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ABSTRACT 

A general study of the space-time symmetries of 

the scattering amplitude is made. The scattering amplitude 

in the c.m. frame has 0(2,1) symmetry in the physical 

regions of the crossed channels. By working in this frame, 

we can use the same definition of the helicity as that 

used in the usual angular momentum analysis. For the 

pairwise equal-mass case the helicity amplitude in the 

forward scattering region of the crossed channels has 

0(2,2.) symmetry in the c.m. frame, and 0(3,1). symmetry 

in the brick-wall frame. We apply an 0(2,2) expansion 

to a multiparticle system. We also continue the 0)4) 

expansion in the brick wall frame into the 0(3,1) region, 

and show the equivalence between the O(L) expansion and 

the 0(3,1) expansion. Finally, we point out the difference 

between the implications of the three-dimensional and 

four-dimensional symmetries. 
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I. INTRODUCTION 

Recently, Toiler has studied the forward scattering amplitude 

of the crossed channel (s channel) in the pairwise equal-mass case, 1  

and has expanded it in terms of the irreducible unitary representations 

(i.u. reps.) of the symmetry group, the Lorentz group or 0 (13, 1 ). He 
2 

and Sciarrino have examined a model in which the Regge trajectory 

functions and the residue functions are assumed to be analytic functions 

of a coupling constant, which they call a transition-free model theory. 3  

They show that a Lorentz pole generates an infinite number of integrally 

spced Regge poles. Freean and Wang have investigated the corre-

sponding helicity amplitude of the direct channel (t channel) at 

vanishing energy, t = 0, but outside the physical regions of both 

crossed channels, and expanded the amplitude in terms of the i.u. reps 

of the o) group, a symmetrygroup in the region considered. They 

considered particularly the daughter phenomena for the nucleon-nucleon 

scattering, and obtained results similar to those in Toiler theory. So 

far no one has extended the continuation of the O(Li.)  expansion to the 

general pairwise equal-mass •case, and no one has removed the restrictions 

imposed by the assumptions of the transition free model. 

In this paper, we wish to make.a general study of the three-

dimensional (3-dim.) and four-dimensional 	-dim.) symmeties of the 

scattering amplitude, and to study the relation between the Toller and 

Freedman-Wang amplitudes. The problem will involve continuing the 

expansion corresponding to a compact 4-dim. group to the expansion of 

a noncompact i-i--dim. group, or vice versa, as in the 3-dim. symmetry 
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case in which the 0(3).partial_wave expansion is continued into an 

0(2,1) expansion plus some pole terms. The (4) group is the only 

compact 4-dim. group, and we may take it as .a starting point for 

continuation. However, certain questions arise: Are there continuable 

expressions for the 0(4) representation function? What is the counter-

part of the continued O(Li-) expansion? The 0(3,1) expansion or others? 

One of the purposes of this paper is to study such problems. Some 

generaiizatjons 8  for the unequal-mass cases andfor the cases in whih 

the energy t is nonvanishing have been made. Here, we are interested 

for the 4-dim. symmetries only in the pairwise equal-mass case at 

t = 0. 

The usual parameterization of the total four-momentum for the 

treatment of the symmetries of the scattering amplitude is not analytic; 

the amplitude has, for t > 0, the symmetry of the rotation group; 

for t < 0, the symmetry of the 3-dim. Lorentz group. These two sub-

groups span different subspaces in the space-time continuum.: Boyce 

showed that the helicities in two cases have different geometrical 

interpretations; 9  one is the c.m. helicity, the other is the: brick iqall 

(b.w.) hencity. We find that if the parameterizations of all the four 

momenta for any s and t are defined by continuation in s and t 

fromthe physical region of the direct channel, only one kind of the 

helicity is enough to describe the scattering system at any 5 and t. 

We investigate these problems in the c.m. frame and in the b.w. frame 

separately. 
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In Sec. hA, conventions and notations are introduced. Then, 

we introduce and discuss the criteria for the space-tme symmetries of 

the helicity amplitude. In Sec. IIB, we obtain the boundaries of the 

regions of the symmetries of the c.m. and the b.w. helicity amplitudes 

on the Mandeistam diagram. We find that the boundaries are exactly the 

same for these two amplitudes except for the 4-dim. symmetry regions, 

if any. The c.m. (or alternatively b.w.) helicity amplitude at t = 0 

for the pairwise equal-mass case has o(-i.) symmetry for 

(m - m' )2 K s < (m + m )2, 
 and 0(2,2) symmetry [or alternatively 

0(3l)] for s< (m - m !) 	or s > (m + m') , where s is the 

momentum transfer. 

In Sec. III we discuss the 3-dim. symmetries of the scattering 

amplitude. We introduce a parity-conserving amplitude which has the 

SU(2) or SU(l,l) representation function as its geometrical factor, 

and thus is suitable to compare with the STJ(l,l) expansion obtained 

from the group-theoretic method with the consideration of parity 

conservation. 

In Sec. IVA we derive the 0(2,2) expansion for particular 

cases, and apply it to the multiparticle system. It might be the only 

application for the 0(2,2) expansion. In Sec. IVB we continue the 

g 	00) expansion into the physical region of the crossed 

channel. In Sec. IVC we show the equivalence between the continued 

0(4) and the 0(3,1) expansions. In Sec. V, we summarize the difference 

between the implications of the 3-dim. and 1 -dim. symmetries. 
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II. SPACE-TIME SY'TRIES OF T SCATTERING ALITUDE 

A. Criteria for the Space-Time Symmetries 

Consider a two-body-to-two-body scattering:. 

(p1s1x1 ) + (p2 s2X2 ) 	(p3s.3 ) + (ps 4 ) 

The triplet (p1 ,s 1 , 1 ) describes a particle of the kind i, i e of 

four-momentum p 1 , Spifl S i , and helicity x1 • 

Themasse of the four particles cbuld be equal or unequal. 

Only when we discuss -dim. symmetries, weshall restrict ourselves to 

the pairwise equal-mass case, i.e., m1  = • m2• = m, and m3 = m= '. 

The helicity amplitude10 Ht[p] • is defined in the physical 

region of the direct channel (which we hereafter call t channel): 

Ht[p ] 	 p1p) E • (psX3 ; ps4XTp1s1X1  p2s 2 .2 ) 
	44. 

() 

11 
It transfbrms'° ' 	covariantly under the proper, orthochronous Irentz 

group: 

Hx;xtP5 ,P;PiP2 ] 	 • 

= 	D ,['( A, p3 )]  D 	t[R'(A,p)] 	 Ap1,Ap2) 

x D[R(A,D1)] D 	_.2[-(i\,D2)] ' 
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10-12 
where .the Wigner rotations Rw(A,P) are given 	by 

• 	—(A,p) = L(Ap) AL(P) 

and 	 () 

-iØ.J 	
-iQ i 2 

J 	-  ia.K 

	

L(p) =e 	e 	e 	 u(Ø1) u(G) a(a) 

The operators J and K are the rotation and the boost generators 

of the Lorentz group. The parameters (a., 0., 0.) are determined by 

the four-momentum p: / 

p. = mi
(cosh a.

1
,sinha.. cos G., sinha. sinG.1  cos.Ø.1

,s.ina. sinG, sin .). 
1 	 1 • 	i 	 1 	1 	1 

(5) 

The Hall-Wightman theorem13  states that Eq. (3) can be extended 

analytically to any transformation A of the complex Lorentz group. 

In Regge theory, the scattering amplitude is usually defined 

in the c.m. frame, and denoted by 

H(s,t) 	Ht 	(s,t) 2 Ht 	. 	[p] , 	 . 	•(6) 
X3 4''l 2 

Conventionally, the incoming páiticles 1 and 2 are assigned to be 

along the z axis and the outgoing ones 3 and )-i. are in the xz plane 

In terms of group parameters, the four-momenta p can be expressed 

by 
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p1 	m1(cosh aJ! 0, 0, sinh a1 ) , 

rn2 (cosh a2 , sinh a2  sin r, 0, sinh a2  cos ) , 

p3 	m3 (cosh a5 , sinh a3  sin Q, 0, sinh a3  

and 	

cos 

p4 - m4 (cosh a4 , sinha1  sin(it - 0) cos 1T 0, sinh a4  cos(r - 

(7) 

with the restrictions 

m1cosh a1  + m2  cosh a2 	in3  cosh a3  + in4 cosh a4  , 

m1sinh a, -  in2  sinh a2  = 0 

and 

m3sinh a3  - in4 sinh a4  = 0 	 (8) 

The group paiarieters (a 1 , G, 	) are related to the Mandeistan 

variables:' 

cosh 1011 •= 	 cosh a2  = 	 , 
2m1t2 	 2m2t 2  

and 

coshO = z 

2 	2 	2 	2 	 ; t(s-u)+(m3  _m4)(m _m2) _______ 

([t -(mi  + m2 ) 2 ][t - (n - m2 )2 ][t - (m5  + m][t -  (m3 	)2 

(9) 
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= (p1  + p2 ) 2, s 	(p1  - p3 ) 2 , and u = Em2 - s - t. 

Similar expressions can be obtained for cosh a3  and cash a. 

Suppose g. is an element of the rotation group 0(3), and is 

' parameterized as e 	e 	e 	. The Wigner rotations 

S. 

D'[A(), p] are diagonalized, and give some phase factors. From 

(3), one obtains 

-iz Ht x [p] = e 	H t 
	

; [A(g) p] , 	 (10) 

where the total phase E is defined by 

E = 	11 - 222 - 7\.33 + 	. 	 (n) 

The phase angles 	. are given 10 by 
- 1 

cash 1(2) = 	
(12) 

' cos 	= (cos 	- cos G3()  cos 93(4)/sin Q3)  sin 9  

with 

cos 934)  = - sin 13 cos 3 sin 9 3(1) + cosf3cos 3(2) 

One sees from (9) and (12) that the 	; are functions of s and t. 

In the physical region of the t channel, one has -1 <, cos 	, 1 for 

all i, and thus E is real. The amplitude Ht[p]  is invariant 

except for a phase factor under the transformation of the rotation 

group. Since we want to include the cases in which the total angular 
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momentum is half-integral, we shall consider Su(2), the covering group 

of ON 

Before studying the scattering amplitude away from the physical 

region, we set up two criteria for the space-time symmetries: 

The symmetry group iust be a subgroup of the complex little 

12  
' 	 i group, which leaves nvariant the total four-momentum 

p(= p1 + p2  = p5  + pu ). 

Each component of the four-momenta p, of the external particle 

must be kept either pure real or pure imaginary when it is 

continued in s and t . to be real or imaginary, in the region 

considered. 

Toiler determines the symmetry, group by the first, criterion 

only. 8  In his earlier papers, 1  Toiler considers the real little group. 

As mentioned in Sec. I, the helicities corresponding to the cases 

t > 0 and t < 0 are defined differently in Toiler theory, even' though 

we can show that they are mathematically equ±valeit. 9  The introducing 

of the complex group allows one to keep to one particular frame. There-

fore, the parameterization of the four-momentum p remain unaltered 

when we pass through t'= 0. The same definition of the helicities can 

be used for all t. We shall discuss the amplitude in the c.m. frame, 

except where' we explicitly specify the. b.w. frame. 

The first criterion guarantees that the amplitude Ht[p] can 

be ex-oressed as a function of the'group'element of the symmetry group. 

The last criterion restricts the complex little 'group to its smallest 
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subgroup whichcontains the group element u() and a(a.) for the 

4-dim. symmetry case, and thus allows one to avoid the superfluous new 

quantum, numbers. For an instance, in the physical region of the 

t.chanel, the amplitude in the c.m. frame has 0(30) symmetry by the 

first criterion only, and so one has the new group indices in addition 

to the angular momentum. By the last criterion, the symmetry group 

is 0(3), and the new group indices are avoided. For the 3•-dim. symmetry 

case, these two criteria are equivalent to stating that the amplitude 

is invariant under the symmetry group except for a phase factor with a 

real phase angle 	[see Eq. (10)]. For the Ll_dim. synmetry case, we 

do not have equivalent statement. Whether this difference between. 

the 3-dim. and the -dim. symmetry is essential is not clear. 

B. Boundaries of the Regions of the Symmetries 

on the Mandelstam Diagram 

We now continue the helicity alitude Ht(s,t)  away from the 

physical region of the t channel. During the continuation, the .anTpli-

tude is always kept in the c.m. frame, and the parameterizations (7) 

and the relations (9) still hold. However, the group parameters c. 

and G may be complex for some s and t. For t ,L 0, the total 

three-momentum p vanishes. From the first criterion, the complex 

little group is a complex rotation group 0 (3c). We have to restrict 

it further by the second criterion. 

We are particularly interested in the physical regions of the 

two crossed óhnels (s bhannel and uchannel). Hence it is sufficient 
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to consider the boundaries of the regions of the symmetries on the 

Mandelstam diagram. 1  

The symmetry groups at t / 0 are determined by the value of 

9: 

 Real 9, i.e. 	-1 <. cos 9 < 1: From (7), one has the general 

form of the three-momePtum 

m. 1  sinh-a 11 	 1 
.(cosh 9., sin Q.cos 52., sin Q 1  .sin 

	

1 	 1 

• 	 (15) 

By the last criterion, the symmetry group is the group which 

2 	2 	2 keeps invariant the form -p.5 - p1 - p 2  . Hence it is 

ON or its covering group SU(2). As we showed above, the 

p1itude Ht[p]  is invariant to within- a phase fator under 

the transformation of the symmetry group SU(2).. In this case, 

the: a. can be imaginary or real. 

Imaginary 9, i.e., cos 9 	l or cos 9 K -1: Suppose 

= i91 . One has, from (7), 

= m. sinh a.(i sinh 9! cos f.i 	
1 

i sinh 9sin 0. cosh 0) 
1 	 1 	 1 	 1 	 1 

(ip 1 , ip 2 , : 5 ) . 

The symmetry group is determined by the quadratic form 

 il _p 	+ . p. + p 	, and it is thus 0(2,1) or its covering 

group su(i,J) . One can obtain the same result by using the 
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fact that a one-parameter group having a real Lie algebra and 

imaginary group parameter is equivalent to a group of imaginary 

Lie algebra and real group pararneter. Replacing J2  by 

ii '  2 in the commutation relations of ON or sU(2), one can 

show that (i), 11  must be replaced by iJ1, and (2), iJ1 , 

iJ2 , and J form the Lie algebra of 0(2,1) or su(l,l). 

The amplitude Ht[p] in this case is invariant to 

within a phase angle under the transformation of 0(2,1) or 

su(i,i). By replacing and G i by ie and iG. in (12), 

one can easily show that the phase angles 	. are real and 

so is the total phase angle E in (10). Again, the 

can be real or pure imaginary. 

Complex 9, i.e., cos 9 is complex or imaginary: The 

symmetry group is nolonger a 5-dim. group, but a two-

dimensional rotation along the z axis. This case does not 

covei the physical regions of the three related channels. 

We shall not discuss this further. 

From the above discussions, one sees that the boundaries of 

the regions of the symmetries on the Mandelstam diagram are determined 

by the conditions cos 9 = ±1. From (9), one can obtainthe equations 

of the boundary curves 

t = 0 	and 	(s,t,u) = 0 , 	 (14) 

where the Kibble boundary Thnction 	(s,t,u) is given by 
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2 2 	2 2 	2 2 	2.2 
(s,t,u) 	= stu - s(rn rn3 

+ 2 
111)4 ) - t(m1 1112 + 1113  111)4 ) 

22 	22 	2222 	-2 	-2 	-2 	-2 
- u(m1  rn)4  + m2  m3  ) + 2m1  in2  m3  m4  (m1 	+ 1112 	+ in3 	+ rn4  ) 

(17) 

For the general mass case, the amplitude Ht[p]  has ON  or su(2) 

symmetry in the physicaL region of the direct channel (t channel) and 

in the t > 0 parts, if any, of the physical region of the two crossed 

(s and t channels), whereas it has 0(2,1) or su(i,i) symmetry in the 

t K 0 parts of the physical regions of the two crossed channels. In 

the regiOns other than the three physical regions, the symmetries of 

the amplitude depend on the masses of four external partidles. We 

summarize our results in Figs. la and lb. In Fig. la, we take general 

masses for the particles. The symmetry regions for the psirwise 

equal-mass case are shown in Fig. lb. For t = 0, we are interested in 

the pairwise equal-mass case (m1. = in2  = m 	and 1113  = in4 = me). In 

this case, the total four-momentum p vanishes and thus the little 

group is complex Lorentz group or 0(4c). From (9), one has 

cosh= 	(16) 

which implies that a. = i L at t =0. For (m - m' )2 
	< ( + mt )2, 

one has the general form of the four-momentum 
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p. = m.(cos ., i sin 	sin 9. cos 0., i sin 	sin 9. sin 

	

i sin 	cos 9.) 2 	1 

(ly) 

a 	
'nil' 'P j2 , ip• 3 ) 

Hence the symmetry group is 04), which keeps invariant, the quadratic 

form p. + p. + p. + p.. In a similar manner, one can show that 

the symmetry group is 0(2,2) for s 	(in + 	)2 or s 	(m - 

This result leads us to study whether the O(Li.)  expansion of the ampli-

tude in the c.rn. frame can be continued into the 0(2,2) region. We 

shall discuss it later. If the amplitude is defined in the b.w. frame, 

the boundaries of the regions of the symmetries in the Mandeistam 

diagram are exactly the same as for the helicity amplitude in the cin. 

frame, except at t = 0 for the pairwise equal-mass case; In the 

latter case, the amplitude has 0(3,1) or Lorentz symmetry for 

s > (in + t 
)2 

 or s <z (in - in' )2,  whereas it has o-) symmetry for 

(rn-in') 
2 	

s(m+m')  2. 

That the helicity amplitude in the cam. and the b.w. frame have 

different 4-dim. symmetries is another one of the differences between 

the )-dim. and the 3-dim, symmetries of the scattering amplitude. 

I) 
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III. THREE-DIMENSIONAL SYMvETRIES 

The expansion of the helicity amplitude Ht(s)-t)  with respect 

to the symmetry group ON or su(2) in the physical region of the 

direct channel is well known. 10  This technique of expanding the helicity 

amplitude in terms of the u.i. rep. of ON or su(2) is applicable to 

the other regions where the helicity amplitude has the 0(3) or SU(2) 

symmetry.. The 0(2,1) or SU(l,l) partial-wave expansions of a square-

itegrable function are obtained by Bargmann16  and Andrews and Gunson. 17  

TollerlB and collaborators extended the 0(2,1) or su(l,l) partial-wave 

expansion to the cases of non-square-integrable amplitude.: The 

continuation from the SU(2) expansion to the su(i,i) expansion has been 

performed by many people. 19 ' 	In this subsection, we emphasize intro- 

duction of a parity-conserving amplitude which has the function D' 3.() 

as its geometrical factor, where the group element. g. belongs to the 

symmetry group of the amplitude. The function D(g) denotes the 

relative orientation of the incoming and the outgoing particles. 

We can define a trajectory of definite parity and sigpature by 

the equation 	 . 

(s,t) = 	(2j + 1) h 	(t,j) 

d 3 (z) (1 + e )/2 , 	 (18) 	, 

where h(t,j) 5s the partial-wave amplitude of definite T1 and 

definite parity TA, and m is the larger of (= X - 	) and 



-15- 	 UCRL-1932 

- 	These parity-conserving amplitudes Ht(s,t) have a 

geometrical factor d(z), but are not free from the kinematical 

sin1arities. 2°  The amplitude Ht.(s,t) has a meaning only if the 

scattering process conserves parity. Hence its asymptotic behavior in 

the j plane is known: 

1 
h ' 	(t,j) 
3 l2 

 

for large IjI and Re(j +>0. 

By a method similar to Boyc&s, 21  one can perform a Sommerfeld-

Watson transform by checking the asymptotic behavior, deforming the 

contour,and picking up the dynamical and kinematical pole terms, and 

obtain 

± 	r —+ic,3 

2j + 1 	-i(j-v) 	j H 	(s,t) = - ,- 	 [e 	+ ] d 	(z) sin rr(j - v) 
1. 

} —--ic 

1 

+ 	
sin 

(a. + -) 	-1(a.-v) 	a. 
_ 1 	2 	

[e 	 + ]d 	
1() 	

(t) . (a. - vJ 
i 

+ [terms corresponding to the discrete series of SU(1,1)1, 

 

where a. is an abbreviation for a.1(t). Equations (18) and (20) 

are suitable for comparing with the partial-wave expansions of the 
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SU(2) and the SU(1,1) respectively, obtained by the group-theoretic 

method. 

A similar discussion can be presented for the helicity an1itude 

in the b.w. frame. 
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IV. FOUR-DIMENSIONAL SYMMETRIES 

For t = 0, the scattering amplitude has a-dim. symmetries, 

the types of which depend on which frames it is defined in. In this 

section, we discuss the relationships between the expansions of the 

different symmetry groups, in the c.m. frame and in the b.w. frame. 

We also derive an 0(2,2) expansion for the multiparticle scattering 

process. 

A. The 0(2,2) Expansion for the Multiparticle System 

As we have shown in Sec. hA, if we discuss the symmetry of 

the helicity amplitude in the c.m. frame, the amplitude at t = 0 has 

the o() or 0(2,2) symmetry22  depending on whether.the four-momentum 

transfer s is inside or outside the region (m - m' )2 	s 	(m + mT 

We shall investigate whether the 0(4) partial-wave expansion of the c.m. 

helicity amplitude can be continued into the 0(2,2) expansion when the 

s is continued from the o) region to the 0(2,2) region. 

We first review the algebraic structures and the u.i. reps.2 

of the groups o) and 0(2,2). Let J and K be the rotation and 

the boost generators of the two groups. We may define new Lie 

algebra 

A. = 	(J. +K.) 
1 	2 	1 	1 

and 
	

(21) 

B1  = 	- K1) 
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so that the A. and the B. commute with each other, and form a Lie 
1 	 1 

1gebra of ON and 0(2,1) for the group 0(4) and 0(2,2) respectively. 

Thus one has 

0(4) = ON 0 ON 

and 	 (22) 

0(2,2) = 0(2,1) ® 0(2,1) . 

The Casimir operators A2  and B2  have the eigenvalues 

• 	
= Al2  + A22  + € A32 	€ a(a + i) 

(23) 

• B2  = B12 +B22 +€B32 	= €b(b+1) , 

where € 	+1 for 0(4) and -1 for 0(2,2). Another set (n, M) is 

2)4 
defined by 

and 	 (2)4) 

nM-i(J1K1 + J2K2  + € J3K3 ) 

From (21)-(24) one can reiate 2  the quantum numbers a and b to n 

and M by 	 • 

n = a + b + 1 

and 
	

(27) 

M = -a+b 
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From (2) and (17), the helicity amplitude at t = 0 for the 

pairwise equal-mass case can be expressed in terms of the group 

element of the symmetry groups, 

	

(s,t=0) = 	
3
, 	U(g) T!(px; - . ) , 	(26) 2  

where the state vector jp, -p, x2 ) is defined by 

iK 
' 	= 	p, 	e 	31 

P, 	 (27) 

and 	p = (m, 0, 0, 0). The group element g is given by 

K  g = e3 e92 e 	a a(-) u(Q) a() . 	(28) 

It is important to note that a(-j ) in (28) is an element of the 

symmetry groups. 

In the o() region, the helicity amplitude can be expanded 

in the form 

H;(S0) 	>(M2- 2
)  dnM 
	d(Q) d.0M() 

ss ? nMj 

S +S-X -7 

X T5?5 	(-i) 2 
	2 	c(s 3,s,s'; x,-) c(s 1 ,s2 ,s; 

(29) 

where p = 	- 	and 	= 	- 7. The importance of this 

expansion comes from the result that the 4-dim. partial-wave amplitude 
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TnM , 	is independent of the helicities, of the external particles; 

this result sterns from the fact .thatthestate vector santhiching the 

scattering operator T is a basis vector of the u.i. rep. of ON 

corresponding to the rotations in the 3-dim. space. 

In the 0(2,2) regiop,the dorresponding vector is not a basis 

vector of the u.i.. rep. of 0(2,1), and thus if one directly expands 

the helicity alitude. Ht(;o) in ters of the representation 

Thnctions of 0(2,2) the Li_dim. paftial-wave amplitude may depend on 

the helicities of the ëxterkal:articies. Hence we shall not continue 

the 04) expansion into the 0(2,2) regions. 

One simple argument to show that the 04) expansion can probably 

not be continued into an 0(2,2) expansion is that the asymptotic 

expression in s of the scattering arlitude would depend on the poles 

in the M plane if such a continuation were possible.. 

The result of the 0(3,1) expansion shows that the asymptotic 

behavior in the s plane does not depend on the poles in M. Hence the 

two expansions would contradict each other. Since we know from Toiler's 

work that the 0(5,1) expansion is correct., and since the result.s have 

been confirmed by the analyticity-factorization method,26 we have to 

give up any attempt to continue the o) expansion into an 0(2,2) 

expansion. 

The i.u. reps. of the SU(i,l) group are given by Bargmann. 

The representation Thnction has the same form as the SU(2) group. 

Their basis vectors have the following spectra in .j and : For 

cot:inuous series, we have 
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1 	 1 Rej = -, 	2=O, +, ±1, +,... 

There are two discrete series, positive and negative. The spectra 

for the positive discrete series are 

13 
2' 

and 

7. = j+l, j+2,..., 

and for the negative discrete series they are 

.13 

and 

= -j -1,  -j - 2," 

The particle states of the scattering system are not the 

basis vectors in the carrier spaces of the i.u. reps. of the STJ(1 1 1) 

group, since either the spin or the helicity does not belong to the 

categories above for the i.u. reps. of the SU(1,l)group. Hence we 

cannot expand .t in the usual sense. If we expand it by treating the 

u.i. reps. of the 0(2,2) group as a complete set of the orthonormal 

function, we have 

Ht (s,O) r 	 - n2 ) c(k, k',j; I' - 
abjkk' 

nM 	T 	 nM ( it \  nM 
x c(k,k',j; 	- 	 (-) d \  G) 	

'kk's.X. 



	

-22- 	 UCRL-I93)2 

where the summations 23  sum or integrate the dummy indices according to 

the su(i,i) group. The coefficient gives no restrictions on the 

scattering amplitude. However, we can apply the 0(2,2) expansion to 

a multiparticle system. 

For a muitiparticle system, the external particles can be 

collected into four groups (see Figs. 3a and 3b). Each group is 

characterized by the four-momentump., the little group 1,12,27 gi y 

	

and the helicity 7.. The total mass t 	(=p. 2 ) of the particles 

in the ith group can be negative or positive, real or comlex. Suppose 

that for some t there are no Regge poles in the right s half-

plane corresponding to the litUe groups g. . The total amplitude 

can be expressed in terms of the four submatrices, T. and a reduced 

matrix T: 	 - 

1• --+ico
S.  

	

T(t12, 
l3'  p.s..) = 	 f 	ds. D(g.) i=l 	——ioo 

I 	 1 	- 
XT 	 T (ps) 

sin i(s; - v) 

+ [terms nc1uding at least one discrete series 

	

of 0(2,1)1 	,. 	 (30) 

where the signature factor.s and the reduced amplitude are given by 
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ii((s 1. -.v) = 1 + e  

and 
	

(31) 

= (p3s3x3; psp1s1x1 ,p2 s 2x2 ) 

The reduced amplitude 	(p.,s.) has all the four legs as basis vectors 

of the u.i. reps. of the su(i,l) group. By means of the techniques 

such as used in the o() and the 0(3,1) cases,1 we have in the 

0(2,2) symmetry region the partial-wave amplitude which is independent 

of the helicities of the external legs. It is probably the only. 

application we know of so far. In the c.m. frame of the t 12  channel, 

the four-momenta of the four external legs in the reduced matrix can 

be parameterized as in Eq. (7) and the relationships (9) between the 

group parameters and the invariant variables still hold, except that 

we replace m, s, and t by t, s 13 , and t12 , where s13 = (p1 - p2)2 

and t12 = (p1 + p2 ) 2 .When t1 = t 2  = t, t3  = t = t' and t=0, 

the amplitude T has 0(2,2) symmetry if 513 > - [(-t1 )2 - (- t2 )] 	or 

-[(.-t1) + (-t2 )J 2  for negative t and t'; imilar conditions 

can be obtained if t1 , t2  > 0. Following the procedures in deriving 

Eq. (29) for the o-) group, the reduced matrix can be reexpressed by 
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c*(s3,s,k?; 	
)4 ) 11 

kk'abj 

ab Tt 	 ab 	 - d. 	C(s1 ,s2 ,k; x1,x2) Tkk,ab , 	(32)  Xk 

23  where the summations 	sum or integrate over the indices according to 

the 0(2,1) group, and 11(a) and 11(b) are the Plancherel measures of 

su(i,i) corresponding to the u.i. reps. 23 , a and b respectively. In 

deriving the Eq. (32), we have assumed that the amplitude T is square 

integrable. The amplitude may not be square integrable, since the 

scattering operators T.  may not be unitary outside the physical region 

of the t12  channel. If not, we may take some models such as Toiler's 

transition-free model. 3 	 - 

In the physical region of some channels corresponding to the 

multiparticle system, the total scattering amplitude can be expressed 

, in terms of the t12  channel amplitude through a crossing matrix. 28 29  

Thus the 0(2,2) expansion in these cases may be useful for the 

phenomenological analysis. 
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B. The Continuation of the o--) Expansion Into 

the 0(3,1) Region 

In the b.w. frame, we have shown that the b.w. helicity 

amplitude at t = 0 for the pairwise equal-mass case has 0(3,1) 

symmetry in the physical region of the crossed channel, outside which 

it has the 0(1) symmetry. Hence these b.w. helicity amplitudes at 

t = 0 can be shown to be a function of the element of the symmetry 

groups, 

Ht 	[] = K-'x 
3 , 
	' ju(g) T I P_  X, - x 	, 	() 

where the group element g is the boost along the x axis: 

- i K1  
g =. e 	= a(,) 	, 

and 	
(3k) 

cosh 	= cos @ = z 

In the 0(3,1) region, Izi > 1; in the o) region 1zj < 1. 

We define two new b.w. helicity amplitudes: 

s +s4- - 
H,5(s,0) 	L (-1) 2 	2 	c(s3,s,st; 	- 

x3x1  

X C(s1 ,s2 ,s; X1 	- 	 () 

and 
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S 
H 	(s,O) 
spsX 

+s ) - 2 	
7\ 2 4c(s3,s,s'; 	

- 	 .) c(s1 ,s2 ,; x1,x - x1 ) 

X 	H 	 (s,o) . 	 (6) 

28 They are related by 

H5 7( S, o) 	= 	d(_) H,,5(s,O) 	 ()  S ~Ls 

4L' 

From (3) - (37), we have 

H5 1 	(s,o) = (tsl!U(e (2)2  a() e12)TIsX) 

 

= 

Hence we can expand the amplitude H51 
~ts% 	in terms of the repre- 

sentation function of its symmetry groups 	Thus one.has, in the 0(3,1) 

region, 

H,(s,0) 
= 	

idn(M2  - n2) 	d(z) 

M=-q f-iCO 

 

and in the 0(4) region, 
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nM 
Hs , sx (s,o) = 	 ( 	- n2) T55,nM  d 5 (z) , 	(0) 

M=-q n=q+l 

where q is the smaller of the s and st. Akyeampong, Boyce, and 

Rashid30  have shown that, by introducing a signature, these two expan-

sions of the s-channel amplitude can be continued into each other. We 

shall discuss the continuation of the Freedman-Wang expansion (10)  into 

the o(,i) region. 

Using an identity 

a(Q) = a() u(Q)  a() 

for the o() group, one has, from ()-(), 

H5(s,O) 	 / 

= 	 (M2  - 2) d.(-) d3(Q) d.M() . (2) 

M=-q n=q+l i=IMI 

From 42), we change the dummy variable j to r by the relation 

r = n - j, and obtain 

t 
(s,O) 

q 	00 n-M 

= 	 ( 	- .n2) d(-)  d -r(G) dnM() 

M=-q n=q+l r=O 

X T 
ss 

rim 
,. 	 (3) 

(1 
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The leading term corresponding to a particular r in the above 

equation is z nr. We are interested in a few leading terths which 

control the asymptotic behaviors in z. We may consider a'component 

of Eq. 43) corresponding to definite M and r, and define 

CO 

tMr 	
H 5 (s,O) = 	( 	- n2) dnr() df(G) dM 

n=q+l 

nM 
() 

Let us examine the asymptotic behavior of the right-hard side 

of (L)  in the n plane, with the aim of converting the summation to a 

Sommerfeld-Watson integral. Freedman and Wang show that, the signatured 

scattering amplitude has the following asymptotic behavior. in 'the n 

plane:  

	

T5 y 	' 	. 0(1). 	as 	Inj  

The matrix functions dr(±)  can be expressed in a simple 

form:  

nM 	

[ 	
(+2i) 	

2r r() F(n - r +1) 

.r(r + I) r( - Tr  

	

Thus the product dOO_ 	
rOO 	falls do eonentially when 

Ren>O: 	 . 

nm d(4) dnM00() 	O[n 	exp(-n n 2)] 
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since d() = d() for the O(l) group. In deriving this, we have 

31 used the relation 

F(2n 	r + 2) = 22n-r+2 - r(n - r + i) r(n -r  + 

The asymptotic behavior in the n plane of the general function 

dnM 	 differs from that of dnM (1L) only by a polynomial sXfn_r -2 	 OOn-r 2 

in n, since s, s, 2., and p. are finite, and the coefficients in the 

recursion relations between d. nM  (6) behave at worst like polynomials 

in n and j. 

We have thus shown that the asymptotic behavior of our function 

allows us to perform a Sommerfeld-Watson transform. If T55,nM  has a 

pole at n = a, we have 

irt(a-r-v) 
H t Mr± [p] 	

1 + ,e 	 d a_r(9) daM 	(Tf\ 

sp.s 	sin (a - r - v) d5?p. a-r 	p.r 	a-r 

)(DS 
aM 	aM 	 (45)

PSI 

for z 	1cos 91 >> 1. This is the rth daughter contribution from a 

Lorentz family with Toiler quantum number M. 

	

Substituting (45) into 	we have 

Ht \ [ p ] • 	t 
1 	 a-r& da-r(G) 

m=-q r=O 

	

• 	aM In' 	aM 	M 

	

X 	d 	 s 	s' 	' 
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whre N is a finite integer. The signature in (46) is the same as 

that at t 0. The analyticity-factorization method28 shows that only 

one value of M and a is allowed. The group-theoretic method shows 

the factorization property of the residue functionsof the daughter 

Reggeons. 

C. Equivalence Between the Continued 0(4) Expansion 

and the 0(3,1) Expansion 

At fir,st sight, Eq. (46) differs from Eq. (7.2) of Sciarriño 

and Toller 2  .. 	However,, we shall. show that they are equivalent. 

Since Toller. did not introduce the signtureiiihis0(3,l) 

expansion, we shall continue Eq. (46) without introducing a signature. 

The p.rtial-wave amplitude canbe reexpressed as 

AVnM+ (_1)fl B55  	 (47) 

nM 	 nM 	 ., where A, 	and 	 are bounded by a constant separately.ss  

Substituting (47) into (44), and replacing (_1)n d rr(@) by 

(-1) d 	(' - G), we have 

00 

Ht,Mr (s,0) = 	(M2  - n2) dnM 	() dnM 	() s 	 . 	;. 	s'11  n-r 2 	n-r ?.s 2 
n=q+l 	... 	. 	. 

x [AM dnr(z) + (_1)55M dn_r(_Z)] . (48) 
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Continuing the two terms in Eq. 48) separately, we obtain 

a 	aM 
t Mr , 	 s 	 aM 	 a-r 	aM d 	(z)d 	(21) H5f5s,0) 	

sin a - v) s 	a-r 2 	 a-r Xs 2 

(L9) 

for Izi >l. 

We now continue in the n plane an identity 

n 	. ( 	= 	
M (JI) d 	d j nM() 

sX .x 	 s 	2 	 s 	2 	 (70) 

j 

which holds true for the 04) group, by taking a few leading terms in 

Z. and by replacing j by n - r. We then obtain 

am 
(a (9) 	aM 	ii 	a-r ' aM d 	 d 	(z) d X 	 S 1  a-r& 	x 	a-r 	, 	( 51) 

r=0 

where N is a finite integer. From Eqs. (42),  (49), and (51), we have 

q 	a aM 
Ht, 	(g) 	 S 	S 	

D 	1a (Q) 	 (52)
am  

s sx I 	 sin (a -v) 	s sx I 
M=-q 

for J cos 91 >> 1. From Eq. (52) and the inverse relation of Eq.. (35), 

one has 

q 
Ht 	a (9)) 	 (l)22 	C(s3,s,s';  7. 3 ,X1X2  x 

M=-q s's 

aM a aM X C(s1,s2,s;  x1 , 2 ) 	 a (9)] sx x 

(53) 
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This expression is equivalent to Eq. (7.1) in Sciarrino and Tollerts 

paper. 2  Thus the vertex function 	and 	can be related to that 

in Eq. (3); i.e., 

Jvy 	
c(s1 ,s2 ,s; x1,-2) 	

22 ,
Ge V s 	 a-r 

(5)4) 

w 
Mar  o: daM 	(.1L) 

s 	 a-r 	
2 C(s 3 ,sy s; x3,-) (i) 

These relationships show the equivalence between the 0(3,1) and the o() 

expansions. 

We may also reformulate the Toiler asymptotic expansion in terms 

of s-channel helicity states. From an identity 

a (Q) 	' 	(Q) 	) 	/ 

	

- u 	a 	u - 	= a t --, u (@) a () x 	y2 	z 	y2 	z 2 y 	•z2 	' 

which holds true for the o(-i.) group, we have the formula 

rim 	 nM 	 5 Tt\ d 	(Q) = 	d 	S'() d 	(_a) d3 	(9) d.?J d? X  () s?s 	 2 	s't'j 	2 

(5)4) 

which can be continued into the n plane by taking j = n - r and by 

considering only a few leading terms in z: 

daM (@) 	 d 	S() d 	() da_r, (z)  dnM 	(a) 

	

2 	s'' a-r 2 	p'7' 	a-r x's 2 
r 

X. 	d5 ,() 	 (55) 
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for IzI >> 1. From Eqs. (37), (9), and (75), we oltain 

q 	aM 	aM. 

H, 	(s 0) 	 S 	S' 	
d 	(@). 	 (56) s ts?\. ' 	 sin ir(a - v) s 2.s 

M=-q 

for Icos Gf = zi >> 1. This result is the same as that from the 

26 analyticity-factorization method. 
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V. CONCLUSION 

The 37dim. symmetriesof a scattering amplitude provide a guide 

for continuation through the Sommerfeld-Watson transform. For the 24-dim. 

symmetry, we were not able to continue the °(4) expansion to the 0(2,2) 

region in the c.m. frame. In theb.w. frame, we have to replace j by 

n - r in the continuation. Here we point out the differences between 

the 3-dim. and the n-dim. symmetries, which may add to the understanding 

of this situation. 

With the criteria stated in Sec. HA, we found that the amplitude 

has the same kind of 3-dim. symmetries in a particular region, indepen-

dently of whether the amplitude is defined in the c.m. frame or in the 

b.w. frame (see Sec. IIB). For the IT-dim. .srnmetries, the type of 

symmetry depends on the frames inwhich the amplitude is defined. At 

t = 0, the amplitude always has the symmetry associated with the complex 

Irentz group. 8  However, this introduces many new quantum numbers, and 

complicates the problems. One may have difficulty in identifying the 

new quantum numbers with physical quantities. 

As stated in Sec. hA, the helicity amplitude is invariant 

except for a real phase factor under its symmetry groups in the 3-dim. 

regions, but it is covariant only in the. 1 -dim. symmetry regions. 
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FIGURE LFGENDS 

Fig. la. The boundaries of the regions of the symmetries on the 

• 	Mandelstam diagram for the general-mass case. The lines 

• 	63, ®, ®, and 	are given by the equations 
t = (m1  + m2 ) , t = (m3  + m) , t = (m - m2 ) , and 

t=(m3 _m)). 

Fig. lb. The boundaries of the regions of symmetries of a c.m. helicity 

• 	 amplitude on the Mandeistam diagram for the pairwise equal-mass 

case, i.e., m = m2  = m, m = 	= m'. For the b.w. helicity 

• 

	

	amplitude, the 4-dim. symmetry 0(2,2) must be replaced by 

o(,i). 

Fig. 2 (a)  A multiparticle system. 

(b)A decomposition of the multipaticle system. 	 • 
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