary) . 09
For the discrete sepies;‘we_have
a‘vp (z) = avp'(z). o e | . C

a0 e
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In deriving (11), we have used the relation

r(a.-Ac'+ 1) r(d - c +1) r(c) ,c+l

F(a,b; c; z) _
' P(a).f(b) r(-c + 2)

X 2Fl(a.- c+1,b-c+1;-c+ 2; z)

for negative integral c.

The C-G coefficient C(3yr do» 35; vy, vp) of 0(2,1), ;ike
that of 0(3), should satisfy the following conditions:
(a) Clebsch-Gordan series (C-G series):

J J :
al (z) a 2 (z)
Vit Voo

1

C(dys3mrdasveavs) 8.0 (2) C (3nrinsdnsiarns) 5 - (12)
3 192293212 % v5“3 1°9229358 10 o
3. :

where E: means that one sums over all the discrete series and inte-~
grates over all the continuous series that occur in the reduction of

the two principalvseries jl and jg. -From the conservation of

5

mégnetic quantum humber, one has vy, = vy + Vo) and “5 = Hy + bye
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(b) Recursion relation:

oji= .

[(% Tt V(G -3y )G g - sz(% ", - Ve)]

K0y 3 353 v+ 2 vy 2D [(% B! +'V1_)(% Tt v)

j—

(1 1

G GGy ) Gy )Gt v5>]

X 'C(«jl; Jg: 353 V1 + 1, Vo +l)

1, 1, SIS ETRRe 1
* _[(2 +31+_"1)(2 -3 rv)E vp)(z = Jp - Ve)]
' X _C(Jl’_ 32: 335 ‘./l V2) = _O v : ' ‘ _ : (13)
for both continuous and discrete series.
(c) Orthogonality and normalization_condition:
Z C (3ys dps I35 vys vo) Cl3ps 3ps 355 vys vp) = 8(J5, 35)
v - g . S
(1k)
“ for fixed vz and vgv = V3 T Vi The ;ummatidﬁ. 2: forv'v’l means

that one sums over all the possible values of vy

and v are in the spectté,of the magnetic quantum numbers of the u.i.

5 _ .
reps. Jy, Jo» and'j5 respectively, as stated in Egs. (&), (5), and

-such.that vl’ Vo

(2}
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_ These three conditions are sufficient to determine the C-G
coefficient up to a phase factor which could be a function of the ji’
but they are not all necessary. If the C-G coefficient does not have
multiplicity of order fwo, the first condition is enough. 1In order to
remove those phase factors which depend on the ji one must intfoduce
the continuation condition for the C—G.coefficient. That is to say,
the C-G coefficient for all cases can be eXpreséed by one analyﬁic
function. It is because the nonconstanﬁ'phaée.féctor in the C-G
coefficienf including the discrete (or alternatively, thé continuous)
sérieé, when it is.cohtinued to.the domain corresponding to the
continuous (or alternatively, the discrete) series, is no longef a
phase factor and thusvshbuld be omitted. The C-G coefficient for.three
continuous series has multiplicity twoj; oﬁe therefore requires the
third condition to obtain the individual céefficients, as 1s explained

later. The second condition may be taken as a cbnsistency condition.

' Similarly, the second and the third conditions may be used to determine

the C-G coefficient. We shall use the former method.

The C-G series for two continuous series jl and j2 with

positive magnetic quantum numbers has been worked out by Ferretti and .

Verde.9

Since our expression 1s somewhat different from theirs, we
derive it briefly in order to show how the difference occurs.

.Using the Burchnall-Chaundy formula,15



-12- ;i»,UCRL-19506
- & (@), o), (.
2Fl(a; b; c; x) 2Fl(a; By T3 X) = zg:' n' (E)h (c + 7 +n - l)n

n=0

X 5F2(a, l-c=-n, -n; ¥y1-a-n) 5F2(B’ l-¢-n, n37l->- n)

X X" 2 Fa+oa+n,b+p+nyc+7+ 2n, Xx) , (15).

where (a)n = I'(a + h)/P(a),_etc.,'one obtains, for .v, >;ui.>:0,

- = | nt ; 7 (J f.. ; .V
aJl .(z) a (z) = o - <¥J5)n u3> a(J§)n (z),
n=0 .

Vit o vk 3)n o Vahg P
(16)

where ('5) ='£'+ +

n J1 32.+ p, and Jl and 32 are in the contlnuous

series, i.e.,. they are. pure 1mag1nary The coefflclents Cnv'ls wrltten '

in terms of the product of two G functions,

oy = 2(35)5 Res. (603, v) 03, W), o an

3,(35),

with the G function defined as.

’ G(j} V) G(jl}'jg; j5; Vljvvg)

ﬂa a(jli Vl)va(jei Vg) a(_jB’ VB)w(jlé,jE} jB) - ) (18)'“‘

. ; o 1
X K3, v) B, (0.45)/0( - 3, + vp)lsin 2x 3,12
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wﬁere
| | , . N
a(d, v) = [0G -3 +v)/rG -3 = v)]?
L £ NP
0(dys 3y d3) = [T(E 3y + 3, + 3I0(F - 3y +, + 35)
1, . . . 1, . i3
and
K3 V)= KGy 3 355 v v)

N R S 2
sin ﬁ(§ + 3+ vl) sin ﬁ(2 + 32v+ v2) sin ﬂ(g + I3 VB)

i)

. 1 . . 1 . . 1
sin ﬂ(§ + Jl) sin n(§ + 32) s1n,n(§ + 35

(19)

The Thomae-Whipple function va(o,u5) is defined as

F, (0:45)

ti

T 1L .
3F2(§ Ty tpmdss 5 7 dytptdss 5t dpmVps Lo+ dpmdgtvys 1o+ 235)

X (PG + a5+ vg) D@+ 35 = 354 vy) T+ 23)]7

where 5F2 is the generalized hypergeométrié functionl6’17 with unit

argument. It is invariant under exchange of jl to -J or to

| R
-jB, or both. The G function has a one-over-square-root singularity =

at j3 = (jB)n via w(jl’j2’j5) so the product of two G-function
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has simple pole, and the coefficient c 'is the residue at 33 = (35)

In deriving (16) we have used the relation - ‘ ‘ .
| % J we ha , :
F 0
p—u()
| 1e . g RS R :
bi gy, TG - 3y +wy) 1G + (3 * )
= ('l) | 1 '. — ) 2
CRI Y F(’e’*'.(J )
which can be proved from the definition of . va(o) and the reletion
1. oyl SRS TN R
rG+3-wri-g+w) T+ rG-3)
1 . 1 . ] X 1 .
P(§+J)-P(§-J) | I‘(§+J+-u) I‘(§'J,-H)_

_One notes fhet tne'dvfunction.here is'different ffom the
Wigner coeffioient defined by Ferretﬁi and Verde.by'a phase factor
;K(Jl, JB’ 33, Vys V2) The sine functlons in (18) and (19) and in the _
rest of this paper are only symbols to represent -the inverse of the
product. of two gamma functions. Whenever one considers the phase
factor for an express1on 1nvolv1ng ‘sine fnnctlons, one must 1nvest1gate
the phase factor of the gamme functions through the relatlon

Siﬂ'ﬂ(% + J +n) = X 7 : . o (20) h . K

. Tl 1 .
K+3+n) -4 -n

This process fixes the phase factor of the exPression uniquely. In

this sense, one has, for Re i; 20,
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K(jl) jg? 33; Vl} y2) =. l 2
. . ‘ Vl‘
K(-jl) jer jB; Vl) V2) = -(_l) b4
. V2 )
K(jl’ = jg: 35; Vl) V2) : ('l) 2 . ‘ ) (21)

and

1l

N . ) VB
K(jl) jz) jBS Vl} Vg) (7l) : .

From Egs. (18), (19), and (21), it folloﬁs that

3 . . . — -—- . 3 - - h—- L3 —c . )
G(Jl,Je’JB’ Vl)Vg) - G( Jl)JE)JBQ Vl)vg) “ J( 31’32) 35’ ?l)VE)

(22)

il

G(jl}jg)-JB; Vl;vg)

These invariance properties are different by a phase factor from the

Wigner coefficient in Ref. 8, because of the additionai factor K(3,v)
in our definition. These properties are important_to prove the
positivity of the C-G series, as we discuss laﬁer.

The product G(-3,v) G(-j,-p) has no poles at ‘jg ='(j3)n;

one may replace (17) by

¢ = -2(23,)2 Res.[6(3,0) 6(3, ) + 6(-3, v) 3(=3; w)]

5=Us)y o (@)



-16- | - UCRL-19306

Changing the summation in (16) into a contour integral and

performing similar manipulations with

. . .
- - -

a L (z) 22 (z),.‘aal (z) avat (2), and av‘il(Z) a?ng(z) ,

Vit Voko vty oHo V1 Vols
one has
J J
at (z)a? (2)
Vit VoHo
— aiy(edg)tan x(35mus)
YT, =
X a3, v) 6(d, -p) +a(-3, v) 6(-3, -u)] &’ (z) , = (2k)

373

by use of (9), where the contours enclose the poles

W ot

. 1 . —

: JB = § + Jl+ J2 + n ’
s ~£_+‘.. - i +n

1 - (25)
JB = 5 - Jl + J»2,+'n v,
and

. 1, L : o
Jdy = . 53737 ~dp t 0, for n=.0)l:2;" )

as shown in FPig. 1. 1Investigation of the asympfqtic behavior in the

plane shows that a Sommerfeld-Watson transform is possible. Hence,;'

I3
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after deforming the entire coﬁtour ontd the imaginary axis énd_picking

¥ ' up the pole terms, one has

J J
at (2)d? (z)
it Vol

1co
= - id;
0i

5(2j5)tan ﬁKJB --u3)

| - .
X 1663, v) 6(3, ) + 6(-3, v) 6(-3,. )] 42 (2)

'3t3
+ i: 2j3[G(j, V) G(j,v -!-l) + G('j, V) G(—j, V'U)] dVBu (Z)
P . o , . | S
372 o | |

(26)

This is thé C-G series for the producfjof two continuous series .jl
and Jj,. The two terms in the brackets in the first term of (26)
cannot be separéted into two facﬁérs; one depends 6n the magnetic
gquantum numbers vy .and the 6ther on'the By - The fact that they
cannot reflects that the C-G coefficient for three.continUQus‘series
has multiplicity of order two,vas proved in the literature.8 Thuévthe 
. - j5 spectrum consists of two cOptinuous»seriésbandvone positivé discreﬁe

series. Comparing (26) with (1lL), one has.
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e (3, v) (3, W)+ Cpld, v) Ca, 0)

= (350600, v) 63, =) + 6(=3, v) 6(-3, -u)] (e
for the continuous series ’j3, and
C(j) V) C*(J)U-) =. Iﬂ(jé)[G(J,:V)‘G(j, "U«) + G(’j, .V) .G("_J.’ 'I-l)]:

(28)

foi the positive discrete series Before identifying the C-G

.' 33'

coefficient, we must study the properties of the G function.
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ITI.. THE G FUNCTION
Whipple and Thom.ae18 investigated the relationships among the

Thomae-Whipple functions Fp(zg m, n), which are defined as

By mn) = [ag,s) TB,,) M )17

where g, h, j, £, m, and n take 0, 1, 2, 3, L, and 5 permutatively.

The parameters « and B "are defined as
fmn mn
o = l+ Y-';-Y + T
fmn 2 4 - 'm n
Damd . | » | o (30)
an = 1 + Yﬁ - Yﬁ

for any T i=20,",5, with the restriction

DR B
20 S

| i o e 18
The convergence condition for FP(K; m, n) is Rz(aghj) > 0. “Thomae
showed that Fp(ﬂ; m, n) = FP(Z; m', n') for anyICOmbination'of Z,
m, n, m', and n'. The Thomae-Whipple function FP(E; m, n) is thus

independent of m and n and may be denoted by Fp(z)._ Hence, there

\
\
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are ten representations for FP(Z) ‘obtained by permuting m  and nj
each has a different convergence domain and thus is useful for continuafv
tion. For our purposes, we express the Yi’ in terms of the angular

N
momenta, ji and the magnetic quantum numbers vy - These relations are

o = Bt Avy -t vp s
My = 39ty T A
Sp = I tvptava
_ L (32)
5Y5= ’535+V1-V2')
My = TRy tvitvp
and |
5 = Sdp Byt vy

where the ji-.may be taken as complex numbers. ‘The relationships

t

between the set (¢ m’ an) and the set (Jj, v) are set forth in

y/
Tablé I. In this conne§tion, the Thomae-Whipple function Fp(z) may .
be represented by‘ FPV(E) to emphasize that it depends on the tripleﬁ .
(yl, vg,_v3).' By (3%2), we see that ekchange'of thevindices 1 and 2.
(or 3 and 4) is equivalent to the'replacément of j, by 4ji (or j3
by -jB)' Hence va(o) is invariant_ﬂnder'change of sign of» 31 -or‘:
J5 or both. | L | |

Besides, there are ﬁhree-terﬁ relations for.'FPV(z), which:are  
collected in Bailey's and_Slater's books.ls Many relations betﬁeen the
G fungtions can be derived by means of them. One of the important

9

relations” is
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G(3, v) = a(3, v) G(3, -v) + (3, v) 6(-3, -v) , (33)
where the coefficients a(j, v) and b(j, v) are defined as
a(d, v) = a(iy, do 355 vis V)
i

, >~ V)

e TV IS B
= [sln (5 + i, *+ s _35).51n mr( 5+ 3y - st 33) sin n(z +

S . . C
+ sin ﬂ<§'+ J3 + VB)Sln 2nJ2 sin (1 - do 35 - Vl)

]

X [sin n(%.+ ng—IVB).sin n(% + 3y -.vi) sin n(25, + 1)1

X K(k, -v)/K(3, +v) , ." | A | (34)
and

b(j; V) = b(jl: 321 335 Vl’ V2)

)

= -[Sinﬂ(l'}'j + +j’)sin&r(£+j + Ja =3
, 5t dp Tty 2t dp Tyt g

Y sin W(i - J. 3 . j.) sin n(i - Jy + 3, = d5)
' Y 1 2 3 2 12 3/

ST L 3
N sin x(5 + 3, +'v,) sinx(z + 3, - v,)]2

>

[sin'zﬁjg-sin ox(1 + 23,)

S S I IS
X sin ﬂ(E + Jlb+ vl) sin ﬁ(E + 3y - vl) s1niﬁ(§ f 3 - v5)

5

X sin x (% + 3y + VB)]-% . | o
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;
For particular values of the j,, the a(j, v) and b(j, v) may take

simpler forms. One may easily show that

a(-3, v) = -a(d, v) , b(=d, v) = B(Ev)

a(j: 'V) = a(j, V) s b(j’ 'V) = b(j) V) ’
| (36)
and . v

La(3, v)1° +[b(3, v)1° = 1

The other important relationlo is

..G(jg; jl’ j33 VQIVI)': C(j"y) G(j) V) + d(j: V) G(“j) V) )

(37)
where
C(j;'V> = c(jl’ jg} jB; Vl: Vg)v
_ | ),
. 1 . . . . 1 . . .
L sin TT(2 Jl+ 32 + JB) sin ﬂ(é‘ - Jl + J2 —Js)
sin'_e_ﬂ Jy sin 2n g, ‘
and-
a(d, v) = a(i, jé,'355 Vis Vo)
_ : : ;
sin a(5 +3y + 3y + 3,) sin n(F - 3 -y + 3]
o e - - -

sin 2x i sin 2r(1 + 32)

K6, WIKG, ), (38)
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with [e(3, v)12 + [a(3, v)]° = 1. The relations (33) and (37) show that

a(i, v) 6(3, =u) + a(-3, v) G(-3, -p») is invariant under the exchange

of vy. and By or

5 jl and jg, or both. For particular values of the

ji’ the three-term relations reduce to two-term relations. We collect

some of themthat will be useful later. For the case in which

% i’j5 - V5 equals a negative integer or zero, one has
a(d, v) G(3, -v) +p(3, v) &(-3, -v) = O
" and o : o ‘ (39)
a(-3, v) 6(-3, -v) +v(-3, v) ¢(3, -v) =-0

For the case in which % + jl - vy is negative integer or zero, one has

G(Je:Jl) 33; VE) Vl)

1

sin 2n j2 2
I S T , . A 1. ) ) . .
sin ﬂ(§ +3 -3, +,35) sin ﬂ(E -d It 33)751n O 31
sin'ﬂ(l + 3, - v,) sin ﬁ(i + 3.+ vg)
5 s " vy EI N LN
g . 2
. 1 .
sin n(§ + 3, - VE)

and | | o (ko)
G(je,'jl,’jB; “Vor =Vp) |
= [sin ﬂ(% + jl - vl)sin ﬂ(% + jl + vl)sin n(% + 55-+ VB)Sin n(l+2jé)}%
X ‘[sm (3 + 3y * 3+ Ig)sin w(5 + 5y + 0y - JBI)S.l’n w(5 + J, + vg_).
2 3

N . in ori 17E
X sin H(E + s = v2)81n ﬂ(% +Jdz = VB)Sln.E“JlJVZ

X sin x(l+ 3 + 3y - vg) G(=3, -v)
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For the case in which % + jg'- Vo equals a negative iﬁteger-or zZero,
" one has
» sin n(% - j + v- ) ' ' '
. 2 . ‘ .
63, v) = - ——— I (5, -v) (41)
sin #(1 =31 79 + VB)
and
: Si - gi
G('j) 'V) = € G(J) 'V); G('j; V)- = € .G‘(j) V)

(h2) -
From (42), we see that G(j, v) 6(j, -u) is invariant under change of
signs of all ji. The limits of the G fungtions'for‘two or more angulé;
momenta in discrete series can be obtained from the above relations.
‘ We are now at -a stage where we can find the asymptotic behaviof
of the G funétion in. ji or v, for other parameter; fixed. (The
v, are always taken as integers, half integers, or zefosf To defive  _

the asymptotic behavior for large ], we may take,vfof example,

|35

. AR ;
va(o,eu) for va(o) with Re(2 S D

hypergeometric function 3F2 iévrélatedl9 to the.hypergeometric
function 2Fl’ the asymptotic behavior of which can be obtained. For

: éxample, we haVegO

) . .- A S -
LG -3y s Byt v Lm gy sy g 8) v OL(=358) P
| (43) .

s) >0, and with other parameters fixed.

3

From (43), one obtains the asymptotic behavior in j

for large |j3| and Re(J

of the generalized

3

hypergeometric function

+ j5) > 0. The'generalized'
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Py - dotvasd - dytvpsh - 3Hmdas 1 - 3 vl k3 md )
322 3 7322 171’2 Y1 Y2 ¢3? 1v2 "3 23 "1

EL)

~ oL(-3,) 1 | TS

3

Thus the asymptotic behavior in j, of the G function is

3

v, -2v, -1

Sy . 17 |
6(3, v) ~ oL(35) 7 1] S (45)
: o GRS EE :
for larger IJBI, Re Js >0 and Re(§ SRR P 33) > 0, and with
other parameters fixed. Similarly, the'asymptotic behaviors in jl
~or 32 of the G function can be obtained:
’ : .?V -v,-1 ' .
. ; 2 .
6(3, v) ~ ol(3) =71 (k)

for large |jl| -and Re ji >0, and with other parameters fixed, and

Cmvg =y, -l
635 V) ~ Ol(3) © 2 ] (u7)

for large ]32| rand Re j2 >0 and with other'parameters'fi#ed; In
obtaining these formulas, we have used the asymptotic behavior (LL4) in
j5 of tﬁe G function in orderAto derive thé C-G series for two confinu—
ous series jl and j2. The asymptotic behaviors.in the ji are.
particularly important for performing the Sommerfeld-Watson tfansform

in the ji plane.

5

the functions

The asymptotic behaviors in vy (or équivalently vé)- or v

can be obtained in a different way. For largé positive vl,
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an(h.23) and an(5.2h), defined respectively as va(h.23)-an§
va(5.2h), with j, and v, replaced by -j; ~and -v,, have the

following simple asymptotic behaviors:

an()-l».QB) N [I‘(% - jl + vl) 1"(]_ + jl - 35 + vy - VB)P(J‘ N 233)]-1

and - _ ~" \ S a o (48)-

FnV(B.Eh) ~ [P(% -3yt vl)r(l f jl +'j5 + vy - VB)F(l + 235)]-1-.

Using a three-term i‘ela_tionl8

sin xB) B _ an(-h.za) (3.24)

F_
ny

3

7P (0, ; o) = r{oy 55) HCA S CN) ) ‘Ffdiug)-r(aiu5) r(0, o) ’

one can obtain, by manipulating gamma fUnctions'aﬁd_by taking the

Stirling approximation,

sin n(% +jl+vl)sih n(% +je-v2)

LI l = V’.". . -
. G(3s v) ~ —;;g a( 33:V3) @(31’32’35)' sin 2x 3,

Sd e
-2+J

(vy) = Prasg)

X
3

Iz + 35 + v5) F(% st 35)_P(% St p * )

(35'.6.%-33})' | - | )

for large positive v, and Re(i - j. +v,)>0. Similarly, one .can
» 1 and 5-d1 ™V » one.

obtain-

1

¥
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f

sin ﬂ(% + 3. + vg)

' 1 ' s 2
' G(3, v) ~ —=ral-d,,vy) w(i;,3,,35)
v ’ (ﬁ)2 : 5’ 3 | 1 2‘ 3 isin Qﬁjg sin ﬂ(% + jl - Vl)
. | | | -3ty
Y sin x(1 + Iy - j5 + vl)r“(QJB)(-vl)
. . "L 1l . . . 1 .
P(% +d) * s +:J3) P(E -3y + 3o +35) TG + 35 + vy)
+ (3|5 +f>-33) o '. B (50)

for large negative - vy ~and Re(% - jl - vl) > 0,

63 )~ ﬁga(a‘l,vl) 0(31535035)

N : 1
. 1 . . 1 . . 2
y sin ﬂ(é + 3, - vg)sln n(§ + 35 - V5)
i sin gﬂJE
‘ ——é——l—jl o
o () Y re)
1 . . . 1 . . . 1 .
TG+ - PG+ g *p *35) TG vy - vy)

+ G —ma)| e

s - 1. . . o
for large positive vs and Re(§ +3p *+ s - 33) >0, and
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: ' . 1,
- 1 : . K sin T[(‘2‘ + '32 = v2)
G(3, v) ~ ==t aldy, vy) w(dqs dps J — _
()2 L 177275 sin 2xj Sin'ﬁ(l + 30+ v,)
2 27957 s
-3+

[ sl -3y 4, ¢ dg) ra) ()

f

!

s oL . . . 1 . . . 1 .

TG+ 0y +dp - 35)T(5 + 3y + dy + 3)0(5 + 3p + vy)

+ (3 -3 | N GO

for large negative and Re(%,+ iy - Vg)'> 0. The asymptotic

v .
behavior in Vo is equivalent to that in vy~ The asymptotic
behaviors of the G functions, such as G(-j, v) and G(-j, -v), can

be obtained by proper replacements in the expressions (49) through (52).

Behaviors of the G functions, when the ji take any of the\

three principal series, are tabulated in Tables II-IV. .

[N

-
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IV. CLEBSCH-GORDAN COEFFICIENT FOR vy > by >0
~ Since the C-G coefficient for threé continuous.series has
multiplicity of order two, we cannot determine it uniquely from (27)
for this case. However, we are able to calculate two mutually orthogonal
C-G coefficients.

From the recursion relationel befweén the generéiized hyper—
geometric functions, one can prove that'the G fuhction G(j, v)
satisfies the récursion relation‘(iB) of the C-G coeffiéients;
Observing that the coéfficients in the recursion relation are even
functions of the in Qnévséés that G(—j; v) also satisfies the
récursion relation. Hence any linear combination of G(j, v) and

G(-3, v), with its coefficients‘as functions of ji and v only,

>3
satisfies this recurison.relation,'and so do G(j, -v) and G(-3, -v)
by (33). This fact strongly suggests that the continuable C-G
coefficients are linear combinations of G(j, v) and G(-3, v).

We now begin to check the orthogonality and normalization.

For pure imaginary Jj,, the condition (14) has to be replaced by

3’

* .. s s sl -

)\ilrcr)l*‘ Z C (313323353 Vl’vg) C(Jl’JQ’JB’ Vl’VE)Vl
v .

1

- S(ZI.J5 -lJé) :,  . ‘ o ) - (53)

* : . -
since C (J, v) C(J, v) has oscillating terms for this case. From

(49) and (50), one has
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. ' . . s . . s . _ . ._>\
i::mo+ | % G(Jl’JE’JB’ Vlyvg) G(JlJJg"JB’ Vl Vg)n(JB) Vl

Vi
= 6(i35 - iJS) ¥ 6(;35 + 133)

and | K o (54)

. . ’ . . S . - . . . 3 . ‘ \ ] v _>\ = |
N E (31530353 visvp) Gl=dps -dpi=dys viovp) Mld5) vy & = 0

V1

for pure imaginary' j.- In deriving these relations (54), we have used

3 , v
the facts that (a) the inner product of two eigenfunctions with different

and j! of the difference equation of SecOnd order

I3 3

vanishes, (b) the ordinary Riemann zeta function ¢(x) has a pole at

eigenvalues

x = -1 of unit residue, and (c) the singular part of the factor
(ijé - ij5 + xyd'has the same effect as n%(ijé —'135)' However, the

G function G(j, v) is not the complex qonjugaté of G(3, -y) for the
case of three continuousrseries. One has to‘introdUCe.neW‘expressions”
which are linear comﬁinations of G(j, -v) and G(j,‘v) ‘and'ﬁhich are
such that the orthogonality and nérmalization cénditicns are safisfied;;

One set of the candidates is the pair- [C (J, v), 2(3, v)], with

¢, (3, v) and . C (3, v) def;ned as




o
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S N
¢, (3,v) €1 (315355353 vysV,) [n(jB)/b(j,v)Jz a(3, -v)

and , - | ' (55)

n

R
¢ (3,v) v'Cl(jl,Jg,jB; vsvp) = [0(35)/p(3,v)]% 6(3,v)

From (33), (53), and (54), one can easily show that

, ¥l . ,' .. sy
E: 01(31’32’35’ Vl;Vg) Cj(Jl’JE’JB’ Vl’VE)

V1

- oyyleliay - 135) v e(iay 1)) | (56)

. and .

¢y (3,v) S (3om) + Cp(dsv) Caldom)

= ﬂ(j5)[G(j, V) G(j: 'H) + G(;j) y) G('j) 'H) < (57)

This pair of the C-G coefficients satisfies all three conditioﬁs stated
in Sec. II. Nevertheless, unitary. transformation in the__(Cl, 02) space
preserves the orthogonality, the normalization, and the quadratic form

* 3 . * ) . - . ‘ .
Cl(J, v) Cl(g, ) o+ CE(J, v) 02(3, ).  Infinite numbers of the pairs

satisfy these conditions. One needs one more condition to'fix the

‘pair of the C-G coefficients. The continuation condition is just what

we require. We have to find two C-G coefficients which are orthogonal -
to each other for the case of three continuous series; one of these

muist give the C-G coefficients when it is continued to the values of-_ji
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corresponding to other cases while the other must vanish.. This can be
achiéved only after oneé works out the C-G céefficient for the other
cases. In this séction, we- assume that vy and by are‘integersvor
zgtOs with the restriction viv>‘ui > 0.

Fdr positiVe digcrete 33, we expect that the right-hand side‘
of expression (28)-can_be factorized; In this case, one has

_ 1
G(3, v) ~ z%, 6(d, v) ~ P2,

Nk

]

G(’j) v) ~oZE o, and 'G('j’ 'V) ~ P2 ’ '

where Z and P indicate zero‘and pdle-respectively. The  superscript
represents the order of the pole or zero. From (39) and (56)_one can

derive the equation
n(jB)té(j: V) G(j{ 'H) } G('j: ?) G(fj,V'U)v
- 1) 6, ) G, WA, V) L (59)

where b(j, v) can be shown to be real, i.e.,

b(3, V) = Do, W (o)

From (22), one can identify the C-G coefficient

o, v), i [n(j5)/b(j’ V)]% G(J’ -v) . -.‘,‘(61) iQ

: 1 v . :
It is interesting to note that [b(Jj, v)] ° may be imaginary for some

I3 3

because of the factors like [sin n(% +
. : 1 .
is compensated by the factors _[P(% - J'3 - v5)]2 and K(j, v) in -

G(j, v). Thus we have

(58)

)12. However, this factor -

&
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G ) = TG, WIZeE, ) . (62)

Comparing (55) with (61), we see that C(j, v) and Cl(j, v) have the
same functional form except that the factor n(jB), which'depends on

whether the is in continuous series or indiscrete series, is

33 .
different in the two cases. The other C-G coefficients Cg(j, v)

vanishes for the discrete case.

I3 | o
In the case in. which njl and j2 are in the continuous series

and the positive discrete series respectively, one can derive the C-G

series by a similar method.. The function G(Jj, v) G(j, -u) has two

series of poles in the right half Jj, plane, as shown in Fig. 2,

5 .
instead of four series, as above. Thus one does not need to add a
vanishing term Res [(a(-3, v) a(-3, -u)] to expression (17).
35=(35); | | T

Performing a Sommerfeld-Watson_transform, one has

djl 32 L N N s
EOESOR 435 1(35) 3, v) 68 ) 8,7, ()
JO1 . l
| [”5'5 | | B i
e > ey o, v o3, el ()
. s
1 :
I35

(63) -

In deriving (63), (42) is used. The j, spectrum is the same as in

)
the above case. From (12), (L41), and (63), one has



34 | UCRL-19306

s . 1
2n(3,) sin n(k -
sin x(1 - jl-+

ci,v) ¢ (5, n) = - -6, ) 65, ),

(64)
from which one identifies the C-G coefficient
- N N
: 2n(3d;) sin w(35 + d; + v)}° ’
. *, . _ 2 .
C(JJ V) = C (J: V) = - R 5 T ] 3 ' j G(J, 'TV)
| sin x(3 - 3y + Iy + v5). |
(65)
If j5 is in the discrete series)rthe factors like‘
1 1 .
. 1 . : 5 : L
sin = + + are com ensated b F + - and
K(j, v), and the factor (—l) 2 3 from sin n(% - dy +d, t v3) is

compensated by [F(%J- o - vg)_sin.ang]-%' and X(J, v). It is
obvious now that the“presence of the factor X(j, v) in (18).removesi%5
a phase factor that depends on the"pi in the C—Gvceefficieht an&‘in/’”
'the C-G Series The C- G coefficient is dlfferent from C. (J, v) and -
‘ 2(3, v) in (55). However, the extra degree of freedom which we have -
observed in determlnlng the C~- G-coefflclent enables one to redefine 1t
for the case of three continuous series so that it satlsfles our
_continuation condition. -We shall redeflne it after worklng out the |
C- G coeff1c1ent for other combinations of Jl and 32.

In the cases.ln_whlch jl and 32 are in the discrete and the
continuoﬁs series respectively, one cannot replace the suﬁmation in '~] ' Ty
(16) by a contour integrel, sihce'there are two series of double polee?

in the j, plane, as shown in Fig. 3. One way to remove this difficulty

3
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is to exchange the roles of jl and j2, so that one can use:the_

previous method. One then obtains

ool

= =2 [ 1435 n(35) G(35,375355 vorvy) ClIprdysrdss —Hysmiy)
0i | |

.’ __]__
. by S o
X a2 (2)+ > 20350603531 5353 vprv))8(3n 0y 5055 upiy)

X a4l (z) . | ' o (66)

-spectrum is the same as in (63), as it should be. From (40),

3
(66), and (%5), one can identify the C-G coefficient
0 . l. . . L ) . ‘
C(j: V) = ‘[n(jB)/b(j,V)]Z G(j) ‘V) P) ‘ (67)
with |

sin n(32'+ 35) sin'vn(-j2 + j})

: : . 1. .
2e ~ sin ﬂ(% + 35) Sln.ﬂ(g + Jl).S1n.ﬂJ2

if considered in the j

3

plane.
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A similar expression can be obtaineduifrconsidered in the j2 plane.

. : 1 : T
. -5 . 1 . -5,
- As above, the factors [sin n(% + Jl)] 2 and [sin ﬁ(E + 35)] 2 in
3

ary. This C-G coefficient is a continuation of bci(j,_v), and Cg(j, v)

(67) are compensated by the factors in G(j, v), if Jj, is pure imagin-

vanishes.
In the case in which both jl and -jé are in the discrete

series, one has, from (16) and (h2),

3 .
al (z) ng (z)

Vil Voklp
| [p -%J ‘  o ; .
-2 g nldy) 6(,v) 603, ) &2 (2) (68)
37T o

after discarding the vanishing‘terms. The

759

33 sgéctrum in this case is

well known. The C-G coefficient can be'cqnsidered as the limiting

case of (65) or (67). | |
In’summary, we have obtained  all the C-G coefficients for

vy > My > 0. The C-G coefficients for the three‘céntiﬁuous.éeries_has

multiplicity two. Thesé two orthogoﬁal.C—G Coefficiénts_ a(3, v)  and

Cl(j, v) “are aefined.iﬁ (55). Exceﬁt'for confinuous. .

'jl. and discrete

J,» the C-G coefficient for other cases is the continuation of Cl(j” v).
Since the linear combination of Cl(j, v) and ~02(j, v) obtained by
unitary transformation for the case of three continuous series is also

a C-G coefficient, we can find an expfession such that the C-G

coefficient for all cases is equal to its continuation. With
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some calculations, we obtain the following two C-G coefficients

(3, v) and C'(J, v):
c(3, v) = D) 100390172603, v) + 1003,0)1%6(3,) 1/ VE b(3,v)

and P (<)
T 1 | 1 ‘.
C'(35v) = [n(35)]720-1D(3,)126(3,-v) + [D(3,v) 26(3,v)1/VE b(3,v) ,
where D(j,v) is defined by -

R (70).

DG, v) = -u(d, v) + (505, )12+ 172

One can see that C(J, v) and c¢'(j,v) are orthdgonai for fhree-
continuous-series. For all ofher cases, C(Jj, v) reducéé to the C-G
cbefficient obtained from the C-G series, and C'(j, v) vanishes.

except the two discréte Jy and case in which c(i, v) and C'(3, v)
are degenerate. Hence, C(j, v) and cC'(j, v)» are the required C-G

coefficients.
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V. CLEBSCH-GORDAN COEFFICIENT FOR OTHER CASESl '
- In the freceding section we have.worked out the‘C—G'coefficients
.with the restriction that vy > by > 0. 'In this seetion, we calculate
the Q-G‘CoeffiCient'for arbitrary vy and .ui,"Finaliylwe exteﬂd]our
results to the double-valued u.i. rep. of su(1,1).

Each representation function di“(z): has'four kinds of
representations, as in (3). Hence, first of all, one must decide which
one should be used in applying Burchnall-Cﬁaundy formula_(l5). For
convenience, we always choose the.expressions (1) ana (10) for’the
‘representation function of the rotation along. the y axis sandwiched by
the state vectors with magnetic quantum number -Vi “and My irrespec?
tive of the relative values and the relatife.sigﬁs of vy and ‘p;.

From (21) one can ea51ly see that the discrete spectrum for -
,j5 is determined by poles of- the 1ntegrand _ |
tan nJ ca(3, v) G(J,_—u) a 5“ (z). If 3y is‘in the continuous

’ vaiis

series and j2 in the discrete series, the functions va(o) and

Fp-v
continuous series. If ji is in the discrete series and j2 in the

(0) are finite for any v, and p , as they are both in the

cenfinuous series, one must derive the C-G series by exchanging the
roles of jl and 'je in orderbto remove double poles which occur in
the integrand as for the case vy > p > 0. .Hence, fbr.all the cases
except that of two dlscrete serles, the functions F (O) and F (0),
as well as w(gl, 32, 33), are flnlte. The‘order of zeros or poles of

the G functions can be found in Tables II through IV. For the last
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case, va(o)’ Fp_V(O)fvand w(jl, 52, 35) behave differenﬁly for
various relaﬁive values and signs of the ji and v We discuss this
case in more detail.

The derivation of the C-G éeries can be earried out'esvfor
vy > Hy > 0. The finiteness of the expreesion and the discrete

spectrum for in the C-G series can be determined by using

iy

. Tables II through V.

Previous discussions on the normalization and orthogonality
condition and unitary transformation are still valid for arbitrary

2 and By In the following, we study the C-G coefficients for any

vy and by in four cases.

_A.- jl and j2 Continuous

The 35 spectra for any vy and b, are given in Table VI.

The two orthonormal CeG coeffieients for three continuous series are

‘the same as in (55). For discrete - jy, the C-G coefficient is defined- -

as

€y v) = Cydpadgs vyovp) = [(3,)/0(3,117 63, =vt,)

(71) .

where QA is determined by . V3§A = lv5|, These C-G coefficients are

analytic continuations of one of the two C-G coefficients in_(55). ’
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B. jl Continuous, jg Discrete

The j3 spectra for any Vs .and Ky are summarized in

Table VII. Some spectra in Table VII are missing, since there is no
discrete series for ‘jg with two magnetic quantum numbers of different
signs; We note that there is nobpositive-discretevseries in the
decomposition of the product of‘the continuous and negative—discreﬁe
series, and no negative-discrete»series for continuous and positive-
discrete series, even though this discrete series is not forbidden by
the conditions of u.i. rep. of 0(2;1); one can sée from Table III that
in this case G(J, v) G(J, -u) or aG(-i, v) a(-3, -p) vanishes.aé a
double zero. Thié pheﬁomeﬂoﬁ of missing spectra also ocCﬁrs in the

decomposition of two positive-discrete (or‘negative-discreté).series;

there is no continuous spectrum for j

3
The explicit expression of the C-G coefficient for any vy and
My is
cl,v) = [-21(j,) sin ﬂ(i + 3, + v, )/sin n(l S TR T )]é '
X oo, vt - | | . O (72)

where CB is defined through V2§B = |V2|a This C-G coefficient is
identical to one of the two C-G coefficients in (55), if the latter:

are continued in'.ji, to the region corresponding to this case.
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'C. ji,vDiscrete, je’Cbntinuous

The spectra are given in Table VIII. As in case B, there

35
is no positive-diécrete‘sPectrum'of» 33 for the .combination of one
negative-discrete series and one continuous sefies_ (or no negative-
discrete for continuous and‘posifivé-discréte)L .It:is necessary to
cope with the similap missing discrete specﬁrum_in‘case B, since by

exchanging the roles of jl  and j, case (c) becomes case (B). The

C-G coefficient is defined by
, | Ly | -
C(j; V) = ]:T](JB)/b(J: V)]z G(j: "VCC) ’ V (73)

where ¢ is determined by vt = |vyl. Once again, this c-G
coefficient is the analytic'continuation‘of one of the two Cc-G

coefficients in (55).

: D. ‘ji, _52 Discrete

For v, >y > 0, we have worked out the C-G series (68). For

spectra, continuous and

Iz

discrete, as shown in Table IX, because of the condition on the signs

of the magnetic quantum numbers for the wu.i. rep. of 0(2,1). The
derivations of the C-G series for the present case are’muéh more

complicated for the reasons stated-earlier_in'this section. We have

’

~divided this.case into four subcases, according to the signs of vy

and “i'
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If jl is in the negative and -jg in the.positivg discrete

series, one obtains, from (11), (15), and (16),

I Ip | . AR
d~ (z)ada” (z) = : G(3,v) 6(3,-u) (83;) a ”’ (z) .
Vq Valt : 37 v
11 22 1 33
J=dy Motz o
(%)
It is easily checked by using Tabie IX that each term under the summation
is finite except for vs < -5 -

, in which the terms with
vanish. Equation (74) is therefore not a decomposition into

3y - 3
I < s _
u.i. reps. One can transform it inﬁo the required form by performing .

| a Sommerfeld-watsoﬁ transform. By converting the summation into an -
integfal, as shown in Fig. U4, one obtains the C-G sefiesg similar_to that
in (65). The determination of thevdiscrete spectrum depends on the
relative valueé among the ji and . the v;- By using Tablés V and IX

we can get the following results.

' For : jla>“j2;vone,has two classes.

(a) For -VB, -pB > 0, one has one negatiﬁe—discrete'spectrum for 33
. extending from j, = -1 to . o= -5 - j. + J and one continuous :
) g 3 2 3 2 1 D2 >
series.

(b) For other cases, there are only continuous spectra. Similarly;,

for j2 > jl, one has one continuous series and one positive-discrete

spectrum running from. j5 = % to =-+% - jl +jj2 1 for the case -

JB‘ A
VB’ p5 > 0 and only one continucus spectrum for other cases.
vFrom the above reasoning, one sees that there‘are no negative

discrete spectra in the decomposition of the product of one negative
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discrete series and one positive discrete series if the angular momentum
of the latter is larger than that of the former and no positive-discrete
spectrum if the angular momentum is less than the former. In a paper
on the duality theorem for the SU(l,l) group, Tatsuumagg obtained
similar results.

If jl is in the.positive and j2 in the negative.discrete
series one can obtain'siﬁilar results. This can be verified direcﬁly’
by ﬁsing Tables V and VIII} It is interesting to note that this subcase

becomes the same as the above if one exchahges the role of J

1 and Jo
in (74) and finally in (63).
We have worked the subcase in which both jl and 32 are in

the positive discrete series [see Eq. (68)]. In a similar manner, one
can obtain the C-G series for the twounegative—discféte series. Again
theré is only]one negative discrete spectrum.

For all the sﬁbcases iﬁ case (D), the C-G coefficients are the.
limiﬁs of those in éases B and C, as one of jl and j2 becomes a
half-integer. |

The C-G coeffiéients so far obtained are for the one-valued
representationé i.e.,'all the vy énd Hi také integral values‘or
zeros. We shall show that one can extend them to the double-valued
representations, izef, vy " and Ky take half-integral values. One
‘notes, however, that at least one pair of .Vi énd My _are_taken és

integers or zeros because of conservation of magnetic gquantum numbers.

it
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It is well known that double-valued representation belongs to the u.i.
rep. of SU(l 1), the covering group of 0(2,1).
From Bargmann's pape:r‘,]‘l‘t one has the double-valued representa-

tions of SU(1,1) for continuous series,

. 1
Re j =0, Vy b= L5, f%" ) ()"
.fOr‘positive discrete series
J = 1,2, ’ .
, (5)
1.
vy, o= J t+5 JF %, ’
and for negative discrete series,
J = 1,2, ’ :
| | (6)"
1
T R - SRS IR NS

We obsefve several fdcts (a) The representation'function: ‘
J(z) ‘defined in (1) and the G functlon defined in (18) are products
~of gamma functlons, hypergeometrlc functlons, or generallzed hypergeo— ‘

 metric functions, the argument of which are quantltleS'llke 1

R 1 .- ' 1 « . - . . ‘ o
23if pEdp vy, FEIp R JgAt 3z L £3; ¢ Iyt .etcf .
‘Thége quahﬁitiesﬂu: behave as 1ntegers Or . Zeros: when the correspondlng -

ji -are in the dlscrete u.i. reps, whether they are one-valued or

double-valued (b) The poles and the zeros, if any, of a gamma - functlon; 

a hypergeometrlc functlon, or a generallzed hypergeometrlc function
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occur only when its‘arguments take negative integral values or zeros.
(c) The function K(j, v) 1in the G functions is a phase factor even
though some of the gamma functions in it have arguments different from
the quantities mentioned above. 1In other words, thé function K(j, v)
does not contribute to the pole structure of the G function. From
these four facts, one sees that one can dérive the C-G series and thus
the C-G coefficients of SU(1,1) in the same way as those of O(E,l);
~Only one changeﬂmust Ee made: - The range of the positive (Qr negative)
vdiscrete spectrum of 35, if jB' is integral, is changed to bégin

from 1 (or -1) instead of ‘% (or. 4%). Therefore, our results are

valid for the group SU(1,1) also.



-LE- UCRL-19306

- VI. TUNITARY REFRESENTATION OF THE 0(2,2) GROUP
In this section, we use the explicit expression of the C-G
coefficiént to express the u.i.rep. of the 0(2,2) group.
Let us define Ji and Ki as the‘infinitesimal generators

of 0(2,2), which keeps invariant the quadratic form

x02 + x52 - xl2 - xeg. They satisfy the following commutation
relations: ' ‘
[Jg, Jj] = i3, [Kg, KB] = i3,
[JB, S [KB, Kl]' = i3,
[Jl’ Jg] = ?J-JB) 4 [Kl) Kg] = —1J5 2 v -
[T, g1 = iKp, Ik, 1) =ik, (75)
[JB, Kl = iK, , [KB, Jl] = iK, ,
R A 1K, Tl =ik

We can eaéily see that‘any three noncommuting infiﬁifesimal generétors
form the Lie Algebra of an 0(2,1) group. fhevcommutatiqn relations in
(75) are somewhat éomplicated. However, we may obtain simﬁler cdmmuta-
tiép by introdﬁcing new Lie Algebra as-liﬁear ¢ombinations of the ;Ji

and the K;. Defining

v l .
A, = -é(J_i + Ki)
~and | T o (76)
B, = (g Lk ). for 11,2 3
i vy T Ry i
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one has, from (76) and (77),

iA iB. ,

(A, A3] = 1 : [Bg, BBJ = 1

[AB, Al = 1A, , [BB,_Bl] = -;32 ,

[Al, A2] = -iA5 s [Bl, Bg] = —iB3 s - (77)
and

[Ai, Bj] = 0 for 1i,j=1,2,3.

The generators‘ Ai and Bi separately form a Lie Algebra of 0(2,1). 1In

other words, 0(2,2) is the product group of two 0(2,1) groups, i.e.,

0(2,2) = 0(2,1) ® 0(2,1) . (78)

The group O(ﬁ) has similar structure, i.e., O(4) = 0(3) @ 0(3).
This similarity is one of the reasons that lead to the conjecture that
the u.i.rep. of O(4) is a continuation of that of 0(2,2), as well as’
that the u.i.rep. of 0(3) is that of 0(2,1).

| The product of the two u.i.rep. of 0(2,1) is a u.i.rep. of

0(2,2). 1In this representation, the basis vectors Ia,b;vxa,'xb>

are eigenvector of 'AB’ BB’ and the two Casimir operatois _Qg and .§2,
where QE and 32, are defined as
2 o .2 2
A" = Al +A2 —A3
and o | (79)
Q? = B 2 + B 2. B 2
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The Casimir opérators é? and gg have. the eigenvalues
-(a+3)(a-3) and -(b +3)(b - ). The physiéal interpretation
of A5 and B5 is not clear.- The basis vector la, b Ka”b> is

normalized by the condition
(a', '3 AL, kgla, by AN ) = 5(a','a) 5(b' b) a Xbxb
(80) .

The group element g_‘of_0(2,2) cén be uniquely parameteriZed

by
-iAg9, -1Az8, -1AV, -iB,gh B0 -iBay
g = e e e e e e © = gAgB ,
(81)
with'the group parameters restricted,in the doméins
0 <@y, Fgs Vy» ¥y < 2r and 0<8y, By <o . (82)

~ The Haar measure:of.the-group O(2,2)'for,this parameterization is

dg = (zﬂ) ¢ d cosh o, dw ng a cosh 8y Wy = dgy dgy
| | - (83)
The corresponding-u.i.rep. Dab (g) deflned by the equatlon
aMa Mo
: (g) = <a': by AL, IU(g)|a, by p_, )
xa“axb“b ' a Xb ' a. ub

) B ()
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satisfies the normalization and orthogonality condition

o | ab ¥ ‘_a'b! - |
- | ,[D)“a“exb“b(g) D }\bub(g) de

n(ay(e) s(ar,a) 8(b',b) oy ¥b%b uaua Ot . (85)

© We are particularly interested here in the u.i.rep. of 0(2,2)

“whose basis vectorv>}e,:b; j{ x) is.an eigenvector of £2’ J3’ Qg, and
gg. The corresponding parameterization of the group element g' can
be uniquely expressed as
-igy,  -ipK, -i6J, -ioK, -ivJ. -i1K
g' = e 5 e 3 e 2 e 2 e 5 e 5
(86)

it

2,(9) 2,(8) (0 & (@) u,(0) a,(n)

where the neW'parameters. d, 9, ¥, @, B, and v are related to the old

ones by

]

§o= 300 0 = He, v o), v, ¢ ¥s)
and . _ ' | .‘ t , | | _ (87)

1, '
o = §(¢A " ¢B) ) B8

Il

1 .1

v TFrom (87), one can calculate the Jacobian, which equals %{ Hence
. the Haar measure dg' for the second parameterlzatlon is equal to %
'thdt of the first one. The domains of the second set of the parameters

can be obtained from (82) and (87)
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The basic vector _{a, bs J, ) is normalized by the condition

(@', '3 3% Ay B3 3, A = a(at, a) 8(b' b) 8(3, §) B,

(88)

It is related to the basis vector ' |a, Db; Ay xb> via the equation

a, b; j: 7\-) = Z C('a,' b) Js 7\a:b>‘- - >\-a)|a’) b5 xa: A= >\-a>. >
A ’ '
a - . N
| | _ (89)
where the summation for ‘has the same meaning as described in (1L).

From (12), one can obtain the inverse relation

la, 25, n) = Z'C(a, Dy 35 Ao Mes s 5 ag + )
J ' ;

(90)

where the meaning of the summation for j is specified in (12). From

(89) and (90), one can relate the two u.i.reps. of 0(2,2) by the

equation
ab . . . .
oty S
=Y clay b, 3 AL A DR (@) cle, by 35 a, A,
. . . .’ s . > a’ >\'b j'>\.'3>\ AN s s ’ a) >\b 2
JaJ’ o :

(91)
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ab

— 1t . ot 1 4 1 O
where M= Mgt Mgy oand AT =0+ 0. The u.i.rep. Dj’xjx(g ) is
defined by

ab : . » .

Dirnran(8') = (ay, v5 3'ar|ue)]a, b5 5n)

From (91) and (1Lk), one can derive the inverse relation of Eq. (91).
By means of Eq. (91) or its inverse relation, one can obtain the

ab .. (g') from that of D . That

orthogonal relation for DJ SR, kbk

is,

ab ' a'b'*
. D, ') dg'
JEINCRR A COR

=nm%oﬁmuoawuwaw,wawmwgm%m

From the properties of the C-G coefficients and the representation

function Dab

(g ), one can calculate the orthogonality relations
N uaxb“b

for the representation fUnction'of the subgroups of 0(2,2). .Fromv(87),

(89), and (90) one can express Dabx J)\( g) in terms of the representa-

tion functions of its one-parameter subgroups,

ab

1
Dj'x'jx(g )

) ¢TI 'jx Le, (a)] a (@) Dkuk,x[a (B)] Dk Kg[a (Y)]e
kk'u 4
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The representation functions 'XJ[a (a)] and Dk " %[a ()] can be
explicitly calculated by means of Egs.. (80), (89), and (90). The

expression for D [a (a)] is particularly simple, i.e.,
a_ (o
D% e ()]

| : : iw-2u)a ¥ ;
= Z c(a, b, J’E Hy A = Hr) € ( M) c (a, b, 35 u, A - n)
4 . o

which has the same form as that of O(L).
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VII. CONCLUSION
The C-G coefficient of 0(2,1) and SU(1,1) defined in this paper,
when it is continued in the ji' into the domain corresponding to the

12,13

0(3) group, is equal to that of 0(3) ekcept_for a phase factor.

Strictly speaking, the Wigner coefficient,lz’g-5 defined by
. _1
W(jl: 32) 333 Vl) V2) = [n(JB)] ZIC,(J.:L) jg; 359 Vl) V2) ’

is a continuable quantity, rather than the C-G coefficient, since the
Plancherel measures of 0(2,1) and SU(1,1) for the discrete and continuous
I“I'B)'

series differ by a factor tan n’(j5 -
The general continuable expressions of the two C-G coefficients

are defined in (69). The simple expressions for particular cases are

defined in (61), (65), and (67). The Jj, spectra are tabulated in

5
Tables VI through IX. The pole structures of the related G functions

for some or all of the j, in thé discrete series are collected in

Tebles IT, III, IV, and X.

As a final remark, one notes that our SU(1,l) representation
functions d?uJ(z) and aVHJ(z) of the first and the second kinds are
related to Andrews and Gunson's djvu(z) and ejvu(z) by the equations

| JRRNE YOS R PN
»djvu(z) N dvu'(z)

and

é ?“(z) e-in(u-v)

il

1, ;
N cot “(2 + q , u)vav (z)

o
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Table IT. Behavior of the G funetions for all ji “taking the values

correpsonding to the i.u.rep. of 0(2,1) with vy >0, 92 >0,
and v

3

and pole respectively. The superscripts on Z and P represent

> 0. The symbols F, Z, and P indicate finiteness, zero,

the order of zeros and poles respectively.

Jq I 35 63, v) el -v) 6(-3, v) 6(-3, -v)
conti. ' conti. conti. - F F F v F
' 1 1 1 1
conti. conti. - discrete 7e P2 72 P2
conti. discrete  conti. F Fo F F
_ : ' - 1 1 1 1
conti. discrete discrete 72 . P2 ze - pe
' 1 L 1 1
discrete  conti. conti. - 7.2 pe A P2
- discrete ‘chti.v' discrete % P ' Z P
discrete discrete conti. --- --- LS BETT

discrete .discrete discrete F F ' F . F
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Table III. Behavior of the G functions for all e taking the values
corresponding to the i.u.rep. of 0(2,1) with v, >0, A'Vg >0,
and :v3 > 0. The symbbls and superscripts have.the'éame_meaningé

as in Table II.

hoo 3 3y 8 v) o, o) 63 v) 63, -v)
conti. conti. conti. F ' F o F F
conti.  conti. _disciete 22 p/2 72/2 P2
conti. discrete qonti.. f . F | . F . F
conti. discrete discrete ',21/2 : ZE/?' '21/2 ;. ZB/2

discrete conti. cogti. Zl/2 Pl/2 _ Z¥/2V' APl/Q
discrete conti. discrete 7 B P 7 P
discrete diécrete _coﬁti. : Z;/e : é;/é Zl/2>,' Pl/2

discrete discrete discrete --- ——— == -
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Table IV. Behavior of the G functions for all 3s taking the values

corresponding to the u.i.rep. of 0(2,1) with V15 Vo >0, and
v3 > 0. The symbols and superscripts- have the same-meanings as in
Table TI.
J J J G(j: V) G(j; 'V) G('j: V) G('j) "V)
1 2 3 R
conti. conti.  conti. F F F - F
o . 1. 1 1 1
conti. ‘conti. - discrete z2 p2 A pe
“conti. discreﬁé‘ conti. ¥ .F | : F> F
- : 1 S 1 1 1
conti. discrete discrete zZe Pz VA P2
o 1 1 1 1
discrete conti. conti. P2 VA P2 A
discrete = conti. discrete F F F Fo
. . L 1 1 1
discrete discrete  conti. P2 A P2 72
di5crete disérete - - - -

discrete

P
s
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spectra from the decomposition of the.prdduct of two

Table VI. The j3
continuous series jl and j2 for V3 >'0. The positive discrete
. 1 i 1 i o 1
spectrum runs from == to =m + =, the negative from = =
to j3 = -% - m, where m 1is the smaller of JuBI and lval. The
symbols ¢  and d  indicate continuous and discrete spectra,
‘respectively. Similar results can be obtained for y3 < 0.
- ' - >
Vlf Vo v3 >0 Vis Vo v3 >0 CERRY VBJ 0

Hys Hos |~15‘> 0 c, d c, d ' c, d

“Hys Moo HB >0 c, d c, d c, d

His "Ho» HB >0 c, d ¢, d c, d
Hl) -|J-2) _“-3 >O c c c

Mys oy g >0 c c c
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Table VII. The js_spectra from the decomposition of the product of

one continuous series j and one discrete series j.. The range
1 2

of the discrete spectrum of Jj, 1is the same as in Table VI. The

3

symbols ¢ and d indicate continuous and discrete spectra,

respectively. Similar results can be obtained for v3 > 0.
Vis Vo v3 >0 Vis Vo v5 >0 Vis Voo V5 >0
- M1 Moo P-B >0 c, d .Gy b_d _ =
“H1s Hos IJ-B >0 ¢, d - _ c, d ===
p“l, _“'2) “‘5 > O == === ] ) c
s THpy g >0 --- S - e
: +“'l) _“-l) —MB >0 ‘--‘—. s . ¢
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Table VIIT. The. ..spectra from the decomposition of the product of

I3

one discrete series Jj. and one continuous series for
. S :

92
v5 > 0. The range of the discrete spectrum of j3 is the same

as in Table VI. The symbols c¢ and d indicate continuous and
discrete spectra, respectively. Similar results can be obtained

for v, < O.

5
s v V5 >0 M Ve V37O vy vy v >0
b by iy 2O d o
ul, Mo “3 >0 - ¢, a - j -ééb' R ”c; d ;'
Hy *“2’~7”3 -0 | T o8 | "_ b
'Ql) ‘Hg: ‘M5_> o e .  : *;?, - c

—ul) “2’ 'HB >O . -e—— | ‘ C v . . '--_j..
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Table IX. The_IJBVSpectrum from the decomposition of the éroduqt.of two
discrete series jl énd jé for V3 > 0. The range of thé positive
(negative) discrete spectrum) extends frdm_ j3 = % to. 1% -3+ jgl.

The symbols ¢ and d indicate continuous and discrete spectra,

respectivéiy. The star -* indicates that the negative discrete

spectrum occurs only when the angulér momentum of the negative

discrete series is less than that of the positive discrete series,

and vice versa. A similar result can be obtained for v, < 0.

3
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: o . *
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Fig. 2.
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FIGURE CAPTIONS
The contour of the integfal with Im jl > Im j2 > 0 for the
case in which jl -and 52 are both in the continuous series.

and 7.

The contours Yi 5 enclose the contributing poles of
a(j, v)a(j, -u), and those for Y5 and' 1) enclose the poles

of G(-Jj, v) G(-j, -u). These four contours become a single
one by being connected at infinity, as shown in this figure.
Similéf figures can be obtained for the éases

In j, > -Im 32'> 0, Imj, > i‘jg >0, énd

0<tImj <#Imiy

The contour of thg‘integralvwith Im jl >'o- for the case in
ﬁhich jl and j2 are ih the continuous and the discrete
series, respectively. The contours .

1
contributing poles of G(Jj, v) G(j, -p) in the right half

and Y, enclose the

pldne. These two contours become a single one by being
connectéd atAinfinity, as shown in this figure. A similar
figure can be obtained for Im jl < 0.

The poles of G(J, v) G(Jj, -p) with Im'jg >0 in the 33
plane for the case jl and Jg‘ in ﬁhe discrete,and thé'

continuous series. The circle indicates a simple pole; the

triangle indicates a double pole. A similar figure can be

obtained for Im j2 < 0.



Fig. L.
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.

The contour of the integral for the case in which_ jl. and

j2' are in the negativé and the positive discrete series.. The

starting point for thé contournéan be determined from Tables V
and X. This figure is also valid for the case in which 3y

‘and jé. are in the positive and the negative discrete.series,

respectively.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or 1mp11ed with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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