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NUCLEAR SPINS, 3P1  AND 3P2  HYPERFINE STRUCTURES, AND NUCLEAR IVflMENTS 

OF 69Ge AND 75Ge, AND 3  P 2 HYPERFINE STRUCTURE OF 71Ge 

Abiodun F. Oluwole 

Department of Physics and Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

September 10, 1969 

ABSTRACT 

The atomic-beam magnetic-resonance (ABMR) technique has been used 

to measure the nuclear spin, I, and the 3P1  hyperfine stnicture (hfs) 

constants, a and b, for 37-hr 69Ge, the 3P2  hfs constant a for 

11-day 71Ge, and the nuclear spin and hfs constant a for 75Ge in the 

and 3  P 2  electronic states. The nuclear moments were inferred by 

the use of the Fermi-Segrè formula from the corresponding hfs inter-

action constants. 

The results are: 
Moments 	2 Isotope Spin 	hfs constants 	 (uncorr.) 	x 

69Ge 	1=5/2 	a(3P1) = ±23.39(5) MHz 	p1  = 0.733(7) nni 	7.97 

b(3P1) = 48.28(8) MHz 	Q1 = -10.043(8) barns 

71Ge 	1=1/2 	a(3P2) = +360.54(6) MHz 	 0.56 
(prey. 
meas.) 

75Ge 	1=1/2 	a(3P1) = -81.05(8) MHz 	p1  = +0.509(5) nm 	2.28 

a( 3P2 ) 	+335.94(9) MHz 	 0.55 
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The figures in parentheses represent the error in the last figure. 

For the hfs constants this is two standard deviations. A 1% uncer-

tainty is given for the magnetic moment to include a possible hfs 

anomaly. The 20o error for Q results from the theoretical problem of 

extracting Q from b. 

Relativistic effects account for about 25 of the a values while 

the remainder is attributed to effects of configuration interaction. 

The nuclear spins are predicted correctly by the shell model, while 

the quasi-particle nuclear theory of Migdal is found to predict the 

nuclear moments more accurately than the shell model. 
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I. INTRODUCTION 

This research is part of a continuing program by the Atomic Beam 

Group of the Lawrence Radiation Laboratory to measure nuclear spins 

and electromagnetic moments of radioactive atoms. 

Measurements of the hfs interaction constants of germanium iso-

topes are of interest because of the light they shed on the electronic 

structure of the genrianium atom. This is especially so in the 

electronic state where the magnetic dipole interaction constant must 

vanish except for contributions due to relativistic effects and 

configuration interaction. 

In the first part of this thesis, relevant atomic and nuclear 

theories are discussed. A description of the apparatus and experi-

mental techniques associated with the ABMR method is given. Our 

results are then listed and the observed values are compared with those 

predicted theoretically. Most of these results have been published in 

abstract form.' 

AV 



-2- 

II. THEORY 

A. Atomic Theory 

The non-relativistic Hamiltonian for a free atom with a nuclear 

charge Ze can be written as 2  

22 	2. 
- 	- 	+ 	 (1) 

1 	1 	 1 	1<J 1J 	1 

where r i is the distance of the ith electron from the nucleus and 

the distance between the ith and jth electron. 

The first term in the Hamiltonian is the 'sum of the kinetic ener-

gies in the field of the nucleus. The second term is the repulsive 

Coulomb potential energy between pairs of electrons. The third. term 

represents the interaction of the electron's spin with the magnetic 

field produced by its orbital motion in the Coulomb field of the 

nucleus. The last term is the hfs interaction energy. The last term 

is much smaller than the others and will receive a separate treatment 

in the next section. Here we shall mainly concern ourselves with the 

first three terms. 	 . 

Since an exact solution of this Hamiltonian is atpresent not 

possible, we use the perturbation approach. The Central Field Approx-

imation is a convenient starting point for obtaining the energy levels. 

In this approximation, each electron moves independently in the field 

of the nucleus and interacts with a central field expressed by the 

spherically symmetric potential U(r). The Schrödinger Equation is then 

2 

cfcf = [(_ v +.U.(r.))]f = E ff 	. 	(2) 



The difference in the Hamiltonians represented by Eq. (1) and (2) 

is then treated as perturbation potential V where 

	

Z. 	22Ze  
- cf = 	- 	- U(r1) + 	 (3) 

	

]:l 	1 	 1<3 13 .  

The eigenstates Of 3Ccf are products of single electron wave-functions. 

cf = 	1(r) ; Ecf = E 	 (4) 

where 

V2  + U(r)) 	= 	. 	 (5) 

A further separation of variables is possible by introducing polar 

coordinates 

q) 1 (a1) = r'R 2, (r) Y(e,4) 	 (6) 
mk 

where (as) represents a set of quantum numbers (nm ,) which specify the 

state of motion of the single electron in the Central Field. 

We can then take the spin of the electron into consideration by 

including in each a factor a or , corresponding to m 5  = + 1/2 or 

m = - 1/2. 

Then 

91 
(7) 

where a1  represents the quantum numbers (n,2.,m , ,m5); also 

cf = 	 (8) 

The product wave function satisfying the Pauli Exclusion Principle is 

given by the Slater determinant: 
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(9) 
vT 	

l(cLN) 	 ••• 

The energy eigenvalues correspond to the energy of a particular elec-

tronic configuration which is described in terms of the quantum numbers 

K1 	K 	KN  
(n1 2 1) 	(n22) 2 •,• 

where K1  represents the number of times (n1 2,1) occurs. 

The effects of the perturbation potential V on the above energy 

levels will now be discussed. Recall that 

Z22 Y 
= 	

- U(rt)] 
+

j  jj+ 
	

(r1)11Z 

The first term is purely radial and merely contributes equal energy 

shifts to all the levels belonging to a given configuration. The last 

two terms are different for different states of the same configuration. 

We may therefore treatas our new perturbation Vt 

• 	 V' = 	 . 	 (10) 
1<3 13 	1 

Two distinct cases obtain for the perturbation V depending on the 

relative strengths of the electrostatic repulsion term and the spin-

orbit term. First, if (e 2/r) >> 	 one can use'the LS 

coupling scheme. If we define = 	and § = 	then t and 9 corn- 
2 	 1 	 1 

mute with 1.-  , and L and S are good quantum numbers. They are used iJ 	 2 
to specify the energy levels produced by the I 	 term. These levels 

13 
are labelled 25 L. They are (2S+1)(2L+1)-fold degenerate. The spin- 
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orbit term does not commute with either L or S but does commute with 

= + . Hence it splits each term into multiplets labelled 2S+lL 

Each multiplet is 2J+l.degenerate. 

Onthe other hand, if (e 2/r << 	 then one has to 

employ the j-j coupling scheme. For each electron, i and 	are 
4. 

coupled to angular momentum
= i 

4- and the resultant total angu-

lar momentum is = Jj i .J is a good quantum number. By arguments 

parallel to those above, one arrives at a set of 2J+l degenerate 

levels. 

This perturbation approach is illustrated diagrammatically in 

Fig. 1. 

B. Hyperfine Structure 

1. Zero Field 

The Hamiltonian, :}Ccf, treated in the last section, yields energy 

levels which are (2J+1)-fold degenerate. This degeneracy can be 

removed not only by an external field but also by the non-spherically- 

symmetric interaction of the electrons with the nucleus. 3  

The kinds of interaction are limited by parity considerations. In 

general, nuclei may have only odd magnetic moments and even electric 

moments. 

Schwartz has shown that hfs Hamiltonian can be written in tensor 

form: 

* 	 3Chf =  
CO 

 T 1) 

Using group-theoretical arguments., it can be shown that the largest 

multipole interaction is of order 2, where 9 = mm (2J,21). By far the 



In 

L,S 

.. 

Icm - 	30,000 MHz 

30,000 cm' 

L,S 

• ..( fl 1 I)NI(fl ,/2f10,000 cm' L,S, 

I,J,F 

-< j-0  CM I- I 

XBL674-2780 

Pig. 1. The Russell-Saunders coupling sche, showing the usual 
quantun nunbers and typical energy separations. 
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largest contributions come from the nuclear magnetic moment and the 

electric quadrupole moment interactions. 

The Khfs  is then 5  

fs = 	 - 
e2fJ 	 nddT. 

- 

	

-r r 	
JT 	e r e 

(11) 

is the energy of interaction between the magnetic field H i of each 

electron and the nuclear moment p. 3CE  is the electrostatic interaction 

between the charged nucleus and electrons. 

The magnetic field H 1 , of an orbital electron, 3  is 

	

- -~ 2 	~ 

	

e(yxr) 	pr1  + 	 - 

	

i 	3 	 5 r 	 r 
9. + 

	

X.- s. 	3r.(s.•r.) _,,,]. 	i 	i 1 1 
-'p 	 5 r 	r 

where 

2 = 

Hence 	 .e1 

	

= 291 	 (13) 
ir 
9- 

and 	 3r. 

= 	;+ 

We can put 	in a tensorial form 6  

= 	
- 101/2 (2)l 

and then write 

	

= a 	[1, - (10)1'2 	 (14) 



In 

with 	
3 	11 1 	3 

	

a ,  = 2$ N  91  (r > = 2$ N T <r > 	. 	(14a) 

In the absence of an external field, I and J are strongly coupled 

to form states of total angular momentum = I + . In this state the 

characteristic quantum numbers are 1rJFMF). 

We then calculate the matrix elements of3C in the JIJFMF>  cheme. 

They can be written as 

' 	
= (1)J+I+F 	

<IIII (1  I)x(aJIjIcJ). 	(15) 

By writing out the 6-j symbol, Eq. (15) reduces to 

aK 	(cLjIj.II&J) 
12 [J(J+l) (2J+l)} 

	

=aK 	 (16). 
where 

K = F(F+l) - J(J+l) - 1(1+1) 	 (17) 
and 	 (JIE. 1 IIa'J) 

aa2, 	12 	 (18) 
[J(J+1)(2J+ 1)] "• 

a is known as the magnetic hfs constant and can be experimentally 

determined. 

Equation (18) can be further simplified for the Hund's Rule 

ground state of an ()N  configuration. This is the state with max-

imum L and S consistent with the Exclusion Principle7. —. 

2..1 
2S+l 

In this case 

a = a 2 - g + 	- 	25(I+1 [J(J+l) + S(S+l) - L(L+1)J 

[ 	
n (2L-1)(29..-1)(22.+3)  

3 [J(J+l) - L(L+l) - S(S+l)] [J(J+1) + L(L+l) - S(S+l)J\  
J(J+1) 	 (19) 

From Eq. (16) we see that m can also be written in a handier fashion: 
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= aT. 	. 	 (20) 

A similar explicit expression is now sought for the matrix elements 

of 
 YE 

pe ' )(r ) 	 p 
1~3 =•-e 2 

J .  J 	~ 

e 	
n dTedT + zeIT dTe• 

	

TT re  r11 	 e 	e 

can be expanded in spherical harmonics: 

en 	 k r 	((k)(k) 	 (21 I -'- - 	 '- 	k+l 	e 	e 	-' re 	k re 

Since 3CE  must be invariant under inversion of coordinates, parity 

considerations rule out the k-odd terms. The k=0 term is the Coulomb 

term which cancels the second term. The k=2 term is the electric 

quadrupole interaction. Higher terms make contributions which are much 

smaller than the present limit of observation and will therefore be 

neglected. 

Then 	
2 

	

 
3CE =  e f f p(r)p(r) 4 (2).(2)) dTdT 	(22) 

Following Casimir 8  and Wybourne 5  we write out the matrix elements of 

in the IJFMF) scheme: 

	

<aIJJl&JJ9= 
(1)J+I+F e2{ 	}<iir 	2Iia'J)x<IIIr 	(2)IJ) 

(23) 

The quadrupole moment is defined as 

Q = (IIlr2)jII) 	 24) 

(_I 2 1 	2~ = 	
) 

(IIIr2) II I) 
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On evaluating the 3-j symbol, we obtain 

Q = ( 
	21(21-1) 	11/2 (III 
(1+1) (21+1) (21+3)) 	

r22II) 
nfl 

Thus Eq. (23) becomes 

<IKEI) = b jj .K(K+l)-I(I+l)J(J+l) 	
(25) 

21(21-1)J(2J-1) 

where 

b ,  = e 2Q(r 3) 

4J(2J-1) 	
(cxJi2Ia'J> X = (J+1)_(2J+1)_(2J+3) 

The gradient of the electric field enters into the expression 

(aJI 2 IcL'J> of the X term. 

The electric quadrupole hfs interaction constant b is usually 

definedas 
Li 	UAj 

Finally, in the absence of external fields, the matrixelements for 

hfs maybe written 

(cdJFMFIXfS I) = <I m I> + (1 3CEI) 
aK 	K(K+i)-I(I+l)J(J+i) 

21(21-1)J(2J-1) 

We note that both a and b contain an(r) tern. This means we cannot 

extract nuclear moments from experimentally measured quantities a and b 

without knowing the electronic wave functions. However, if the nuclear 

parameters for one isotope are independently determined, the Fermi-

Segrè formula derived from Eq. (14a) 

1- (] + 	 ( 28) 
2 

may be used to compare the isotopes , where g 1  is the nuclear g- factor 

and 12  is the hfs anomaly for the two isotopes. The anomaly is 
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usually less than 1% or, negligible for non-s electrons. <r 3) may also 

be extracted from the spin orbit interaction constant : 

(r3) = 	2 	• 	 (29) 

The value of (r 3) obtained by the latter method usually differs from 

that calculated from hfs constant a. 

2. Addition of an External Field 

The hfs interaction levels are (2F+1)-fold degenerate. The 

addition of an external field removes this degeneracy. 

The Hamiltonian in the external magnetic field, H 0 , is 

X F 

	

= hfs - g100 -  gj p0 	 (30) 

At low fields I and J are strongly coupled to = 1 + i. The matrix 
elements are evaluated in the JIJFM representation 

(1J1I3C1IIJFM) = ly'hfs.- 	 (31) 

where 	hfs' is given byEq. (27), and 

- 	F(F+l)+J(J+l)-I(I+l) + 	F(F+l)+I(I+l)-J(J+l) 
- gj 	2F(F+l) 	g1 	2F(F+l) 

(32) 

At high fields, where I and J are completely decoupled, the FIMJJMJMF) 

representation is used to calculate matrix elements. F is no longer a 

good quantum number, but MF  remains a good one in both representations. 

• 	At intermediate values of the field H0 , the matrix elements are no 

longer diagonal in either representation. It is necessary to compute 

the matrix elements of 3C' in either scheme and diagonalize the resulting 

matrix. 

A special case arises when either I or J = 1/2. Then the diagon- 



-12- 

alization can be solved in a closed form. Since 3C' is diagonal in MF, 

the matrix breaks up into a series of 2x2 blocks along the diagonal, 

each corresponding to a value of MF = 	+ M. In the !IJFMF>  repre- 

sentation it has the form (when I = 1/2) 

F = j4 	
F =  

F = +4 	a- 	 (2g+g1) 	-u0H0 (gj-g)[4) 2- M]2 1 
F = J- 	[P0)gJ) [(J4)2-M]2 	- 	i+1)- 	[2gj(J+l)gi ]j 

The quadratic equation which results can be solved to yield the 

Breit-Rabi formula' °  for the energy W 

hAV • M r 	4MFx 	21'2  
= - 2(2J+l) - gJTJ0H0M ± _[l + (2J+1) + x j 	(33) 

- where 

Av = a(J,+ 1/2) 

= (gj -,  g1) T10H0 . 

Mv 

and W respectively refer to states with F = J+1/2 and F = J-1/2. 

The electric-quadrupole term identically vanishes since I < 1. 3  

Since two of the isotopes under consideration ( 71Ge and 75Ge) have 

each •a spin of I = 1/2, Eq. (33) will completely describe their hfs. 

For the general case, when I,J > 1/2, one has to resort to numeri-

cal methods and the computer for a solution of the eigenvalue equation. 

3. Relativistic Corrections to hfs 

It is always necessary to know the radial part of the hfs constants 

a and b in order to deduce the values of nuclear mements from them. 
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Relativistic modifications of these radial parts can be considerable. 

Many authors 8 ' 12 ' 13  have considered this problem extensively. 

Expressions have been derived for relativistic corrections to hfs 

constants. Here we shall skeIah a method for obtaining the Casimir 

corrections to hfs cOnstants. 

The relativistic treatment of hfs starts with the consideration of 

a single electron in a central field. The electron wave function obeys 

the Dirac Equation: 

+ eX) + (mc2 eV)}ip = Eli) 	. 	 (34) 

The four-component wave function Ii) is formed from anti-symmetric 

products of single-particle functions of the form 8  

g(r) 

= Ujm 	£jm if(r) 
where 	 £jm 	r 

ejm  = (QjmIl/21m-o)qPY 

is a spherical harmonic, li is the spin function with S = 

and <jmIl/2 Iom-a) is theClebsch-Gordan coefficient. g(r) and f(r) are 

radial wavefunctions, and in the non-relativistic case g(r) is finite 

while f(r) + 0. 

The central problem is the evalUation of the radial integrals asso-

ciated with the magnetic dipole and electric quadrupole interactions. 

The solution of Dirac's Equation for small r (this is where 

relativistic effects are pronounced) is first considered. 

We put x1 = rf(r) and x2  = rg(r). 	 (36) 
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dr 	r 	r X2 

d 2  k2 	Zc 

	

- 	= (2 + = r 	X, (37) 

where 

k=2.+1 for J=2.+1/2 

=-2. for J=2.-1/2 

Equation (37) is solved in terms of Bessel's functions to give 

x1 = CcZJ2 x) 

x2 	 - 2(+k)J2 (x)J' 	 (38) 

where 
x = (8Zar) 1/ 2  and p = (k2 - Z 2ct2)"2  

The normalization constant C has been evaluated in terms of the fine 

structure separation of the states J = 2. + 1/2 and J = 2, - 1/2. 

Denoting these states respectively by single and double prime, 

C2 = 	 . 	 (39) 
4Z(p'- p"-  1) 

Following Casimir, we define 

= 22.(2,+l)(p'-p"-l) 	 (40) 
cZ 

	

F (J,Z) 	2J(J+1(2J+1) 	 (41) r 	(4p -1) 

	

• R (J,Z) = (2.+1)(22.+1)3k(1)P 	 (42) r 	
( 	1)(4 -1) 

For the magnetic dipole integral 8  he obtained 

	

2 	-2ctC2Z 2F (J,Z) 
• 	 f°°  r  x1x2dr = 	

r 	 • (43) 
0 	 a(22.-'-l) [±(22+1)+1] 
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The ± sign in the denominator stands for J = 2 ± 1/2. For the 

electric-quadrupole, the integral is 

f°  r(x + x)dr = 2 	
r ' 	 (44) 

0 	 a [(i+l)(2+1)] 

The relativistic expression for hfs constant a becomes 

aj  = a112 = an 	Fr(JZ) 	 (45) 

where 

ant =2 	gJ<r3) 

and 	 7 

(rd) = 2 	 (46) 
( 2Z+l)ZHr (2 Z) 

The electric-quadrupole hfs constant is given by 

b = e2Q(r3>Rr(J,Z) 	. 	 (47) 

The numerical values of the relativistic correction factors F PIZ), 

Rr(JZ) and Hr(2Zi)  are tabulated by Kopfermann. 
12 - 

4. Effects of Configuration Interaction 

Usually configurations that differ by the excitation of a single 

electron produce interactions that significantly affect the hfs con-

stants. This is so because the hfs interaction operators are essen-

tially all one-electron operators. These effects are more pronounced 

in the quadrupole constant than in the corresponding hfs nagnetic-

dipole constant. 

Several authors have attempted to derive expressions for the 

effect, but none can claim any exactness close to what the present 

experimental observations demand 

Rajnak and Wybourne, 1 ' using second-order perturbation theory, 
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have derived expressions for the corrections due to the effect of 

closed-shell excitations on the hfs matrix elements: 

< N SLJlIzN , S , L , J , > 

Their calculations indicate that the quadrupole matrix element is 

multiplied by a factor lYq  where 

= 2 (iI 2 1I")<n'VIr 3 InV) 
q 	

AE(9l2iI2)<n.!r3In> 

x 	(2,,V) - (l)k{ 	" 	x(k,W',W) 	(48) 

where 

x(k,ab,cd) = ( aIIc 1 li c) (biIII a)Rk(ab, cd) 
and Rk(ab,cd)  is a Slater integral. 

What is important here is to note that the electric quadrupole 

constant b is merely multiplied by a scaling factor. The quadrupole 

moment is increased or decreased according to whether y < 1 or 1q > • 

Also, for two states of the same configuration: 

b1(l - Yq) - 	- b 

b 2  (1 	Yq) - 	- T5 

The corrections are similar to the ones calculated by Sternheimer. 15  

For the magnetic dipole case, the hfs constant is better written 

as (see Eq. (19)): 

	

a= a!,(L + S) 	 (49) 

where L = 2-g represents the interactions of the electron orbital 

motion with the nuclear magnetic moment, and S represents the interac-

tions of the electron spin moments with the nuclear magnetic moment. 

Configuration mixing introduces scaling factors 	and1'm' to 
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both L and S. 

Equation (19) is then replaced by 

a = a[L(l-y) + S(l_ymp)] 	 (50) 

Both y and 1m  are given in Ref. 14. For two states of the same 

configuration: 

a1 	Ll(ly•11) + 5l1m' 	 (51) = L2(1-y) + 

L1 +S1  

Hence configurations effects are not just a scaling factor for the 

total hfs constant a. To calculate completely the values of y and 

the a values for at least three states of.the same configuration 

must be known. 

Another way of looking at the problem is to associate a magnetic 

field 	at the nucleus with the effect of the electron excited from 
CP 

the core, thereby polarizing the core.' 6  

This field has the vector properties of the spin 

(52) 

The interaction of this field with the nuclear moment gives 

	

Wp = Ncp = 	 (53) 

- J(J+l) 

In the 3  P states (Ge ground state), (S) = (L) Hence 

= .J(J+1) 

	

= 	 (54) 
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The contribution, therefore, from this effect to the hfs interaction 

energy, is a constant added to a, the hfs constant; because in this 

special case ( 3 P states), C" is independent of J. 

a. Sandars' Method. Very recently Sandars and Beck 13  have developed a 

theory that enables one to do hfs relativistic calculations for many-

electron atoms. This is achieved by developing some effective operators 

that reproduce the relativistic effects. The matrix elements of these 

operators between LS wavefunctions yield the correct relativistic 

expressions. These effective operators are of the form 

= T•T 	 54 hfs eff. 	n : eff., 	 a 

where 	
k k k k k 'k 

T(k) = 	
pJ 	

S 2/ 	 (54b) eff. kk 
s2 

(k k2,)k 
p S 	

are coefficients involving radial integrals of the Casimir 
(kk2)k 

type. They are listed in the Appendices. U S 	are tensors of rank 

k5  in sp in  space, k2  in orbital space, and k in combined spin-orbital 

space. They have the property that 

1' 	(kk2,)  i (IIu 	(Ii> 	1 	. 	 (54c) 

For the magnetic dipole case, k5  is restricted to 0, or 1. Hence 

contains three terms: U 1 , U'2 ', and U 10 . Sandars and Beck" 

have shown that these are respectively proportional to 1, ( (2) )  (1) 

and S . The hfs Hamiltonian is then written as 

3~fs eff. = 2 04T.(r 3) 01 - (lO) h/2 	2(l)<3>+ S<r.)lO} 

(54d) 
The (r 3) expressions.are relativistic integrals, listed in the 

Appendices. 
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The above expression is essentially the same as the non-relativis-

tic one given by Eq. (14), except for the presence of the last term. 

In the non-relativistic case (r3>10 = 0. 

b. J-Mixing Corrections to hfs. It is known that 
3hfs  mixes electronic 

states of different J. For the general matrix element (IJFI 3 f5  I IJ 'F>, 

the dipole moment operator mixes states with AJ = 0,±l, whereas the 

quadrupole moment operator mixes states differing by AJ = 0,±l,±2. 

Woodgate 33  has considered second-order corrections 6E hf, to the 

hfs energy, where 

,(IJFI3Chfs I IJ'F)<IJ'FI3 f5 I IJF) 

hfS 
= 	 ( 54e) 

and E - 	equals the energy separation of the F-level in states J 

and Y. For corrections to a, he obtained 

A(J) 
5a(J) = 	1 	

(54f) 
IJ 

where 

A1(J) = 
	j.(- 	](111x (l)  (n)jjI>(Jjjx (l)  (e)IIJ> , (54g) 

and 

(Ix(n)I)<JIIxm(e),IJ) = 
(1) 22J+3 {l 1 l}{l 1 l} 

x I(IIIT(n)III)I2 	
(Jr.(e)IIJ')(J'IIT(e)IIJ> 

where 	
E - J' 

(1) 	'I T 	(n) = 	and T(e) 	- --- 

C. Nuclear Structure 

There is a wealth of data about the ground and low excited states 

of nuclei. In particular, ABMR methods have been used to measure 
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spins I and electromagnetic moments (ji, Q1, etc.) with considerable 

precision. 

From the body of data it is found, for example, that nuclear 

ground state spins satisfy the following empirical rules: 

All nuclei with Z even and (A-Z) even have zero spin. 

Nuclei with A odd have half-integral spins. 

Nuclei with Z odd and (A-Z) odd have integral spins. 

Nuclei that contain the so-called magic number of 

protons (and/or neutrons) appear very stable. These 

magic numbers are •2, 8, 20, 28, 50, 82, and 126. 

Various nuclear models have been constructed to explain the above 

observations and to calculate some other related nuclear properties. 

Two of the most successful are the shell' 7  and collective' 8  models. 

The shell model has been successful in explaining a great deal of the 

empirical data and it seems particularly applicable to the germanium 

nuclei. We therefore concentrated primarily on those aspects of the 

shell model relevant to the subject of nuclear spins and moments. 

In this model, nucleons are assumed to meve independently of one 

another in some spherically symmetric potential well. This potential 

is intermediate in shape between a harmonic oscillator potential and a 

rectangular well. The transition from the former to the latter proceeds 

as A increases. In addition, there is also a strong negative spin-orbit 

interaction of the form [-f(r)•] where and t are the Pauli spin and 

orbital angiUar momentum operators, respectively, fora single nucleon. 

The states are labelled by a set of quantum numbers, I n2jm), where 

n = total quantum numbers, i = orbital quantum number, the total angu- 
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lar quantum number is j = 2.±l/2, and m takes the values +j, j -1, •.., 

0 , •••, -j. 

In a given nucleus these Inirn> levels are filled up by neutrons 

and protons according to the Paul i Exclusion Principle. The energy 

levels resulting from such a model are shown in Fig. 2. With suitable 

adjustment of the shape of the well and strength of the spin-orbit 

interaction, this model accounts for all the magic numbers at closed 

shells of 2, 8 1  20, 28, 50, 82, and 126 nucleons. Nuclei which contain 

these numbers of neutrons or protons are unusually stable. 

The nucleons couple their angular momentum by j-j coupling to a 

resultant angular momentum or spin I. Closed shells of nucleons have, 

therefore, zero spin. It is further assumed that an even number of 

netrons or protons in a given level couple to zero spin, while an odd 

number couple to the spin of that level. 

Therefore, according to this scheme, 

All even-even nuclei have zero spin. 

Nuclei with odd numbers of protons and even numbers of 

neutrons have the spin of the last odd proton, or vice 

versa. 

However, for odd-oTd nuclei, the spins cannot be predicted by the 

above scheme, as the separate angular momenta of the odd neutron and 

odd proton can be coupled to form several different resultant spins. 

Nordheim' 9  has formulated empirical rules for coupling j  of the 

last proton to the n  of the last neutron: 
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Fig. 2. Shell model single particle energy levels (spin-orbit and 
Coulomb energy terms included). 
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If j 	=k 
p 
±1/2 and in = 	±1/2 	then I > Ii 

- 
iI 	• 

If jp  = k ±1/2 and in = £1/2, then I = pn! 
(55) 

Brennan and Bernstein 20  have more recently modified the Nordheim rules 

to account for many more of the observed spins of odd-odd nuclei. 

For configurations in which the odd protons and odd neutrons are 

both particles or holes: 

(a) 	I = 	j,±j 	I if  i.= 	±1/2 and in  = z±1/2 
(56) 

(b) 	I = if i 	= £ ±1/2 and in  = £;1'2 	. p-jnl. 

If i 	or  in = 1/2, then I = I p Jn I• 	For configurations that are 
mixtures of particles and holes: 

I = 	+ in - ii 

We next examine the values of the electromagnetic moments of odd A 

nuclei as predicted by the shell model. 	It consists in evaluating the 

following quantities: 

= (ImIIIm)1 

Q1 = (ImIQtIm) m i 

• 	 where (57) 

= 	 g(k)(k) + 	g(k)(k) 
2mc k=1 	2mc k=l 

A 	(k) 
Q = 	t e 	(3+2 - +2)rk k=1 

Thisgives 

= 	 .t + g5 	I>= (58) zm=t 	(I+lTh 
where we have used the well-known relation 

<A) 	I(I+l)h 
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for the expectation value of the z-component of a vector operator A 

where I is the total angular momentum operator. Equation (58) can be 

written in the following form: 

21(I+l)h <g9.(I 2 L 2 -S 2) + g5 (t2+S22)) =j  

- 3/4 g1 1 = - [g9,-i-g5) + (g9.-g5) 	1(1+1) 	 (59) 

where 1 = 9.±1/2, and g 9. and g5  are the orbital and spin g-factors for 

the odd nucleon, taking the values 

gz =  1 for protons 
= 0 for neutrons 

g = 5.587 for protons 
-3.826 for neutrons 

g is the nuclear g-factor. 

Equation (59) may be written in the following form: 

odd particle 	I = 9. ± 4 	I = 2.. - 4 
proton 	= (1+4 	 = [I+(4 

neutron 	p= 	 = - 	s1N 	(60) 

where jjN  is the nuclear magneton. These are known as the Schmidt 

moments. 21  The fact that most observed moments differ from the Schmidt 

values has been explained in a number of ways. One approach is to use 

quenched g-factors rather than free-nucleon g-factors. The latter are 

considered to be modified in the nucleus by the presence of meson-

exchange currents. It is customary to modify g to make Eq. (59) fit 

observed moments. Similarly, the electric-quadrupole moment is given 

by22 	 - 

Q = Q3  = - ()(r2) for odd proton 
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Q = 	- Z 2 • for odd neutron. 	(61) 
(A-i) 

By (r2) is meant the average of r 2  for the nucleon orbit, and this is 

usually replaced by 	where R = nuclear radius. For odd-odd nuclei,, 

Ref. 22 gives the magnetic moment if j-j coupling is used: 

j (j+l) - j (j -1) 
p = 	+ (g - ) 	(62) 

We also note that recent quasi-particle theories 23  have been used 

to calculate nuclear moments which agree more with observed values than 

the Schmidt values do. 



III. ATCMIC-BEAM MAGNETIC-RESONANCE METHOD 

A. General Description of Apparatus 

Figure .3 is a schematic diagram of a typical atomic-beam "flop-in" 

machine. It consists of an oven 0 (serving as source of atoms), three 

magnetic field regions, and a detector. The magnets labelled by the 

letters A and B are inhomogeneous magnets, whose field gradients are 

oriented as shown in the figure. These fields are strong enough to 

decouple the electronic and nuclear angular momenta. The magnet 

labelled C produces a homogeneous field. A radiofrequency hairpin, 

situated in this region, causes transitions between magnetic sub-

levels of the atom. 

An atom with a non-zero electronic magnetic moment, which effuses 

out of oven 0, is deflected while passing through the A-magnet region. 

In the C-magnet region, it may or may not undergo a resonant transition. 

Should it undergo one, the sign of its m changes. The B magnet is 

designed in a way that such an atom will experience a deflection in 

this region to counteract that produced by the A magnet. Thus the 

atom will be deflected onto the detector D. These trajectories can 

be explained as follows: 

An atom with electronic magnet moment gj  p 01and  nuclear magnetic 

moment g 1  iI in an external magnetic field 	has energy 

Wmag = gp:.Fi - g1 i 0I 0  

Usually the magnetic field is large enough to make the high field 

scheme discussed in Section II valid and hence the energy is 



-?- 

PUMP 
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Or 

Fig. 3. Schematic of flop-in atomic beam machine. 0, oven; S, stop 
wire; A ,B, inhomogeneous magnets; C, homogeneous nagnet; D, de-' 
tector; 1, path of non-resonant atoms; 2, path of resonant atoms. 
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Wmag  = gT-t0mH0  g1 i,m1H 

If A is non-unifonn, the atom experiences a force proportional 

to the gradient of the field and to the effective magnetic moment: 

- 	V0 Ueffo 

= (gj  0m + g1  p0m1) •j- 

I 	 me 	1 Since 	 g1/g 	c-  2000 
an 

It is clear that the deflection depends on the value of mj . 

Also, in order that the atom be refocused by the B-magnet when the 

sign of the field gradients in both A and B region is the sante, 

it is necessary that 

Iflj. (Amag) = -mj mag 

Two cases occur in which atoms may still strike the detector 

without undergoing a transition in the C-magnet region: (a) atoms with 

mj  = 0, which experience little or no defIçtion and hence teach the 

detector regardless of whether or not a transtfon takes place in 

the C region, and (b) very fast atoms for which the force acts only a 

short time. Both types would contribute a large background. Hence an 

obstacle S is placed in the B-magnet region to block these atoms while 

allowing atoms following a flop-in path to reach the detector. 

The types of transitions that can be induced by the weak radio-

frequency field i f  in the C-magnet region are limited by both machine 

selection rules and magnetic dipole selection rules. 
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In the low- field region, F and mF  are good quantum numbers. 

Hence, permissible transitions are 

tF=±l 

'F1 	F=O,±l 

In the high-field region, I and J are decoupled and the selection 

rules are 

mj =O, 6m1 =±l 

mj =±l,&nj =O 

In addition to these, there is always the machine selection rule 

which requires that for an atom to be refocused, 

m(A)=-m(B) 

The detectors in the atomic-beam machine are of two kinds. One 

is a hot tungsten wire located at the center of the flop-in path. 

Refocused atoms impinge on it and are ionized. The ion current is 

collected and measured by an electrometer. This works for easily-

ionized atoms like the alkali atoms, which in our machine are used 

to calibrate the magnetic field. 

The other is the radioactive detector, which consists Of two 

sulfur-coated brass buttons. One is placed on the machine axis to 

collect the beam of flopped-in atoms; the other collects the flopped-

out beam. Both are exposed simultaneously for five minutes with a 

given I rf in the C-field region. The buttons are then sent to the 

counting room three floors up and about 500 feet away from the 
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experimental room. The resonance signal is taken as the ratio of the 

center activity to the side activity. 

Our experiments were perfomied on the Berkeley atomic-beam 

machine II. A complete description of the apparatus, save for one 

or two modifications and repairs, has been given by D abbous i. 2 k 

The modifications are: 

The oven loader: a new oven loader was designed. Its 

general shape and dimensions were the same as the old ones. The 

cooiing system was considerably modified, which completely eliminated 

the perrenial problem of water leakage.. This was achieved by connecting 

the external flange directly through the water cooling pipes to the 

copper head holding the oven. The design also facilitates leak 

detection. Figure 4 is a. picture of the new design. 

The C-magnet: this has also been considerably redesigned 

by Dr. Schmelling. The C-field range has now been extended from a 

previous upper limit of about 400 gauss to the new limit of 2000 gauss. 

The design is such that the magnet field has a linear relation with 

the magnet current and does not saturate, as the old magnet did. 

Figure 5 shows the new C-magnet design. 
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XBB 699-6129 

View 1. Oven loader with a tantalum oven in place. 

XBB 699-6130 

View 2. Oven loader showing the new design of the water cooling system. 

Fig. 4. The new oven loader. 
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Fig. S. Schematic sketch of the new C-nagnet design. 
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IV. EXPERBvIENT 

A. Ge Isotopes 

The electronic ground state configuration of the germanium atom 

is 42  4p2  In order of increasing excitation energy, the states 

arising from this configuration25  are 	(the electronic ground 

state), 3P1 , 3P2 , 1D2 , and 1S0 . At the temperature of the atomic 

beam (1400°C) the Boltzmann factors of the 3  P 1  and 
3  P states are 

large enough to make transitions between hyperfine levels in these 

states observable (Table I). 

Both states have an integral electronic angular momentum J. 

• This means there will be an.m = 0 state present. The machine selection 

rule requires that m(A) = -m(B). This will require an atom to go 

from the state m(A) = ±1 to state m(B) = 	in order to follow the 

flop-in path. Two quanta are needed to achieve this. The frequency 

put in is half that required for transition from state A to state B. 

With sufficient rf power 2 quanta may be absorbed to cause transition 

from A to B with an intermediate virtual level; this is the double-

quantum transition. It is always encountered in atomic-beam experi-

ments using atoms with integral J values. The two-frequency method 

is even simpler, and will be discussed later in Section IV.B.4. 

B. 75G 

1. Production and Detection 

The radioactive 75Ge isotope has a half-life of 82 minutes. It 

is easily produced in a nuclear reactor by the reaction 

74 	75 Ge(n,y) 	Ge 

on 36.74% abundant naturally occurring 74Ge. 
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Table I. 	Ge bei popertxes 

Boltzmann Factor 	f. 
State iiergy (an 1) e'kt 	 em g 

0.00 1.00 	 51 

557.10 0.64 	 32.6 -1.5011(7) 

1409.90 0.32 	 16.3 -1.49458(9) 

7125.26 0.003 	 0.1 

1S0  16367 14 10 	 ".0 0 
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The cross-section for this reaction is about 0.3 barns. About 

100 mg of a natural Ge, previously melted into spheres, was encapsulated 

in quartz and irradiated in the Berkeley TRIGA MARK III reactor, 

which has , a flux of 10 13  neutrons/cm2/sec. A bombardment of 3 hours 

produced enough activity, usually about 0.1 curie, to last through 

three half-lives of running time. We also found that over 95% of 

the activity produced belonged to 75Ge. The remaining 5% belonged 

to 77Ge and 71Ge. Furthermore, no chemistry was necessary, as Ge 

metal was used. As only about 30 minutes elapsed from the time the 

sample was taken out of the reactor until it was loaded into the oven 

and transferred into the machine, it decayed less than one half-life 

between the end of the bombardment and the start of the experiment. 

2. Beam Formation 

Our ovens are made of tantalum lined with a carbon crucible and 

lid to avoid any reaction between the germanium and tantalum; Figure 6 

is an illustration of the oven and its component parts. 

Electron-bombardment power, typically around 150 to 200 watts, 

heated the oven to operating temperatures of between 1300 0  and 150O 0 . 

At these temperatures enough atoms are excited to both 3  P and 

states to make atomic-beam research possible. At the start of 

each run, normalization (side button) signals of about 1500 counts/mm. 

were produced, with corresponding resonance signals of from 50 to 

300 counts/minute. 

To detect 75Ge, its -ray emission during decay was utilized. 

Thin-window Geiger counters counted the emitted s-rays. Each counter 

is surrounded by a guard counter to reduce the background from 
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XBL 699 4915 

Fig. 6. Exploded view of carbon-lined tantalum oven used to produce 
beams of germanium atoms. 
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extraneous radiation; typical background counts range from 4 to 8 

counts/minute. For better statistics, the spin or central buttons 

were cycled through three or four such counters for 5 minutes each, 

while the normalization button was counted in one counter. Figure 7 

shows the setup of a s -counter. 

3. Spin Measurement 

We achieved the initial spin measurement for 75Ge by observing 

= 0 transitions at vety low fields. The frequency of such 

transitions is given by 

10  

= 	1T H0 (63) 

In our case, as Ge has integral J values, we had to induce a 

double-quantum transition, explained at the beginning of this 

section. The magnetic field H0  was set at a value that separated 

the frequencies predicted for each value of I by at least one line-

width Buttons were then exposed at the frequencies predicted by 

Eq. (63). 

Figure 8 shows the results of such a search at approximately 

1 G. Large signals were obtained for I = 1/2 for the J = 1 state. 

Further, to establish the spin, a sweep was taken and resonances 

were obtained at the predicted values for spin I = 1/2 in the 

and 	states. 

We further decayed the I = 1/2 signal for about 30 hrs. and 

a half-life of 82 minutes was obtained. This confirmed that the 

spin I = 1/2 belonged to 75Ge as opposed to the other radio-isotopes 

of Ge. Figure 9 shows the decay curve. 



XBL674-2785 

Fig. 7. Schematic of the beta-counter system. 1, radioactive button; 
2, 8-counter; 3, guard counter; 4, high-voltage divider and de- 
coupler; 5, 8-signal amplifier; 6, amplified 8-signal (2 usec wide); 
7, guard signal amplifier; 8, amplified guard signal (30 usec wide); 
9, single-channel analyzer; 10, high-voltage supply; 11, lead pig; 
12, brass drawer to hold button; 13, scaler. 
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4. Hyperfine Structure Measurement 

A schematic diagram of the hfs diagram for ThGe  is shown in 

Figure 10. All the transitions observed are labelled, i.e., 

a(AF=0, AmF  = 2), 	(F = 1, AmF  1), and y,S (AF = 0, AmF 

The general .procedure, as with other atomic-beani experiments, 

'is to follow one of the resonances up to higher fields starting from 

the low-field Zeeman region. In the case of 75Ge, the a-transition 

used in measuring the spin I was predictably followed up in magnetic 

field to about 20 gauss. This was a dotible-quantum transition. It 

was observable as long as two single-component transitions (y, 5) 

differed by less than a few line-widths. At about 20 gauss the 

signal-to-background ratios had dropped considerably. In fact it 

was' poorer than 0.5, whereas it was as high as 3 at 1 gauss. 

Usually an increase in magnetic field introduces a small de-

viation from the linearity expressed by Eq. (63). This tern, in 

general, is quadratic, and is due to the incipient decoupling of I 

and J by the external field. To second order in the field, the 

shifted frequency is then given by 

2J v 2 
\)=\) + 	0 

0 	i\) 

2 where v is the linear Zeeman frequency. The shift (2J v 0  )/ 

gives a rough estimate of Av..This shift was increased by increasing 

the field until tv was determined to a reasonable accuracy. At this 

point all the information obtained from this transition still gave 

a large uncertainty in a. 
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Fig. 10. Energy level diagram for the 3 p hfs levels of 83-imin 
with a<0. 
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At 20 gauss, the uncertainty in t,v was still larger than 3 MHz. 

Another technique was tried. Instead of the single frequency for the 

double-quantum transition, two single frequencies were simultaneously 

fed in to match the frequencies predicted for the single-quantum 

transitions y and S. A good description of this technique has been 

given by Prior. 26  

Consider the three-level system shown in Fig. 11. Transition 

A-'C represents the double-quantum transition, while Transitions 

AB and B-*C are the two single-quantum transitions y and 5. The 

implementation of the two-frequency technique requires two rf gener -

ators, amplifiers, frequency counters, and a device for mixing the 

two frequencies before transmission to the hairpins. 

One generator was set to match the predicted frequency for 

one of the transitions, say y(A-*B), and the other was varied until a 

signal corresponding to the S(B-'C) transition was observed. Next, 

the latter frequency was fixed at the observed 5 resonance point and 

the frequency for the -' transition was varied until a resonance was 

again observed. A further third sweep could be taken by keeping the 

-y frequency fixed again and rechecking the S resonance frequency. 

This process continued until the peak resonance frequencies becarne  

virtually constant. 

Figure 12 illustrates the typical rf circuit for this technique. 

Figure 13 shows a resonance sweep for a double-quantum transition 

at about 12 gauss, while Fig. 14 shows the two single-quantum reso-

nances observed by the two-frequency technique. 
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Fig. 11. Three-level system. v 1 , frequency for 6 (A-).B) transition; 
v 2 , frequency for y (B+C). transition. 
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Fig. 13. 75Ge double-quantinn transition at n.12.8 gauss. The levels 
connected are (F=1.5, M=0.5) and (F=1.5, M=1.5). 
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Fig. 14. Two single- frequency resonances at 12 .8 gauss. The levels 
connected in 3 are (F=1.5, M=0.5) and (F=1.5, M=-0.5); those in 
yare(F=1.5, M=-O.S) and F=1.5, M-1.5). 
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This latter technique was used to follow the t andy transitions 

up to about 70 gauss, at which field the uncertainty in the hfs a 

was small enough, to make it possible to look for the direct tF = 1 

transition (13-transition). Since for the J = 1 state 

Av = a(J + 1/2) = 3/2a 

a direct transition at very low, fields accurately determines the 

hfs constant. Indeed, the best resonance signal for 75Ge was obtained 

for the AF = 1 transition at 1 gauss. The signal-to-background ratio 

was about 6. 

Figures 15a and lSb show the transition. The size of the signal 

encouraged us further to pursue this 13-transition to very high fields. 

From the work of Goodman and Childs' 6  on 73Ge, the relative 

sign of hfs constant a and the nuclear magnetic dipole moment 

was known. To establish the absolute signs, we chose to follow the 

13-transition to very high fields (r450  gauss). At this field the 

difference in frequency for p < 0 and p > 0 was at least half a 

line-width. We did observe resonances at 100 G and 130 G to establish 

a positive sign for p 1  and, hence, a negative sign for hfs constant a. 

Figure 16 is the tF = 1 resonance at 100 G. The arrows indicate the 

predicted points for p < 0 and p > 0. From Fig. 16, p 1  is shown 

to have a positive sign. 	 ' 

a. HyperfineStructure for the 3I'state. At this point, one 

could predict with high accuracy the hfs constant a( 3P2) by comparing. 

75Ge to 73Ge and using the Fermi-Segrè relation. From Table I, we 

see that the percentage of the beam in theP state is about twice 

that in the 3  P state. Also, there are 6 hyperfine levels in the 
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Fig. 15b. EF=1 transition in 75Ge( 3P1) at 2.1 gauss. 
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Fig. 16. AF=1 transition in 75Ge(3P1) at 100 gauss. Testingsign ofi1. 
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state compared to 10 for the 3pstate. Both facts led us to expect 

a much poorer signal for the 3pdirect transition than for the I)l 

direct transition. In fact, it took several runs before we could 

obtain a good signal. This was after the activity of 75Ge was 

increased beyond the level sufficient for good signals in the 

state. 

Direct transitions were obtained at 1 to 5 gauss; Figure 17 

shows one at 5 gauss. 

This transition is.labelled in the schematic Breit-Rabi 

diagram in Fig. 18. 

5. Results 

For the 3  P state, a total of 23 resonances (F = 0 and ±1), 

listed in Table II, were observed. A least squares fit" (by the 

computer routine HYPERFINE) of the calculated frequencies to the 

observed resonances yielded the results listed in Table III. 

Table IV lists the results for the 3P2  state for which a total of ,  

5(tF = 0 and ±1) were observed. 

The nunbers in parentheses indicate the error in the least 

significant figure and represents two standard deviations for a. 

This gives a confidence level of ãbové 90%. The magnetic moment was 

75 	73 calculated using the Ferna-Segre relation by comparing Ge to Ge. 

The nuclear monnts 28  and hfs constants of the stable 73Ge isotope 

have been measured' 6  previously. The listed values are shown in 

Table V. 

The error in V I  for 75Ge is taken to be 1% to allow for a 

possible hfs anomaly. The difference in X between the fits for 



0.05 
a) 
4- 
0 

0.04 

4- 
C 

0.03 
0 

0 

0.02 
0 
E 
o 0.01 
z 

-53- 

+Rf off 

0 	 849.6 .8 850.0 .2 	4 	.6 	.8 8510 

Frequency (MHz) 

XBL6812-7391 



txo 

LLJ 

M 1  Mj  

+2  

-Y2 

F:% + 1  

8 Y2 

+1/2 

,3 1 

+1/2 



- 55- 

th 

N T1 L!) 'C 	'C Itt 'C C 'C d 	N- N- C L( 	00 C m N- Lf3 C V 

C C r4 C C C C C C C C C C C C r1 C C C C C C 
I 	I 	I 	I 	I 	I 	I 	I 	 I 	I 	I 	I 	I 	I 	I 	I 

IC 
a) Z5 Z5 Z5 Z5 	co 6 coO>-co-O>-O00.00-200.cfl 

• ___________ 	_____ 	__________ 
U C C C C C C C C C C C C C C C C C C C C C 

__ In 00 	C C C C C C C C C C C C C C C In C C In 
II In 	a)N r-1i4r1 	?-1r1 

'i 	 ',_I \J \I 	I 	 / 	d 	 ¼d 	'd '..J 

a) C C C C C C C C C C C C C C C C C C C C C C C 
C C C C C C C C C C C C C C C In In C C In C C In 

'C r1  Q Q 00 N- 'C 00 C 	r4 (= r4 00 t') C 'C 	C 
f.L4  

In CC'C 

II 
i4 - r 

1-4 c' 
(\ 

O CCCC ')C'0Q00 tn 
t 	r-1 t') r4 

In If) r-I r 	( 	NI V) tn t) In In 'C O ' 	V) tn i-I r-1 t) NI NI 

a) 000000 In NI r1 1-1 -1 	f C C m t)  'C 'C In 	1 	Q In 
•rC NI 	NINININI 

•rl 0 00 O O 0 N- 'C 'C 'C O O 00 00 O C C O C C r4 C C C C -- 	-. 	- 
'1 

U) N- N- NI NI NI NI Ca O 0 C O O 0 C' 	-1 	C C NI 

a) CC 
U r-lr. 

r1 	 C'INI 

o 
11) 0 r- 	 .— 	, 	,— , 	,— 	s p 	 pm 
a) •rl U 0000C'CCInInLn0000CCCCL)LCC\OLnL()In'C 

rr-1rr1C Jrr 	r-lr-lr-4 r1 I NINININI 
• c 	a) N ...J '..d '.d  

0000 t10 NI N- 00 00-00 	0000 C C 'C 'C C C 'C In In N- Q ') t') 	V) 
10L/)N-00N-'COV)V)N-N-Ln Ln 	6r-lr4Lf)r-ICN- 

• •r4 	a)-1 0000N-N-0C)0 NINININININIrLnLnInO 
r4-i 

a) Cd r-1 NI NI 	L() L() In O 0) 	 N- N- 	C C 
U - - (...j 	 LI) In 

.a) 

fi 
H ,C 0 ir LI) V) V) V) - Lfl LI) In LI) LI)LI) 	If) In -tI 4f)f) &) LI) LI) LI) LI) In 

•r4 	11) 0000V)V)V)00000000000000000C000000000000 00 
T 	1 r- r-1 r1 
Cd 
U 

4) 

H 
IC Itt In N- r-1 LI) 'C r 	r1 - 'C 'C N- N- C C r4 r4 NI NI 

N- N- 000000 C C C C C C C -1 -1 el ,4 i-4 r1 p4 (M r 	NI r1 
0) 0) 0) 0) 0) C C C C C C C C C C C C C C C rI - C 



-56- 

Table III. Results for 75Ge in the P etate 

a 	 P 
12  (MHz) 	 (nut) 	 x 

	

-81.05(8) 	+0.509(5) 	2.28 

	

+81.05(8) 	-0.509(5) 	3.30 
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II I  < 0 and p, > 0 is sufficiently pronounced to justify assigning a 

positive sign for 

On the basis of the known signs for p, and a for 73  Ge, therefore, 

we assign a negative sign for a( 3P1) and a positive sign for a( 3P2). 

This latter assignment is in agreement with the nonrelativistic 

LS coupling model, which predicts a positive sign for a( 3P2). 1hat 

is more interesting is that the simplest LS model predicts a( 3P1) E 0, 

which is not in agreement with our experimentally measured value. 

a. Origin of a(3P1 . Equation (19) givs. 

a = a 12-g + 2 	
2(2L-n2) 	

2J(J+l) {j(j) + I 	n (2L-1) (22-'-3) (22-l) 

+ 	+ 	3[J(J+l) - L(L+1) .- S(Sl)][Ji) 	L(L+i) - S(S±l) S(S 1) - L(L 1)J - 	 4J(J+l) 

For the 4p2 3P1  state where 

J=S=L= land 

g = Lande g factor =-1.5, 

a0 

In Section II.B.3,4 two sources for this non-zero value of a( 3P1) 

were discussed. They are relativistic and configuration interaction 

effects. 

The first effect can be estimated nueerically from Eq. (45) 

using the listed values of Fr(J  Z) in Kopfermann. This gives the 

relativistic correëtion ar  as 

ar = 21.6 MHz 



no  

Detailed calculation is shown in the Appendices. The more accurate 

method of Sandars gives ar = -23.87 MHz. The measured value a is 

a=8l.05 MHz 

The difference between the measured value and the relativistic 

contribution must be assumed to be due to configuration interaction 

denoted by ac: 

ac = a - at' = +81.05 + 23.87 = -57.18 MHz 

From Eq. (54a) similar contribution must be made to a( 3P2). 

So without configuration interaction 

C a( P2) = a( P 2measured - a 

= 335.945 - (-57.18) MHz 

= 393.12 MH 

Calculation29  with this value of a yields 

<  1 	 -  —3) av. =6.49 a 3  

This is to be compared with the value 5.7 a 3  which is derived from 

the atomic structure 27  = 904 an 	It is interesting to note that 

if we neglect the effect of configuration interaction, 	derived 

from a( 3P2) is 5.5 a 3 . This must be taken as fortuitous. 

We take 	-= 6.49 a, 3  as the correct value for the 4p electrons 

in Ge. 

b. Shell Model Comparison with Experiment for I, ii. The 

measured spin I = 1/2 for 75Ge is in complete agreement with the 

shell model predictions. It assigns the configuration (19912f(2p112)1, 

with J = 1/2 = I for 43 neutrons. 

- 	 I 	 - 
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The Schmidt value for the magnetic dipole moment for the odd 

neutron is 

1j 1 (uncorr) = +0.637 nm 

The measured value is 

ii 1 (uncorr) = +0.509(5) nm 

The sign is predicted correctly and the magnitude is predicted to an 

accuracy of about 25%. This is not bad, considering the fact that the 

Schmidt values merely set limits to the values of the magnetic dipole 

moment. 

C. 71Ge (3P2) 

A short experiment was performed to measure the hfs constant for 

the J = 2 state of 71Ge. The main reason for undertaking this experi-

ment was that we had trouble observing the J = 2,F = 1 transition in 

75Ge. We thought that either our results for a( 75Ge; 3P1) were wrong, 

or there was an hfs anomaly between 73Ge and 75Ge. If an anomaly did 

indeed exist, it would be much smaller for 7 ce and 75Ge because they 

both had spins of I = 1/2. 

Previously, Goodman and Childs 27  had observed the 3P1  AF = 1 

transition very accurately in 71Ge. In addition, they predicted 

a(3P2) = 357±5 MFIz based on theirobservations for tF = 0 transitions. 

We decided to measure this more accurately by observing the AF = 1, 

J = 2 transition. We found that, within our accuracy, the Feimi-Segrè 

formula held for 71Ge and 73Ge, so there was no detectable hfs anomaly. 

Other results obtained by Goodman and Childs on 71Ge were 

I = 1/2, a( 3P1) = -87.05 MHz 
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71Ge has a half-life of 11 days. The isotope was produced by neutron 

irradiation of the 20% abundant stable 70Ge isotope in the General 

Electric Test Reactor at Vallecitos. The neutron flux here was about 

1014 neutrons/cm2sec. Because of its half-life, 71Ge is especially 

suitable for atomic beam work; it is possible to run for 1 to 3 weeks 

with a  single bombardment. Several melted spheres of natural gerrna-

nium were encapsulated in quartz. The first sample was irradiated for 

less than one week, and for this we only obtained a normalization count 

of about 400 counts/mm., which was much lower than the bare minimum of 

500 counts/mm. required to see a good signal -to -background ratio. Sub-

sequent bombardments were irradiated for 3 weeks, and excellent activity 

was then obtained. 

Beam Formation 

The procedure for beam formation was the same as for 75Ge. About 

3 days were allowed to pass so that the shorter-lived isotopes, 75Ge and 
77 	

could decay away. Again, tantalum ovens lined with carbon crud- 

bles were used. For an electron bombardment power of about 160 watts, a 

normalization count of over 1500 count/mm. was achieved. A satisfactory 

signal-to-background ratio of 3 was typical. 7 e was detected by its 

electron-capture x-rays. Thin (2 to 3 mm) crystals mounted on photomul-

tipliers (RCA 6655A) were used to detect the subsequent gallium x-rays. 

The signals from the photomultipliers were fed to single-channel pulse-

height analyzers set for the low-energy x-rays. 

Results and Discussion 

We started by verifying some of the results in Ref. 27. We 

observed the AF = 1 transition for the J = 1 state. The frequency 
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for this transition was found to be in complete agreement with the 

predicted frequency based on the data in Ref. 27. 

The Fermi-Segre relation was used to compare 71Ge with 

75Ge to obtain the value of a ( 3P 2). With this information, frequencies 

for the AF = 1 transition at various magnetic fields were plotted. 

AF = 1 transitions at 1, 2
3% 

4 3,  5, and 8 gauss were observed. Figure 19 

shows the resonance sweep at 1 gauss. 

The data were analyzed in two ways. First our own tF = 1 

observations were separately fitted with the computer routine HYPERFINE. 

Secondly, our data were combined with the data of Goodman and Childs 

for the AF = 0 transition and another fit was made. These data are 

listed in Table VI. 

Both fits give the result 

a(3P2  ; 	Ge) = +360.536(60) MHz 

D. 69 	(3P1) 

1. Production 

69Ge has a half-life of about 38 hours. It was first identified 

in 1955 by Butement 3°  through the cyclotron reaction 70Ge (p,2n) 69As 

69Ge. It is the only isotope studied in this paper that 
(15 minute) 	

69 cannot be produced by a reactor. 	Ge can be produced by different 

cyclotron reactions:. 

66 	.69 •Zn (c,n) Ge.. 

69Ga (d,n) 69Ge 

70Ge (p,2n) 69As 	.. 69Ge 
(15 mm.) 
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Fig. 19. 	F=1 transition in 7 Ge( 3P 2) at 1 gauss. 
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Table VI B. Resu]its for 7 Ge in ithe 	state 
using the cnbined daia of our LF I t8nsitions 
and LcF 0 transiiitions from Gooan and Chilcs. 

a 
(MHz) 	 (uncorr.) 	 x2 

+360.54(6) 	 +0.546(5) 	0.56 

-360.54(6) 	 -0.546(5) 	0.63 

From Refs. 27 and 16: 

a = +357(5) MHz. 
i 1 (uncorr.,) = + 0.546. 



Methods (a) and (b) were first considered. However, to obtain Ge 

metal by both of these methods requires an extensive and complicated 

chemical separation and reduction of about four hours duration. 

Since 69Ge emits strong y-radiations in its decay, one should have 

as little exposure as possible to the radiations. For these reàsôns, 

we decided to try the third method. Chemical separation of 69Ge 

from the other radioactive As isotopes by this reaction can be avoided 

by taking advantage of the difference in the vapor pressures of 

Ge and As. The method of achieving this will be discussed fully 

in the next section. The drawbacks,of this method will also be 

discussed. 

Ingots of natural germanium metal were sliced into discs about 

.078 in. thick. This thickness degraded the bombarding proton energy 

of 37 MeV to about 20 MeV, covering most of the energy range for the 

70Ge (p,2n) 69As reaction. The cross-section for this reaction was not 

known. We first tried .090 in. discs, but these were not satisfactory 

because the sample invariably became hot, burnt, and oxidized. Hence, 

we settled on the above size, although 90 mi is would have completely 

covered the energy range. Secondly, we also wanted to maximize the 

specific activity of 69Ge ( 69As) as compared with other numerous 

As isotopes simultaneously produced. 

Both the Berkeley 88" cyclotron and the 76" cyclotron at Davis 

were used. At the 88" cyclotron, current of up to 27 pA was used, 

while at Davis the average cyclotron current was about 15 pA. In 

both cases, a total charge of about 300 pA-hr was found necessary 

to obtain a reasonable amount of activity. 



' S  

2. Beam Formation 

On delivery from the cyclotron, targets were usually allowed 

to sit for at least 2 hours. This permitted the parent isotope, 69M• 

to decay through about eight half-lives. Some of the sittingtime 

was used in breaking and pulverizing the germanium piece in the lead- 

shielded cave. The powder was then loaded into four or five outgassed 

ovens. The ovens were of the same design as the ones used for the 

other Ge isotopes. 

Once loaded into the atomic-beam machine, the heating was done 

in steps. The purpose of the procedure was to drive away the arsenic 

isotopes. Arsenic has a vapor pressure of 1 mm at about 700°C, whereas 

it takes 1500°C for germanium to reach 1 mm vapor pressure. 

The oven power was progressively increased fran 50 watts to that 

required for normal Ge runs - usually about 150 watts. It took about 

30 minutes to achieve this. The drawback to this method was probably 

that much of the arsenic merely settled on the cooler part of the oven-

loader. Once the oven became hotter, the arsenic reevaporated, thereby 

acting as a broad source In this way, it contributed heavily to the 

background. With pure germanium isotopes, a normalized background for 

no rf of .05 was achieved for an oven chamber pressure of about 

2 x 10 6  torr. For 69Ge runs, the normalized background ratio sometins 

rose to about 2 On a few occasions when we ran three or four times 

without cleaning the oven chamber, it usually became almost impossible 

to see a signal. Perhaps, if one had to do it over again, a chemical 

separation should be strongly recommended, in the long run, it might 

have saved a lot of time. 
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This problem was compounded on those several occasions when the 

targets were burnt. Initially, the germaniinii discs were too thick. 

They heated quickly on the front surface and the cooling at the back 

surface was not fast enough to conduct away the generated heat. These 

targets were burnt. For the first two Davis targets, there were also 

leakages in the cooling system, which also produced burnt targets. 

At the 88" cyclotron, high running currents and total power concen-

trated in a small spot on the target were probably responsible for 

the burning of the sample. 

The above reasons may justify the poorer signal -to -background 

ratios of 69Ge when compared to the ones for 75Ge and 71Ge. 

69Ge decays by emitting positrons. Therefore, Geiger s-counters 

were employed for its detection. The setup has already been 

sketched in Fig. 7. On days when we obtained good, unburnt targets, 

normalization counts of 1000 counts/mm. were easily observed for 

oven power of about 150 watts. Just as for the previous isotopes, 

the iminimun normalization count seemed to be about 500 cpm in order to 

observe a decent signal. 

3. Spin Measurement 

Precisely the method described for measuring the spin of 75Ge 

was followed. The result of the spin search at 1 gauss is shown in 

Fig. 20. Although the error bar on each point was large and the 

background, as explained earlier, was high, the I = 5/2 signals were 

significantly above the background, as indicated by the points I = 5/2, 

J = 1 and I = 5/2,J = 2. At this field, the I = 3/2, J = 1 state 

had the same predicted frequency as the 1 = 5/2, J = 2 state. Hence, to 
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Fig. 20. 	69Ge spin search at-i gauss. 
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determine the spin without ambiguity, it was necessary to go to a 

higher field where there was enough separation between these two cases. 

= 0 resonance sweeps were then made at 3 gauss for both J = 1 and 

J = 2 state. The result, as shown in Fig. 21, unequivocably confirmed 

the assignment of spin I = 5/2 to 69Ge. 

Two further steps were taken to confirm the spin assignment. 

First, a decay analysis was made. The38-hhalf-life obtained 

identified the isotope as 69Ge. This is illustrated in Fig. 22. 

Secondly, the y-ray spectrum shown in Fig. 23 was taken with a 

Ge (Li) detector. The 69Ge peaks can easily'betdentified and were 

found to be in agreement with the spectrum in Ref. 31. In Fig. 23 

peaks also are visible Which definitely belong to some arsenic 

isotopes. 

4. Hyperfine Structure Measurement 

The steps taken in Section IV. B.4. for 75Ge were carried out for 

69Ge. The LF = 0 double quantum transition labelled a in the 

hfs diagram, Fig. 24, was followed up to 25 G. A conputer fit of all 

the observations for this transition at various C- fields. yielded a 

value of a with an uncertainty of about 0.7 MHz. A trial search 

for one AF = 1 transition at 25 G was decided upon. The expected 

transition probability had its highest values at this field. Figure 25 

is the result of the search for the upperAF =.1 transition, labelled 

in the hfs diagram. 

The (F = 7/2 +-'- F = 5/2) transition interval observed in Fig. 25 

has the a and b dependence given, by 

1w1 = Ehfs  (5/2) - Ehf (7/2) = 	+ 	b . 	(65) 
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Fig. 21. 69Ge confirniation of 1=5/2 at 3 gauss. 
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The observation of hv 1  merely fixed the lefthand side of the above 

equation; hence, it yielded only one equation for a and h. The 

determination of the second hyperfine-interval would similarly yield 

another equation in a and b given by 

hv2 = Ehf (3/2) - Ehfs  (5/2) = -a - -b . 	(66) 

Therefore, the next step was to measure the second hyperfine interval. 

The (F = 3/2 	F = 5/2) transition violates the machine selection 

rule and therefore could not be observed directly. But even after 

the observation of the AF = 1 transition, the uncertainties in a and 

b were still too large to make a search for a two-frequency 

= 1 + AF = 1 transition feasible. In order to lower these uncer-

tainties, we returned to the AF = 0 transition. This I

time, the two-

frequency technique was employed. The transitions involved were 

6 and y,  i.e., (7/2, 3/2) +-- (7/2, 5/2) and (7/2, 5/2) 	(7/2, 7/2). 

One of the transitions, (7/2, 3/2) *-- (7/2, 5/2), depends upon the 

interval (F = 5/2 ++ F = 3/2). It therefore would yield more infor-

mation about the second interval hv 2 . The uncertainty in the y -

transitions was much smaller than the 6-transition, so the former 

was kept constant and the latter was varied until a resonance was 

obtained. This was carried out at 69 gauss. The new observation 

along with the earlier ones narrowed the uncertainty in hv 2  to about 

0.5 MHz. 

It was then measured by the two-frequency technique The 

resonances were observed by making one rf field connect the levels 

(F = 7/2 	F = 5/2) while the other connected the (F = 5/2 	F = 3/2) 
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levels. The transitions so selected are labelled ri  and c in Fig. 24• 

Figure 26 shows the resonances obtained at 10 gauss. Figure 27 is the 

AF =1 (F = 7/2 4--'-  F = 5/2) transition at 4 gauss, its field-

independent point. 

With the two hfs intervals measured, a and b were uniquely 

determined in magnitude. A least- squares fit (by the cc11puter routine 

HYPERFINE) of frequencies to the 27 observed resonances varying 

a and b yielded the results given in Tables VII and.VIII along with 

the x2  of the fits. 

S. Results and Interpretations 

The Fernii-Segrè relation was used to coiare 69Ge with 73Ge. The 

results for 69Ge are listed in Table VIII. 

The numbers in parentheses indicate the error in the least 

significant figure, and in the case of a and b represent two standard 

deviations. For p 1 , the error of 1% allows for a possible hfs anomaly, 

while the error.of 20% for Q 1 (uncorr).is not a measure of the precision 

of the experimental determination, but results from the theoretical 

problem of, extracting Q from b. This point will be discussed in fuller 

detail in the next section. We have made no diamagnetic .correction for 

p1 (uncorr) nor the Sternheimer shielding correction for Q. 

The difference in x2  for the ±i fits is not pronounced enough 

to choose one. But from our work, a positive sign was measured for 
75 

while a negative sign 27  was measured for i.i 1 ( 73Ge). In both 

cases, p (uncorr) and a have opposite signs. So we expect p 1  (69Ge) 

3 	69  and a ( P1 , Ge) to have opposite signs. Q1 and b are known to have 
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(1.5, -1.5)-.-.-(25, - 2.5) 

(2.5, -2. 5)-.-(3.5, -3.5) 

0. 
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Fig. 27. 69 	F=1 traisition at its field-independent point '4.3 G. 
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Table VIII. Results for 69Ge in the 

a 	 °) 	Q1  (uncorr) 
(MHz) 	(MHz) 	(nm) 	(barns) 	x2  

-23.39(3) +8.28(8) +0.733(7) +0.043(8) 	7.97 

+23.39(3) -8.28(8) -0.733(7) -0.043(8) 	8.14 
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positive signs for 73Ge from Ref. 27, and since b/a is negative 

for 69Ge, b(3P1 , 69Ge) will therefore have a positive sign, the 

same as does Q1. 

a. Origins of a( 3P1). Because the electronic effects in 75Ge 

and 69Ge are similar, we can only offer similar explanations for the 

non-zero value of a. These are relativistic and configuration 

interaction effects. 

We will use Eq. (45) and Eq. (54) to calculate the relativistic 

effect. The result is 

arel = -6.88 

The difference between the observed a = -23.39 MHz and a 1  will be 

assumed to be due to configuration interaction: 

ac= aarel 

= -16.51 MHz 

Configuration interaction, therefore, will be assumed to contribute 

about 73% of the hfs constant a( 3P1) for 69Ge. This is the same 

fraction it contributes to a( 3P1) for the other isotopes 75Ge and 

71Ge, and follows directly. from the method of computing a. 

b The Nuclear Quadrypole Moment If we employ the Feniu-Segrè 

relation to compare 69Ge with 73Ge, the result for Q1 (69Ge) is 

Q1 (uncorr) = ±0.043(8) barn 

A relativistic calculation using Eq. (47) and the correction factor 

listed at the back of Ref. 12 gives 

Q1 (uncorr) = ±0.042(8) barn 



En 

Thus, relativistic effects cOntribute only about 2%. The effects 

of configuration interaction have not been considered in the above 

calculations. This is probably very important but is very difficult 

to evaluate reliably. We need to know the a values of more than one 

state before we can calculate the type of configuration corrections 

given by Eq. (50). Also not considered are the Sternheimer shielding 

corrections. The angular part of this alone for 4p 2  electrons was 
16 calculated to be about 4 , . On these accounts, we have assigned 

an error of about 20% for our lack of knowledge of the proper theo-

retical treatment of the experimental data. 

c. Comparison of Measured Value of I, p  with Shell Model. The 

measured spin I = 5/2 for the ground state of 37-hr 69Ge is in 

agreement with the shell model assignment of the 1f 512  sub-shell to 

the 37th odd neutron. 31  In addition, a spin of 5/2 has also been 

predicted for 69Ge based on the s-decay of the ground state of 69Ge 

to the ground state of 69Ga. 32  67Zn with 37 neutrons was predicted 

to have the same neutron configuration. It, too, has a measured spin 

of 5/2. 

The Schmidt value for the magnetic manent of a lf 5/2  odd neutron 

is +1.36 nm. The value calculated by Migdal, 23  using the quasi- 

particle method, is 0.90 for 67Zn for this configuration. Itis in 

better agreement with the observed value of ±0.733(7) for 69Ge. 

A positive sign is thus predicted for p I , and the sign of a should 

be negative. Our results were not sufficiently precise to verify 

this. 
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The quadrupole moment predicted by the single particle shell 

model is +0.0005 barns. Migdal's calculation yields the corrected 

value Q1 (69Ge) = +0.11. The observed uncorrected value is 0.043(8). 

In Ref. 32, on the basis of the (lf512 ) 5  configuration assignment to 

the ground state of 69Ge, a very small and positive quadrupole moment 

was predicted. Migdal, too, predicts a positive value. On this basis, 

we expect a positive value for Q and, by comparison with 73Ge, a pos-

itive value for b( 3P1) also. 

While the shell model explains the nuclear spin assignments of 

the Ge isotopes, it needs drastic modification to explain the measured 

electromagnetic moments. In this case, the quasi-particle theory of 

Migdal seems to be in better agreement with experimental values of 

the Ge nuclear moments than the shell model. 

V 
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APPENDICES 

A. Relativistic Correction Factors 

of Eq. (54b):for k. 1:.areg±ven:by 

= •3(2+l) 	(2+l) [+l) F 	- 	(+l)  

(12)l - 	21(+l) 	115 (2+3)(-1)- (22,+ l) (22.+3) (2,-l) 
	~9, 

(2+l) (22.+l) 

[-4(z+1)(2+1) F+  + 4(9+l)(+3) F__ - (29.+3)(22,-l) F} 

= (2Z+1) 	 [2+l) 	+ 2(L+1) F + F] 

where the F's are given by 

00 

j j' = cta (K+K' + 2) 	(PQ' + QP' ) r 2  dr 

The + or - signs are written for j and j ' according to whether they 

are k ± 1/2; K = -(j + 1/2) for j = Z + 1/2 and K = j + 1/2 for 

j = 	- 1/2. 

P and Q are the relativistic radial wave functions c and a0  

are the fine-structure constant and Bohr radius. 

The F's may be detemnned by using (r> from Eq (29) multiplied 

by appropriate correction factors obtained from tables at the back 

of Kopfennann's Nuclear Moments, Ref. 12 The various (r) of 

Eq. (54d) are given by 

(r01 = 	
1 2 [2+l) 	+ 2+l) F + F J 

(22.+l) 



S I 

- 	 1 
- 	

+1)2 [-42.(9+1)(2Z-1) ++ + 49.(2..+l)(22.+3) p 
3(2 

 

- (29.+3) (22,-i) F_] 

10 
= 	+1) [(+l) F ~ - 	 F 	- F] 

	

Integral 	Factor (Kopfennann) 

F 	 -F'' 

-F' 

F 

B. Relativistic Contribution to a( 3P1) in 

The relativistic contribution ar  was calculated by using 

the effective operator Hhfs eff. of Eq. (54d) and the formulas 

in Appendix A. ar  is given by 

	

r 	r 	r 	r a = a01  + a12  + a10  

where a 1  is the contribution due to the term in and a 2  that due to 

the ( 	(2))(1) tern and a 0  that due to th 	term in Eq. (54d). 

In this calculation, we use (r) determined by Goodman and 

childs (Ref. 16) for 73Ge with Zeff = 324 = 28. 

From Ref. 12 

F__ = 1.0818 

F_ = 1.0185 

= 1.0166 

The matrix elements of the individual operators are 

<p 2  3P11 II 1p 2 	>  

(p 2  3P1 II 	 3P1> 





Av 

133 
Cs: gi  

11 I 

91 

Av 

92- 

: 3035.7324 MHz 

: -2.002542 

+2.5641 nm 

3.98994 x 

9192.6318 MHz. 
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