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~ GLOSSARY FOR REGGE POLE THEORY

' J. D. Jackson
Lawrence Radiation'Laboratory-

University of California
Berkeley, California ~

September 24,1969

ABS&RACT '
vPart A COntaihs a glossa;y for Regge pdle'thepny
'fo} the uSe'of feaders 6f papers in this area of high |
energy theoreticél physics. Part B contaiﬁs'definitions.
of'invarianﬁ amplitudes_énd't-channel helicity ampliéudes
for'meson-baryon elastic sCattéring and photoproduction’
 _of piqns, as weli'as the COnnectioh betweeﬁ crossing -

-Symmetry_dnd signature and a list of Regge trajectories.

This work was suppprted in,part by thé U. S.Atomic Energy

'Commission.
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INTRODUCTORY NOTE
This éhort glossary and éccompanying‘nétes were pfepared as an
appendix to the vérsion of my Lund review paper, "Models for High
Energy'Processes"'(UCBLfi9205), that is to appeér in the January, 1970
issue of heviews of Modern Physics. It seems worthwhile to make the
matgrial available separately. The text is unaltered, apart from the
addition of a bibliography necessary tO'méke the present document
almost self-contained. -Phrasés suchias "Chapters of this reviéw","see
Eq. ('\}I.13)", !.'inl.mg'._ ah", etc. refer to the text of UCRL-19265 .
 For a géneral introduction to Regge theory the authoritative
reference is‘ﬂow the book by Coliins and Squires (1968). Some‘of thé
more advanced fechnicalities are descfibed in detail by Bertocchi

(1967) in his review at the Heidelberg Conference.
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~APPENDIX

The appendix is designed to aid thé reader inbunderstanding.
this ana other papers concerned with Regge‘pole theory. Part A is a .
modest glossary of some of the commoner tefmé used by the experts.
If some of the definitions éqund like gibberish worthy of Lewis Carroll
or Edward Lear (for example, see Compensation), I apologize.  Mj hope
is that a careful usé of the glosééry will, by stages, lead to an
, explanétion of any term in words that a mere mortal (or experimenter)
éan understand. . Part B consisfs_Qf a number of definifions and
examples of invafiant amplitudes, ;r0ssing5 Regge trajectories, etc.
. that provide background material for several of the Chapters of thié

review.
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A. Glossary

Ancestor states. States with I, > N that arise when the Veneziano
amplitude (VI.2) is mutilated by réplacing the real trajectory
functi§n by a complex function in order to obtain resonances with
finite widths. When Re a(s) =N, the.numeratof in Eq. (VI.2) is
no longer a real polynomial of degree N in t,,dnd O the parfial
wave content is no longer restricted to I € N.

Chew mechanism. See ghost-killing.

- Choosing sense or nonsense. See Nonsense-choosing or Sense-choosing.

Compensation (mechanism). The use of a compensating trajectory of
opposite parity to cancel a pole occufring in a nonsenseenonsénse

amplitude at a right-signature nonsense point for a Regge pole that

chooses nonsense. If a pole chooses nonsense, the leading terms:
* in the heiicity ampiitudes behave as (cos éi)a times 1;1,1 for
v“-'Ass’-Asn’ Ann’ fespectively, at a right-signature non;ense point.
For A alone there is a lower order term, (cos Qt)*y-l (o - J)-l,
" - that has a pole at a=J (J ;.O). The compensating trajectory is
such that ac = ~J -.l when « =J and ité.residué is such as to
cancel the.pole. The situation is symmetrical around J = -% with

poles occurring when either J or -(J + 1) 1is a nonsense point.l

(See Gell-Mann et al., 1964, Appendix B).

Conépiracy (conspiratorial solution). Relations at t = O among the
trajectories and residues of a finite number of different Regge

poles such that certain conspiracy relations are satisfied.
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Conspiracy relation. An equation, usually holding at t = O, relating

t~chanﬁel helicity amplifudes which receive contribuﬁions from

. different parity sequences (different Regge:poles).- For an example,
see Part B(e) of this Appendix.’ For'dgtaiié and references, see
Collins and Squires (1968), p.lO9>ff and Hite (1969).

Crossing (symmetry). The replacement of L-momenta by their negatives

- (line reversal) such tﬁat sve—ou is,called s-u crossing. An
gmplitudé'that is even or Qdd undef this #ransfbfﬁation is said

to havé a definite crossing symmetry_(crossing symmetric or crossing
antisymmetrie, or just even éf odd‘ﬁﬁder‘crossing), The transforma- "
'tidh' S emu génepates_ v - -V, Other croséings-for the h—pafticle

amplitude are s >t and tesu.

Cut (in the J-plane). See Regge cut.

Daughter trajectory. See Trajectory, daughter.

Evasion (Evasive solution). The placing of restrictions on the iesidues;

but not on the trajectories, of a number of different Regge poles in

" order to satisfy conspiracy relations.

Exéhange degéneracy. If two ﬁeége poles, coupliné to the'same particles,
" and of oppoéite signature, have the same tfajectory fuﬁction,'théy
are sa;d to be exchange degenerate. This equality of trajecfories
is sometimes called "weak" exchange degeneracy. "Strong" exchange
degeneracy requires equality of corresponding residue functions as

-well as trajectories.
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Factorization. 'An.almost”intuitivé property of Regge résidues that

follows from the definitioﬁ~of"a simple pole of definite‘quantumv.
numbers and uniﬁarity. If Bba(t) is the_résidue of such a pole
;‘in'an amplitude describing a transition‘from'sfafe a to state b

(a,b specify pa?ticles and their helicities); then factorization
ofiresidues requires that 'bba2.= Bbbrsaé fof all vaiues of tnly

Fixed’gole; A pole in'the;complex angular momentﬁm plane that does
not'move with fhe enérgy. >In_relativisti¢ Regge theory there are
fixed poles in the apéular momentum blane'at nonsénse, wrong-
signature poinfs if}thé.third double sbectral function is nonvanishing.
(see, for e%ample, Mandelstam aﬁd Wang, 1967, and Oehme, 1968);'

Froissart bound' A bound Oh the rate of increase of the tétal cross

sectlon, first proved by M. Froissart (see Eden, 1967, p 168),
o, < C[En(s/s )] as s —oo.
. This has the consequence in Regge pole theory that no.Regge

tfajectory can have an intetcept greater than unity at t =0,

Gell-Mann mechanlsm . Same as nonsense-choosing mechanism.

Ghost-killing (factor, mechanism). Thé standard Regge pole amplitude

for spinless particles has its s1ngular1ty structure determined by

(£ + e i“a)
r(a +1) sin na.

times a redubed residue:7'For odd signature this

set of factors gives the desired poles at « = 1,3,5,:*+ and no
_ ‘other singularities For even signature, however, there are poles
at a = 0,2,4,--. and the point @ = 0 may lie at negative t,

'corresponding to 1maginary mass and often in the physical region of -
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some process where poles are obviously not allowed. To eliminate.
this "ghost" pole it is necessary to maké the reduced residue
proportional to o(t). This‘factor of a(t) is called the ghoéf-
killing factor;- If the aﬁplitude describes spin-flip and the
residue '"chooses sen;e"_there will already be one or two factors of
o present in the residue. Then it becomes a matter of taste (ét
this state of ‘the art) whefher any additionai factor;ofl o .should

be postulated, provided the'requirements of factori?ation are

satisfied. Chew's ghost-killing'ﬁechanism inserts i factor of o in

all even signature Regge amplitudes, independently'of'whether or not
they need them to prevent a pole at o = O.

Kinemétié singulafitx, A square-root or power of a square-root

singularity, generally in a helicity amplitude, at a thrééhold or
péeudothréshold determined by the masses of the external particles,
-or at s, t, or u equal zero.

Kinematic variables (s,t,u). See Mandelstam variables.

Line reversal. The replacement of the Y-momentum of an incoming or

outgoing particle by its negative. ILine reversal corresponds to
replacing an incoming (outgoing) particle by its outgoing (incoming)
~antiparticle.

Lorentz pole. In equal mass scattering at zero total energy

(t = 0) the scattering amplitudes posseéss the symmetry of

the Lorentz group [0(3,1)]. Lorentz poles are the 0(3,1) énalog

of Reggevpoles (which occur in the context of 0(3) invariance
and ordinary angular'momentum). Lorentz poles are sometimes

called Toller poles. They possess quantum numbers of the
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same type as Regge poles, plus an additional quaﬁtum number M (éee
_Ml'quantum numbér). A Lorentz pole is equivalent to an infinité 
sequence of Regge poles (one'or'more leading poles, plus all their
daughteré). See Bertocchi (1967), p.202-215, and references given there.

M quantum number. A guhantum number characteristic of a Lorentz pole,

- and important in detefmining the Regge pole content. A Léréhti pole
with M =.O cdrresponds to ohé ordinary»leading'Regge;ﬁoleléf
definite pafity and signature, plus its daughters. A Lorentz pole
"with;lM:=”i‘is equivalent fé a parity-doublet of leading Regge poles
of the éame signature, hévihg ;he same o values at t = O, plus all
their daughters. See, fof example, Bertocchi (1967), p.202-2i5.'

Mandelstam variables (s,t,u). Lorentz invariant kinematic variables.

In a process, a +b »c + d,

2

s ;(pa + pb)‘ = (total c.m. energY)?,

R

t = g(pa - pc)e‘ = =(4-momentum transfer)2

u -(paf- pd)gv = ~-(crossed 4-momentium trahsfer)2
For the t-channel procesé,h"a +¢ b % d, t becomes the ehergy.
variable and s and u are momentum transfer variables. For the
u;chénhel process, E_+'b -8 # d, u 1is the energy variable. The
‘variables are.reléted by ,
‘s } t +u = ma2_+ mb2_+ mcz +.md2 . .

A useful variable'1n dispersion'relations is v = (s —.u)/hmb :
wheré particle b is the target. For forward.elastic‘scattering v

is the total energy of particle & in the rest frame of D.
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No-compensation mechanism. .An alternative to compensation. The pole
in _Ann at a righfesiggature nonsense point « =-J for a Regge
t;ajectory that chooses nonsense can be eliminated and etill satisfy
factorization by postulating that all the residues have an additionel
'factor' (0 - J). No additional compensating trajectories are
necessary. The leading terﬁs‘ef all the nonsense-choosing Regge
amplitudee then behave as (a - J) at a right-signature nonsense
point, independent,of helicities. The terme.of relative order

-2a-1 pfoportional to (ax-J), (o¢~-J), 1 for sense-

_(cos’g )
sense, sense-nonsense, and nonsense-nonsense amplltudes, respectively,
(3 >0). See Bertocchi (1967), p 219.

Nonsense-ch0031ng The residue of a Regge pole is said to choose

nonsense when the a~dependences of the sense-sense and nonsense-
nonsense ampiitudes are reversed (their product must equal the
square of the sense-nonsense dependeﬁce, by facterization).
Specifically, neer (o4 ='J' the residues are proportional to (o - J),
o - J)%, 1 for sense-sense, sense-nonsense, and nonsense-nonsense
ahplitudes, respectively. The leading terms of the helicity
e@plitudes then behave es 1, 1, 1, respectively, at a right-
signature nonsense point and as (a - J), (o - J), (a'- J) at a
wrong signature point (J > 0). For J <0 and/or for lower
order terms in ces Gt, the nonsense-nonsense amplitude has a pole

at o = J. See compensation and no-compensation mechanisms.

Nonsense-nonsense amplitude. See Sense-sense, etc.

‘)
L/
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Nonsense point. An integer (of half-integral for channels With‘odd

baryon number) value of angular momentum that is unphysical for a
particular set of helicities, i.e., J < IJZ|. Some authors define
W : only non-negative integers as possible nonsense points (for example,

Gell-Mann et al., 1964, Appendix B).

Pole (in the J-plane). See Fixed’pole, Regge pole.'

Regge cut. A branch cuti in the cbmpiek angular momentum.ﬁlape, a
possible singularity of a relaéivistic partial wéve aﬁplitudéf
Regge cuts'arise natuially gy ﬁge exchange of two or more Regge
poles, and occur in perturbation théory from the summing up of
certain sets of crossed graphs (see Mandelstam, 1963; Collins and
Squires, 1968). | | | |

Regge pole. A pole in a partial wave amplitude A(J,t) considered
as a function.of complex angular momentum J. The position of the
pole, J =.a(t), depends on the energy varisble t. In potential
theofy, with some restrictioné on the form of the potential, Regge
boles are the only singularities possible in the complex angular
momentum blané. | | ”

Residue. The fesidue (in a Cauchy sense) of a Regge pblé in a partial

| wave amﬁlitude. ‘Loosely, the true residue multiplied by a number
| of kinematic and afdependent factors designed to give the product
reasonable analytic properties in t. This last is sometimes éalled

a reduced residue.
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Right and wrong signature points. A Regge trajectory usually.has a
definite signature. A boson trajectory with even (odd) signa£ure
Will have physical particles at J = 0,2,h,-++ (J = 1,3,5,---).

For a trajectory with even signature the poihts J = 0,t2,tﬁ,"'
are called right-signature points, while J = #1,43,--- are called
wrohg-signature points. For a trajectory'wiﬁh odd signature the
two sequences are feversed; For fermion trajectories the J values

are shifted by half a unit.

Satellite term. Veneziano amplitude whose leéding trajectory is one
‘or more unitsvof angular momentum below the leading Veneziano
amplitude. For an example see Eq. (VI.13).

Sense-choosing. The residue of a Regge pole is said to be sense-

. choosing (or chooses sénse) if it vanishes when the trajectory
passes through nonsense points. Iﬁ particular, the residue is
proportional to 1, (a - J)%, (o = J) for sense-sense, sense-
nonsense, and nonsenée-nonsense amplitudes, respectively, near
o = J. These a-dependences of‘the'reéidues imply that at a right-~
signature point the leadiﬁg terms (highest powers of cos Ot) in
the helicity amplitudes are proportional to (o - J)'l, 1, (a - J),
respectively, at least for J 2> 0. At wrong-signature points all
the amplitudes are less siﬁgular by one power of (& - J), provided
there are no multiplicative fixed poles (see Oehme, 1968, and
Mandelétam and Wang, 1967). For more detail;, consult Berﬁocchi

(1967), p.215 ff.
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Sense point. A physically allowed value of angular momentum, i.e., an

integer (half integer for fermions)'value of J with J ?;IJZI.

Sénse-sense, sense-nonsense, and ﬁonsense—nonsense amplitudes. Consider
the process ’ab -»cd and a pértial wave or Regge amplitude in which
| ‘the.iv.nitial helicities are A , A, with difference A = A, - Ay,
and final helicities Aer Mg with difference p = xc‘f xd.‘.Let_
. the angular momentum be J. If J > |A], [n] the amplitude is said
to be a sense-sensevamplitude with respect to J (J is physical
for both initial and final state). If [A] >33 |u] or
'u|.> J > |n|, the amplitude is called éense-noﬁsense. If
: J'<:|x|, lpl, the amplitude is said to be a nonsense-npnsenée
..amplitudé{' When discussing the'a-dependence of amplitﬁdes near a
partiCUlar value of @ = J the helicity amplitudes are often
» labelied. A;;, Asn’ Ann for the three éategories of helicities.
Sighature. An amplitude possesses definite signature, even or odd, if
| 1t is even or odd under the transformation, cos © — ~cos 6. A
Reggé pole.has definite signature if its contribution to an amplitﬁde
‘”bossesses définité signature. Such a pole gives physical particles
| at only every seéondAinteger in J (see rigﬁt and wrong signature
._points). | |

-iﬁa). This factor arises from the repre-

Signature factor. (£ + e
‘sentation of an evenF or odd—signafured amplitude by a Regge pole

expansion involving {Pa(-z) i(ﬁz(z)] oc (-2)% & (z)a.
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Threshold, normal and ﬁseudo-. The ﬁormal and pseudptﬁresholds are
energies where the c¢.m. momentum in the initial or final state
‘ vaniéhes; if the masses are m and m2:¢ mlk the normal threshold
in the s-channel is at s = (m1 + m2)2 and the pseudothreshold~is
at s = (m1 - m2)2, For mi = m,, the momentum vanishes only at
the normal threshold. |
Toller pole. Sa@e as Lorentz poléu

Trajectory, daughter. A ﬁrajectory with an"a(t) differing from its

parent or leadingvtrajectory ﬁy a negative integer, and possessing‘
quantum numbersbrelated to those of thé paient. Déughter trajec~

v tories were first found importanf at t =0 for unequal mass
kinematics. Then théy tqrned up in the expansion of Lorentz poles
into a series of Regge polés. Most recently they appeared in |
Veneziano amplitudes.

Trajectory, leading. The highest lying Regge trajectory in a family |

or entering a given process, i.e., the trajectory corresponding to
the largest value of angular momentum at a given energy.

Trajeqtory, parent. Same as leading trajectory.

Trajectory, Regge. ' The function «a(t) that gives the location of a
. Regge pole in the complek angular momentum plane, or sometimes the

real part of a(t) viewed as a function of t.

Trajectory, secondary. A Regge trajectory that has a smaller Re o(t)

than some other frajectory. A secondary trajectory is not necessarily

a daughter trajectory, nor spaced below by an integer.

Wrong signature point. See Right and Wrong signature point.
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B. Miscellaneous Definitions, Formulas, and Relations

(a) Invariant amplitudes and t-channel helicity amplitudes for

meson-baryon elastic scattering

Let the meson mass be u, the barybn mass m, and q, D, q', p'
be the L-momenta of the initial meson, initial baryon,-final.meson,
and final baryoh, respectively. The invariant Feynman amplitude for
scattering with initial and finai.helicities A and. A', respectively,

is written as

m - E)\,(p')[-.A + ir-(q ; q'> B]ﬁk(P) | . (A1)

where u(p) ié é Dirac spinor normalized fo uu = 2m. The amplitﬁdes
A and B are functions of the Mandelstam variables s and t [or
valternatively v = (s.- u)/km and t]', They are Lorentz scalars and
are freel from kinematic singularities. A cdhvenient.norméliéation viaA

the optical theorem is
| 2 21
In[A(v,0) + vB(v,0)] = (° -p)T o (v) .  (A2)

The invariant amplitude A'(s,t) 1is defined by

A(s,t) + m(s - u) p(g 1) (A3)

A'(s,t) =
- . ’ bn - t
or . . o
' A'(V)t)  = A(V:t) -+ M . | A (A3'>

C-._P__
hm2
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The use of A' and B, instead of A and B, stems from their‘relation
to the nonflip and spinflip helicity amplitudes in the t channel. Explicitly,

the t-channel helicity amplitudes [(Al) evaluated in the t-channel c.m.]

are

£v = -(t - hmz)’l-’: A - o (AL)
++300 -

t | . ) 2\ | |
£ 500 2(t)? p, q, sin Qt.vB/(t - 4m%)2 - (A5)

where Py and q, are the t-channel c¢.m. momenta of the baryon--

antibaryon pair and the pair of mesons, respectively. -

(b) Crossing ard even and odd amplitudes for K™p and K'p

elastic scattering

. Let .the Kp elastic scattering amplitudes be A(V;t) and -
B(v,t) and the K'p amplitudes be A(v,t) and B(v,t).. The concept
of line reversal and the accompanying s-u crossing (v - -v) requires

that

K(V)t)

A('V;t) i ‘ ~ (A6)

E(V)t)

]

-B(-v,t) . | o (a

ﬁoté that.if v has a smali positive iméginary part (above the real
axis on the right in Fig. 2O)Atheﬁ -y has a small negative imaginary
part (beléw the real axis on the left in Fig. 20).. The minus‘sign in

(A7) arises because of the way B enters (Al). Line reveré@l of the
mesons changes (q +q') —»-(q + q'). The relations (A6) énd (A7) are
what gives meaning to ﬁhe display of the ‘K'p and .K+p_ total cross

sections in Fig. 2L.

m
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Amplitudes that are even or odd under s-u crossing are

Ca®e, < e BT (@)

58, 4)

3(B(v,t) £ B(v, )] . o (n9)

Note the A(+) and ‘vB(+) are even, while al*) ana vB(—)‘ are odd
under v - -y.. The amplitudes defined by (A8) and (A9), and analogous
ones for x*p and x"p scatterings, are what are used in Chapter V

on finite energy sum rules.

- (e) Connection between s-u crossing symmetry and

t-channel signature

Crossing involves ‘s «<>u or v - -y, while t-channel signature

(usually of a Regge pole amplitude) is associated with cos 6, — -cos 0.
A heuristic derivation of the relation between these two symmetries
follows immédiately from the kinematic relation (for elastic scattering

in the s.channel),
. %pt 9, ¢os 6 = g -u . | (A10)

An s-channel amplitude that is even (odd).under crossing will involve

-only t-channel Regge poles of even (odd) signature at high energies.

(d) sShort catalogﬁe of Regge trajectories

(i) Boson trajectories
P: Pdmeranchon, named after I.Ya. Pomeranchuk because

of his theorem on asymptotic behavior of cross



P':

’A2 or R:

P = +l. Its intercept is
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sections (see Eden, 1967, p.213). This trajectory
haé even signature and carries the quantum numﬁe;s
of the vaéuum (the unit - representatiénléf all
known and yeg to be discovered internal symmetries). o
It has aP(O) =1 if t;tal cross sectigns are
asymptoticaliy‘constant. Exchange of the Pomeran-

chon supposedly describes diffractioﬁ'Scattering

as 's_—am. “ It does not seem to have ahy particles
associated with it. | o :

This eVen-signature trajectory'apparently has the

same quantum numbers as the P (at leastli£'has |

even parity;-chargé conjugation, and G-parity, |

I=Y=0). The £°(1260) meson with J% =

‘is the only well established member on the P’

trajectory. The intercept of the P' trajectory

is aP}(b) ~ 0.5-0.6.

An even-signature trajectory whose lowest physical

state is the A, meson at 1315 MeV with aF -

The internal qﬁantum numbers of the trajectory

(and.the A2) are I =1, Y=0, G = -1, and

(0)~0305
The trajectory of odd signature associated with

the p(765) meson has I ; 1, Y = O; = +1, and

P = -1. The g(l650) meson is probably the flrst



™
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Regge recurrence, with JP =3 . A'popular
parameterization of the -p trajecfory is
ap(%) ~ 0.5 + 0.9t. |

The w trajectory_has‘ I=0, Y=0, G=-1,

P = -1, odd signature, passes through the . w(783)

' - meson, and is roughly equal to the p trajectory.

This trajectory (and its antiparticle partﬁer)_

has I = %,;Y’= 1 (-1), P = -1, odd signature, and
ﬂ is associated with the K*(890) meson with LA
Its intercept is very péorly known:
aK*(O) ~ 0.1-0.5.
' 1

This is a trajectory of even signature with I = 5

. . . . =2
Y =1, P=+l. It is associated with the K (1420)
meson with JP = 2% TIts intercept is also very

poorly determined: aK**(O) ~ 0.1-0.5.

'All of the above trajectories are associated with states of

natural parity (P = (-l);). They are relatively well-known because

they occur in pseudoscalar meson-spin % baryon processes. The unnatural

parity states (n, 7, Al,'etc.) presumably:also lie on Regge trajectories.

Only the pion trajectory has received much study in high energy processes,

. : -
and even there the proximity of the pion pole to the physical region

means that its Reggé pole‘nature.is réiatively unimportant, apart from

. questions of conspiracy.

v



-18- . . UCRL-19351

(11) Baryon trajectories

‘The large number of baryon states precludes a

™

systematlc listing of all the baryon trajectories A common -
notation to systematize the sequences of states is the use

of subscrlpts a, B, 7;,8 to signify the spln-parlty sets,

o l+i§+ 9" (even n s
595 950 parity, evep signature)
B : %-,%-;g-,- - (odd parity, even‘signafﬁre) ‘
18 f:%f,%-,%i- - (odd peiity; odd signdtufe)-
S %f,%+(%%f,--. (QQen par;ty; odd signeture).;

Note that for the baryons signature is associated with
(3 - %).' Examples of baryon trajectories and associated

:particles are
@r(gaa)JP %—,N(l688)J‘P ;:%_,Y_eg_,
2o(81236),% = 25 aasho), al’ : g_, ¥-1),

Y=

&
7

For more details on the baryon trajectories, consult

Collins and Squires (1968), p. 198 ff, or Hite (1969).
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(e) Invariant amplitudes, t-channel helicity amplitudes, and

conspiracy equations for pion photoproduction

4

Let k, p;'q,_p' be the_h-momenta of the_photbn,initial
nucleon, pion,'and final nucleon, respectively, and define
P = (p + p')/2. Thé nucleon mass is m; the.pion mass is p.  The
invariant Feynman amplitude for a photon of polarization e incidént
on a nucleon of heiicity_ A leading tO‘tHeproduction of a bion and g

nucleon of helicity A' 1is written as
i '”‘\-“w(P')“}loi + A, & * A0+ 4,071 u,(p) (A11)

where the A, are four invariant amplitudes and the four -C}; are,

gauge-invariant Dirac operators,

5

Q-

i rvrverk . ' , \

o - 247, (P-¢ -k - pkagee)

& = nlreak - Tkae) | (A12)
C9i = vays(roe Pk -~ .Y-k P~e: - »im r-€ 7k) ‘ J

The invariant amplitudes A, are Lorentz scalars, functions of s

i
and t, and free of kinematic singularities.

The t-channel helicity amplitudes 'ft .are customarily

Y TN

related to the invariant amplitudes Ai through the intermediary of
the so-called parity-conserving't-channel amplitudes Fi’ defined to
be free of kinematic singularities. The Fi are related to the

helicity amplitudes according to =
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. A t .
o (t - u®) sin o 6105“ v f-lO;++> (A13)
t o |
| (1)2 L % |
-2i(% 6 |
F, = £ -t :> o
2 (t - th)% sin 6, (:105++ <10 ;++ (ALk)
. - .
.1_ ' .
F, - -2L(t)° 1105+ 1054 (A15)
> - “2 cos 8, + 1 cos 6, - 1 |
. ,
= -+ ‘ _ : - o
L ( - “2)(t _ hmz)a cos 9, + 1 cos 9 -~ 1

vThe amplitudes Fl

unnatural parity sequences in the t-channel, respectively, and for

and F, receive contributions fxom natural and

charged pion photoproduction further restricted to even signature and
odd G-parity, or odd signature and even G-parity. In leading order

(in powers of cos Gt) F, and Fh involve natural and unnatural

‘ 3
parity sequences, respectively. The amplitude F3 has the same
signature-G parity relation as F, and F,, while for 'Fh it is
opposite. In terms of well-known particles pion exchange contributes

only to F,, p, and. Ay exchanges to F, and F,.

2 3
The connections of the Fi to the Ai are
F) = <-Aj + 2mA, . | - (a17)
5 :
Fy, = (t - ! ),(.Al + tA2) (A18)
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~tA,, | | | (A19)

(A20)

i1
¥
fe=]

F)-l‘ 3,0

These équations imply certain relations among the Fi at special values
of t and all s values. TFor example, at § = bt "Egqs. (Al7) and

- (A19) iﬁply tﬁat F5 = -2mF,. Because this relgfion holds at t = hm°
(pt = 0) it is called & threshold relation. Since F, and F3 both

involve natural parity sequencés ﬁith the same quantum numbers, the
threéhold relation can generaily be satisfied for‘all ‘s by each
exchanged trajectory separately.>'0f'more interest are relations at

t = 0. _Eégations (A18) and (A19) reéuire_that at 't =0, Fé = —uQFB/Em.
Singe F2 and F3 involﬁé d;ffefent Parity sequences éhis reiafion
must be satisfied either by "evasion" or "conspifacy." Supbdse that

. the pion Regée.pole and the p-méson Regge poie contribute respectively
to F '

and to F Since laﬂ(o) # ap(O) ‘there is no possibility of

2 3"
satisfying the relation F2v= -p2F3/2m for all s, except by;reQuiring

F2 = F3 =0 at f = 0. This is cglled the evasive:solution and leads
to a dip in the forward direction in the cross section for pion
phoﬁéproduction. _One way to gvoid requiring F2 =0 :is to_postqlate a
'ngtural parity partner for thé'pioﬁ (a conspirétpr) with‘a frajectory

'ac(t)‘ such that ac(o) = an(o) and a residue adjusted to satisfy

F

o = ;uaFB/Em.7 This last relation is called a conspiracy equation for

obvious reasons. Such a conspifatorial solution to the observed forward

peaking'in high energy photdproduction is referred to in Chapter III,
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Sec. 1 and in Chapter V, Sec. 2. Regge cgts offer another céhSpifatorial
solution sinée the Regge cut amplitude corresponds to a ﬁixture of
parity sequences and will .in géneral contribute to both F2 and Fj'

The reader may wondgr at the physical significance 6f the
conspiraéy equation, F2 = -usz/Em. Ceftainly the derivation from
Eqs. (A18) and (A19) does not exhibit mﬁéh physics. A sétisfactofy.
understanding can be found in terms of the connection with the s-channel
helicity amplitudes, at least in the limit of s — w. Examinatioﬁ of
the s-t crossing matrix (seelJackson and‘Quigg,-1969).shows thgf to
ieading'order in s tﬁg ﬁelicity double~flip amplitude in the s-channel ig
tF F

. F . :
S —-% + 5 2 + 5% . (A21)
V2 \lm TR '

ng—%;-—1,—§~ N
This s-channel amplitude must vanish as t in the forward direction
because of conservation of the component of angular momentum along the
beam direction. Thus. ihdepéhdent of any dynamical assumptions the

t-channel conspiracy relation, F, = -u2F3/2m, at t =0 is required

2

by cqnservation of angular nmomentum in the s-channel.

iy

@
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