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ABSTRACT 

The Clebsch-Gordan series of the 0(2,1) group. 

and its covering group su(1,1) for all cases except that 

of the supplemental series are derived. The continuable Clebsch-

Gordan coefficients (.or equivalently, the Wigner coefficients) 

are explicitly expressed in terms of the generalized 

hy-pergeometric function 3F2 . The spectra in the decompo- 

sition of the product of the two principal series are 

discussed. The applications to the unitary irreducible 

representation of 0(2,2) are also studied. 	. . . 
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I. INTRODUCTION 

Recently; much attention has been paid to the group-theoretical 

analysis of the scattering amplitude at zero or negative momentum 

transfer. 1 ' 2  For the latter case, the amplitude exhibits an 0(2,1) 

symmetry; Reggeons, which take the role of forces in relativistic 

S-matrix theory, 3  transform under this symmetry group 0(2,1) as the 

ii. 
basis vector of its unitary irreducible representation (u.i. rep.). 

Thus the Clebsch-Gordan coefficient (the C-G coefficient) of 0(2,1) 

plays the same role as that of ON for physical particles. 

•The C-G coefficient of 0(2,1) for three positive discrete (or 

equivalently, negative discrete) series was worked out by Andrews and 

Gunson 5  and Sannikov. Pukanszky 7  found the multiplicity of the 

irreducible components resulting from decomposition of the product of 

two u.i. rep. of 0(2,1), but he did not work out the C-G coefficients 

explicitly. Ferretti and Verde 8  worked out the Clebsch-Gordan series 

for two continuous series with some restrictions on the magnetic 

quantum numbers, by using the Sommerfeld-Watson transform. However, 

their definition of the Wigner coefficient is not normalized. They 

also did not investigate the relationships between the C-G coefficients 

for various cases. Holman and Biedenharn 9  derived many C-G coefficients 

from the difference equation of second order obtained from their 

recursion relations. Thus their C-G coefficient is not continuable 

in the sense that it has different functional forms for various cases 

Here we shall derive two continuable C-G coefficients whichare ortho-

normal to each other for the case of three continuous series. For 
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all other cases, one of them vanishes, and the other is identical to the 

C-G coefficient obtained from the C-G series. 

In Sec. I,we introduce' the definition of the C-G coefficient 

and the conventions and notations used in this paper. We reproduce 

the derivation of the Clebsch-Gordan series for two continuous series 

with positive magnetic quantum numbers by the method initiated by 

. 	 8 Andrews and Gunson 5  and developed by Ferretti and Verde. We point out 

the differences between our results and theirs, and explain how they 

occur. In Sec. III,we study the symmetry properties and asymptotic 

behavior of the G-function, which is equivalent to the Wigner coefficient 

defined by Ferretti and Verde 9  , and which is simply related to the C-G 

coefficient. In Sec. IV, we work, out all other C-G series and thus all 

other C-G coefficients for positive magnetic quantum numbers. From 

them, we find two C-G coefficients satisfying the properties stated in 

the end of the last paragraph above. In Sec. V,we calculate for all other 

cases the C-G series and thus the C-G coefficients. Finally, we show 

that the C-G coefficients are also valid for the group SU(l,l), the 

covering group. of 0(2,1). 

The scattering amplitude at vanishing momentum transfer has 

2 	 . larger symmetry. 	If onerestricts oneself to the ordinary helicity . 

amplitude, one has 0(4) symmetry10  when the total enerr is less than 

threshold energy, and 0(2,2) symmetry 11  above threshold. The explicit 

expression of the u.i. rep. of 0(2,2), suitable for this purpose, has 

not been worked out. In Sec. VI, we express explicitly the u.i. rep. 

of 0(2,2) group in terms of the C-G coefficients of 0(2,1). The 
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transformation between to u.i. rep. of 0(2,2), corresponding to two 

different bases, is discussed. In the final section, we summarize 

the results obtained. 
'-1 
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II. DECONPOSITION OF TEE PRODUCT OF TWO CONTINUOUS 

SERIES FOR v > Pi  > 0 

The C-•G coefficient 	(or equivalently the Wigner coefficient ) 

of ON is obtained essentially from its recursion relations13  or 

from the integrals12  involving three representation functions like 

d 3 ( z) of ON  in the integrand. The calculation of the C-G 

coefficient of 0(2,1) is more complicated than that of 0(3), even 

though the representation function d 3 (z) of 0(2,1) is a continuation 

in j of that of 0(3). The method applicable to the tatter is not 

directly applicable to the former. The differences are (a) the group 

0(2,1) is noncompact and has an infinite group manifold, and (b) the 

u.i. rep. of 0(2,1) has three, principal series: continuous, positive 

discrete, and negative discrete. Each principal series has a different 

range for the magnetic quantum numbers. The first difference prevents 

one from calculating the C-G coefficient directly from the integral 

fD1() D
2 (g) D 3 (g) dg 

since there are no general formulas for the integrals of products of 

three hypergeometric functions corresponding to the 0(2,1) representa- 

• • 	 tion functions. Because of the second fact, there are no simple C-G : 

coefficients for particular values of the magnetic quantum numbers, 

which are used as a starting point for the general case in the ON 

group. Therefore we use an indirect method, initiated by Andrews and 

I) 	 8 	 • Gunson and developed by Ferretti and .Verde. 
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We begin by introducing notations and conventions. The angular 

momentum j is defined through the Casimir invariant Q.  of 0(2,1) 

2 .  2 	2 	. 
	1)( j 	

1
Ji  + 	 ( + - 

where J. is the ith infinitesimal generator of 0(2,1). The quantum 

number j differs from the corresponding ON quantum number by 

the definition used here has the advantage that the Legendre transforma-

tion involves replacing j 	by -j... The repr.esentation of 0(2,1) is 

14 given 6, by 

	

- j + v) r( + j + v)i 	2 	
(v+)/2 	

- i (v-)/2 

V~t 	
- 	

(
(z) 

= 	+) F(+j +)j 	+1 	 2. 

1 
r(v - 

1 	.  
X 2F1 L2  + 	7 - 	

- j; v - 	 - 
i; v - 	 + 1; (i - z)) 

(i) 

The principal sheet in the j plane is defined by requiring that d(z) 

be positive for large and positive j 	Thus d 3 (z) has cuts along 

the real axis whose positions depend on the relative values of v and 

p.. With this convention, one has 	 . 	 : 
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d 	(z) = d 	(z) 	. 	 (2) 
vL 	. 	 VI.' 

For v > .' > 0, all the factors in (1) are finite, but some of these 

factors may be divergent for other cases. However, one may take a 

limit as j appraoches an integer or a half-integer, and by using the 

well-known transformations of hypergeometric functions, one finds that 

the product on the right-hand side. of (1) is always.finite. The results 

are 

d3(z) = (1)Vi d3(z) 

d 3 (z) . = (1)V_ d 3 (z) 	 . 

() 
and 

d3 	(z) 	d 	.(z) 	. 	. 	. . 
- p.1- V 	 VI.' 	 . 	 . 	 . 

Usually, these relations are quoted for v > .' > 0 andused to extend 

the definition of the representation function d 3 (z) to other cases. 

In the sense of the limiting process mentioned above, the relations () 

are valid for any integral v and .'• When some factors in (1) are 

zero or infinite, it is always implied that one takes the limit as i 

	

approaches an integer or a half-integer. 	 . 

14 
Following .Bargmann, 	One has, for the continuous series, . 

Re j = 0 , 	v,i = 0 1  ±1, ±2, 	, 	 ( 4) 
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for the positive discrete series, 

135 

9 	 (5) 

.1.3 
+, 3 + 

and for the negative discrete series, 

135 
. 3 	 , 	.. 

(6) 

.1.3 

The orthogonality relation is 

dz dJ*(z)  d3(z) = 	( j, j ,  )/() , 	 (7), 

100  

h er e 

(j,j') = 	(ij - ii') 	for continuous series j and  j', 

=for discrete series j and 3', 
ji 

= 0 	 for one continuous series and one 

discrete series, 

and 	 . 	.. 
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= 2j tan i(j - 	for the continuous series, 

(8). 
= 2j 	 for the discrete series. 

The analytic continuation for Ii - 
zj > 2 of the representation 

ftinction d 3 (z) can be expressed as 

d 3 (z) = a 3 (z) + a 3 (z) , 	 (9) 

where a 3 (z) is defined as 
VP. 

a 	(z) 	- 	
1r( - 	 + v) r( + j 

+ v)1(z + 
VL 	 sin2jr(-j+P.)F(+j+P.)j 	

z 	1 

1 
K 	(r( - 	j + v) r(2j +i)} 

X 2 'l(2 + 	
- V, 	+ 	- P., 2j + 1, 	

2 ) 

	
(10) 

For the discrete series, we have 

a(z) = a(z) , 

d 3 (z) = 2a 3 (z) 
- 	VP. 	 V-L 
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In deriving (11), we have used the relation 

F(a,b; c; z) = F(a - c + i) r(b - c +•i) r(c) 

r(a). r(b.) F(-c + 2) 

X 2F1 (a- c + 1 1  b - c + 1; -c + 2; z) 

for negative integral c. 

The C-G coefficient C01
1 

j 2
1 
j; v1 , v 2 ) of 0(2,1), like 

that of 0(3)., should satisfy the following conditions: 

(a) Clebsch-Gordan series (c-c series): 

1 

d(z)d 	(z) 
v1 ;-'1 	v2 i2  

= 	C(j1,j 2 ,j 3 ;v1 ,v2 ) a3 	(z) C*(j1,j2,j3;1,2) 	(12) 
3 3 	 33 

where Z means that one sums over all the discrete series andinte-
grates over all the continuous series that occur in the reduction of 

the two principal series j and j 2 . From the conservation of 

magnetic quantum number, one has v3  = v1  + v2 , and 13 = 
	

+ 
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Recursion relation: 

	

+ i i  + 	-il + 	+ 2 - V2)( - 	- V2 )] 2  

C(j1, 2' 	v1  + 2, v2  - 2) + 	+ 	+ v1 )( - 	+ v1 ) 

	

+ (+ 2 	- 	- V2) - 	+ v)( + 	+ v)] 

X C(j 1 , j 2 1 i 3 vi  + 	V
2

+ 1) 

[(l 
	. 	1 	. 	1 	. 	1 

+ 	
1 	- 	+ v)(+ J 2 	V2)(2 	2 	V2)j 

• 	C0 1 1 j 2 , 	V2) 	0. 

forboth continuous and discrete series. 

Orthogonality and normalization condition: 

C*(j1, 	
v1 , v2 ) C(j 1 , j 2, j; v1 , v2 ) = 	3 ) 

V1  

(i!)' 

for fixed v3  and v2  = v - v1 . The summation 	for v1  means 

that one sums over all the possible values of v1  such that v1, v21  

and v are in the spectra of the magnetic quantum numbers of the u.i. 

reps. j 1 , j 2 , and 3  repective1y, as stated in Eqs. (1), (5), and 

(6). 
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These three conditions are sufficient to determine the C-G 

coefficient up to a phase factor which could be a function of the 

but they are not all necessary. If the C-G coefficient does not have 

multiplicity of order two, the first condition is enough. In order to 

remove those phase factOrs which depend on the j one must introduce 

the continuation condition for the C-G coefficient. That is to say, 

the C-G coefficient for all cases can be expressed by one analytic 

function. it is because the nonconstant phase factor in the C-G 

coefficient including the discrete (or alternative1r, the continuous) 

series, when it is continued to the domain corresponding to the 

continuous (or alternatively, the discrete) series, is no longer a 

phase factor and thus should be omitted. The C-G coefficient for three 

continuous series has multiplicity two; one therefore requires the 

third condition to obtain the individual coefficients, as is explained 

later. The second condition may be taken as a consistency condition. 

Similarly, the second and the third conditions may be used to determine 

the C-G coefficient. We shall use the former method. 

The C-G series for two continuous series j and j 	 with 

positive magnetic quantum numbers has been worked out by Ferretti and 

Verde. 9  Since our expression is somewhat different from theirs, we 

derive it briefly in order to show how the difference occurs. 

Using the Burchnall-Chaundy formula15 
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CO 	
(a) 	(b) (1) 

b; C; x) 2F1 (a, ; r; x) = 	n (c) (c + y + n_ 

x 3F2 (a, 1 	c - n, -n; r, 1 - a - n) 3F2 (, 1 - c - n, -n; 1,1 - b - n) 

x xn2Fi(a+a+n,b++n;c+1+2n;x) , 	 (15) 

where (a)n = r(a + n)/r(a), etc., one obtains, for v1  >. 	> 0, 

CO 

1 (z) 
j 	 t tan t((J ) - 	( i ) 

a 	a 2  (z) = 	c 	 . 	 a 	n (z), v1 i, 	 n 	2(j 3 ) 
n=O 	

(16)' 

where 0 3) = ± il + 	+ n, and j and j are in the continuous 

series, i.e., they are pure imaginary. The coefficients c 	is written 

in terms of the product of two G ftnctions, 

c 	-2(j 3 ) ResjG(j, v)  G(j, -)j , 	 (17) 

i 3=(i 3 ) 

with the G function defined as 

G(j, v) E G(j1, 2' 	v1 , v2 ) 

a(j 1 , v1 ) a02
1 

v2 ) a(-j 3 , v3 )w(31 , j 2 , j3 ) 	(18) 

K(j, v) F(O.5)/r( - 	+ v2 )[sin 2 
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where 

a(j, v) = [ r( - j + v)/F( - 

1 	 1 
w(j1, 

2' 3 3 ) = [ r( + 	+ 3 + 3•( - 1 + 	+ 

X + 	+ 	- i 3 ) r( - 	+ j 2 - 

and 

K(j, v) 	K(j 1 , j 2 1 j 3 ; v1, v) 

r 	1 	 1 	 1 

J sin Tr( ++ v1 ) sin :it( + 	+ v2 ) sin Tt( + 3 3  - v 3 ) 

= L 	sin 	+ j1 ) sin 	+ j2 ) sin 	+ j 3 ) 

(19) 

The Thomae-Whipple function F(0 )45) is defined as 
PV 

Fpv (O L 5) 

+ jl+j 2 -j 3 , 	- j 1+j 2 -j 3 , 	+ j 2 -v2 ; 1 + i 2 - i 3+vj; 1+ 2j 2 ) 

x [r( +3  + V 3 ) r(1 + 	- j 3  + v) r(1 + 2j 2 )] 	, 

where 3F2  is the generalized hypergeometti6 ftnctionhE,17  with unit 

argument. It is invariant under exchange of j 1  to -j1  or 	to 

or both. The G function has a one-over-square-root singularity 

at j = 0 3 ) 	via w(j 1 ,j 2 ,j 3 ) so the product of two G-function 
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has simple pole, and the coefficient c 	is the residue at i = (i 3 ). 

In deriving (16) we have used the relation 

F 	(0) 
p - -L 

i 1+i-(i 3 ) 	r( 	l + 	r+ (i3) 
+ ) F (0) 

r(- i1 
- 	

+ .(i3) 
- 3) 	

p 

which can be proved f rom the definition of 	F pv 
(0) and the relation 

	

+ j - 

	

- j + 	 r( + j) r( - j) 

1 

	

+ 
	

- j) 	= r( + j +  

One notes that the G function here is different from the 

Wigner coefficient defined by Ferretti and Verde by a phase factor 

K(j 1 , j, j 3 ;v1 , v2 ). The sine functions in (18) and (19) and in the 

rest of this paper are only symbols to represent the inverse of the 

product. of two gamma functions.. Whenever one considers the phase 

factor for an expression involving sine functions, one must investigate 

the phase factor of the gamma functions through the relation 

sin 	 (20) +j ~ n) 	
(± j + n) r(- j - n) 

This process fixes the phase factor of the expression uniquely. In 

this sense, one has, for Re j 	.O, 
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K(j1) 2' 3' v1 , v2) = 1 

K(-j1, 	33
V11 

v2) 
= 	1 

K(j - 	i3 ; v1 , v2) 	(1)2 , 	 (21) 

and 

K(31, 2' 	, v1 , v2) = 	3 

From Eqs. (18), (19), and (21), it follows that 

G(j 1 ,j 2 ,j 3 ; v1 ,v 2 ) = G( -j 1 ,i 2,i; v1,v2) = G(-i 1 ,i 2 ,-i; v 1 ,v 2 ) 

 

= G(j 1 ,j 2 ,-j 3 ; v1 ,v2 ) . 

These invariance properties are different by a phase factor from the 

Wigner coefficient in Ref. 8, because of the additional factor K(j,v) 

in our definition. These properties are iniportant to prove the 

positivity of the C-G series, as we discuss later. 

The product G(-j,v) G(-j,-L) has no poles at j = (j3).; 

one may replace (17) by 

c 	= _2(2J 3 ) Res [G(j,v) G(j, -) + ( -j, v) 	(-j, -i)1 
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• 	Changing the sunmation.in (16) into a contour integral and 

performing similar manipulations with 	 • 

-j 	 j 	 j 	-j 	 -j 	-j 
a 	(z) 	a 	(z), a 	(z) a 	(z), and a 	(z) a 	(z) 
v1p1 	v2i2 	 V 1p1 	v21-L2 	• 	V11J1 	V 2 L2  

onehas 	 • • • 

d 1  (z)d 	(z) 
V1 i1 	Vi 

= 1 	 dj 3 (2j 3)tan (j-) 

	

11+12+13+1)4. 	• 	 • 	 • 

X [G(j, v) G(j, -) + G(-j, v) G(-j, -p)] a 3  (z) , 	(24) 
V 3 IJ.3  

by use of (9), where the contours enclose the poies 

• 	1 	. 
33 = 	+31 +32 +fl, 

• 	.1 	• 
33 = 2 +31 3 2 +n 	 • 

(2) 
33 = 

and 

= 	
- l - 	+ n , 
	for n=0,1,2, 	, 

as shown in Fig. 1. Investigation of the asymptotic behavior in the 

3 3  plane shows that a Sommerfeld-Watson transform is possible. Hence,. 
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after deforming the entire contour onto the imaginary axis and, picking 

up the pole terms, one has 8 . 	 . 

3 	3 
d 	(z)d 	(z) 
v1 1l 	v2 12 	. 	. 	 .. 	. 

= - f 1d3 3 (23 3 )tan (3 3  - 

Oi 

3 
X '[G(j, v) G(j, -) + G(-j, v)  G(.-j,.-)] d 	(z) 	. 	. 

V 3 !3 	 . 

1 1 
+ 	T2 2j

3 [G(j, v) G(j, -) + G(-j, v) G(-j, -p)] d 3 (z) 

j 3=• 	 . 	 . 	 , 	 . 

(26) 

This is the C-G series for the product of two continuous series 

and j 2 . The two terms in the brackets in the first term of (26) 

cannot be separated into two factors; one depends on the magnetic 

quantum numbers v and the other on'the 	The fact that they 

cannot reflects that the C-G coefficient for three contlnuous series 

has multiplicity of order two, as proved in the literature. 8  Thus the 

spectrum consists of two continuous series and one positive discrete 

series. Comparing (26) with (i.), one has 	' 
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C1 (j, v) c(j, 4 + C2 (j,. v) C(i, 4 

=TI (j)[G(j, v) G(j, -4 + G(-j, v) G(-j, -4] 	(27) 

for the continuous seriesand 

CO,

31  

 v) 
C*(j, 4 = '0 3 )[G(j,v) G(j, -4 + G(-j, v) G(-j, -4] 

(28) 

for the positive discrete series j. Before identifying the C-G 

coefficient, wemust study theproperties of theG function. 



-19 - 	 UCRL-19306 

III. TUE G FUNCTION 

Whipple and Thomael8  investigated the relationships among the 

Thomae-Whipple functions F(2; m, n), which are defined as 

m, n) = [ 1 gh) r() r( 2 )] 

	

x 3F2(ag 	
m' 	 (29) 

where g, h, j, £, m, and n take 0, 1, 2, 3, 4 1  and 5 permutatively. 

The parameters a 
£mn 	mn 

and 	are defined as 

	

mn 	+ 	T Tm + Yn 

and 	 (30) 

= 1+y -Y 

	

inn 	 in 	n 

for any 1., 	i = O, 	,5, with the restriction 

	

-ri = 0 	 (31) 

The convergence condition for 	in, n) is R2(aghj) > 0 ThomaelB 

showed that F(e; m, n) = F(; in s , n') for any combination of £, 

m, n, m, and n v 	The Thomae-Whipple function F(e m, n) is thus 

independent of m and n and may be denoted by F(2). Hence, there 
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are ten representations for F(2) obtained by permuting m and n; 

each has a different convergence domain and thus is useful for continua-

tion. For our purposes, we express the Y i in terms of the angular 

momenta j 	 and the magnetic quantum'numbers v. These relations are 

	

5 10 = 	2v1  - V 2  

511 =5j1 +v1 + 2v2 , 

	

= 	5J1  + v, + 2V2, 

(52) 
+ V 	V 2  •, 

514 	-2j5  + 1  

and 

517  = 	- 2v1  - V 2 	 I  

where the j. may be taken as complex numbers. The relationships 

between the set (an, 	and the set (j, v) are set forth in 

Table I. In this connection, the Thomae-Whipple function F(2) may \. 

be represented by F() to emphasize that it depends on the triplet 
PV 

(v1 , v 2 , v5 ). By (52), we see that exchange of the indices 1 and 2 

(or 5 and Li)  is equivalent to the replacement of j  by -j1  (or j 

by -j 5 ). Hence F(0) is invariant under change of sign of j1  or 
 PV 

or both. 	
I 

Besides, there are three-term relations for F(.e), which are 

18 collected in Bailey's and Slater s books. 	Many relations between the 

G functions can be derived by means of them. One of the important 

relations 9  is 
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G(j, v) 	a(j, v) G(j,  -v)  +b(j, v) G(-j, -v) , 	 () 

where the coefficients a(j, v)  and b(j, v) are defined as 

a(j, v) 	a(j1, 2' 	' v1 , v 2 ) 

[sin 	+ 	+ 	-j) sin ( 	+ 	- 	+ j 3 ) sin 	+ 	- v 2 ) 

+ sin 	+ J + v3 )sin 2T(j 2  sin i(i - 	+ 	- v)1 

X [sin 	+ i;.- v3 ) sin 	+ j 1  -) sin t(2j2 + 

K(k, -v)/K(j, +v) , 	 (314) 

and 

b(j, v) 	b(j1, 2' i; v1 , v2 ) 

1 	 .1 	. 
= -[sin 	

+ 	+ 2 + j3)sin 	+ 1 + 2 - 	) 

1 	 1 sin Tr
- 	+ 

. 
+ 

. 	
sin 	

- l + 	
. 

2 - 	) 

X sin
+ 	+ v2 ) sifl 	

+ 	- 

IX [sin 2J2  sin 2(1 + 2 3 2 ) 

1 sin Tr(
1 

+ 	+ v1 ) sin 	
+ 	- v1 ) sin +( 

•+ 
3 3  - v 3 ) 

X sin 	+ + V3)] 	 (35) 
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For particular values of the jil  the a(j, v)  and b(j, v)  may take 

simpler forms. One may easily show that 	 . 

a(-j, v) = -a(j, v) , 	 b(-, v) = b(j,v) 	, 

a(j, -v) = a(j, v) 	, 	 b(j, -v) = b(j, v) 

 
and 

2., 	2.. 
[a(j, v)1 + [ b(j, v)] 	= 1 

The other important relation' °  is 

G(j 2 , j 1 , j 3 ; VV) = c(j,' v)  G(j,  v) + d(j, v) G(-j, v) 

 

where 	 . 	. 	. 	 . 

c(j, v) 	c01, 
2' j3 v, v2 ) 

1 
r 	i 	. 	. 	. 	1. 	. s in '( - l'2 + j3)'sin 	- l + 2' 

[ 	 sin2rrj1sin2irj2 	. 	J 
and 	 . 	 . 	.' 

d(j, v) 	d(j1, i2l 3' 
v1 , v2 ) 

1 
r. 	1 	 . 	1 - _Is in 1r( ± 
	+ 	+ . ). sin 	- l - 2 . 3 3 )J 

I sin 2 	sin 2(1 + j 2 ) 	 j 

K(j, +v)/K(j, -v) , 	 ( 38) 
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with [c(j, v)]2 + [d(j, v)]2 = 1. The relations () and  () show that 

ky 
	

G(j, v.) G(j, -t) + G(-j., v) G(-j, -) 	is invariant under the exchange 

of v and 	or j, and j21or, 
 both. For particular values of the 

the three-term relations reduce to two-term relations; We collect 

some of themthat will lie'useful later. For the case in which 

± 	- v 3  equals a negative integer or zero, one has 

a(j, v)  G(j, -v) + b(j, v)  G(-j, -v) = 0 

and 

	

	
(39) 

a(-j', v)  G(-j, -v) + b(-j, v)  G(j -v) =' 0 

For the case in which 	+ j , - v1  is negative integer or zero, one has 

G(j 2 ,j 1 , j 3 ; v 2 , V 1  

= 	1 	. 	. 	

-. 	sin 2j2 	 . 

sin 	+ 1 - 2 + 3 3 ) sin 	- l + 2 + 3 3 ) sin 2 . iJ 

sin iT( + 	- v 
3 
 ) sin 	+j + v) 

G(j, -v) 

sin 	+ 	- v 2 ) 

and 

G(j2, 	
3.' 

-v 21  -v1 ) 

= [sin 	+j1 - v1 )sn 	+ 	+ v1 )sin 	+ 	+ v 3 )sin (1+2j)] 

X [sin 	+ 	.+ 	+ j 3 )sin +( + 	+ 	j3)sin 4 .± 	+ v) 

sin 	+- v2 )sin 	+ j3  - v3)sin 2j 1 ] 2  ' 
2 	2 

sin it (i +i 1 +2 - v3 ) G(j, -v) 
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For the case in which 1 ± j 2  . - v 2  equals a negative integer or zero, 

one has 

1 
sin 	-+ v.,) 

G(j, v) = - 	 G(j, -v) 	 (li) 
sin 1(j -, j 1  - 	+ v3 ) 

and 

	

G(-j, -v) = e 2 G(j, -v); 	G(-j, v) = e2  G(j, v) 

(2) 

From (42), we see that G(j, v) G(j; -ri)  is invariant under change of 

signs of all The limits of the G functions for two or more angular 

momenta in discrete series can be obtained from the above relations. 

We are now at a stage where we can find the asymptotic behavior 

of the G function in j 	 or v 1  for other parameters fixed. (The 

v are always taken as integers, half integers, or zeros. To derive 

the asymptotic behavior for large Ij3 f,  we may take, for example, 

F(O,2L) for F(0) with Re( + j 1  + 	+ j 3 ) > 0. The generalized 

hypergeometric function F2  is related19  to the hypergeometric 

function 2F1 , the asymptotic behavior of which can be obtained. For 

example, we have 20 	 . 

21 2 - l + 	 + V3  l - 	+ 	+ 	s) 	0[(j3s)1i] 

(). 

for large Ij I and Re(js) >0, and with other parameters fixed. 

From (143),  one obtains the asymptotic behavior in j 3  of the generalized 

hypergeometric function 
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1 	1 	. 	1 3F2 (.- 3 3 +v3
)  - J1v1, - 123' 1 - 	+ 2+v3 ,1 + j 2 -j 3+v1 ) 

--l-j 1 -v1  
] 	 . 

Thus the asympthtic behavior in j 3  of the G function is 

v-2v-1 
G(j, v) 	0[(j3) 	

1 	
() 

for largerj 3 , Re j >0 and Re( + j  + j  + j 3 ) >0, and with 

other parameters fixed. Similarly, the asymptotic behaviors in j 1  

or j 	 of the G function can be obtained: 

-v -v -1 
G(j, v) 	0[(j1), 2 3 	. 	 (46) 

for large 1i 1 1 and Re j > 0, and with other parameters fixed, and 

-v -v -i 
G(j; v) " 0.[(j2) 	3 	1 	 (47) 

for large 1i 2 1 and Re j >0 and with otherparameters fixed. In 

obtaining these formulas, we have used the asymptotic behavior () in 

of the G function in order to derive the C-G series for two continu-

ous series j 	 and j 2 . The asymptotic behaviors in the j. are 

particularly important for performing the Sommerfeld-Watson transform 

in the 	ji  plane. 	. 	 . 	. 	. 	 . . 

The asymptotic behaviors in v 	(or equivalently v2)  or v3  .. 

can be obtained in a different way. For large positive v,, the functions 
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Fnv 

	

	and F(3.2)-l-), defined respectively as F( )4.23) and 

with j. and v replaced by -j and -v i, have the 

followLng simple asymptotic behaviors: 

	

F(.23) 	[r( -il  + v1 ) r(l + j 1  - j3 + V 
1

- v)r(1 - 2j 3 ) 1  

and 

	

F(3.2) 	[r( - 	+ v1)F(l + 	+j + 	- v3 )F(l + 2j)] 1 . 

18 
Using a three-term relation 

sin ( 1i.2) 	 F (3.21k) 

F(0) 	 nv 	 - 	 fly 

cP(a03 ) pv 	- r'(a132 ) r(a135 ) r(01325 ) 	r(a. 2 ) r(a 5 ) r(a 25 ) 

one can obtain, by manipulating gamma functions and by taking the 

Stirling approximation, 

1 

[sin (- +j +v )sin yr(-  +j 	)]2 

G(j; v) 	 L(J3,3) w(1,j2,j) L 	sin 2i j2 	 j 

	

I 	 (v1 ) 	r(2j 3 ) 

X 

(3 3 	33 )] 	 (9) 

• 	for large positive v1  and Re( -j + v1 ) > 0. Simiiarl, one can 

obtain 
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1 

r 	sin(+j2 +v2 ) 
G(j, v) 	 a(-j ,v 	l'2' 	I 	1 ()2 	 [sin 2j 2  sin 	+ j - v1 )j 

- 

	

I sin IT U + j 2 	+ v1 )r(2j)(-v1 ) 

X [r( + 	+ 2 	- 	+ 	+ j) r( + 	± V 5 ) 

+ (j 	 (70) 

	

for large negative v1  and Re( - 	- v) > 05, 

1  G(J, v) 	 a01,v1) 	. 1'2'*3 

sin ___ + __ - v2)sin + 
X 	 sin2rrj2 	 j 

+ jl  

	

I (v) 	_ r(2j) 

[r(+ ii+ __- j3)r(+ __+ __+j)r(+ ___- v1) 

	

+ (i1  S'  i1 )] 	 (51) 

	

for large positive v and Re( + 	+ 2 - j3) > 0, and 
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1 

i 	
) 

. 

sln 
w 	

2 - 2  
G(j, v) 	 a(j , v ) (j , i , 	) 	

v 

1sin 2Tt32 s1n'jt(. + 	+ v3 ) 

- +j 

I 	 - ii  + 	+ j) <2j1)(-v3) 	1 

+ 	+ 	- j3 )r( + 	+ 	+ j 3 )r( + 	+ Vi) 

+ 	. 	-i1 ) 	 (52) 

for large negative v and Re( +j2 - v) > 0. The astotic 
3 	2

behavior in v2  is equivalent to that in -v1 . The asymptotic 

behaviors of the G functions, such as G(-j, v) and G(-j, -v), can 

be obtained by proper replacements in the expressions (49) through (52). 

Behaviors of the G functions, when the j take any of the 

three principal series, are tabulated in Tables II-IV. 
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IV. CflSBSCH-GORDAN COEFFICIENT FOR v > .t. > 0 

Since the C-G coefficient for three continuous series has 

multiplicity of order two, we cannot determine it uniquely from (27) 

for this case. However, we are able to calculate two mutually orthogonal 

C-G coefficients. 

21 From the recursion relation between the generalized hyper- 

geometric functions, one can prove that the G function G(j, v) 

satisfies the recursion relation (13) of the C-G coefficients. 

Observing that the coefficients in the recursion relation are even 

functions of the j, one sees that G(-j, v) also satisfies the 

recursion relation. Hence any linear combination of G(j, v) and 

G(-j, v), with its coefficients as functions of j i  and v3  only, 

satisfies this recurison relation, and so do G(j., -v) and G(-j, -v) 

by (33). This fact strongly suggests that the continuable C-G 

coefficients are linear combinations of G.(j, v) and G(-j, v). 

We now begin to check the orthogonality and normalization. 

For pure imaginary j 3 , the condition (14) has to be replaced by 

lim Y c*(j1,j2,j5; 
v1,v2 ) C(j 1 ,j 2,j; v1 ,v2 )v1  

V1 	. 	. 

- 	(ij 3  - ij) , 

since C 
*

( j, v) C(j,  v) has oscillating terms for this case. From 

(49) and (50), one has 
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lim 	G(i1 i 2 i; vl,v2) G(j1,j2,j;  vlv2)(3.) Vl 

=(ij 3  - ij) + (ij 3  + ij) 

and 	 (5)4) 

G(3 1 ,3 2 ,3 3 , v1 ,v2 ) G(-j 1 , -j2,-j3, v1v0 1(33) v1 	= 0 

for pure imaginary j 3 . In deriving these relations (54), we have used 

the facts that (a) the inner product of two eigenfunctions with different 

eigenvalues j 3  and  j of the difference equation of secOnd order 

vanishes, (b) the ordinary Riemann zeta function (x) has a pole at 

x = -1 of unit residue, and (c) the singular part of the factor 

(ij - ij5 + ?.) has the same effect as t5(ij - 13 3 ). However, the 

G function G(j, 4 is not the complex conjugate of G(j, -v) for the 

case of three contiiiuous series. One has to introduce new expressions 

which are linear combinations of G(j, -v) and G(j, v) and which are 

such that the orthogonality and normalization conditions are satisfied. 

One set of the candidates is the pair [C1 (j, v),  C2(j)  v)],  with 

C1 (3, v)  and C2 (3, v)  defined as 
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C1(j,v) E  c1 (j1 ,j 2 )i 3 ; V1,V2) a [03 )jb(j,v)] 2  G(j, -v) 

and 	 . . 	... 	.. 	 (55) 

C 2 (j,v) a c1(j1,j2,j3; V1,V2) E [(j 3 )/b(j,v)] 2  G(j,v) 

From (), (), and ()i), one can easily 'show that 

E c(j1 ,j 2 ,j 3 ; v1 ,v 2 ) C(i 1 i 2 i; v1 ,v2 ) 

V1  

= 	 - ij 3) + (ij + ij 3 )] 	 (56) 

and. 

C1 (j,v) C(j,) 4-C(j,'v) C(j,) 

= 	i(j 3 )[G(j, v) G(j, -ti)  + G(-j, v) G(-j, -p). 	.' 	. 

This pair of the C-G coefficients satisfies all three conditions stated 

in Sec. II. Nevertheless, unitary.transformatiofl in the, (c1 , C 2 ) space 

preserves the orthogonality, the normalization, and the quadratic form 

C(j, v) C1 (j, ) + C(j, v) C2 (j, ). Infinite numbers of the pairs 

satisfy these conditions. One needs one more condition to fix the 

pair of the C-G coefficients. The continuation condition is just what 

we require. We have to find two C-G coefficients which are orthogonal 

to each other, for the case of three continuous series; one of these 

must. give the C-G coefficients when it is continued to the values of . j. 
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corresponding to other cases while the other must vanish. This can be 

achieved only after one works out the C-G coefficient for the other 

cases. In this section, we assume that v and 	are, integers or 

zeros with the restric.tion v > 	> 0. 

For positive discrete j 3 , we expect that the right-hand side 

of expression (28) can be factorized. In this case, one has 

I 	 I 
G(j, v) " Z 2  , 	G(j, -v) 	P2  , 

1• 	 1 	
(58) 

G(-j, v) "-'. Z , 	and 	G(-j, -v) "-' P , 

where Z and P indicate zero and pole respectively. The superscript 

represents the order of the pole or zero. From (39) and (36) one can 

derive the equation 

v) G(j, -) + G(-j, v) G(-j, -ri) 

= 	(j) G(j, -v) G(-j, -)/b(j, v) , 	 ( 59) 

where b(j, v) can be shown to be real, i.e., 

b(j, v) = [b(j, v)i* 	 (60) 

From (22), one can identify the C-G coefficient 

CO' v) = [1(j 3 )/b(j, v)] G(j, -v) . 	 (61) 

1 

It is interesting to note that [b(j, v)] 
2 maybe imaginary for some 

j 3  because of the factors like [sin 	+ i 3 )]1 . However, this factor 

is compensated by the factors [r(. - 	 - v 3 )] 2  and K(j, v)  in 

G(j, v). Thus we have 
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* 
C (j, v) = [ 10 3 )/b(j, v)] G(-j, -v) . 	 (62) 

Comparing (55) with (61), we see that CO., v) and C1 (j, v)  have the 

same functional form except that the factor 1103),  which depends on 

whether the j 3  is in continuous series or indiscrete series, is 

different in the two cases. The other C-G coefficients C 2 (j, v) 

vanishes for the discrete j 3  case. 

In the case in. which j 	 and j 2  are in the continuous series 

and the positive discrete series respectively, one can derive the C-G 

series by a similar method.. The function G(j, v)  G(j, -ii)  has two 

series of poles in the right half j  plane, as shown in Fig. 219 

instead of four series, as above. Thus one does not need to add a 

vanishing term Res 	[G(-j, v) G(-j, -i)1 to expression (17). 

Performing a Sommerfeld-Watson transform, one has 

d 1  (z) d 2  (z) = -2

Oi 	

idj fl(j 3 ) G(j, v) G(j, -) d 3  (z) 
V1 i1 	Vi2 	

. . 
v33  

+ >21( 3 ) G(j, v)  G(j, -) d 3 .(z) 

3 2. 	 (63) 

In deriving (63), 	2) is used. The .j spectrum is the same as in 

the above case. From (12), (l), and (63), one has 
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2(j 3 ) sin 	- j 3  + v3) 
G(j, -v) G(j, -) , C(j,v) C*(j, ) = - sin (l - j 1  + 	+ V) 	

(64) 

from which one identifies the C-G coefficient 

1 

	

* 	I 21(j  ) sin 4 + j ± )] 
C(j, v) = C (j, v) 2 	- 	 G(j, -v) 

L sinr(- 1 + 2 +v3 )J 
(65) 

If j 	 is in the discrete series, the factors like 

[sin 	+ j + v)1 2 are comensated by [r( + 	- V 3 )] 	and 
-+J2+v 	 1 K(j, v),  and the factor (-1) 	from sin i-t( - j + j 2  + v3 ) is 

	

2 	2

compensated by [r( 	- v2 ) sin 2 jT 	and K(j, v).  It is 

obvious now that the presence of the factor K(j, v)  in (18) removes 

a phase factor that depends on the v in the C-G coefficient and in 

the C-G series. The C-G coefficient is different from C 1 (j, v)  and 

c2 (.j 1  v). in (). However, the extra degree of freedom which we have 

observed in determining the C-G coefficient •enables one to redefine it 

for the case of three continuous series so that it satisfies our 

continuation condition. We shall redefine it after working out the 

C-G coefficient for other combinations of j and j 2 . 

In the cases in which j and j are in the discrete and the 

continuous series respectively, one cannot replace the summation in 

(16) by a contour integral, since there are two series of double poles 

in the j plane, as shown in Fig. 3. One way to remove this difficulty 
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is to exchange the roles of j and j 2 , so that one can use the 

previous method. One then obtains 

j 
d 	(z)d 	(z) vl il 	v2Ii2  

=2f0im 

idj 3  (j3 ) G(j 2 ,j1 ,j 3 ; v2 ,v1 ) G(j 2 ,j 1 ,j 3 ; 

r 	1 
LL3  

X d 3 (z) + 	 20 3 )G(j 2 ,j1 ,j 3 ; v2,v1)G(j,j1,j3; 	2'1 
j3= 

X 	d33  (z) 	 (66) 
V3 L3  

The j 3 -spectrum is the same as in (63), as it should be. From (40), 

(66), and (35), one can identify the C-G coefficient 

	

C(j, v) = [ 0 3 )/b(j,v)] G(j, -v) , 	 (67) 

with 

sin (j 2  + j ) sin 1(-j + 	) 
b(k,v) = 	. 

1 	 1 	. 	. 2e 	sin 	+ j 3 ).sin n( ± 	
-' 

if considered in the j plane. 
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A similar expression can be obtained.if considered in the j 2  plane. 

As above, the factors [sin 	+ 	and [sin 	+ 	in 	 r 

(67) are compensated by the factors in G(j, v), if j  is pure imagin-

ary. This C-G coefficient is a continuation of C 1 (j, v), and C2 (j, v) 

vanishes. 

In the case in whichboth j 	 and j 	 are in the discrete 

series, one has, from (16) and (42), 

j 	j 
•d 	(z) d 	(z) 

v]_,I11 	v2 12  

= 2 	 710 ) G(j,v) G(j,. -) d 3 (z) ,. 	(68) 

j3=..+jl+j 2  

after discarding the vanishing terms. The j spectrum in this case is 

well known. 7 ' 9  The C-G coefficient can be considered as the limiting 

case of (67) or (67). 

In suimnary, we have obt.ained all the C-G coefficients for 

v > pi  > 0. The C-G coefficients for the three continuous series has 

multiplicity two. These two orthogonal C-G coefficients G(j, v) and 

C1 (j, v) are defined in (). Except for continuous 	and discrete 

the C-G coefficient for other cases is the continuation of C 1 (j, v). 

Since the linear combination of C 1 (j, v) and C2 (j, v) obtained by 

unitary transformation for the case of three continuous series isalso 

a C-G coefficient, we can find an expression such that the C-G 

coefficient for all cases is equal to its continuation. 	With 
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some calculations, we obtain the following two C-G coefficients 

C(j, v) and C'(j, v): 

C(j, v) = [(j 3 )]f[D(jv)YG(j,-v) + [D(j,v)]G(j,v))/b(j,v) 

and 	 (69) 

C(j,v) = [(j 3 Y )[-[D(j,v)]G(j 	 Y ,-v) + [D(j,vG(j,v))/fib(j,v) , 

where D(j,v) is defined by 

2 D(, v) = -b(j, v) + ([b(j, v)] + 1)2 	 (70) 

One can see that C(j, v)  and C'(j,v) are orthogonal for three-

continuous-series. For all other cases, C(j, v)  reduced to the C-G 

coefficient obtained from the C-G series, and C'(j, v)  vanishes. 

except the two discrete j 	and j 	case in which C(j, v)  and C' (j, v) 

are degenerate. Hence, C(j, v)  and C'(j, v)  are the required C-G 

coefficients. 
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• V. CLEBSCH-GORDAN COEFFICIENT FOR OTHER CASES 

In the preceding section we have worked out the C-G coefficients 

with the restriction, that v > 	> 0. In this section, we calculate 

the C-Gáoefficient for arbitrary v 1  and p. Finally.we extend:our 

results to the double-valuedu.i. rep. of Su(i,l). 

Each representation function d3 (z) has four kinds of 

representations, as in (3). Hence, first of all, one must decide which 

one should be used in applying Burchnall-Chaundy formula (17). For 

convenience, we always choose the expressions (1) and (10) for the 

representation function of the rotation along the y axis sandwiched by 

the state vectors with magnetic quantum number v1  and ti., irrespec-

tive of the relative values and the relative signs of v and 

From (21) one can easily see that the discrete spectrum for 

is determined by poles of the integrand ' 

tan 	G(j, v) G(j, -) a 3 (z). If j i
is in the continuous 

series and j 	in the discrete series, the functions F(0) and
PV 

F(0) are finite for any v1  and 	as they are both in the 

continuous series. If j 	is in the discrete series and j 	in the 

continuous series, one must derive the C-G series by exchanging the 

roles of j and j in order to remove double poles which occur in 

the integrand,as for the case v1  > Vi  > 0. Hence, for all the cases 

except that of two discrete series, the functions F(0) and r(o) 	• 

as well as w(j 1 , j 2 , j 3 ), are finite. The order of zeros or . poles of 

the G functions can be found in Tables II through IV. For the last 
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case, F(0) F(0) and w(j 1, j 2 , j) behave differently for 

various relative values and signs of the j. and v.. We discuss this 
1 	 1 

case in more detail. 

The derivation of the C-G series can be carried out as for 

v. > i. > 0. The finiteness of the expression and the discrete 

spectrum for j 3  in the C-G series can be determined by using 

Tables II through V. 

Previous discussions on the normalization and orthogonality 

condition and unitary transformation are still valid for arbitrary 

V
i 
 and p... In the following, we study the C-G coefficients for any 

v 	and p., in four cases. 

A. j, and j 2 Continuous 

The j 3  spectra for any v and p, are given in Table VI. 

The two orthonormal C-G coefficients for three continuous series are 

the same as in (). For discrete . j 3 , the C-G coefficient is defined.. 

as 	 . 

CO, v) 	C(j1,j2,j3; vl,v2) 	[(j3 )/b(j,v)] 2  G(j, VA) 

(va) 

where 
A 
 is determined by. v3A = v3 1 	These C-G coefficients are 

analytic continuations of one of the two C-G coefficients in (55). 	.. 
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B. j1  Continuous,  j2  Discrete 

The j 	 spectra for any v and p.. are summarized in 

Table VII. Some spectra in Table VII are missing, since there is no 

discrete series for j2  with two magnetic quantum numbers of different 

signs. We note that there is no positive-discrete series in the 

decomposition of the product of the continuous and negative-discrete 

series, and no negative-discrete series for continuous and positive-

discrete series, even though this discrete series is not forbidden by 

the conditions of u.i. rep. of 0(2,1); one can see from Table III that 

in this case G(j, v)  G(j, -ii)  or G(-j, v)  G(-j, -p.) vanishes as a 

double zero. This phenomenon of missing spectra also occurs in the 

decomposition of two positive-discrete (ornegative-discrete).series; 

there is no continuous spectrum for j 3 . 

The explicit expression of the C-G coefficient for any v and 

is 

CO ,v) 	[2(j 3 ) sin 	+ j3  + v3)/sin 	- 	+ j2. + 

	

X G(j, vB) . 	 (72) 

where B is defined through V2B = !vl. This C-G coefficient is 

identical, to one of the two C-G coefficients in (5), if the latter 

are continued in j.  to the region corresponding to this case. 



C. j, Discrete, j 2  Continuous 

The 
I 

j spectra are given in Table VIII. As in case B, there 

is no positive-discrete spectrum of ,  j 3  for the combination of one 

negative-discrete series and One continuous series (or no negative-

discrete for continuous and positive-discrete). It is necessary to 

cope with the similar missing discrete spectrum in case B, since by 

exchanging the roles of j 	 and j 	 case (C) becomes case (B). The 

C-G coefficient is defined by 

CO, v) = {(j)(j, v)] G(j, -v) , 	( 3) 

where 	is determined by v1 = h'11. Once again, this C-G 

coefficient is the analytic continuation of one of the two C-G 

coefficients in (5). 

D. j, j2  Discrete 

For vi  > 	> 0, we have worked out the C-G series (68). For 

many other 	and 	there are no i spectra, continuous and 

discrete, as shown in Table IX, because of the condition on the signs 

of the magnetic quantum numbers for the u.i. rep. of 0(2,1). The 

derivations of the C-G series for the present case are much more 

complicated for the reasons stated.earlier inthis section. We have 

divided this case into four subcases, according to the signs of v1  

and ... 
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If j 	 is in the negative and j 	 in the positive discrete 

series, one obtains, from (ii), (15), and (16), 

I j. 
d1 

V1 i1 	V212 	 3 	VL3  
(z) d 2  (z) = 	 G(j,v) G(j,-) (8j ) a 	(z) 

J='J + 1 J 2+2 
(74) 

It is easily checked by using Table IX that each term under the summation 

is finite except .for v3  K 	- 	- j 2 , in which the terms with 

K -v3  vanish. Equation (4) is therefore not a decomposition into 

u.i. reps. One can transform it into the required form by performing 

a Sommerfeld-Watson transform. By converting the summation into an 

integral, as shown in Fig. 4, one obtains the C-G series, similar to that 

in (63). The determination of the discrete spectrum depends on the 

relative values among the j and.the v. By using Tables V and IX 

we can get the following results. 

For j1 .> j 2 1 one has two c1asses. 

For -v3 , - i > 0, one has one negative-discrete spectrum for 

extending from 	= - to 	= - - 	+ j 2 , and one continuous 
3 	 3 

series. 

For other cases, there are only continuous spectra. Similarly, 

for j 2  > j 1 , one has one continuous series and one positive-discrete 

spectrum running from 	= - to 	= 	- j1 + 	for the case 3 2

> 0 and only one continuOus spectrum for other cases. 

From the above reasoning, one sees that there are no negative 

discrete spectra in the decomposition of the product of one negative 
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177 	 discrete series and one positive discrete series if the angular momentum 

of the latter is larger than that of the former and no positive-discrete 

spectrum if the angular momentum is less than the former. In a paper 

on the duality theorem for the SU(l,l) group, Tatsuuma obtained 

similar results. 

If j 	 is in the positive and j 2  in the negative discrete 

series one can obtain similar results. This can be verified directly 

by using Tables V and VIII. It is interesting to note that this subcase 

becomes the same as the above if one exchanges the role of j and 

in ('?i-)  and finally in (63). 

We have worked the subcase in which both j and j are in 

the positive discrete series [see Eq. (68)]. In a similar manner, one 

can obtain the c-c' series for the two negative-discrete series. Again 

there is only one negative discrete spectrum. 

For all the subcases in case (D), the C-G coefficients are the 

limits of those in cases B and C, as one of j 	and j becomes a 

half-integer. 

The C-G coefficients so far obtained are for the one-valued 

representations i.e., all the v and pj  take integral values or 

zeros. We shall show that one can .extend them to the double-valued 

representations, i. ,e., v and take half-integral values. One 

notes, however, that at least one pair.of v and 	aretaken as 

integers or zeros because of conservation of magnetic quantum numbers 
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It is well known that double-valued representation belongs to the u.i. 

rep. of su(l,l), the covering group of 0(2,1). 

14 
From Bargmann's paper, one has the double-valued representa. 

tions of sU(l,l) for continuous series, 

	

Re j 	0 , 	v, 	= 	,•.•, 	 ( u)' 

for positive discrete series 

j = 

 

	

v,i = 	j+.,j+,••. , 

and for negative discrete series, 

j = 1,2,• •, 

 

.1.3 v, i- 	= 	- J - 	,. -J - p.,... 

We observe several facts 	(a) The representation function 

d(z) defined in (1) and the G function defined in(18) are products VIA 

of gamma functions, hypergeometric functions, or generalized hypergeo- 

metric functions, the argument of which are quantities like 

2J, 	±J 1 ±v1 , 	 ± J1±J2±J3, l±J1±JJ±vk etc 

These quantities 	behave as integers or zeros when the corresponding 

are in the discrete u i reps, whether they are one-valued or 

• 

	

	 double-valued. (b) The poles and the zeros, if any, of a gamma function, 

a hypergeometric function, or a generalized hypergeometric function 
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occur only when its arguments take negative integral values or zeros. 

(c) The function K(j, v)  in the G functions is a phase factor even 

though some of the gamma functions in it have arguments different from 

the quantities mentioned above. In other words, the function K(j, v) 

does not contribute to the pole structure of the G function. From 

these four facts, one sees that one can derive the C-G series and thus 

the C-G coefficients of SiJ(i,i) in the same way as those of 0(2,1). 

Only one change must be made: The range of the positive (or negative) 

discrete spectrum of j, if j 	is integral, is changed to begin 

1 from 1 (or -1) instead of 1 :(or -.). Therefore, our results are 

valid for the group su(i,i) also. 
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VI. UNITARY REPRESENTATION OF THE 0(2,2) GROUP 

In this section, we use the explicit expression of the C-G 

coefficient to express the u.i.rep. of the 0(2,2) group. 

Let us define J. 
1 	 1 

and K. as the infinitesimal generators 

of 0(2,2), which keeps invariant the quadratic form 

2 	2 	2 	2 + x - 	- 	. They satisfy the following commutation 

relations: 

[J2 , 	= iJ1  , 	 [K, K3 ] = 1J1  , 

	

'l 	= 	2' 	
[K3, 1(1] = iJ2 , 

• 	
1'2 	 =iJ3, 	 K1' K2 ] = -iJ3  

j2, K3] = 1IC, 	 [K2, 13 ] = 1K1 , 

[j3 , K11 = iK2  , 	 [K J11 = iK2  , 

[J1 , K2 ] = -i% , • 	[K1, J2 ] = -iK3  . 

We can easily see that any three noncommuting infinitesimal generators 

form the Lie Algebra of an 0(2,1) group. The commutation relations in 

(7) are somewhat complicated. However, we may obtain simpler commuta-

tion by introducing new Lie Algebra as linear combinations of the J.  

and the K.. Defining 

	

A. = !(j. +K
i ) 	• 

1 	2•i 	• 

and 	 (76) 

B1 
= 	- K) 	for i=1,2,3 
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one has, from (76) and (77), 

A3 ] = iA1  , 	 [Be , B3 ] = iB1  

A1 ] = iA2 	 [B3, B1 ] = lB2  

[A1 , A2 ] = -iA3  , 	[B1, B2 ] = -iB3 , 
	() 

and 

[At , B1I = 0 	 for i,j=1,2,3. 

The generators A1  and B1  separately form a Lie Algebra. of 0(2,1). In 

other words, 0(2,2) is the product group of two 0(2,1) groups, i.e., 

0(2,2) = 0(2,1) J 0(2,1) . 	 (78) 

The group 0(4) has similar structure, i.e., 0(4) = 0(3) 0  0(3). 

This similarity is one of the reasons that lead to the conjecture that 

the u.i.rep. of O()-i-) is a continuation of that of 0(2,2), as well as 

that the u.i.rep. of ON is that of 0(2,1). 

The product of the two u.i.rep. of 0(2,1) is a u.i.rep. of 

	

0(2,2). In this representation, the basis vectors 	a,b; ?a 	1j 
2 	2 

are eigenvector of A3 , B3 , and the two Casimir operators ., and B 

where A 2 and B 2, are defined as 

2 	2 	2 	2 
=A 	+A2 -A 	 -- 	 - 

and 	 (79) 
2 	2 	2 	2  

B 	=B 	+ B 2  -B 	-. 	 . 



The Casimir operators A2  and B2  have the eigenvalues 

-(a + --)(a- -i-) and -(b +-)(b - -). The physical interpretation 

of A3  and B3  is not clear. The basis vector Ia,  b; iS 

normalized by the condition 

(a', b'; 7, 	 = 8(a', a) 	(b', b) 

 

The group element g of 0(2,2) can be uniquely parameterized 

by 

_iA3A 	 3A _iB3B 	2 9 B _ iB3B - 
g = e 	e 	e 	e 	e 	e 

 

with the group parameters restrictedin the domains 

0 <øA B' A' B < 2 	and 	0 9A' 9B <00
(82) 

The Haa.r measure ofthegroup 0(2,2) for this parameterization is 

dg = (2) dØA  d cosh 9
A dA  d 3  d cosh 9B dB 	dg dg 

(83) 

ab  The corresponding u.i.rep. D 	(g) defined by the equation 
aabb 

ab 
D(g) 	(a, b; a' 
	Iu(g), b; a' 	

(84) 

= D(g) D(g) 
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satisfies the normalization and orthogonality condition 

f ab * 

	

	a'b' D () 	 dg 

, 	 . 
= 	(a)(b)(a',a) (b',b) 	

8 	
(85) 

b 	aa 	
, 

We are particularly interested here in the u.i.rep. of 0(2,2) 

whose basis vector Ia., b; j, ?) is.an eigenvector of 1 2 
1 1 	and 

B2  The corresponding parameterization of the group element g' can 

be uniquely expressed as 

-iJ 	-iK 	-iGJ2  -iaK2  -iiJ3  -il'X3  
g = e 	e 	e 	e 	e 	e 

(86) 

u() a() u(Q) a(a) u.() a(y) , 

here the new parameters ç, G, 4r, a, , and 1 are related to the old 

onesby 

= 2A + 	 = 2(GA + 	' 	= 2A + 

and 	 (87) 

a = 
	A - 	' 	= 2A -GB).' 	= 2A 

From (87), one can calculate the Jacobian, which equals 	Hence 

the Haar measure dg' for the second parameterization is equal to 

that of the first one. The domains of the second set of the parameters 

can be obtained from (82) and (87). 
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The basic vector ja, b; j, x) is normalized by the condition 

b'; j', X' a, b; j, x) = 	( a', a) 	(b' b) 	(j', i) 

 

It is related to the basis vector la, b; Xa 	via the equation 

Ia, b; j, ) = 	C(a, b, 	
a' 	- a)k' b; a 	- 

 

where the surmnation for ka  has the same meaning as described in (14). 

From (12), one can obtain the inverse relation 

a , b , X,b) = 

 

where the meaning of the summation for j is specified in (12). From 

(89) and (90), one can relate the two u.i.reps. of 0(2,2) by the 

equation 

ab 
t 	

(g) 
aabb 	 : 

= 	C(a, b, 	 C(a, b, j; x., 	) , 
iit 
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where X 
= 	+ ~,b , and 	= X' + 7. The u.i.rep. D.(g?) is 

defined by 

D.(gt) = 	(a, b; jvu(gt)Ja b; ix) 

From (91) and (14), one can derive the inverse relation of Eq. (91). 

By means of Eq. (91) or its inverse relation, one can obtain the 

ab ab orthogonal relation for D.(gt) from that of 	 That 

is, 

fDk~t 
ab (gl) Da,,,(gt) dg'

11 

= fl(a)b(a', a) 8(b', b) 	(j', i) 	(k', k) 

From the properties of the C-G coefficients and the representation 

ab function D 	(g), one can calculate the orthogoa1ity relations 
%a~'a"b ~'b 

for the representation function of the subgroups of 0(2,2). From (87), 

(89), and(90) one can eress D i .(g) in terms of the representa-

tion functions of its one-parameter subgroups, 

ab 
) 

= 	 D,k[a(a)j dx?k(Q) Dk,X[aY()1 ng[a(1)]e_1 

kk' 



• 	 -52- 	 UCRL-19306 

The representation functions 	 and Dk,[a()] can be 

explicitly calculated by means of Eqs. (80), (89), and (90). The 

expression for D.[a()] is particularly simple, i.e., 

D.[a()] 

= 	c(a, b, j'; , 	- ) 	 c*(a, b, j; 
 

which has the same form as that of O(li.). 

• 	 •• 
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VII. CONCLUSION 

The C-G coefficient of 0(2,1) and SU(1,1) defined in this paper, 

when it is continued in the j 	into the domain corresponding to the 

0(3) group, is equal to that' 13  of ON  except for a phase factor. 

23 
Strictly speaking, the Wigner coefficient, 

12,
defined by 

w( 1 , j 2 , j 3 ; v1 , 	= [(j3 )] 	c(j1,  j 2 , j 3 ; v1 , v2 ) 

is a continuable quantity, rather than the C-G coefficient, since the 

Plancherel measures of 0(2,1) and SU(l,l) for the discrete and continuous 

series differ by a factor tan it(j3 - 13 )• 

The general continuableexpressioñs of.the two C-G coefficients 

are defined in (69). The simple expressions for particular cases are 

defined in (61), (65), and (67). The j spectra are tabulated in 

Tables VI through IX. The pole structures of the related G functions 

for some or all of the i  j 	in the discrete series are collected in 

Tables II, III, IV, and X. 

As a final remark, one notes that our SU(11) representation 

functions d 3 (z) and a 	(z) of the first and the second kinds are 

related to Andrews and Gunson?s  dY(z) and eY(z) by the equations 

= e1 	d 	(z) 
3 	 vI-1  

and 

e(z) = 	 cot r4+ j - )'a 3 (z) . 



• 	 -54- 	 UCRL193O6 

AC}aOWTJEDGNT 

I am gratef'ul to Professor Stanley Mandélstam for his constant 	 r 

guidance and encouragement throughout the development of this work. 



-55 - 	 UCRL-19306 

REFERENCES AND FOOTNOTES 
* 

This work was supported in part by the U.S. Atomic Energy Commission. 

H. Joos, Lecture in Theoretical Physics, Fort Collins, Colorado, 

1965, Vol. 8, p. 132. 

M. Toiler, Nuovo Cimento 53 A, 672 (1968); 	A, 295 (1968). Most 

of the earlier references are cited in these two papers. 

Geoffrey F. Chew, S-Matrix Theory of Strong Interactions (w. A. 

Benjamin, Inc., New York, 1962). 

4• Sho Tanaka, Progr. Theoret. Phys. (Kyoto) Suppl. -ii, 19 )i (1968). 

M. Andrews and J. Gunson, J. Math. Phys. , 1391 (1964). 

S. S. Sannikov, Soviet Phys.-Doklady (Engi. Transi.) 11, iOL 

(1967). 

L. Pukanszky, Trans. Anna Math. Soc. 100, 116 (1961). 

I. Ferretti and M. Verde, Nuovo Cimento 55, 110 (1968). 

Wayne J. Holman III and Lawrence C. Biedenharn, Jr., Ann. Phys. 

(N.Y.) LI, 205 (1968); 39,  1 (1966). 

D. Z. Freethiian and J. M. Wang, Phys. Rev. 160, 160 (1967). 

The 0(2,2) symmetry of the helicity amplitude is obtained if One 

restricts oneself to the c.m. frame. We shall discuss this in detail 

in a later paper. 

E.. P. Wigner, Group Theory and Its Application to the Quantum 

Mechanis of Atomic Spectra (Academic Pess, New York and London, 

1959), Chap. 27. 

For example, A. R. Edmonds, Angular Momentuth in Q,uantumMechanics 

(Princeton University Press, Princeton, 1977), Sect. 2.7. 



-56- 	 UCRL-19306 

i)i-. V. Bargmann, Ann. Math. 43, 568 (1947). 

J. L. iBurchnall and T. W. Chaundy, Proc. London Math. Soc. 50, 

56 ( 19). 	 . 	. . 

W. N. Bailey, 	 Hypergeometric Series (The Univrsity 

Press, Cambridge, 1935), Sec. 2.1, P. 8. 

L. J. Slater, Generalized Hypergeometric Functions (University. Press, 

Cambridge, 1966), Sec. 2.1.1, p. 

See Ref. 16, p.17; Ref. 14, p.115-120. 	 . 

See Ref. 17, p.108, Eq.(.1.2). 	 . 	. 	. 	... 	. . 

Arthur Erdelyi, Higher-Transcendental Functions, Vol. 1 (McGraw- . 

Hill Book Co., New York, 1953), p.77, Eq. (14). 

W. N. .Bailey, Quart. J. Math. (Oxford) 8, 115 (1937).; Proc. 

Glasgow Math. Assoc. 2, 62 (1954). 

Nobuhiko Tatsuuma, .J. Math. Soc. Japan 	, 313 (1965). 

23 These Wigner coefficients are different from those defined in 

Ref. 10. 



-77 - 
	

UCRL-19306 

rc\ H H 

- + I + + 
CU H CU CU CU 

+ + + + I + I 

H H H H CU 
CU 

CU CU 

+ I I I + + I I 

HICU 

II 

HICU 

II 

HICU 

II 

HICU 

H 

HICU 

II 

H H H 

- 
- 

II II ii 

H CU CU CU 

CU NTh CU CU NTh 

+ + + + + 
-P H CU H CU CU CU 

a) 
+ + + + + I I + I 

-P 
CU H H 

r. 
H H H H 

+ I + + + + • 1 I 

Cd HICU HICU. 

II 

HICU HICU HICU 

II 

H H H H 

CU CU 
11\ 
CU 

-zt Lr\ 

II 

LC\ 
H 

II 

. 
CU 

II 

CU 

II 

CU al H H H H H co- (Cl Co- CLL 

- CU CU 

I . + + 
CU H CU 

-P 
a) 
CQ - 

I I I I I 
CU H 

I + 

a) 
. 	H H 

•r-  
CU 

•r- r-, 
•r 
CU 

r 
CU 

H CU rl 
+ I + + + 

a) 
HICU 	. HICU HICU HICU HICU H H H H 

1_) II II ii II I II II II 

CD CU CU re 
. 

- 0 
CU 

.H 
N\ 
H 

- 
H 0 0 0 0 0 (CL (CL (CL 

U) 

PA 

Cl) 

o + I + I I I I 

H 

CU CU CU H CU CU CU 

a) + 
(1) 

CU H H H 
•r 

H H 
•r 

H CU 
. CU 

H I + + I I + I I 
HICU HICU HICU HICU HICU H H H H 

It II II II II II II II II 
a) 
H 
ra 

CU 
H H 

-Zt 
H 

LC\ 
H CU 

H 
0 

CU 
0 0 0 

Cd 
0 0 0 0 0 aa ca al al 

E . 



-58- 	 UCRL-1906 

Table II. Behavior of the G functions for all j taking the values 

correpsonding to the i.u.rep. of 0(2,1) with v > 0, v2  > 0, 

and v3  > 0. The symbols F, Z, and P indicate finiteness, zero, 

and pole respectively. The superscripts on Z and P represent 

the order of zeros and poles respectively. 

G(j, v)  G(j, -v) G(-j, v). G(-j, -v) 

conti. 	conti. 	conti. 	F 	F 	F 	F 
I 	I• 	1 	 1 

conti. 	conti. 	discrete 	Z2 	P2 	Z 2 	P 2  

conti. 	discrete 	coñti. 	F 	F 	F 	F 
I 	I 	I 	I 

conti. 	discrete discrete 	Z2 	P. 	Z 2 	P 2  
1 	 1 	 I 	I 

discrete 	conti. 	conti. 	Z 2 	P2 	Z 2 	P 2  

• discrete 	conti. 	discrete 	Z 	P 	Z 	P 

discrete discrete 	conti. 	--- 	 --- 	 -- 	 --- 

	

discrete discrete discrete 	F 	F 	F 	F 
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Table III. Behavior of the G functions for all j taking the values 

• 	 corresponding to the i.u.rep. of 0(2,1) with v1 .> 0, -v2  > 0, 

and •v3  > 0. The symbols and superscripts have the same meanings 

as in Table II. 

G(-j, 	-v) G(j, 	v) G(j, 	-v) G(j 	v) 

conti. conti. conti. F F F F 

conti. conti. discrete zV2 1/2 zu/2 p1/2 

conti. discrete conti. F F F F 

conti. discrete discrete zh/2  z3/2  z1/2  z3/2  

discrete conti. conti. z1/2 p1/2 z1/2 l/2 

discrete conti. discrete Z P Z P 

discrete discrete conti zh/2 l/2 zh/2 1/2 

discrete discrete discrete --- -- --- 
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Table iv. Behavior of the G functions for all j. taking the values 

corresponding to the u.i.rep. of 0(2,1) with -v1 , v2  > 0, and. 

v 3  >0. The symbols and superscriptshave the sarnemeanings as in 

Table II. 

j2 i G(j, 	v) G(j, 	-v) G(-j, 	v) G(-j, 	- v) 
31 3 

conti. conti. conti. F F. F F 
• 

• 	conti. 	• oonti. 	• 
• 

discrete 
• 	 i. 

• 	 Z2  
. 	 1 

P2 
1 
Z2 

1 
P 2  

conti. discrete conti. F F F • 	 F 
• 

coiti. discrete discrete 
I 

Z2 	• 
• 

P2  
• 

Z2  
I 

P 2 .. 

• 	discrete conti conti. 	• 
I 

P2  
• 	 i. 

z 

1 
• 	 P2 

• 	
• 

• 	 Z?. 

discrete • 	 conti. discrete F 	• F F F 

discrete discrete conti. 
I .  

P2 
•• 

• 	 - 

1 
P2 

1 
• 

discrete discrete discrete --- -- --- --- 
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Table VI. The j spec.tra from the decomposition of the product of two 

continuous series j 	and j 	for v3  >0. The positive discrete 

spectrum runs from j= 	to j = m + 	the negative from 	= _! 

to j =  -. - m, where m is the smaller of 	and 1v31. The 

symbols c and d indicate continuous and discrete spectra, 

respectively. Similar results can be obtained for v K 0. 

v1 , v 2 , V3  > 0 -v1 , v2 , v 3  > 0 v1 , -v2 , v3  > 0 

	

'l' '2' 11
3  > 0 	c, d 	 c, d 	 c, d 

	

2' 	
> 0 	c, 	 c, d 	 c, d 

	

2' 	
> 0 	c, d 	 c, d 	 c, d 

l' 	2' ••[13 > 0 	C 	 C 	 C 

l' 	2' 3 
> 0 	c 	 c 	 C. 

	

'l' 2' [13 >0 	c 	 c 	 c 
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Table VII. The i spectra from the decomposition of the product of 

one continuous series j 	 and one discrete series j 2 . The range 

of the discrete spectrum of j 	is the same as in Table VI. The 

symbols c and d indicate continuous and discete spectra, 

respectively. Similar results can be obtained for v3  > 0. 

vl, v25' V3  > 0 	-v1 , v
21  v3  >0 	v1 , -v

21  v3  >0 

• l' 2' L 3  > 0 	c, d 	 c, d 

	

l' 2' 113 
> 0 	c, d 	 c, d 

l' 	2' 3 > 
	--- 	 --- 	 C 

	

> 0 	-- 	 --- 	 • c 

• + l' 	l' 	3 > 
0 	• --- 	 --- 	 c 

l' 2' 	3 
> 0 	 c 	 c 
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Table VIII. The j spectra from the decomposition of the product of 

one discrete series j 	and one continuous series j 	for 2. 

v 3  > 0. The range of the discrete spectrum of j 	is the same 

as in Table VI. The symbols c and d indicate continuous and 

discrete spectra, respectively. Similar results can be obtained 

for v <0. 

v1 , v2 , V 3  >0 	v2 , V 3  > 0. v1 , -v2 , v3  > 0 

c,d 	 --- 	 c,d 

	

l' 2' 43  >0 	--- 	 c 

	

3  > 0 	c, d 	 --- 	 c, d 

l' 	2' 	
> 0 	--- 	 c 

	

P5 > 0 	C 	 --- 	 c 

c 

	

l' 2' ••13  > 0 	---  
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Table IX. The j spectrum from the decomposition of the product of two 

discrete series j 	 and j 	 for v3  > 0. The range of the positive 

(negative) discrete spectrum) extends from j 3  =. 	to 	- 	+ j. 

The symbols c and d indicate continuous and discrete spectra, 

respectively. The star 	indicates that the negative discrete 

spectrum occurs only when the angular momentum of the negative 

discrete series is less than that of the positive discrete series, 

and vice versa. A similar result can be obtained for v3  < 0. 

vl , v2 , V 3  > 0 	-v1 , v2 , v3  > 0 	v1 , -v2 , V 3  > 0 

d 	 ---- 

	

l' 2' 43 
> 0 	--- 	 c, d* 

l' 	2' 3 
> 0 	--- 	 --- 	 c, d 

2' 	3 
> 0 	--- 	 --- 

l' 	2' 13 >0 	--- 	 --- 

l' 2' 	3 
> 0 	--- 	 --- 
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FIGuRE CAPTIONS 

Fig. 1. The contour of the integral with Im j1 > Im j 2  > 0 for the 

case in which j 1  and j 	 are both in the continuous series. 

The contours 
T, and  2 enclose the contributing poles of 

G(j, v)G(j, 	and those for y and T
4 enclose the poles 

of G(-j, v) G(-j, 	These four contours become a single 

one by being connected at infinity, as shown in this figure. 

Similar figures can be obtained for the cases 

Imj1>-Imj2>O, Imj 1 >±j2 >O, and 

O K ± Im i K ± Im j 2 . 

Fig. 2. The contour of the integral with Im j > 0 for the case in 

which j and j are in the continuous andthe discrete 

series, respectively. The contours 
Y, and  2 enclose the 

contributing poles of G(j, v) G(j, -) in the right half 

plane. These two contours become a single one by being 

connected at infinity, as shown in this figure. A similar 

figure can be obtained for Im j < 0. 

Fig. 3. The po.les of G(j, • v) G(j, -) with Im j > 0 in the j 3  

plane for the case j1  and J2 in the discrete and the 

continuous series. The circle indicates a simple pole; the 

triangle indicates a double pole.. A similar figure can be 

obtained for Im j K 0. 
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LL'.JP'L I 'JL' I IL,L 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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